Properties

Label 675.2.l.h.151.5
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.5
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.h.76.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.990387 - 0.831033i) q^{2} +(-1.55212 - 0.768718i) q^{3} +(-0.0570464 - 0.323526i) q^{4} +(0.898367 + 2.05119i) q^{6} +(-0.134907 + 0.765094i) q^{7} +(-1.50522 + 2.60712i) q^{8} +(1.81814 + 2.38628i) q^{9} +(3.66139 - 1.33264i) q^{11} +(-0.160158 + 0.546003i) q^{12} +(3.91983 - 3.28913i) q^{13} +(0.769429 - 0.645628i) q^{14} +(3.03995 - 1.10645i) q^{16} +(-1.95315 - 3.38295i) q^{17} +(0.182416 - 3.87428i) q^{18} +(1.51356 - 2.62156i) q^{19} +(0.797534 - 1.08381i) q^{21} +(-4.73366 - 1.72291i) q^{22} +(0.560532 + 3.17893i) q^{23} +(4.34042 - 2.88947i) q^{24} -6.61553 q^{26} +(-0.987594 - 5.10144i) q^{27} +0.255224 q^{28} +(0.271790 + 0.228059i) q^{29} +(-0.470061 - 2.66585i) q^{31} +(1.72756 + 0.628781i) q^{32} +(-6.70734 - 0.746168i) q^{33} +(-0.876974 + 4.97357i) q^{34} +(0.668307 - 0.724346i) q^{36} +(-2.13678 - 3.70101i) q^{37} +(-3.67761 + 1.33854i) q^{38} +(-8.61246 + 2.09187i) q^{39} +(-9.24182 + 7.75481i) q^{41} +(-1.69055 + 0.410616i) q^{42} +(-0.331124 + 0.120519i) q^{43} +(-0.640012 - 1.10853i) q^{44} +(2.08666 - 3.61420i) q^{46} +(-0.455464 + 2.58307i) q^{47} +(-5.56890 - 0.619521i) q^{48} +(6.01068 + 2.18771i) q^{49} +(0.430980 + 6.75217i) q^{51} +(-1.28773 - 1.08053i) q^{52} +9.29215 q^{53} +(-3.26136 + 5.87312i) q^{54} +(-1.79163 - 1.50335i) q^{56} +(-4.36446 + 2.90547i) q^{57} +(-0.0796526 - 0.451732i) q^{58} +(-12.4304 - 4.52430i) q^{59} +(1.14463 - 6.49154i) q^{61} +(-1.74987 + 3.03086i) q^{62} +(-2.07101 + 1.06913i) q^{63} +(-4.42346 - 7.66166i) q^{64} +(6.02277 + 6.31302i) q^{66} +(3.04985 - 2.55913i) q^{67} +(-0.983053 + 0.824880i) q^{68} +(1.57369 - 5.36497i) q^{69} +(-6.06946 - 10.5126i) q^{71} +(-8.95804 + 1.14823i) q^{72} +(7.04497 - 12.2022i) q^{73} +(-0.959425 + 5.44117i) q^{74} +(-0.934485 - 0.340125i) q^{76} +(0.525647 + 2.98109i) q^{77} +(10.2681 + 5.08548i) q^{78} +(-8.85574 - 7.43085i) q^{79} +(-2.38871 + 8.67722i) q^{81} +15.5975 q^{82} +(-4.25966 - 3.57428i) q^{83} +(-0.396138 - 0.196195i) q^{84} +(0.428097 + 0.155815i) q^{86} +(-0.246537 - 0.562904i) q^{87} +(-2.03686 + 11.5516i) q^{88} +(2.60530 - 4.51251i) q^{89} +(1.98768 + 3.44277i) q^{91} +(0.996492 - 0.362693i) q^{92} +(-1.31970 + 4.49906i) q^{93} +(2.59770 - 2.17973i) q^{94} +(-2.19803 - 2.30395i) q^{96} +(6.68077 - 2.43160i) q^{97} +(-4.13484 - 7.16175i) q^{98} +(9.83699 + 6.31420i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 6 q^{6} + 18 q^{9} - 6 q^{11} + 18 q^{14} - 24 q^{16} + 6 q^{19} + 24 q^{21} + 30 q^{24} + 48 q^{26} + 30 q^{29} - 30 q^{31} + 24 q^{34} + 54 q^{36} + 6 q^{39} - 12 q^{41} - 78 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.990387 0.831033i −0.700309 0.587629i 0.221552 0.975149i \(-0.428888\pi\)
−0.921862 + 0.387519i \(0.873332\pi\)
\(3\) −1.55212 0.768718i −0.896116 0.443820i
\(4\) −0.0570464 0.323526i −0.0285232 0.161763i
\(5\) 0 0
\(6\) 0.898367 + 2.05119i 0.366757 + 0.837395i
\(7\) −0.134907 + 0.765094i −0.0509900 + 0.289179i −0.999631 0.0271771i \(-0.991348\pi\)
0.948641 + 0.316356i \(0.102459\pi\)
\(8\) −1.50522 + 2.60712i −0.532176 + 0.921756i
\(9\) 1.81814 + 2.38628i 0.606048 + 0.795428i
\(10\) 0 0
\(11\) 3.66139 1.33264i 1.10395 0.401805i 0.275180 0.961393i \(-0.411263\pi\)
0.828771 + 0.559587i \(0.189040\pi\)
\(12\) −0.160158 + 0.546003i −0.0462335 + 0.157618i
\(13\) 3.91983 3.28913i 1.08717 0.912240i 0.0906695 0.995881i \(-0.471099\pi\)
0.996496 + 0.0836409i \(0.0266549\pi\)
\(14\) 0.769429 0.645628i 0.205639 0.172551i
\(15\) 0 0
\(16\) 3.03995 1.10645i 0.759986 0.276612i
\(17\) −1.95315 3.38295i −0.473708 0.820487i 0.525839 0.850584i \(-0.323752\pi\)
−0.999547 + 0.0300976i \(0.990418\pi\)
\(18\) 0.182416 3.87428i 0.0429959 0.913177i
\(19\) 1.51356 2.62156i 0.347234 0.601427i −0.638523 0.769603i \(-0.720454\pi\)
0.985757 + 0.168176i \(0.0537877\pi\)
\(20\) 0 0
\(21\) 0.797534 1.08381i 0.174036 0.236507i
\(22\) −4.73366 1.72291i −1.00922 0.367326i
\(23\) 0.560532 + 3.17893i 0.116879 + 0.662854i 0.985803 + 0.167908i \(0.0537010\pi\)
−0.868924 + 0.494946i \(0.835188\pi\)
\(24\) 4.34042 2.88947i 0.885985 0.589810i
\(25\) 0 0
\(26\) −6.61553 −1.29741
\(27\) −0.987594 5.10144i −0.190062 0.981772i
\(28\) 0.255224 0.0482328
\(29\) 0.271790 + 0.228059i 0.0504701 + 0.0423494i 0.667674 0.744454i \(-0.267290\pi\)
−0.617204 + 0.786803i \(0.711735\pi\)
\(30\) 0 0
\(31\) −0.470061 2.66585i −0.0844255 0.478801i −0.997479 0.0709611i \(-0.977393\pi\)
0.913054 0.407840i \(-0.133718\pi\)
\(32\) 1.72756 + 0.628781i 0.305393 + 0.111154i
\(33\) −6.70734 0.746168i −1.16760 0.129891i
\(34\) −0.876974 + 4.97357i −0.150400 + 0.852959i
\(35\) 0 0
\(36\) 0.668307 0.724346i 0.111384 0.120724i
\(37\) −2.13678 3.70101i −0.351285 0.608443i 0.635190 0.772356i \(-0.280922\pi\)
−0.986475 + 0.163913i \(0.947588\pi\)
\(38\) −3.67761 + 1.33854i −0.596587 + 0.217140i
\(39\) −8.61246 + 2.09187i −1.37910 + 0.334967i
\(40\) 0 0
\(41\) −9.24182 + 7.75481i −1.44333 + 1.21110i −0.506059 + 0.862499i \(0.668898\pi\)
−0.937272 + 0.348599i \(0.886658\pi\)
\(42\) −1.69055 + 0.410616i −0.260858 + 0.0633595i
\(43\) −0.331124 + 0.120519i −0.0504960 + 0.0183790i −0.367145 0.930164i \(-0.619665\pi\)
0.316649 + 0.948543i \(0.397442\pi\)
\(44\) −0.640012 1.10853i −0.0964854 0.167118i
\(45\) 0 0
\(46\) 2.08666 3.61420i 0.307661 0.532884i
\(47\) −0.455464 + 2.58307i −0.0664363 + 0.376779i 0.933403 + 0.358831i \(0.116824\pi\)
−0.999839 + 0.0179481i \(0.994287\pi\)
\(48\) −5.56890 0.619521i −0.803802 0.0894202i
\(49\) 6.01068 + 2.18771i 0.858668 + 0.312530i
\(50\) 0 0
\(51\) 0.430980 + 6.75217i 0.0603493 + 0.945492i
\(52\) −1.28773 1.08053i −0.178576 0.149843i
\(53\) 9.29215 1.27637 0.638187 0.769881i \(-0.279685\pi\)
0.638187 + 0.769881i \(0.279685\pi\)
\(54\) −3.26136 + 5.87312i −0.443816 + 0.799230i
\(55\) 0 0
\(56\) −1.79163 1.50335i −0.239416 0.200894i
\(57\) −4.36446 + 2.90547i −0.578087 + 0.384839i
\(58\) −0.0796526 0.451732i −0.0104589 0.0593154i
\(59\) −12.4304 4.52430i −1.61830 0.589014i −0.635245 0.772311i \(-0.719101\pi\)
−0.983058 + 0.183296i \(0.941323\pi\)
\(60\) 0 0
\(61\) 1.14463 6.49154i 0.146555 0.831156i −0.819550 0.573008i \(-0.805777\pi\)
0.966105 0.258148i \(-0.0831123\pi\)
\(62\) −1.74987 + 3.03086i −0.222233 + 0.384920i
\(63\) −2.07101 + 1.06913i −0.260923 + 0.134697i
\(64\) −4.42346 7.66166i −0.552932 0.957707i
\(65\) 0 0
\(66\) 6.02277 + 6.31302i 0.741352 + 0.777079i
\(67\) 3.04985 2.55913i 0.372599 0.312647i −0.437190 0.899369i \(-0.644026\pi\)
0.809789 + 0.586722i \(0.199582\pi\)
\(68\) −0.983053 + 0.824880i −0.119213 + 0.100031i
\(69\) 1.57369 5.36497i 0.189450 0.645867i
\(70\) 0 0
\(71\) −6.06946 10.5126i −0.720312 1.24762i −0.960875 0.276983i \(-0.910665\pi\)
0.240563 0.970634i \(-0.422668\pi\)
\(72\) −8.95804 + 1.14823i −1.05571 + 0.135320i
\(73\) 7.04497 12.2022i 0.824551 1.42816i −0.0777105 0.996976i \(-0.524761\pi\)
0.902262 0.431189i \(-0.141906\pi\)
\(74\) −0.959425 + 5.44117i −0.111531 + 0.632523i
\(75\) 0 0
\(76\) −0.934485 0.340125i −0.107193 0.0390150i
\(77\) 0.525647 + 2.98109i 0.0599030 + 0.339727i
\(78\) 10.2681 + 5.08548i 1.16263 + 0.575817i
\(79\) −8.85574 7.43085i −0.996349 0.836036i −0.00987418 0.999951i \(-0.503143\pi\)
−0.986474 + 0.163916i \(0.947588\pi\)
\(80\) 0 0
\(81\) −2.38871 + 8.67722i −0.265412 + 0.964135i
\(82\) 15.5975 1.72245
\(83\) −4.25966 3.57428i −0.467558 0.392328i 0.378345 0.925665i \(-0.376493\pi\)
−0.845903 + 0.533337i \(0.820938\pi\)
\(84\) −0.396138 0.196195i −0.0432222 0.0214067i
\(85\) 0 0
\(86\) 0.428097 + 0.155815i 0.0461629 + 0.0168019i
\(87\) −0.246537 0.562904i −0.0264315 0.0603496i
\(88\) −2.03686 + 11.5516i −0.217130 + 1.23141i
\(89\) 2.60530 4.51251i 0.276161 0.478325i −0.694266 0.719718i \(-0.744271\pi\)
0.970427 + 0.241393i \(0.0776044\pi\)
\(90\) 0 0
\(91\) 1.98768 + 3.44277i 0.208366 + 0.360900i
\(92\) 0.996492 0.362693i 0.103891 0.0378134i
\(93\) −1.31970 + 4.49906i −0.136846 + 0.466531i
\(94\) 2.59770 2.17973i 0.267932 0.224822i
\(95\) 0 0
\(96\) −2.19803 2.30395i −0.224335 0.235146i
\(97\) 6.68077 2.43160i 0.678330 0.246892i 0.0201995 0.999796i \(-0.493570\pi\)
0.658130 + 0.752904i \(0.271348\pi\)
\(98\) −4.13484 7.16175i −0.417682 0.723446i
\(99\) 9.83699 + 6.31420i 0.988655 + 0.634601i
\(100\) 0 0
\(101\) 0.306182 1.73645i 0.0304663 0.172783i −0.965778 0.259370i \(-0.916485\pi\)
0.996244 + 0.0865873i \(0.0275962\pi\)
\(102\) 5.18444 7.04542i 0.513336 0.697600i
\(103\) −18.0087 6.55464i −1.77445 0.645848i −0.999911 0.0133237i \(-0.995759\pi\)
−0.774541 0.632524i \(-0.782019\pi\)
\(104\) 2.67494 + 15.1703i 0.262299 + 1.48757i
\(105\) 0 0
\(106\) −9.20282 7.72208i −0.893857 0.750035i
\(107\) 5.51306 0.532968 0.266484 0.963839i \(-0.414138\pi\)
0.266484 + 0.963839i \(0.414138\pi\)
\(108\) −1.59411 + 0.610531i −0.153393 + 0.0587483i
\(109\) 14.2674 1.36657 0.683287 0.730150i \(-0.260550\pi\)
0.683287 + 0.730150i \(0.260550\pi\)
\(110\) 0 0
\(111\) 0.471500 + 7.38699i 0.0447528 + 0.701142i
\(112\) 0.436429 + 2.47511i 0.0412387 + 0.233876i
\(113\) 5.83093 + 2.12228i 0.548527 + 0.199648i 0.601392 0.798954i \(-0.294613\pi\)
−0.0528647 + 0.998602i \(0.516835\pi\)
\(114\) 6.73705 + 0.749473i 0.630982 + 0.0701946i
\(115\) 0 0
\(116\) 0.0582783 0.100941i 0.00541100 0.00937213i
\(117\) 14.9756 + 3.37372i 1.38450 + 0.311901i
\(118\) 8.55108 + 14.8109i 0.787191 + 1.36345i
\(119\) 2.85177 1.03796i 0.261421 0.0951496i
\(120\) 0 0
\(121\) 3.20338 2.68795i 0.291216 0.244359i
\(122\) −6.52831 + 5.47790i −0.591046 + 0.495946i
\(123\) 20.3057 4.93203i 1.83090 0.444706i
\(124\) −0.835656 + 0.304154i −0.0750442 + 0.0273138i
\(125\) 0 0
\(126\) 2.93958 + 0.662233i 0.261879 + 0.0589964i
\(127\) −6.04043 + 10.4623i −0.536002 + 0.928382i 0.463112 + 0.886300i \(0.346733\pi\)
−0.999114 + 0.0420828i \(0.986601\pi\)
\(128\) −1.34767 + 7.64304i −0.119119 + 0.675556i
\(129\) 0.606590 + 0.0674810i 0.0534072 + 0.00594137i
\(130\) 0 0
\(131\) 0.140206 + 0.795145i 0.0122498 + 0.0694722i 0.990320 0.138804i \(-0.0443258\pi\)
−0.978070 + 0.208276i \(0.933215\pi\)
\(132\) 0.141224 + 2.21256i 0.0122920 + 0.192579i
\(133\) 1.80155 + 1.51168i 0.156214 + 0.131079i
\(134\) −5.14726 −0.444655
\(135\) 0 0
\(136\) 11.7597 1.00838
\(137\) −0.546720 0.458752i −0.0467094 0.0391939i 0.619134 0.785285i \(-0.287484\pi\)
−0.665844 + 0.746091i \(0.731928\pi\)
\(138\) −6.01704 + 4.00561i −0.512204 + 0.340980i
\(139\) 2.29439 + 13.0121i 0.194607 + 1.10367i 0.912977 + 0.408011i \(0.133778\pi\)
−0.718370 + 0.695662i \(0.755111\pi\)
\(140\) 0 0
\(141\) 2.69258 3.65910i 0.226756 0.308152i
\(142\) −2.72522 + 15.4555i −0.228695 + 1.29699i
\(143\) 9.96882 17.2665i 0.833635 1.44390i
\(144\) 8.16736 + 5.24249i 0.680614 + 0.436874i
\(145\) 0 0
\(146\) −17.1177 + 6.23034i −1.41667 + 0.515627i
\(147\) −7.64755 8.01610i −0.630760 0.661157i
\(148\) −1.07548 + 0.902433i −0.0884038 + 0.0741796i
\(149\) 4.06706 3.41267i 0.333187 0.279577i −0.460810 0.887499i \(-0.652441\pi\)
0.793997 + 0.607922i \(0.207997\pi\)
\(150\) 0 0
\(151\) 5.48224 1.99537i 0.446138 0.162381i −0.109174 0.994023i \(-0.534821\pi\)
0.555313 + 0.831641i \(0.312598\pi\)
\(152\) 4.55648 + 7.89205i 0.369579 + 0.640130i
\(153\) 4.52158 10.8115i 0.365548 0.874055i
\(154\) 1.95679 3.38927i 0.157683 0.273115i
\(155\) 0 0
\(156\) 1.16808 + 2.66702i 0.0935216 + 0.213532i
\(157\) 1.51897 + 0.552860i 0.121227 + 0.0441230i 0.401921 0.915674i \(-0.368343\pi\)
−0.280694 + 0.959797i \(0.590565\pi\)
\(158\) 2.59533 + 14.7188i 0.206473 + 1.17097i
\(159\) −14.4225 7.14304i −1.14378 0.566480i
\(160\) 0 0
\(161\) −2.50780 −0.197643
\(162\) 9.57680 6.60871i 0.752425 0.519229i
\(163\) 3.19497 0.250249 0.125125 0.992141i \(-0.460067\pi\)
0.125125 + 0.992141i \(0.460067\pi\)
\(164\) 3.03610 + 2.54759i 0.237079 + 0.198933i
\(165\) 0 0
\(166\) 1.24837 + 7.07983i 0.0968920 + 0.549502i
\(167\) 5.19103 + 1.88938i 0.401694 + 0.146205i 0.534963 0.844875i \(-0.320325\pi\)
−0.133270 + 0.991080i \(0.542548\pi\)
\(168\) 1.62516 + 3.71064i 0.125384 + 0.286282i
\(169\) 2.28928 12.9832i 0.176099 0.998704i
\(170\) 0 0
\(171\) 9.00765 1.15459i 0.688832 0.0882938i
\(172\) 0.0578806 + 0.100252i 0.00441335 + 0.00764415i
\(173\) −10.0159 + 3.64550i −0.761497 + 0.277162i −0.693435 0.720519i \(-0.743904\pi\)
−0.0680619 + 0.997681i \(0.521682\pi\)
\(174\) −0.223625 + 0.762373i −0.0169530 + 0.0577953i
\(175\) 0 0
\(176\) 9.65594 8.10229i 0.727844 0.610733i
\(177\) 15.8156 + 16.5777i 1.18877 + 1.24606i
\(178\) −6.33030 + 2.30404i −0.474476 + 0.172695i
\(179\) −7.01872 12.1568i −0.524604 0.908640i −0.999590 0.0286466i \(-0.990880\pi\)
0.474986 0.879993i \(-0.342453\pi\)
\(180\) 0 0
\(181\) 7.75754 13.4365i 0.576613 0.998723i −0.419251 0.907870i \(-0.637707\pi\)
0.995864 0.0908531i \(-0.0289594\pi\)
\(182\) 0.892479 5.06150i 0.0661550 0.375183i
\(183\) −6.76677 + 9.19573i −0.500214 + 0.679768i
\(184\) −9.13159 3.32363i −0.673190 0.245021i
\(185\) 0 0
\(186\) 5.04588 3.35910i 0.369982 0.246301i
\(187\) −11.6595 9.78348i −0.852627 0.715439i
\(188\) 0.861671 0.0628438
\(189\) 4.03631 0.0673839i 0.293599 0.00490145i
\(190\) 0 0
\(191\) 3.34632 + 2.80790i 0.242131 + 0.203172i 0.755775 0.654831i \(-0.227260\pi\)
−0.513644 + 0.858004i \(0.671705\pi\)
\(192\) 0.976076 + 15.2922i 0.0704422 + 1.10362i
\(193\) −0.571456 3.24089i −0.0411343 0.233284i 0.957309 0.289068i \(-0.0933453\pi\)
−0.998443 + 0.0557838i \(0.982234\pi\)
\(194\) −8.63729 3.14372i −0.620122 0.225706i
\(195\) 0 0
\(196\) 0.364893 2.06941i 0.0260638 0.147815i
\(197\) 10.7134 18.5561i 0.763297 1.32207i −0.177845 0.984059i \(-0.556913\pi\)
0.941142 0.338011i \(-0.109754\pi\)
\(198\) −4.49512 14.4284i −0.319454 1.02538i
\(199\) 7.03013 + 12.1765i 0.498353 + 0.863172i 0.999998 0.00190098i \(-0.000605102\pi\)
−0.501645 + 0.865073i \(0.667272\pi\)
\(200\) 0 0
\(201\) −6.70098 + 1.62760i −0.472651 + 0.114802i
\(202\) −1.74628 + 1.46531i −0.122868 + 0.103099i
\(203\) −0.211153 + 0.177178i −0.0148200 + 0.0124355i
\(204\) 2.15992 0.524620i 0.151224 0.0367307i
\(205\) 0 0
\(206\) 12.3885 + 21.4575i 0.863146 + 1.49501i
\(207\) −6.56671 + 7.11735i −0.456418 + 0.494690i
\(208\) 8.27682 14.3359i 0.573894 0.994014i
\(209\) 2.04814 11.6156i 0.141673 0.803466i
\(210\) 0 0
\(211\) 3.90781 + 1.42233i 0.269025 + 0.0979170i 0.473010 0.881057i \(-0.343167\pi\)
−0.203986 + 0.978974i \(0.565390\pi\)
\(212\) −0.530083 3.00625i −0.0364063 0.206470i
\(213\) 1.33928 + 20.9825i 0.0917660 + 1.43770i
\(214\) −5.46007 4.58154i −0.373242 0.313188i
\(215\) 0 0
\(216\) 14.7866 + 5.10402i 1.00610 + 0.347284i
\(217\) 2.10304 0.142764
\(218\) −14.1303 11.8567i −0.957024 0.803039i
\(219\) −20.3147 + 13.5237i −1.37274 + 0.913849i
\(220\) 0 0
\(221\) −18.7830 6.83645i −1.26348 0.459869i
\(222\) 5.67187 7.70781i 0.380671 0.517315i
\(223\) −2.88459 + 16.3593i −0.193167 + 1.09550i 0.721839 + 0.692061i \(0.243297\pi\)
−0.915006 + 0.403441i \(0.867814\pi\)
\(224\) −0.714137 + 1.23692i −0.0477153 + 0.0826453i
\(225\) 0 0
\(226\) −4.01118 6.94758i −0.266820 0.462146i
\(227\) −4.97722 + 1.81156i −0.330350 + 0.120238i −0.501870 0.864943i \(-0.667354\pi\)
0.171520 + 0.985181i \(0.445132\pi\)
\(228\) 1.18897 + 1.24627i 0.0787415 + 0.0825362i
\(229\) −15.6135 + 13.1012i −1.03177 + 0.865754i −0.991060 0.133417i \(-0.957405\pi\)
−0.0407059 + 0.999171i \(0.512961\pi\)
\(230\) 0 0
\(231\) 1.47575 5.03108i 0.0970975 0.331021i
\(232\) −1.00368 + 0.365309i −0.0658948 + 0.0239837i
\(233\) 0.613363 + 1.06238i 0.0401827 + 0.0695985i 0.885417 0.464797i \(-0.153873\pi\)
−0.845235 + 0.534395i \(0.820539\pi\)
\(234\) −12.0280 15.7865i −0.786293 1.03200i
\(235\) 0 0
\(236\) −0.754619 + 4.27966i −0.0491215 + 0.278582i
\(237\) 8.03293 + 18.3411i 0.521795 + 1.19138i
\(238\) −3.68694 1.34194i −0.238989 0.0869848i
\(239\) 2.66890 + 15.1361i 0.172637 + 0.979073i 0.940836 + 0.338862i \(0.110042\pi\)
−0.768199 + 0.640211i \(0.778847\pi\)
\(240\) 0 0
\(241\) 14.2379 + 11.9470i 0.917146 + 0.769577i 0.973465 0.228836i \(-0.0734920\pi\)
−0.0563190 + 0.998413i \(0.517936\pi\)
\(242\) −5.40637 −0.347534
\(243\) 10.3779 11.6318i 0.665742 0.746182i
\(244\) −2.16548 −0.138630
\(245\) 0 0
\(246\) −24.2092 11.9901i −1.54352 0.764460i
\(247\) −2.68975 15.2543i −0.171145 0.970611i
\(248\) 7.65774 + 2.78719i 0.486267 + 0.176987i
\(249\) 3.86388 + 8.82218i 0.244863 + 0.559083i
\(250\) 0 0
\(251\) 3.10032 5.36991i 0.195691 0.338946i −0.751436 0.659806i \(-0.770639\pi\)
0.947127 + 0.320860i \(0.103972\pi\)
\(252\) 0.464034 + 0.609037i 0.0292314 + 0.0383657i
\(253\) 6.28869 + 10.8923i 0.395367 + 0.684795i
\(254\) 14.6769 5.34196i 0.920912 0.335185i
\(255\) 0 0
\(256\) −5.86792 + 4.92377i −0.366745 + 0.307736i
\(257\) 15.1559 12.7173i 0.945401 0.793285i −0.0331163 0.999452i \(-0.510543\pi\)
0.978517 + 0.206166i \(0.0660987\pi\)
\(258\) −0.544680 0.570929i −0.0339103 0.0355445i
\(259\) 3.11989 1.13555i 0.193861 0.0705595i
\(260\) 0 0
\(261\) −0.0500600 + 1.06321i −0.00309864 + 0.0658111i
\(262\) 0.521935 0.904017i 0.0322452 0.0558504i
\(263\) 2.95564 16.7623i 0.182252 1.03360i −0.747183 0.664619i \(-0.768594\pi\)
0.929435 0.368986i \(-0.120295\pi\)
\(264\) 12.0414 16.3637i 0.741096 1.00712i
\(265\) 0 0
\(266\) −0.527975 2.99430i −0.0323722 0.183592i
\(267\) −7.51258 + 5.00121i −0.459762 + 0.306069i
\(268\) −1.00193 0.840718i −0.0612025 0.0513550i
\(269\) −6.07723 −0.370535 −0.185268 0.982688i \(-0.559315\pi\)
−0.185268 + 0.982688i \(0.559315\pi\)
\(270\) 0 0
\(271\) −30.8933 −1.87664 −0.938318 0.345774i \(-0.887617\pi\)
−0.938318 + 0.345774i \(0.887617\pi\)
\(272\) −9.68054 8.12293i −0.586969 0.492525i
\(273\) −0.438600 6.87155i −0.0265453 0.415885i
\(274\) 0.160226 + 0.908685i 0.00967958 + 0.0548956i
\(275\) 0 0
\(276\) −1.82548 0.203079i −0.109881 0.0122239i
\(277\) −4.28682 + 24.3118i −0.257570 + 1.46075i 0.531818 + 0.846859i \(0.321509\pi\)
−0.789388 + 0.613895i \(0.789602\pi\)
\(278\) 8.54117 14.7937i 0.512265 0.887269i
\(279\) 5.50684 5.96860i 0.329686 0.357331i
\(280\) 0 0
\(281\) 16.7164 6.08427i 0.997216 0.362957i 0.208706 0.977979i \(-0.433075\pi\)
0.788510 + 0.615022i \(0.210853\pi\)
\(282\) −5.70753 + 1.38630i −0.339879 + 0.0825528i
\(283\) −2.22808 + 1.86958i −0.132446 + 0.111135i −0.706604 0.707609i \(-0.749774\pi\)
0.574158 + 0.818744i \(0.305329\pi\)
\(284\) −3.05486 + 2.56333i −0.181273 + 0.152106i
\(285\) 0 0
\(286\) −24.2220 + 8.81610i −1.43228 + 0.521307i
\(287\) −4.68638 8.11705i −0.276628 0.479134i
\(288\) 1.64051 + 5.26567i 0.0966677 + 0.310283i
\(289\) 0.870418 1.50761i 0.0512011 0.0886828i
\(290\) 0 0
\(291\) −12.2386 1.36150i −0.717438 0.0798125i
\(292\) −4.34963 1.58314i −0.254543 0.0926461i
\(293\) 1.07421 + 6.09217i 0.0627563 + 0.355908i 0.999974 + 0.00716458i \(0.00228058\pi\)
−0.937218 + 0.348744i \(0.886608\pi\)
\(294\) 0.912390 + 14.2944i 0.0532116 + 0.833667i
\(295\) 0 0
\(296\) 12.8653 0.747781
\(297\) −10.4143 17.3623i −0.604301 1.00746i
\(298\) −6.86401 −0.397621
\(299\) 12.6531 + 10.6172i 0.731748 + 0.614010i
\(300\) 0 0
\(301\) −0.0475378 0.269600i −0.00274003 0.0155395i
\(302\) −7.08776 2.57973i −0.407855 0.148447i
\(303\) −1.81007 + 2.45980i −0.103986 + 0.141312i
\(304\) 1.70051 9.64407i 0.0975309 0.553125i
\(305\) 0 0
\(306\) −13.4628 + 6.94995i −0.769617 + 0.397302i
\(307\) −13.9233 24.1159i −0.794645 1.37637i −0.923064 0.384646i \(-0.874324\pi\)
0.128419 0.991720i \(-0.459010\pi\)
\(308\) 0.934475 0.340121i 0.0532466 0.0193802i
\(309\) 22.9130 + 24.0172i 1.30347 + 1.36629i
\(310\) 0 0
\(311\) 13.2628 11.1288i 0.752062 0.631055i −0.183986 0.982929i \(-0.558900\pi\)
0.936047 + 0.351874i \(0.114456\pi\)
\(312\) 7.50990 25.6024i 0.425164 1.44945i
\(313\) −9.40628 + 3.42361i −0.531675 + 0.193514i −0.593886 0.804549i \(-0.702407\pi\)
0.0622113 + 0.998063i \(0.480185\pi\)
\(314\) −1.04492 1.80986i −0.0589684 0.102136i
\(315\) 0 0
\(316\) −1.89888 + 3.28897i −0.106821 + 0.185019i
\(317\) −1.39206 + 7.89475i −0.0781857 + 0.443413i 0.920434 + 0.390897i \(0.127835\pi\)
−0.998620 + 0.0525162i \(0.983276\pi\)
\(318\) 8.34776 + 19.0600i 0.468119 + 1.06883i
\(319\) 1.29905 + 0.472815i 0.0727327 + 0.0264725i
\(320\) 0 0
\(321\) −8.55693 4.23799i −0.477601 0.236542i
\(322\) 2.48370 + 2.08407i 0.138411 + 0.116141i
\(323\) −11.8248 −0.657950
\(324\) 2.94357 + 0.277805i 0.163532 + 0.0154336i
\(325\) 0 0
\(326\) −3.16426 2.65513i −0.175252 0.147054i
\(327\) −22.1448 10.9677i −1.22461 0.606513i
\(328\) −6.30673 35.7673i −0.348231 1.97492i
\(329\) −1.91484 0.696946i −0.105569 0.0384239i
\(330\) 0 0
\(331\) −4.48752 + 25.4500i −0.246656 + 1.39886i 0.569958 + 0.821674i \(0.306959\pi\)
−0.816615 + 0.577183i \(0.804152\pi\)
\(332\) −0.913374 + 1.58201i −0.0501279 + 0.0868240i
\(333\) 4.94669 11.8279i 0.271077 0.648167i
\(334\) −3.57099 6.18513i −0.195396 0.338435i
\(335\) 0 0
\(336\) 1.22528 4.17716i 0.0668443 0.227883i
\(337\) −15.1328 + 12.6980i −0.824338 + 0.691702i −0.953984 0.299859i \(-0.903060\pi\)
0.129646 + 0.991560i \(0.458616\pi\)
\(338\) −13.0567 + 10.9559i −0.710191 + 0.595921i
\(339\) −7.41885 7.77638i −0.402937 0.422355i
\(340\) 0 0
\(341\) −5.27369 9.13430i −0.285586 0.494650i
\(342\) −9.88056 6.34216i −0.534279 0.342945i
\(343\) −5.20383 + 9.01329i −0.280980 + 0.486672i
\(344\) 0.184207 1.04469i 0.00993177 0.0563259i
\(345\) 0 0
\(346\) 12.9492 + 4.71312i 0.696153 + 0.253379i
\(347\) 4.37541 + 24.8142i 0.234884 + 1.33210i 0.842857 + 0.538138i \(0.180872\pi\)
−0.607973 + 0.793958i \(0.708017\pi\)
\(348\) −0.168050 + 0.111873i −0.00900842 + 0.00599701i
\(349\) 22.8639 + 19.1851i 1.22388 + 1.02695i 0.998613 + 0.0526561i \(0.0167687\pi\)
0.225263 + 0.974298i \(0.427676\pi\)
\(350\) 0 0
\(351\) −20.6505 16.7484i −1.10224 0.893966i
\(352\) 7.16322 0.381801
\(353\) −9.94244 8.34269i −0.529182 0.444037i 0.338637 0.940917i \(-0.390034\pi\)
−0.867819 + 0.496880i \(0.834479\pi\)
\(354\) −1.88687 29.5617i −0.100286 1.57118i
\(355\) 0 0
\(356\) −1.60854 0.585459i −0.0852523 0.0310293i
\(357\) −5.22419 0.581173i −0.276493 0.0307589i
\(358\) −3.15144 + 17.8727i −0.166559 + 0.944602i
\(359\) 6.77215 11.7297i 0.357421 0.619071i −0.630109 0.776507i \(-0.716990\pi\)
0.987529 + 0.157436i \(0.0503230\pi\)
\(360\) 0 0
\(361\) 4.91829 + 8.51873i 0.258857 + 0.448354i
\(362\) −18.8491 + 6.86051i −0.990687 + 0.360581i
\(363\) −7.03830 + 1.70953i −0.369415 + 0.0897269i
\(364\) 1.00043 0.839464i 0.0524370 0.0439999i
\(365\) 0 0
\(366\) 14.3437 3.48392i 0.749756 0.182108i
\(367\) 23.5250 8.56238i 1.22799 0.446953i 0.355083 0.934835i \(-0.384453\pi\)
0.872910 + 0.487882i \(0.162230\pi\)
\(368\) 5.22132 + 9.04359i 0.272180 + 0.471430i
\(369\) −35.3082 7.95426i −1.83807 0.414082i
\(370\) 0 0
\(371\) −1.25357 + 7.10937i −0.0650823 + 0.369100i
\(372\) 1.53085 + 0.170301i 0.0793707 + 0.00882972i
\(373\) −1.95904 0.713033i −0.101435 0.0369195i 0.290804 0.956783i \(-0.406077\pi\)
−0.392239 + 0.919863i \(0.628299\pi\)
\(374\) 3.41702 + 19.3789i 0.176690 + 1.00206i
\(375\) 0 0
\(376\) −6.04879 5.07553i −0.311942 0.261751i
\(377\) 1.81548 0.0935021
\(378\) −4.05351 3.28758i −0.208490 0.169095i
\(379\) 9.13522 0.469245 0.234622 0.972087i \(-0.424615\pi\)
0.234622 + 0.972087i \(0.424615\pi\)
\(380\) 0 0
\(381\) 17.4181 11.5954i 0.892354 0.594050i
\(382\) −0.980698 5.56181i −0.0501769 0.284567i
\(383\) 9.60103 + 3.49449i 0.490590 + 0.178560i 0.575457 0.817832i \(-0.304824\pi\)
−0.0848669 + 0.996392i \(0.527047\pi\)
\(384\) 7.96710 10.8269i 0.406569 0.552509i
\(385\) 0 0
\(386\) −2.12732 + 3.68463i −0.108278 + 0.187543i
\(387\) −0.889625 0.571035i −0.0452222 0.0290274i
\(388\) −1.16780 2.02269i −0.0592861 0.102687i
\(389\) −16.4031 + 5.97024i −0.831670 + 0.302703i −0.722544 0.691325i \(-0.757027\pi\)
−0.109126 + 0.994028i \(0.534805\pi\)
\(390\) 0 0
\(391\) 9.65938 8.10519i 0.488496 0.409897i
\(392\) −14.7510 + 12.3776i −0.745039 + 0.625162i
\(393\) 0.393627 1.34194i 0.0198559 0.0676918i
\(394\) −26.0312 + 9.47457i −1.31143 + 0.477322i
\(395\) 0 0
\(396\) 1.48164 3.54272i 0.0744553 0.178029i
\(397\) 6.61971 11.4657i 0.332233 0.575445i −0.650716 0.759321i \(-0.725531\pi\)
0.982949 + 0.183876i \(0.0588645\pi\)
\(398\) 3.15656 17.9018i 0.158224 0.897334i
\(399\) −1.63416 3.73119i −0.0818105 0.186793i
\(400\) 0 0
\(401\) 6.80556 + 38.5962i 0.339853 + 1.92740i 0.372717 + 0.927945i \(0.378426\pi\)
−0.0328639 + 0.999460i \(0.510463\pi\)
\(402\) 7.98915 + 3.95679i 0.398463 + 0.197347i
\(403\) −10.6109 8.90359i −0.528566 0.443519i
\(404\) −0.579252 −0.0288189
\(405\) 0 0
\(406\) 0.356364 0.0176860
\(407\) −12.7557 10.7033i −0.632277 0.530543i
\(408\) −18.2524 9.03989i −0.903630 0.447541i
\(409\) −3.44309 19.5268i −0.170250 0.965536i −0.943485 0.331416i \(-0.892474\pi\)
0.773235 0.634120i \(-0.218637\pi\)
\(410\) 0 0
\(411\) 0.495922 + 1.13231i 0.0244620 + 0.0558528i
\(412\) −1.09326 + 6.20021i −0.0538612 + 0.305462i
\(413\) 5.13847 8.90009i 0.252847 0.437945i
\(414\) 12.4183 1.59177i 0.610328 0.0782313i
\(415\) 0 0
\(416\) 8.83989 3.21746i 0.433411 0.157749i
\(417\) 6.44149 21.9601i 0.315441 1.07539i
\(418\) −11.6814 + 9.80184i −0.571355 + 0.479424i
\(419\) 20.8598 17.5035i 1.01907 0.855101i 0.0295598 0.999563i \(-0.490589\pi\)
0.989510 + 0.144462i \(0.0461450\pi\)
\(420\) 0 0
\(421\) −2.12407 + 0.773098i −0.103521 + 0.0376785i −0.393261 0.919427i \(-0.628653\pi\)
0.289740 + 0.957105i \(0.406431\pi\)
\(422\) −2.68824 4.65617i −0.130862 0.226659i
\(423\) −6.99203 + 3.60952i −0.339964 + 0.175501i
\(424\) −13.9867 + 24.2257i −0.679256 + 1.17651i
\(425\) 0 0
\(426\) 16.1108 21.8938i 0.780569 1.06076i
\(427\) 4.81222 + 1.75150i 0.232880 + 0.0847612i
\(428\) −0.314500 1.78362i −0.0152019 0.0862145i
\(429\) −28.7459 + 19.1364i −1.38786 + 0.923916i
\(430\) 0 0
\(431\) 9.69510 0.466996 0.233498 0.972357i \(-0.424983\pi\)
0.233498 + 0.972357i \(0.424983\pi\)
\(432\) −8.64671 14.4154i −0.416015 0.693560i
\(433\) 32.3437 1.55434 0.777169 0.629292i \(-0.216655\pi\)
0.777169 + 0.629292i \(0.216655\pi\)
\(434\) −2.08282 1.74770i −0.0999788 0.0838922i
\(435\) 0 0
\(436\) −0.813906 4.61589i −0.0389790 0.221061i
\(437\) 9.18216 + 3.34203i 0.439242 + 0.159871i
\(438\) 31.3581 + 3.48848i 1.49835 + 0.166686i
\(439\) −1.71544 + 9.72872i −0.0818733 + 0.464327i 0.916114 + 0.400917i \(0.131308\pi\)
−0.997988 + 0.0634094i \(0.979803\pi\)
\(440\) 0 0
\(441\) 5.70778 + 18.3208i 0.271799 + 0.872417i
\(442\) 12.9211 + 22.3800i 0.614594 + 1.06451i
\(443\) −24.5846 + 8.94805i −1.16805 + 0.425135i −0.851966 0.523597i \(-0.824590\pi\)
−0.316082 + 0.948732i \(0.602368\pi\)
\(444\) 2.36299 0.573944i 0.112142 0.0272382i
\(445\) 0 0
\(446\) 16.4520 13.8049i 0.779025 0.653680i
\(447\) −8.93594 + 2.17044i −0.422656 + 0.102658i
\(448\) 6.45865 2.35075i 0.305142 0.111063i
\(449\) 8.04462 + 13.9337i 0.379649 + 0.657572i 0.991011 0.133779i \(-0.0427113\pi\)
−0.611362 + 0.791351i \(0.709378\pi\)
\(450\) 0 0
\(451\) −23.5036 + 40.7094i −1.10674 + 1.91693i
\(452\) 0.353981 2.00752i 0.0166499 0.0944260i
\(453\) −10.0430 1.11725i −0.471860 0.0524928i
\(454\) 6.43484 + 2.34209i 0.302002 + 0.109920i
\(455\) 0 0
\(456\) −1.00543 15.7520i −0.0470835 0.737657i
\(457\) −23.3162 19.5646i −1.09068 0.915193i −0.0939208 0.995580i \(-0.529940\pi\)
−0.996764 + 0.0803867i \(0.974384\pi\)
\(458\) 26.3509 1.23130
\(459\) −15.3290 + 13.3048i −0.715497 + 0.621017i
\(460\) 0 0
\(461\) 12.5270 + 10.5114i 0.583438 + 0.489563i 0.886074 0.463543i \(-0.153422\pi\)
−0.302636 + 0.953106i \(0.597867\pi\)
\(462\) −5.64257 + 3.75632i −0.262516 + 0.174760i
\(463\) 1.26889 + 7.19625i 0.0589705 + 0.334438i 0.999992 0.00390751i \(-0.00124380\pi\)
−0.941022 + 0.338346i \(0.890133\pi\)
\(464\) 1.07856 + 0.392564i 0.0500709 + 0.0182243i
\(465\) 0 0
\(466\) 0.275403 1.56189i 0.0127578 0.0723531i
\(467\) −5.03027 + 8.71268i −0.232773 + 0.403175i −0.958623 0.284678i \(-0.908113\pi\)
0.725850 + 0.687853i \(0.241447\pi\)
\(468\) 0.237183 5.03746i 0.0109638 0.232857i
\(469\) 1.54653 + 2.67867i 0.0714121 + 0.123689i
\(470\) 0 0
\(471\) −1.93263 2.02576i −0.0890508 0.0933423i
\(472\) 30.5059 25.5975i 1.40415 1.17822i
\(473\) −1.05177 + 0.882537i −0.0483603 + 0.0405791i
\(474\) 7.28638 24.8404i 0.334675 1.14096i
\(475\) 0 0
\(476\) −0.498490 0.863411i −0.0228483 0.0395744i
\(477\) 16.8945 + 22.1737i 0.773544 + 1.01526i
\(478\) 9.93536 17.2085i 0.454433 0.787100i
\(479\) 1.39286 7.89931i 0.0636415 0.360929i −0.936311 0.351172i \(-0.885783\pi\)
0.999952 0.00975657i \(-0.00310566\pi\)
\(480\) 0 0
\(481\) −20.5489 7.47920i −0.936950 0.341022i
\(482\) −4.17267 23.6644i −0.190060 1.07788i
\(483\) 3.89241 + 1.92780i 0.177111 + 0.0877177i
\(484\) −1.05236 0.883038i −0.0478347 0.0401381i
\(485\) 0 0
\(486\) −19.9446 + 2.89563i −0.904704 + 0.131349i
\(487\) 1.30014 0.0589151 0.0294575 0.999566i \(-0.490622\pi\)
0.0294575 + 0.999566i \(0.490622\pi\)
\(488\) 15.2013 + 12.7554i 0.688130 + 0.577409i
\(489\) −4.95897 2.45603i −0.224253 0.111066i
\(490\) 0 0
\(491\) 10.4561 + 3.80573i 0.471879 + 0.171750i 0.567003 0.823715i \(-0.308103\pi\)
−0.0951242 + 0.995465i \(0.530325\pi\)
\(492\) −2.75400 6.28806i −0.124160 0.283488i
\(493\) 0.240666 1.36488i 0.0108390 0.0614713i
\(494\) −10.0130 + 17.3430i −0.450505 + 0.780298i
\(495\) 0 0
\(496\) −4.37859 7.58394i −0.196604 0.340529i
\(497\) 8.86195 3.22548i 0.397513 0.144683i
\(498\) 3.50479 11.9484i 0.157053 0.535420i
\(499\) 13.6131 11.4227i 0.609404 0.511351i −0.285049 0.958513i \(-0.592010\pi\)
0.894453 + 0.447162i \(0.147565\pi\)
\(500\) 0 0
\(501\) −6.60469 6.92298i −0.295076 0.309296i
\(502\) −7.53309 + 2.74182i −0.336218 + 0.122374i
\(503\) −6.51241 11.2798i −0.290374 0.502942i 0.683524 0.729928i \(-0.260446\pi\)
−0.973898 + 0.226985i \(0.927113\pi\)
\(504\) 0.329994 7.00865i 0.0146991 0.312190i
\(505\) 0 0
\(506\) 2.82366 16.0137i 0.125527 0.711898i
\(507\) −13.5336 + 18.3916i −0.601050 + 0.816799i
\(508\) 3.72942 + 1.35740i 0.165466 + 0.0602248i
\(509\) −3.60691 20.4558i −0.159873 0.906687i −0.954194 0.299188i \(-0.903284\pi\)
0.794321 0.607499i \(-0.207827\pi\)
\(510\) 0 0
\(511\) 8.38545 + 7.03623i 0.370951 + 0.311265i
\(512\) 25.4252 1.12365
\(513\) −14.8685 5.13228i −0.656460 0.226596i
\(514\) −25.5788 −1.12823
\(515\) 0 0
\(516\) −0.0127719 0.200097i −0.000562250 0.00880878i
\(517\) 1.77466 + 10.0646i 0.0780493 + 0.442640i
\(518\) −4.03358 1.46810i −0.177225 0.0645047i
\(519\) 18.3483 + 2.04118i 0.805400 + 0.0895980i
\(520\) 0 0
\(521\) 12.5826 21.7937i 0.551255 0.954801i −0.446930 0.894569i \(-0.647483\pi\)
0.998184 0.0602320i \(-0.0191841\pi\)
\(522\) 0.933142 1.01139i 0.0408425 0.0442673i
\(523\) −12.3608 21.4096i −0.540502 0.936177i −0.998875 0.0474173i \(-0.984901\pi\)
0.458373 0.888760i \(-0.348432\pi\)
\(524\) 0.249252 0.0907203i 0.0108886 0.00396313i
\(525\) 0 0
\(526\) −16.8572 + 14.1449i −0.735010 + 0.616746i
\(527\) −8.10034 + 6.79700i −0.352857 + 0.296082i
\(528\) −21.2155 + 5.15302i −0.923288 + 0.224256i
\(529\) 11.8215 4.30268i 0.513978 0.187073i
\(530\) 0 0
\(531\) −11.8040 37.8884i −0.512251 1.64421i
\(532\) 0.386296 0.669084i 0.0167481 0.0290085i
\(533\) −10.7198 + 60.7951i −0.464327 + 2.63333i
\(534\) 11.5965 + 1.29007i 0.501831 + 0.0558270i
\(535\) 0 0
\(536\) 2.08126 + 11.8034i 0.0898966 + 0.509829i
\(537\) 1.54874 + 24.2642i 0.0668332 + 1.04708i
\(538\) 6.01881 + 5.05038i 0.259489 + 0.217737i
\(539\) 24.9229 1.07350
\(540\) 0 0
\(541\) 16.9208 0.727482 0.363741 0.931500i \(-0.381499\pi\)
0.363741 + 0.931500i \(0.381499\pi\)
\(542\) 30.5964 + 25.6734i 1.31423 + 1.10277i
\(543\) −22.3695 + 14.8916i −0.959966 + 0.639060i
\(544\) −1.24705 7.07237i −0.0534668 0.303225i
\(545\) 0 0
\(546\) −5.27610 + 7.16999i −0.225796 + 0.306847i
\(547\) 0.247344 1.40276i 0.0105757 0.0599776i −0.979063 0.203556i \(-0.934750\pi\)
0.989639 + 0.143579i \(0.0458611\pi\)
\(548\) −0.117230 + 0.203048i −0.00500781 + 0.00867379i
\(549\) 17.5718 9.07112i 0.749944 0.387146i
\(550\) 0 0
\(551\) 1.00924 0.367332i 0.0429950 0.0156489i
\(552\) 11.6184 + 12.1783i 0.494511 + 0.518342i
\(553\) 6.88000 5.77301i 0.292567 0.245493i
\(554\) 24.4495 20.5156i 1.03876 0.871624i
\(555\) 0 0
\(556\) 4.07887 1.48459i 0.172983 0.0629605i
\(557\) 4.83922 + 8.38178i 0.205044 + 0.355147i 0.950147 0.311803i \(-0.100933\pi\)
−0.745102 + 0.666950i \(0.767599\pi\)
\(558\) −10.4140 + 1.33486i −0.440860 + 0.0565090i
\(559\) −0.901548 + 1.56153i −0.0381314 + 0.0660455i
\(560\) 0 0
\(561\) 10.5762 + 24.1480i 0.446527 + 1.01953i
\(562\) −21.6119 7.86609i −0.911644 0.331811i
\(563\) 6.62845 + 37.5918i 0.279356 + 1.58431i 0.724776 + 0.688985i \(0.241943\pi\)
−0.445420 + 0.895322i \(0.646945\pi\)
\(564\) −1.33742 0.662383i −0.0563154 0.0278913i
\(565\) 0 0
\(566\) 3.76035 0.158059
\(567\) −6.31664 2.99820i −0.265274 0.125913i
\(568\) 36.5435 1.53333
\(569\) −25.8444 21.6860i −1.08345 0.909126i −0.0872516 0.996186i \(-0.527808\pi\)
−0.996203 + 0.0870599i \(0.972253\pi\)
\(570\) 0 0
\(571\) 0.954517 + 5.41334i 0.0399453 + 0.226541i 0.998245 0.0592252i \(-0.0188630\pi\)
−0.958299 + 0.285766i \(0.907752\pi\)
\(572\) −6.15485 2.24018i −0.257347 0.0936667i
\(573\) −3.03541 6.93057i −0.126806 0.289529i
\(574\) −2.10421 + 11.9336i −0.0878279 + 0.498097i
\(575\) 0 0
\(576\) 10.2404 24.4856i 0.426684 1.02023i
\(577\) 13.6599 + 23.6596i 0.568668 + 0.984962i 0.996698 + 0.0811975i \(0.0258745\pi\)
−0.428030 + 0.903765i \(0.640792\pi\)
\(578\) −2.11492 + 0.769769i −0.0879692 + 0.0320182i
\(579\) −1.60436 + 5.46953i −0.0666750 + 0.227306i
\(580\) 0 0
\(581\) 3.30932 2.77685i 0.137294 0.115203i
\(582\) 10.9895 + 11.5191i 0.455528 + 0.477481i
\(583\) 34.0222 12.3831i 1.40906 0.512854i
\(584\) 21.2085 + 36.7342i 0.877613 + 1.52007i
\(585\) 0 0
\(586\) 3.99891 6.92632i 0.165193 0.286123i
\(587\) 2.06533 11.7130i 0.0852451 0.483449i −0.912058 0.410061i \(-0.865508\pi\)
0.997303 0.0733885i \(-0.0233813\pi\)
\(588\) −2.15715 + 2.93147i −0.0889595 + 0.120892i
\(589\) −7.70014 2.80262i −0.317279 0.115480i
\(590\) 0 0
\(591\) −30.8929 + 20.5657i −1.27076 + 0.845961i
\(592\) −10.5907 8.88664i −0.435274 0.365239i
\(593\) 9.14301 0.375459 0.187729 0.982221i \(-0.439887\pi\)
0.187729 + 0.982221i \(0.439887\pi\)
\(594\) −4.11439 + 25.8500i −0.168816 + 1.06064i
\(595\) 0 0
\(596\) −1.33610 1.12112i −0.0547287 0.0459229i
\(597\) −1.55126 24.3036i −0.0634889 0.994681i
\(598\) −3.70821 21.0303i −0.151640 0.859994i
\(599\) −24.8634 9.04955i −1.01589 0.369755i −0.220200 0.975455i \(-0.570671\pi\)
−0.795693 + 0.605700i \(0.792893\pi\)
\(600\) 0 0
\(601\) 3.19159 18.1004i 0.130188 0.738330i −0.847903 0.530151i \(-0.822135\pi\)
0.978091 0.208179i \(-0.0667537\pi\)
\(602\) −0.176966 + 0.306514i −0.00721260 + 0.0124926i
\(603\) 11.6519 + 2.62495i 0.474501 + 0.106896i
\(604\) −0.958297 1.65982i −0.0389925 0.0675371i
\(605\) 0 0
\(606\) 3.83685 0.931928i 0.155861 0.0378570i
\(607\) −23.4111 + 19.6443i −0.950228 + 0.797336i −0.979336 0.202240i \(-0.935178\pi\)
0.0291076 + 0.999576i \(0.490733\pi\)
\(608\) 4.26315 3.57721i 0.172894 0.145075i
\(609\) 0.463934 0.112684i 0.0187995 0.00456620i
\(610\) 0 0
\(611\) 6.71069 + 11.6233i 0.271486 + 0.470227i
\(612\) −3.75573 0.846095i −0.151816 0.0342014i
\(613\) −10.0248 + 17.3635i −0.404898 + 0.701304i −0.994310 0.106529i \(-0.966026\pi\)
0.589411 + 0.807833i \(0.299360\pi\)
\(614\) −6.25164 + 35.4548i −0.252295 + 1.43084i
\(615\) 0 0
\(616\) −8.56328 3.11678i −0.345024 0.125579i
\(617\) 4.38720 + 24.8810i 0.176622 + 1.00167i 0.936255 + 0.351321i \(0.114267\pi\)
−0.759633 + 0.650352i \(0.774621\pi\)
\(618\) −2.73363 42.8278i −0.109963 1.72279i
\(619\) 13.4670 + 11.3002i 0.541285 + 0.454192i 0.871977 0.489547i \(-0.162838\pi\)
−0.330692 + 0.943739i \(0.607282\pi\)
\(620\) 0 0
\(621\) 15.6636 5.99901i 0.628557 0.240732i
\(622\) −22.3836 −0.897502
\(623\) 3.10102 + 2.60207i 0.124240 + 0.104250i
\(624\) −23.8669 + 15.8884i −0.955439 + 0.636046i
\(625\) 0 0
\(626\) 12.1610 + 4.42624i 0.486051 + 0.176908i
\(627\) −12.1081 + 16.4543i −0.483549 + 0.657122i
\(628\) 0.0922128 0.522965i 0.00367969 0.0208686i
\(629\) −8.34690 + 14.4573i −0.332813 + 0.576449i
\(630\) 0 0
\(631\) 15.3587 + 26.6020i 0.611420 + 1.05901i 0.991001 + 0.133852i \(0.0427347\pi\)
−0.379581 + 0.925158i \(0.623932\pi\)
\(632\) 32.7030 11.9029i 1.30085 0.473472i
\(633\) −4.97202 5.21163i −0.197620 0.207143i
\(634\) 7.93948 6.66201i 0.315317 0.264582i
\(635\) 0 0
\(636\) −1.48821 + 5.07354i −0.0590113 + 0.201179i
\(637\) 30.7565 11.1944i 1.21862 0.443540i
\(638\) −0.893635 1.54782i −0.0353794 0.0612788i
\(639\) 14.0509 33.5969i 0.555846 1.32907i
\(640\) 0 0
\(641\) 1.59110 9.02357i 0.0628446 0.356409i −0.937128 0.348986i \(-0.886526\pi\)
0.999972 0.00742320i \(-0.00236290\pi\)
\(642\) 4.95276 + 11.3083i 0.195470 + 0.446305i
\(643\) 13.6800 + 4.97910i 0.539486 + 0.196357i 0.597369 0.801967i \(-0.296213\pi\)
−0.0578831 + 0.998323i \(0.518435\pi\)
\(644\) 0.143061 + 0.811340i 0.00563740 + 0.0319713i
\(645\) 0 0
\(646\) 11.7111 + 9.82681i 0.460769 + 0.386631i
\(647\) −16.6946 −0.656331 −0.328165 0.944620i \(-0.606430\pi\)
−0.328165 + 0.944620i \(0.606430\pi\)
\(648\) −19.0270 19.2888i −0.747452 0.757735i
\(649\) −51.5419 −2.02320
\(650\) 0 0
\(651\) −3.26417 1.61665i −0.127933 0.0633614i
\(652\) −0.182262 1.03366i −0.00713791 0.0404811i
\(653\) 17.3438 + 6.31264i 0.678716 + 0.247033i 0.658296 0.752759i \(-0.271277\pi\)
0.0204201 + 0.999791i \(0.493500\pi\)
\(654\) 12.8174 + 29.2653i 0.501200 + 1.14436i
\(655\) 0 0
\(656\) −19.5143 + 33.7998i −0.761907 + 1.31966i
\(657\) 41.9268 5.37413i 1.63572 0.209665i
\(658\) 1.31725 + 2.28155i 0.0513518 + 0.0889439i
\(659\) −8.26055 + 3.00660i −0.321785 + 0.117120i −0.497862 0.867256i \(-0.665882\pi\)
0.176077 + 0.984376i \(0.443659\pi\)
\(660\) 0 0
\(661\) −13.7931 + 11.5737i −0.536487 + 0.450166i −0.870335 0.492461i \(-0.836097\pi\)
0.333847 + 0.942627i \(0.391653\pi\)
\(662\) 25.5942 21.4760i 0.994745 0.834690i
\(663\) 23.8981 + 25.0498i 0.928126 + 0.972854i
\(664\) 15.7303 5.72536i 0.610454 0.222187i
\(665\) 0 0
\(666\) −14.7286 + 7.60337i −0.570720 + 0.294625i
\(667\) −0.572636 + 0.991835i −0.0221726 + 0.0384040i
\(668\) 0.315134 1.78721i 0.0121929 0.0691494i
\(669\) 17.0529 23.1742i 0.659305 0.895966i
\(670\) 0 0
\(671\) −4.45992 25.2934i −0.172173 0.976442i
\(672\) 2.05927 1.37088i 0.0794380 0.0528828i
\(673\) 6.26057 + 5.25324i 0.241327 + 0.202498i 0.755427 0.655233i \(-0.227429\pi\)
−0.514100 + 0.857730i \(0.671874\pi\)
\(674\) 25.5398 0.983756
\(675\) 0 0
\(676\) −4.33098 −0.166576
\(677\) 0.630907 + 0.529394i 0.0242477 + 0.0203462i 0.654831 0.755775i \(-0.272740\pi\)
−0.630583 + 0.776122i \(0.717184\pi\)
\(678\) 0.885104 + 13.8669i 0.0339922 + 0.532556i
\(679\) 0.959124 + 5.43946i 0.0368078 + 0.208747i
\(680\) 0 0
\(681\) 9.11782 + 1.01433i 0.349396 + 0.0388690i
\(682\) −2.36791 + 13.4291i −0.0906721 + 0.514227i
\(683\) −19.4328 + 33.6587i −0.743577 + 1.28791i 0.207280 + 0.978282i \(0.433539\pi\)
−0.950857 + 0.309631i \(0.899794\pi\)
\(684\) −0.887394 2.84834i −0.0339303 0.108909i
\(685\) 0 0
\(686\) 12.6441 4.60209i 0.482756 0.175709i
\(687\) 34.3051 8.33233i 1.30882 0.317898i
\(688\) −0.873251 + 0.732745i −0.0332924 + 0.0279356i
\(689\) 36.4236 30.5631i 1.38763 1.16436i
\(690\) 0 0
\(691\) 33.1809 12.0769i 1.26226 0.459426i 0.377734 0.925914i \(-0.376703\pi\)
0.884527 + 0.466488i \(0.154481\pi\)
\(692\) 1.75079 + 3.03245i 0.0665549 + 0.115277i
\(693\) −6.15803 + 6.67440i −0.233924 + 0.253539i
\(694\) 16.2881 28.2118i 0.618287 1.07090i
\(695\) 0 0
\(696\) 1.83865 + 0.204543i 0.0696938 + 0.00775320i
\(697\) 44.2848 + 16.1184i 1.67741 + 0.610526i
\(698\) −6.70066 38.0013i −0.253624 1.43837i
\(699\) −0.135344 2.12044i −0.00511918 0.0802023i
\(700\) 0 0
\(701\) −26.7698 −1.01108 −0.505541 0.862803i \(-0.668707\pi\)
−0.505541 + 0.862803i \(0.668707\pi\)
\(702\) 6.53345 + 33.7487i 0.246589 + 1.27376i
\(703\) −12.9366 −0.487912
\(704\) −26.4062 22.1575i −0.995222 0.835091i
\(705\) 0 0
\(706\) 2.91380 + 16.5250i 0.109662 + 0.621926i
\(707\) 1.28724 + 0.468517i 0.0484116 + 0.0176204i
\(708\) 4.46111 6.06245i 0.167659 0.227841i
\(709\) −5.90817 + 33.5069i −0.221886 + 1.25838i 0.646664 + 0.762775i \(0.276164\pi\)
−0.868550 + 0.495602i \(0.834947\pi\)
\(710\) 0 0
\(711\) 1.63111 34.6427i 0.0611714 1.29920i
\(712\) 7.84310 + 13.5846i 0.293933 + 0.509106i
\(713\) 8.21108 2.98859i 0.307507 0.111923i
\(714\) 4.69099 + 4.91706i 0.175556 + 0.184016i
\(715\) 0 0
\(716\) −3.53264 + 2.96424i −0.132021 + 0.110779i
\(717\) 7.49295 25.5447i 0.279829 0.953983i
\(718\) −16.4548 + 5.98907i −0.614089 + 0.223510i
\(719\) −3.78251 6.55150i −0.141064 0.244330i 0.786834 0.617165i \(-0.211719\pi\)
−0.927898 + 0.372835i \(0.878386\pi\)
\(720\) 0 0
\(721\) 7.44442 12.8941i 0.277245 0.480202i
\(722\) 2.20834 12.5241i 0.0821858 0.466099i
\(723\) −12.9150 29.4882i −0.480316 1.09668i
\(724\) −4.78958 1.74326i −0.178003 0.0647879i
\(725\) 0 0
\(726\) 8.39132 + 4.15597i 0.311431 + 0.154243i
\(727\) 22.3698 + 18.7705i 0.829649 + 0.696158i 0.955210 0.295927i \(-0.0956286\pi\)
−0.125561 + 0.992086i \(0.540073\pi\)
\(728\) −11.9676 −0.443549
\(729\) −25.0493 + 10.0763i −0.927753 + 0.373196i
\(730\) 0 0
\(731\) 1.05445 + 0.884786i 0.0390001 + 0.0327250i
\(732\) 3.36108 + 1.66464i 0.124229 + 0.0615270i
\(733\) 3.71565 + 21.0725i 0.137241 + 0.778330i 0.973273 + 0.229650i \(0.0737583\pi\)
−0.836033 + 0.548680i \(0.815131\pi\)
\(734\) −30.4144 11.0699i −1.12262 0.408599i
\(735\) 0 0
\(736\) −1.03050 + 5.84426i −0.0379847 + 0.215422i
\(737\) 7.75631 13.4343i 0.285707 0.494860i
\(738\) 28.3585 + 37.2201i 1.04389 + 1.37009i
\(739\) 1.12801 + 1.95377i 0.0414944 + 0.0718704i 0.886027 0.463634i \(-0.153455\pi\)
−0.844532 + 0.535505i \(0.820121\pi\)
\(740\) 0 0
\(741\) −7.55148 + 25.7442i −0.277411 + 0.945737i
\(742\) 7.14965 5.99927i 0.262472 0.220240i
\(743\) 2.52675 2.12019i 0.0926974 0.0777823i −0.595261 0.803532i \(-0.702951\pi\)
0.687959 + 0.725750i \(0.258507\pi\)
\(744\) −9.74315 10.2127i −0.357201 0.374415i
\(745\) 0 0
\(746\) 1.34766 + 2.33421i 0.0493412 + 0.0854615i
\(747\) 0.784572 16.6633i 0.0287060 0.609678i
\(748\) −2.50008 + 4.33026i −0.0914119 + 0.158330i
\(749\) −0.743750 + 4.21801i −0.0271760 + 0.154123i
\(750\) 0 0
\(751\) −29.9156 10.8884i −1.09164 0.397323i −0.267410 0.963583i \(-0.586168\pi\)
−0.824227 + 0.566260i \(0.808390\pi\)
\(752\) 1.47345 + 8.35633i 0.0537310 + 0.304724i
\(753\) −8.94002 + 5.95147i −0.325792 + 0.216884i
\(754\) −1.79803 1.50873i −0.0654804 0.0549446i
\(755\) 0 0
\(756\) −0.252057 1.30201i −0.00916724 0.0473536i
\(757\) −18.5287 −0.673436 −0.336718 0.941605i \(-0.609317\pi\)
−0.336718 + 0.941605i \(0.609317\pi\)
\(758\) −9.04740 7.59167i −0.328616 0.275742i
\(759\) −1.38766 21.7404i −0.0503688 0.789128i
\(760\) 0 0
\(761\) −38.6363 14.0625i −1.40057 0.509764i −0.472219 0.881481i \(-0.656547\pi\)
−0.928346 + 0.371717i \(0.878769\pi\)
\(762\) −26.8868 2.99106i −0.974005 0.108355i
\(763\) −1.92478 + 10.9159i −0.0696816 + 0.395184i
\(764\) 0.717533 1.24280i 0.0259594 0.0449630i
\(765\) 0 0
\(766\) −6.60470 11.4397i −0.238638 0.413332i
\(767\) −63.6062 + 23.1507i −2.29669 + 0.835925i
\(768\) 12.8927 3.13150i 0.465226 0.112998i
\(769\) 26.1339 21.9289i 0.942412 0.790777i −0.0355917 0.999366i \(-0.511332\pi\)
0.978003 + 0.208589i \(0.0668871\pi\)
\(770\) 0 0
\(771\) −33.2998 + 8.08817i −1.19926 + 0.291288i
\(772\) −1.01591 + 0.369762i −0.0365635 + 0.0133080i
\(773\) −2.64111 4.57453i −0.0949940 0.164534i 0.814612 0.580006i \(-0.196950\pi\)
−0.909606 + 0.415472i \(0.863617\pi\)
\(774\) 0.406524 + 1.30485i 0.0146122 + 0.0469020i
\(775\) 0 0
\(776\) −3.71656 + 21.0777i −0.133417 + 0.756645i
\(777\) −5.71536 0.635814i −0.205037 0.0228097i
\(778\) 21.2069 + 7.71867i 0.760303 + 0.276728i
\(779\) 6.34166 + 35.9653i 0.227213 + 1.28859i
\(780\) 0 0
\(781\) −36.2321 30.4024i −1.29649 1.08788i
\(782\) −16.3022 −0.582966
\(783\) 0.895009 1.61175i 0.0319850 0.0575991i
\(784\) 20.6927 0.739026
\(785\) 0 0
\(786\) −1.50504 + 1.00192i −0.0536830 + 0.0357373i
\(787\) 2.03562 + 11.5446i 0.0725620 + 0.411520i 0.999354 + 0.0359440i \(0.0114438\pi\)
−0.926792 + 0.375575i \(0.877445\pi\)
\(788\) −6.61455 2.40750i −0.235634 0.0857636i
\(789\) −17.4730 + 23.7450i −0.622054 + 0.845343i
\(790\) 0 0
\(791\) −2.41038 + 4.17490i −0.0857032 + 0.148442i
\(792\) −31.2687 + 16.1419i −1.11109 + 0.573579i
\(793\) −16.8647 29.2106i −0.598884 1.03730i
\(794\) −16.0844 + 5.85425i −0.570815 + 0.207760i
\(795\) 0 0
\(796\) 3.53839 2.96906i 0.125415 0.105235i
\(797\) −18.6441 + 15.6442i −0.660406 + 0.554147i −0.910209 0.414150i \(-0.864079\pi\)
0.249802 + 0.968297i \(0.419634\pi\)
\(798\) −1.48229 + 5.05337i −0.0524725 + 0.178887i
\(799\) 9.62798 3.50430i 0.340613 0.123973i
\(800\) 0 0
\(801\) 15.5049 1.98741i 0.547840 0.0702216i
\(802\) 25.3346 43.8809i 0.894597 1.54949i
\(803\) 9.53322 54.0656i 0.336420 1.90793i
\(804\) 0.908836 + 2.07509i 0.0320522 + 0.0731829i
\(805\) 0 0
\(806\) 3.10970 + 17.6360i 0.109535 + 0.621201i
\(807\) 9.43258 + 4.67168i 0.332042 + 0.164451i
\(808\) 4.06625 + 3.41199i 0.143050 + 0.120033i
\(809\) −2.84260 −0.0999405 −0.0499703 0.998751i \(-0.515913\pi\)
−0.0499703 + 0.998751i \(0.515913\pi\)
\(810\) 0 0
\(811\) 25.2940 0.888194 0.444097 0.895979i \(-0.353525\pi\)
0.444097 + 0.895979i \(0.353525\pi\)
\(812\) 0.0693672 + 0.0582060i 0.00243431 + 0.00204263i
\(813\) 47.9501 + 23.7483i 1.68168 + 0.832888i
\(814\) 3.73828 + 21.2008i 0.131027 + 0.743089i
\(815\) 0 0
\(816\) 8.78109 + 20.0494i 0.307400 + 0.701868i
\(817\) −0.185227 + 1.05047i −0.00648027 + 0.0367514i
\(818\) −12.8174 + 22.2004i −0.448149 + 0.776218i
\(819\) −4.60153 + 11.0026i −0.160790 + 0.384463i
\(820\) 0 0
\(821\) −39.7487 + 14.4673i −1.38724 + 0.504914i −0.924365 0.381510i \(-0.875404\pi\)
−0.462874 + 0.886424i \(0.653182\pi\)
\(822\) 0.449834 1.53355i 0.0156897 0.0534889i
\(823\) 1.70055 1.42693i 0.0592774 0.0497397i −0.612668 0.790341i \(-0.709904\pi\)
0.671945 + 0.740601i \(0.265459\pi\)
\(824\) 44.1958 37.0847i 1.53964 1.29191i
\(825\) 0 0
\(826\) −12.4853 + 4.54429i −0.434421 + 0.158116i
\(827\) −9.11184 15.7822i −0.316850 0.548800i 0.662979 0.748638i \(-0.269292\pi\)
−0.979829 + 0.199838i \(0.935958\pi\)
\(828\) 2.67725 + 1.71848i 0.0930410 + 0.0597214i
\(829\) −15.8943 + 27.5298i −0.552033 + 0.956149i 0.446095 + 0.894986i \(0.352814\pi\)
−0.998128 + 0.0611633i \(0.980519\pi\)
\(830\) 0 0
\(831\) 25.3426 34.4394i 0.879124 1.19469i
\(832\) −42.5394 15.4831i −1.47479 0.536779i
\(833\) −4.33884 24.6068i −0.150332 0.852574i
\(834\) −24.6291 + 16.3959i −0.852837 + 0.567743i
\(835\) 0 0
\(836\) −3.87478 −0.134012
\(837\) −13.1354 + 5.03076i −0.454027 + 0.173889i
\(838\) −35.2053 −1.21615
\(839\) 14.1865 + 11.9039i 0.489772 + 0.410968i 0.853945 0.520364i \(-0.174204\pi\)
−0.364173 + 0.931331i \(0.618648\pi\)
\(840\) 0 0
\(841\) −5.01394 28.4355i −0.172894 0.980533i
\(842\) 2.74612 + 0.999506i 0.0946376 + 0.0344453i
\(843\) −30.6229 3.40669i −1.05471 0.117333i
\(844\) 0.237233 1.34542i 0.00816591 0.0463112i
\(845\) 0 0
\(846\) 9.92444 + 2.23579i 0.341209 + 0.0768680i
\(847\) 1.62438 + 2.81351i 0.0558144 + 0.0966734i
\(848\) 28.2476 10.2813i 0.970027 0.353061i
\(849\) 4.89543 1.18905i 0.168011 0.0408080i
\(850\) 0 0
\(851\) 10.5675 8.86722i 0.362251 0.303964i
\(852\) 6.71199 1.63027i 0.229949 0.0558521i
\(853\) −21.7616 + 7.92056i −0.745102 + 0.271195i −0.686543 0.727089i \(-0.740873\pi\)
−0.0585587 + 0.998284i \(0.518650\pi\)
\(854\) −3.31040 5.73378i −0.113280 0.196206i
\(855\) 0 0
\(856\) −8.29838 + 14.3732i −0.283633 + 0.491266i
\(857\) −4.14002 + 23.4792i −0.141420 + 0.802035i 0.828751 + 0.559617i \(0.189052\pi\)
−0.970172 + 0.242418i \(0.922059\pi\)
\(858\) 44.3726 + 4.93629i 1.51485 + 0.168522i
\(859\) 7.58350 + 2.76017i 0.258746 + 0.0941757i 0.468136 0.883656i \(-0.344926\pi\)
−0.209390 + 0.977832i \(0.567148\pi\)
\(860\) 0 0
\(861\) 1.03409 + 16.2011i 0.0352417 + 0.552133i
\(862\) −9.60190 8.05695i −0.327042 0.274421i
\(863\) 18.5552 0.631628 0.315814 0.948821i \(-0.397723\pi\)
0.315814 + 0.948821i \(0.397723\pi\)
\(864\) 1.50156 9.43403i 0.0510841 0.320952i
\(865\) 0 0
\(866\) −32.0328 26.8787i −1.08852 0.913375i
\(867\) −2.50992 + 1.67088i −0.0852413 + 0.0567461i
\(868\) −0.119971 0.680388i −0.00407208 0.0230939i
\(869\) −42.3270 15.4058i −1.43584 0.522604i
\(870\) 0 0
\(871\) 3.53760 20.0627i 0.119867 0.679799i
\(872\) −21.4757 + 37.1970i −0.727258 + 1.25965i
\(873\) 17.9491 + 11.5212i 0.607485 + 0.389934i
\(874\) −6.31655 10.9406i −0.213660 0.370071i
\(875\) 0 0
\(876\) 5.53416 + 5.80086i 0.186982 + 0.195993i
\(877\) −8.10128 + 6.79778i −0.273561 + 0.229545i −0.769238 0.638962i \(-0.779364\pi\)
0.495678 + 0.868507i \(0.334920\pi\)
\(878\) 9.78384 8.20962i 0.330189 0.277061i
\(879\) 3.01586 10.2815i 0.101722 0.346788i
\(880\) 0 0
\(881\) −5.52419 9.56817i −0.186115 0.322360i 0.757837 0.652444i \(-0.226256\pi\)
−0.943952 + 0.330084i \(0.892923\pi\)
\(882\) 9.57225 22.8880i 0.322314 0.770679i
\(883\) −26.3618 + 45.6600i −0.887146 + 1.53658i −0.0439118 + 0.999035i \(0.513982\pi\)
−0.843234 + 0.537546i \(0.819351\pi\)
\(884\) −1.14027 + 6.46678i −0.0383513 + 0.217501i
\(885\) 0 0
\(886\) 31.7844 + 11.5686i 1.06782 + 0.388654i
\(887\) −7.30927 41.4529i −0.245421 1.39185i −0.819512 0.573062i \(-0.805755\pi\)
0.574091 0.818792i \(-0.305356\pi\)
\(888\) −19.9685 9.88980i −0.670099 0.331880i
\(889\) −7.18978 6.03294i −0.241138 0.202338i
\(890\) 0 0
\(891\) 2.81759 + 34.9540i 0.0943929 + 1.17100i
\(892\) 5.45722 0.182721
\(893\) 6.08228 + 5.10364i 0.203536 + 0.170787i
\(894\) 10.6538 + 5.27649i 0.356315 + 0.176472i
\(895\) 0 0
\(896\) −5.66584 2.06220i −0.189282 0.0688932i
\(897\) −11.4775 26.2059i −0.383222 0.874989i
\(898\) 3.61208 20.4851i 0.120537 0.683597i
\(899\) 0.480212 0.831752i 0.0160160 0.0277405i
\(900\) 0 0
\(901\) −18.1489 31.4349i −0.604629 1.04725i
\(902\) 57.1085 20.7858i 1.90151 0.692092i
\(903\) −0.133462 + 0.454995i −0.00444135 + 0.0151413i
\(904\) −14.3099 + 12.0074i −0.475940 + 0.399361i
\(905\) 0 0
\(906\) 9.01796 + 9.45255i 0.299602 + 0.314040i
\(907\) 0.590592 0.214958i 0.0196103 0.00713756i −0.332196 0.943210i \(-0.607790\pi\)
0.351807 + 0.936073i \(0.385567\pi\)
\(908\) 0.870019 + 1.50692i 0.0288726 + 0.0500088i
\(909\) 4.70034 2.42647i 0.155900 0.0804810i
\(910\) 0 0
\(911\) 4.64690 26.3539i 0.153959 0.873144i −0.805773 0.592225i \(-0.798250\pi\)
0.959731 0.280919i \(-0.0906392\pi\)
\(912\) −10.0530 + 13.6615i −0.332887 + 0.452378i
\(913\) −20.3595 7.41025i −0.673801 0.245243i
\(914\) 6.83321 + 38.7530i 0.226022 + 1.28184i
\(915\) 0 0
\(916\) 5.12928 + 4.30398i 0.169476 + 0.142207i
\(917\) −0.627276 −0.0207145
\(918\) 26.2384 0.438035i 0.865997 0.0144573i
\(919\) 8.32555 0.274634 0.137317 0.990527i \(-0.456152\pi\)
0.137317 + 0.990527i \(0.456152\pi\)
\(920\) 0 0
\(921\) 3.07230 + 48.1338i 0.101236 + 1.58606i
\(922\) −3.67124 20.8206i −0.120906 0.685691i
\(923\) −58.3685 21.2444i −1.92122 0.699268i
\(924\) −1.71187 0.190440i −0.0563165 0.00626501i
\(925\) 0 0
\(926\) 4.72363 8.18157i 0.155228 0.268863i
\(927\) −17.1012 54.8912i −0.561677 1.80286i
\(928\) 0.326134 + 0.564881i 0.0107059 + 0.0185431i
\(929\) −20.0134 + 7.28427i −0.656618 + 0.238989i −0.648775 0.760980i \(-0.724719\pi\)
−0.00784221 + 0.999969i \(0.502496\pi\)
\(930\) 0 0
\(931\) 14.8327 12.4461i 0.486122 0.407905i
\(932\) 0.308716 0.259044i 0.0101123 0.00848525i
\(933\) −29.1403 + 7.07785i −0.954009 + 0.231718i
\(934\) 12.2224 4.44860i 0.399930 0.145563i
\(935\) 0 0
\(936\) −31.3373 + 33.9650i −1.02429 + 1.11018i
\(937\) −1.54921 + 2.68331i −0.0506104 + 0.0876598i −0.890221 0.455529i \(-0.849450\pi\)
0.839610 + 0.543189i \(0.182783\pi\)
\(938\) 0.694400 3.93814i 0.0226730 0.128585i
\(939\) 17.2315 + 1.91694i 0.562327 + 0.0625570i
\(940\) 0 0
\(941\) −2.52290 14.3081i −0.0822442 0.466430i −0.997917 0.0645063i \(-0.979453\pi\)
0.915673 0.401924i \(-0.131658\pi\)
\(942\) 0.230572 + 3.61237i 0.00751243 + 0.117697i
\(943\) −29.8324 25.0323i −0.971476 0.815165i
\(944\) −42.7937 −1.39282
\(945\) 0 0
\(946\) 1.77507 0.0577127
\(947\) −3.14077 2.63542i −0.102061 0.0856396i 0.590329 0.807163i \(-0.298998\pi\)
−0.692390 + 0.721523i \(0.743442\pi\)
\(948\) 5.47558 3.64516i 0.177839 0.118389i
\(949\) −12.5197 71.0025i −0.406406 2.30484i
\(950\) 0 0
\(951\) 8.22948 11.1835i 0.266859 0.362649i
\(952\) −1.58646 + 8.99727i −0.0514175 + 0.291603i
\(953\) 14.3224 24.8072i 0.463950 0.803584i −0.535204 0.844723i \(-0.679765\pi\)
0.999153 + 0.0411387i \(0.0130986\pi\)
\(954\) 1.69504 36.0004i 0.0548788 1.16556i
\(955\) 0 0
\(956\) 4.74467 1.72692i 0.153454 0.0558525i
\(957\) −1.65281 1.73247i −0.0534279 0.0560027i
\(958\) −7.94406 + 6.66586i −0.256661 + 0.215364i
\(959\) 0.424745 0.356403i 0.0137157 0.0115089i
\(960\) 0 0
\(961\) 22.2447 8.09640i 0.717570 0.261174i
\(962\) 14.1359 + 24.4841i 0.455761 + 0.789401i
\(963\) 10.0235 + 13.1557i 0.323004 + 0.423938i
\(964\) 3.05296 5.28788i 0.0983291 0.170311i
\(965\) 0 0
\(966\) −2.25293 5.14399i −0.0724868 0.165505i
\(967\) 20.2015 + 7.35273i 0.649635 + 0.236448i 0.645755 0.763545i \(-0.276543\pi\)
0.00388011 + 0.999992i \(0.498765\pi\)
\(968\) 2.18602 + 12.3976i 0.0702615 + 0.398473i
\(969\) 18.3535 + 9.08995i 0.589600 + 0.292011i
\(970\) 0 0
\(971\) 39.3784 1.26371 0.631857 0.775085i \(-0.282293\pi\)
0.631857 + 0.775085i \(0.282293\pi\)
\(972\) −4.35522 2.69396i −0.139694 0.0864090i
\(973\) −10.2650 −0.329081
\(974\) −1.28764 1.08046i −0.0412588 0.0346202i
\(975\) 0 0
\(976\) −3.70294 21.0004i −0.118528 0.672206i
\(977\) 19.3119 + 7.02896i 0.617843 + 0.224876i 0.631931 0.775024i \(-0.282262\pi\)
−0.0140884 + 0.999901i \(0.504485\pi\)
\(978\) 2.87026 + 6.55350i 0.0917807 + 0.209558i
\(979\) 3.52548 19.9940i 0.112675 0.639010i
\(980\) 0 0
\(981\) 25.9403 + 34.0462i 0.828209 + 1.08701i
\(982\) −7.19295 12.4585i −0.229536 0.397568i
\(983\) 21.3818 7.78235i 0.681975 0.248218i 0.0222795 0.999752i \(-0.492908\pi\)
0.659695 + 0.751533i \(0.270685\pi\)
\(984\) −17.7062 + 60.3631i −0.564452 + 1.92431i
\(985\) 0 0
\(986\) −1.37262 + 1.15176i −0.0437130 + 0.0366796i
\(987\) 2.43631 + 2.55372i 0.0775486 + 0.0812858i
\(988\) −4.78174 + 1.74041i −0.152127 + 0.0553698i
\(989\) −0.568729 0.985067i −0.0180845 0.0313233i
\(990\) 0 0
\(991\) −8.61401 + 14.9199i −0.273633 + 0.473946i −0.969789 0.243944i \(-0.921559\pi\)
0.696156 + 0.717890i \(0.254892\pi\)
\(992\) 0.864176 4.90099i 0.0274376 0.155606i
\(993\) 26.5290 36.0517i 0.841873 1.14407i
\(994\) −11.4572 4.17010i −0.363402 0.132267i
\(995\) 0 0
\(996\) 2.63378 1.75334i 0.0834546 0.0555567i
\(997\) −10.3528 8.68705i −0.327877 0.275122i 0.463957 0.885858i \(-0.346429\pi\)
−0.791834 + 0.610736i \(0.790874\pi\)
\(998\) −22.9749 −0.727256
\(999\) −16.7702 + 14.5557i −0.530586 + 0.460524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.h.151.5 96
5.2 odd 4 135.2.p.a.124.12 yes 96
5.3 odd 4 135.2.p.a.124.5 yes 96
5.4 even 2 inner 675.2.l.h.151.12 96
15.2 even 4 405.2.p.a.289.5 96
15.8 even 4 405.2.p.a.289.12 96
27.22 even 9 inner 675.2.l.h.76.5 96
135.22 odd 36 135.2.p.a.49.5 96
135.32 even 36 405.2.p.a.199.12 96
135.49 even 18 inner 675.2.l.h.76.12 96
135.103 odd 36 135.2.p.a.49.12 yes 96
135.113 even 36 405.2.p.a.199.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.5 96 135.22 odd 36
135.2.p.a.49.12 yes 96 135.103 odd 36
135.2.p.a.124.5 yes 96 5.3 odd 4
135.2.p.a.124.12 yes 96 5.2 odd 4
405.2.p.a.199.5 96 135.113 even 36
405.2.p.a.199.12 96 135.32 even 36
405.2.p.a.289.5 96 15.2 even 4
405.2.p.a.289.12 96 15.8 even 4
675.2.l.h.76.5 96 27.22 even 9 inner
675.2.l.h.76.12 96 135.49 even 18 inner
675.2.l.h.151.5 96 1.1 even 1 trivial
675.2.l.h.151.12 96 5.4 even 2 inner