Defining parameters
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.l (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(675, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 576 | 360 | 216 |
Cusp forms | 504 | 324 | 180 |
Eisenstein series | 72 | 36 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(675, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
675.2.l.a | $6$ | $5.390$ | \(\Q(\zeta_{18})\) | None | \(-6\) | \(0\) | \(0\) | \(-6\) | \(q+(-1-\zeta_{18}+\zeta_{18}^{4}+\zeta_{18}^{5})q^{2}+\cdots\) |
675.2.l.b | $6$ | $5.390$ | \(\Q(\zeta_{18})\) | None | \(6\) | \(0\) | \(0\) | \(6\) | \(q+(1+\zeta_{18}-\zeta_{18}^{4}-\zeta_{18}^{5})q^{2}+(-\zeta_{18}^{2}+\cdots)q^{3}+\cdots\) |
675.2.l.c | $12$ | $5.390$ | 12.0.\(\cdots\).1 | None | \(6\) | \(6\) | \(0\) | \(6\) | \(q+(1+\beta _{3}-\beta _{8})q^{2}+(1+\beta _{2}-\beta _{6}+\beta _{8}+\cdots)q^{3}+\cdots\) |
675.2.l.d | $30$ | $5.390$ | None | \(0\) | \(-3\) | \(0\) | \(0\) | ||
675.2.l.e | $42$ | $5.390$ | None | \(0\) | \(3\) | \(0\) | \(0\) | ||
675.2.l.f | $66$ | $5.390$ | None | \(-6\) | \(0\) | \(0\) | \(-6\) | ||
675.2.l.g | $66$ | $5.390$ | None | \(6\) | \(0\) | \(0\) | \(6\) | ||
675.2.l.h | $96$ | $5.390$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(675, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(675, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)