Properties

Label 405.2.p.a.199.12
Level $405$
Weight $2$
Character 405.199
Analytic conductor $3.234$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(19,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.p (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 199.12
Character \(\chi\) \(=\) 405.199
Dual form 405.2.p.a.289.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.831033 + 0.990387i) q^{2} +(0.0570464 - 0.323526i) q^{4} +(-1.34113 - 1.78923i) q^{5} +(0.765094 - 0.134907i) q^{7} +(2.60712 - 1.50522i) q^{8} +(0.657507 - 2.81516i) q^{10} +(-3.66139 - 1.33264i) q^{11} +(3.28913 - 3.91983i) q^{13} +(0.769429 + 0.645628i) q^{14} +(3.03995 + 1.10645i) q^{16} +(3.38295 + 1.95315i) q^{17} +(-1.51356 - 2.62156i) q^{19} +(-0.655371 + 0.331823i) q^{20} +(-1.72291 - 4.73366i) q^{22} +(3.17893 + 0.560532i) q^{23} +(-1.40272 + 4.79921i) q^{25} +6.61553 q^{26} -0.255224i q^{28} +(0.271790 - 0.228059i) q^{29} +(-0.470061 + 2.66585i) q^{31} +(-0.628781 - 1.72756i) q^{32} +(0.876974 + 4.97357i) q^{34} +(-1.26747 - 1.18800i) q^{35} +(-3.70101 - 2.13678i) q^{37} +(1.33854 - 3.67761i) q^{38} +(-6.18969 - 2.64604i) q^{40} +(9.24182 + 7.75481i) q^{41} +(-0.120519 + 0.331124i) q^{43} +(-0.640012 + 1.10853i) q^{44} +(2.08666 + 3.61420i) q^{46} +(-2.58307 + 0.455464i) q^{47} +(-6.01068 + 2.18771i) q^{49} +(-5.91878 + 2.59907i) q^{50} +(-1.08053 - 1.28773i) q^{52} +9.29215i q^{53} +(2.52602 + 8.33833i) q^{55} +(1.79163 - 1.50335i) q^{56} +(0.451732 + 0.0796526i) q^{58} +(-12.4304 + 4.52430i) q^{59} +(1.14463 + 6.49154i) q^{61} +(-3.03086 + 1.74987i) q^{62} +(4.42346 - 7.66166i) q^{64} +(-11.4247 - 0.628002i) q^{65} +(-2.55913 + 3.04985i) q^{67} +(0.824880 - 0.983053i) q^{68} +(0.123271 - 2.24256i) q^{70} +(6.06946 - 10.5126i) q^{71} +(12.2022 - 7.04497i) q^{73} +(-0.959425 - 5.44117i) q^{74} +(-0.934485 + 0.340125i) q^{76} +(-2.98109 - 0.525647i) q^{77} +(8.85574 - 7.43085i) q^{79} +(-2.09728 - 6.92307i) q^{80} +15.5975i q^{82} +(-3.57428 - 4.25966i) q^{83} +(-1.04235 - 8.67233i) q^{85} +(-0.428097 + 0.155815i) q^{86} +(-11.5516 + 2.03686i) q^{88} +(2.60530 + 4.51251i) q^{89} +(1.98768 - 3.44277i) q^{91} +(0.362693 - 0.996492i) q^{92} +(-2.59770 - 2.17973i) q^{94} +(-2.66070 + 6.22397i) q^{95} +(-2.43160 + 6.68077i) q^{97} +(-7.16175 - 4.13484i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} + 9 q^{5} - 3 q^{10} + 6 q^{11} + 18 q^{14} - 24 q^{16} - 6 q^{19} + 57 q^{20} + 3 q^{25} - 48 q^{26} + 30 q^{29} - 30 q^{31} - 24 q^{34} + 12 q^{35} - 9 q^{40} + 12 q^{41} - 78 q^{44} - 6 q^{46}+ \cdots - 87 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.831033 + 0.990387i 0.587629 + 0.700309i 0.975149 0.221552i \(-0.0711123\pi\)
−0.387519 + 0.921862i \(0.626668\pi\)
\(3\) 0 0
\(4\) 0.0570464 0.323526i 0.0285232 0.161763i
\(5\) −1.34113 1.78923i −0.599773 0.800170i
\(6\) 0 0
\(7\) 0.765094 0.134907i 0.289179 0.0509900i −0.0271771 0.999631i \(-0.508652\pi\)
0.316356 + 0.948641i \(0.397541\pi\)
\(8\) 2.60712 1.50522i 0.921756 0.532176i
\(9\) 0 0
\(10\) 0.657507 2.81516i 0.207922 0.890230i
\(11\) −3.66139 1.33264i −1.10395 0.401805i −0.275180 0.961393i \(-0.588737\pi\)
−0.828771 + 0.559587i \(0.810960\pi\)
\(12\) 0 0
\(13\) 3.28913 3.91983i 0.912240 1.08717i −0.0836409 0.996496i \(-0.526655\pi\)
0.995881 0.0906695i \(-0.0289007\pi\)
\(14\) 0.769429 + 0.645628i 0.205639 + 0.172551i
\(15\) 0 0
\(16\) 3.03995 + 1.10645i 0.759986 + 0.276612i
\(17\) 3.38295 + 1.95315i 0.820487 + 0.473708i 0.850584 0.525839i \(-0.176248\pi\)
−0.0300976 + 0.999547i \(0.509582\pi\)
\(18\) 0 0
\(19\) −1.51356 2.62156i −0.347234 0.601427i 0.638523 0.769603i \(-0.279546\pi\)
−0.985757 + 0.168176i \(0.946212\pi\)
\(20\) −0.655371 + 0.331823i −0.146545 + 0.0741978i
\(21\) 0 0
\(22\) −1.72291 4.73366i −0.367326 1.00922i
\(23\) 3.17893 + 0.560532i 0.662854 + 0.116879i 0.494946 0.868924i \(-0.335188\pi\)
0.167908 + 0.985803i \(0.446299\pi\)
\(24\) 0 0
\(25\) −1.40272 + 4.79921i −0.280544 + 0.959841i
\(26\) 6.61553 1.29741
\(27\) 0 0
\(28\) 0.255224i 0.0482328i
\(29\) 0.271790 0.228059i 0.0504701 0.0423494i −0.617204 0.786803i \(-0.711735\pi\)
0.667674 + 0.744454i \(0.267290\pi\)
\(30\) 0 0
\(31\) −0.470061 + 2.66585i −0.0844255 + 0.478801i 0.913054 + 0.407840i \(0.133718\pi\)
−0.997479 + 0.0709611i \(0.977393\pi\)
\(32\) −0.628781 1.72756i −0.111154 0.305393i
\(33\) 0 0
\(34\) 0.876974 + 4.97357i 0.150400 + 0.852959i
\(35\) −1.26747 1.18800i −0.214242 0.200809i
\(36\) 0 0
\(37\) −3.70101 2.13678i −0.608443 0.351285i 0.163913 0.986475i \(-0.447588\pi\)
−0.772356 + 0.635190i \(0.780922\pi\)
\(38\) 1.33854 3.67761i 0.217140 0.596587i
\(39\) 0 0
\(40\) −6.18969 2.64604i −0.978676 0.418376i
\(41\) 9.24182 + 7.75481i 1.44333 + 1.21110i 0.937272 + 0.348599i \(0.113342\pi\)
0.506059 + 0.862499i \(0.331102\pi\)
\(42\) 0 0
\(43\) −0.120519 + 0.331124i −0.0183790 + 0.0504960i −0.948543 0.316649i \(-0.897442\pi\)
0.930164 + 0.367145i \(0.119665\pi\)
\(44\) −0.640012 + 1.10853i −0.0964854 + 0.167118i
\(45\) 0 0
\(46\) 2.08666 + 3.61420i 0.307661 + 0.532884i
\(47\) −2.58307 + 0.455464i −0.376779 + 0.0664363i −0.358831 0.933403i \(-0.616824\pi\)
−0.0179481 + 0.999839i \(0.505713\pi\)
\(48\) 0 0
\(49\) −6.01068 + 2.18771i −0.858668 + 0.312530i
\(50\) −5.91878 + 2.59907i −0.837042 + 0.367564i
\(51\) 0 0
\(52\) −1.08053 1.28773i −0.149843 0.178576i
\(53\) 9.29215i 1.27637i 0.769881 + 0.638187i \(0.220315\pi\)
−0.769881 + 0.638187i \(0.779685\pi\)
\(54\) 0 0
\(55\) 2.52602 + 8.33833i 0.340608 + 1.12434i
\(56\) 1.79163 1.50335i 0.239416 0.200894i
\(57\) 0 0
\(58\) 0.451732 + 0.0796526i 0.0593154 + 0.0104589i
\(59\) −12.4304 + 4.52430i −1.61830 + 0.589014i −0.983058 0.183296i \(-0.941323\pi\)
−0.635245 + 0.772311i \(0.719101\pi\)
\(60\) 0 0
\(61\) 1.14463 + 6.49154i 0.146555 + 0.831156i 0.966105 + 0.258148i \(0.0831123\pi\)
−0.819550 + 0.573008i \(0.805777\pi\)
\(62\) −3.03086 + 1.74987i −0.384920 + 0.222233i
\(63\) 0 0
\(64\) 4.42346 7.66166i 0.552932 0.957707i
\(65\) −11.4247 0.628002i −1.41705 0.0778940i
\(66\) 0 0
\(67\) −2.55913 + 3.04985i −0.312647 + 0.372599i −0.899369 0.437190i \(-0.855974\pi\)
0.586722 + 0.809789i \(0.300418\pi\)
\(68\) 0.824880 0.983053i 0.100031 0.119213i
\(69\) 0 0
\(70\) 0.123271 2.24256i 0.0147337 0.268037i
\(71\) 6.06946 10.5126i 0.720312 1.24762i −0.240563 0.970634i \(-0.577332\pi\)
0.960875 0.276983i \(-0.0893346\pi\)
\(72\) 0 0
\(73\) 12.2022 7.04497i 1.42816 0.824551i 0.431189 0.902262i \(-0.358094\pi\)
0.996976 + 0.0777105i \(0.0247610\pi\)
\(74\) −0.959425 5.44117i −0.111531 0.632523i
\(75\) 0 0
\(76\) −0.934485 + 0.340125i −0.107193 + 0.0390150i
\(77\) −2.98109 0.525647i −0.339727 0.0599030i
\(78\) 0 0
\(79\) 8.85574 7.43085i 0.996349 0.836036i 0.00987418 0.999951i \(-0.496857\pi\)
0.986474 + 0.163916i \(0.0524125\pi\)
\(80\) −2.09728 6.92307i −0.234483 0.774023i
\(81\) 0 0
\(82\) 15.5975i 1.72245i
\(83\) −3.57428 4.25966i −0.392328 0.467558i 0.533337 0.845903i \(-0.320938\pi\)
−0.925665 + 0.378345i \(0.876493\pi\)
\(84\) 0 0
\(85\) −1.04235 8.67233i −0.113059 0.940646i
\(86\) −0.428097 + 0.155815i −0.0461629 + 0.0168019i
\(87\) 0 0
\(88\) −11.5516 + 2.03686i −1.23141 + 0.217130i
\(89\) 2.60530 + 4.51251i 0.276161 + 0.478325i 0.970427 0.241393i \(-0.0776044\pi\)
−0.694266 + 0.719718i \(0.744271\pi\)
\(90\) 0 0
\(91\) 1.98768 3.44277i 0.208366 0.360900i
\(92\) 0.362693 0.996492i 0.0378134 0.103891i
\(93\) 0 0
\(94\) −2.59770 2.17973i −0.267932 0.224822i
\(95\) −2.66070 + 6.22397i −0.272982 + 0.638566i
\(96\) 0 0
\(97\) −2.43160 + 6.68077i −0.246892 + 0.678330i 0.752904 + 0.658130i \(0.228652\pi\)
−0.999796 + 0.0201995i \(0.993570\pi\)
\(98\) −7.16175 4.13484i −0.723446 0.417682i
\(99\) 0 0
\(100\) 1.47265 + 0.727593i 0.147265 + 0.0727593i
\(101\) −0.306182 1.73645i −0.0304663 0.172783i 0.965778 0.259370i \(-0.0835150\pi\)
−0.996244 + 0.0865873i \(0.972404\pi\)
\(102\) 0 0
\(103\) 6.55464 + 18.0087i 0.645848 + 1.77445i 0.632524 + 0.774541i \(0.282019\pi\)
0.0133237 + 0.999911i \(0.495759\pi\)
\(104\) 2.67494 15.1703i 0.262299 1.48757i
\(105\) 0 0
\(106\) −9.20282 + 7.72208i −0.893857 + 0.750035i
\(107\) 5.51306i 0.532968i −0.963839 0.266484i \(-0.914138\pi\)
0.963839 0.266484i \(-0.0858619\pi\)
\(108\) 0 0
\(109\) −14.2674 −1.36657 −0.683287 0.730150i \(-0.739450\pi\)
−0.683287 + 0.730150i \(0.739450\pi\)
\(110\) −6.15897 + 9.43117i −0.587235 + 0.899227i
\(111\) 0 0
\(112\) 2.47511 + 0.436429i 0.233876 + 0.0412387i
\(113\) 2.12228 + 5.83093i 0.199648 + 0.548527i 0.998602 0.0528647i \(-0.0168352\pi\)
−0.798954 + 0.601392i \(0.794613\pi\)
\(114\) 0 0
\(115\) −3.26045 6.43961i −0.304039 0.600496i
\(116\) −0.0582783 0.100941i −0.00541100 0.00937213i
\(117\) 0 0
\(118\) −14.8109 8.55108i −1.36345 0.787191i
\(119\) 2.85177 + 1.03796i 0.261421 + 0.0951496i
\(120\) 0 0
\(121\) 3.20338 + 2.68795i 0.291216 + 0.244359i
\(122\) −5.47790 + 6.52831i −0.495946 + 0.591046i
\(123\) 0 0
\(124\) 0.835656 + 0.304154i 0.0750442 + 0.0273138i
\(125\) 10.4681 3.92659i 0.936299 0.351205i
\(126\) 0 0
\(127\) 10.4623 6.04043i 0.928382 0.536002i 0.0420828 0.999114i \(-0.486601\pi\)
0.886300 + 0.463112i \(0.153267\pi\)
\(128\) 7.64304 1.34767i 0.675556 0.119119i
\(129\) 0 0
\(130\) −8.87231 11.8367i −0.778153 1.03815i
\(131\) −0.140206 + 0.795145i −0.0122498 + 0.0694722i −0.990320 0.138804i \(-0.955674\pi\)
0.978070 + 0.208276i \(0.0667853\pi\)
\(132\) 0 0
\(133\) −1.51168 1.80155i −0.131079 0.156214i
\(134\) −5.14726 −0.444655
\(135\) 0 0
\(136\) 11.7597 1.00838
\(137\) 0.458752 + 0.546720i 0.0391939 + 0.0467094i 0.785285 0.619134i \(-0.212516\pi\)
−0.746091 + 0.665844i \(0.768072\pi\)
\(138\) 0 0
\(139\) −2.29439 + 13.0121i −0.194607 + 1.10367i 0.718370 + 0.695662i \(0.244889\pi\)
−0.912977 + 0.408011i \(0.866222\pi\)
\(140\) −0.456655 + 0.342290i −0.0385944 + 0.0289287i
\(141\) 0 0
\(142\) 15.4555 2.72522i 1.29699 0.228695i
\(143\) −17.2665 + 9.96882i −1.44390 + 0.833635i
\(144\) 0 0
\(145\) −0.772556 0.180438i −0.0641573 0.0149846i
\(146\) 17.1177 + 6.23034i 1.41667 + 0.515627i
\(147\) 0 0
\(148\) −0.902433 + 1.07548i −0.0741796 + 0.0884038i
\(149\) 4.06706 + 3.41267i 0.333187 + 0.279577i 0.793997 0.607922i \(-0.207997\pi\)
−0.460810 + 0.887499i \(0.652441\pi\)
\(150\) 0 0
\(151\) 5.48224 + 1.99537i 0.446138 + 0.162381i 0.555313 0.831641i \(-0.312598\pi\)
−0.109174 + 0.994023i \(0.534821\pi\)
\(152\) −7.89205 4.55648i −0.640130 0.369579i
\(153\) 0 0
\(154\) −1.95679 3.38927i −0.157683 0.273115i
\(155\) 5.40024 2.73421i 0.433758 0.219617i
\(156\) 0 0
\(157\) 0.552860 + 1.51897i 0.0441230 + 0.121227i 0.959797 0.280694i \(-0.0905647\pi\)
−0.915674 + 0.401921i \(0.868343\pi\)
\(158\) 14.7188 + 2.59533i 1.17097 + 0.206473i
\(159\) 0 0
\(160\) −2.24773 + 3.44193i −0.177699 + 0.272108i
\(161\) 2.50780 0.197643
\(162\) 0 0
\(163\) 3.19497i 0.250249i −0.992141 0.125125i \(-0.960067\pi\)
0.992141 0.125125i \(-0.0399331\pi\)
\(164\) 3.03610 2.54759i 0.237079 0.198933i
\(165\) 0 0
\(166\) 1.24837 7.07983i 0.0968920 0.549502i
\(167\) −1.88938 5.19103i −0.146205 0.401694i 0.844875 0.534963i \(-0.179675\pi\)
−0.991080 + 0.133270i \(0.957452\pi\)
\(168\) 0 0
\(169\) −2.28928 12.9832i −0.176099 0.998704i
\(170\) 7.72273 8.23933i 0.592307 0.631928i
\(171\) 0 0
\(172\) 0.100252 + 0.0578806i 0.00764415 + 0.00441335i
\(173\) 3.64550 10.0159i 0.277162 0.761497i −0.720519 0.693435i \(-0.756096\pi\)
0.997681 0.0680619i \(-0.0216815\pi\)
\(174\) 0 0
\(175\) −0.425766 + 3.86108i −0.0321849 + 0.291870i
\(176\) −9.65594 8.10229i −0.727844 0.610733i
\(177\) 0 0
\(178\) −2.30404 + 6.33030i −0.172695 + 0.474476i
\(179\) −7.01872 + 12.1568i −0.524604 + 0.908640i 0.474986 + 0.879993i \(0.342453\pi\)
−0.999590 + 0.0286466i \(0.990880\pi\)
\(180\) 0 0
\(181\) 7.75754 + 13.4365i 0.576613 + 0.998723i 0.995864 + 0.0908531i \(0.0289594\pi\)
−0.419251 + 0.907870i \(0.637707\pi\)
\(182\) 5.06150 0.892479i 0.375183 0.0661550i
\(183\) 0 0
\(184\) 9.13159 3.32363i 0.673190 0.245021i
\(185\) 1.14035 + 9.48769i 0.0838405 + 0.697549i
\(186\) 0 0
\(187\) −9.78348 11.6595i −0.715439 0.852627i
\(188\) 0.861671i 0.0628438i
\(189\) 0 0
\(190\) −8.37527 + 2.53721i −0.607606 + 0.184068i
\(191\) −3.34632 + 2.80790i −0.242131 + 0.203172i −0.755775 0.654831i \(-0.772740\pi\)
0.513644 + 0.858004i \(0.328295\pi\)
\(192\) 0 0
\(193\) 3.24089 + 0.571456i 0.233284 + 0.0411343i 0.289068 0.957309i \(-0.406655\pi\)
−0.0557838 + 0.998443i \(0.517766\pi\)
\(194\) −8.63729 + 3.14372i −0.620122 + 0.225706i
\(195\) 0 0
\(196\) 0.364893 + 2.06941i 0.0260638 + 0.147815i
\(197\) 18.5561 10.7134i 1.32207 0.763297i 0.338011 0.941142i \(-0.390246\pi\)
0.984059 + 0.177845i \(0.0569125\pi\)
\(198\) 0 0
\(199\) −7.03013 + 12.1765i −0.498353 + 0.863172i −0.999998 0.00190098i \(-0.999395\pi\)
0.501645 + 0.865073i \(0.332728\pi\)
\(200\) 3.56682 + 14.6235i 0.252212 + 1.03404i
\(201\) 0 0
\(202\) 1.46531 1.74628i 0.103099 0.122868i
\(203\) 0.177178 0.211153i 0.0124355 0.0148200i
\(204\) 0 0
\(205\) 1.48065 26.9360i 0.103413 1.88129i
\(206\) −12.3885 + 21.4575i −0.863146 + 1.49501i
\(207\) 0 0
\(208\) 14.3359 8.27682i 0.994014 0.573894i
\(209\) 2.04814 + 11.6156i 0.141673 + 0.803466i
\(210\) 0 0
\(211\) 3.90781 1.42233i 0.269025 0.0979170i −0.203986 0.978974i \(-0.565390\pi\)
0.473010 + 0.881057i \(0.343167\pi\)
\(212\) 3.00625 + 0.530083i 0.206470 + 0.0364063i
\(213\) 0 0
\(214\) 5.46007 4.58154i 0.373242 0.313188i
\(215\) 0.754092 0.228445i 0.0514286 0.0155798i
\(216\) 0 0
\(217\) 2.10304i 0.142764i
\(218\) −11.8567 14.1303i −0.803039 0.957024i
\(219\) 0 0
\(220\) 2.84177 0.341561i 0.191592 0.0230280i
\(221\) 18.7830 6.83645i 1.26348 0.459869i
\(222\) 0 0
\(223\) −16.3593 + 2.88459i −1.09550 + 0.193167i −0.692061 0.721839i \(-0.743297\pi\)
−0.403441 + 0.915006i \(0.632186\pi\)
\(224\) −0.714137 1.23692i −0.0477153 0.0826453i
\(225\) 0 0
\(226\) −4.01118 + 6.94758i −0.266820 + 0.462146i
\(227\) −1.81156 + 4.97722i −0.120238 + 0.330350i −0.985181 0.171520i \(-0.945132\pi\)
0.864943 + 0.501870i \(0.167354\pi\)
\(228\) 0 0
\(229\) 15.6135 + 13.1012i 1.03177 + 0.865754i 0.991060 0.133417i \(-0.0425949\pi\)
0.0407059 + 0.999171i \(0.487039\pi\)
\(230\) 3.66816 8.58064i 0.241871 0.565791i
\(231\) 0 0
\(232\) 0.365309 1.00368i 0.0239837 0.0658948i
\(233\) 1.06238 + 0.613363i 0.0695985 + 0.0401827i 0.534395 0.845235i \(-0.320539\pi\)
−0.464797 + 0.885417i \(0.653873\pi\)
\(234\) 0 0
\(235\) 4.27917 + 4.01087i 0.279142 + 0.261640i
\(236\) 0.754619 + 4.27966i 0.0491215 + 0.278582i
\(237\) 0 0
\(238\) 1.34194 + 3.68694i 0.0869848 + 0.238989i
\(239\) 2.66890 15.1361i 0.172637 0.979073i −0.768199 0.640211i \(-0.778847\pi\)
0.940836 0.338862i \(-0.110042\pi\)
\(240\) 0 0
\(241\) 14.2379 11.9470i 0.917146 0.769577i −0.0563190 0.998413i \(-0.517936\pi\)
0.973465 + 0.228836i \(0.0734920\pi\)
\(242\) 5.40637i 0.347534i
\(243\) 0 0
\(244\) 2.16548 0.138630
\(245\) 11.9754 + 7.82050i 0.765083 + 0.499633i
\(246\) 0 0
\(247\) −15.2543 2.68975i −0.970611 0.171145i
\(248\) 2.78719 + 7.65774i 0.176987 + 0.486267i
\(249\) 0 0
\(250\) 12.5882 + 7.10438i 0.796149 + 0.449320i
\(251\) −3.10032 5.36991i −0.195691 0.338946i 0.751436 0.659806i \(-0.229361\pi\)
−0.947127 + 0.320860i \(0.896028\pi\)
\(252\) 0 0
\(253\) −10.8923 6.28869i −0.684795 0.395367i
\(254\) 14.6769 + 5.34196i 0.920912 + 0.335185i
\(255\) 0 0
\(256\) −5.86792 4.92377i −0.366745 0.307736i
\(257\) 12.7173 15.1559i 0.793285 0.945401i −0.206166 0.978517i \(-0.566099\pi\)
0.999452 + 0.0331163i \(0.0105432\pi\)
\(258\) 0 0
\(259\) −3.11989 1.13555i −0.193861 0.0705595i
\(260\) −0.854910 + 3.66035i −0.0530193 + 0.227005i
\(261\) 0 0
\(262\) −0.904017 + 0.521935i −0.0558504 + 0.0322452i
\(263\) −16.7623 + 2.95564i −1.03360 + 0.182252i −0.664619 0.747183i \(-0.731406\pi\)
−0.368986 + 0.929435i \(0.620295\pi\)
\(264\) 0 0
\(265\) 16.6258 12.4620i 1.02132 0.765535i
\(266\) 0.527975 2.99430i 0.0323722 0.183592i
\(267\) 0 0
\(268\) 0.840718 + 1.00193i 0.0513550 + 0.0612025i
\(269\) −6.07723 −0.370535 −0.185268 0.982688i \(-0.559315\pi\)
−0.185268 + 0.982688i \(0.559315\pi\)
\(270\) 0 0
\(271\) −30.8933 −1.87664 −0.938318 0.345774i \(-0.887617\pi\)
−0.938318 + 0.345774i \(0.887617\pi\)
\(272\) 8.12293 + 9.68054i 0.492525 + 0.586969i
\(273\) 0 0
\(274\) −0.160226 + 0.908685i −0.00967958 + 0.0548956i
\(275\) 11.5315 15.7025i 0.695376 0.946894i
\(276\) 0 0
\(277\) 24.3118 4.28682i 1.46075 0.257570i 0.613895 0.789388i \(-0.289602\pi\)
0.846859 + 0.531818i \(0.178491\pi\)
\(278\) −14.7937 + 8.54117i −0.887269 + 0.512265i
\(279\) 0 0
\(280\) −5.09267 1.18944i −0.304345 0.0710828i
\(281\) −16.7164 6.08427i −0.997216 0.362957i −0.208706 0.977979i \(-0.566925\pi\)
−0.788510 + 0.615022i \(0.789147\pi\)
\(282\) 0 0
\(283\) −1.86958 + 2.22808i −0.111135 + 0.132446i −0.818744 0.574158i \(-0.805329\pi\)
0.707609 + 0.706604i \(0.249774\pi\)
\(284\) −3.05486 2.56333i −0.181273 0.152106i
\(285\) 0 0
\(286\) −24.2220 8.81610i −1.43228 0.521307i
\(287\) 8.11705 + 4.68638i 0.479134 + 0.276628i
\(288\) 0 0
\(289\) −0.870418 1.50761i −0.0512011 0.0886828i
\(290\) −0.463317 0.915080i −0.0272069 0.0537353i
\(291\) 0 0
\(292\) −1.58314 4.34963i −0.0926461 0.254543i
\(293\) 6.09217 + 1.07421i 0.355908 + 0.0627563i 0.348744 0.937218i \(-0.386608\pi\)
0.00716458 + 0.999974i \(0.497719\pi\)
\(294\) 0 0
\(295\) 24.7659 + 16.1732i 1.44193 + 0.941642i
\(296\) −12.8653 −0.747781
\(297\) 0 0
\(298\) 6.86401i 0.397621i
\(299\) 12.6531 10.6172i 0.731748 0.614010i
\(300\) 0 0
\(301\) −0.0475378 + 0.269600i −0.00274003 + 0.0155395i
\(302\) 2.57973 + 7.08776i 0.148447 + 0.407855i
\(303\) 0 0
\(304\) −1.70051 9.64407i −0.0975309 0.553125i
\(305\) 10.0798 10.7540i 0.577166 0.615774i
\(306\) 0 0
\(307\) −24.1159 13.9233i −1.37637 0.794645i −0.384646 0.923064i \(-0.625676\pi\)
−0.991720 + 0.128419i \(0.959010\pi\)
\(308\) −0.340121 + 0.934475i −0.0193802 + 0.0532466i
\(309\) 0 0
\(310\) 7.19571 + 3.07611i 0.408689 + 0.174711i
\(311\) −13.2628 11.1288i −0.752062 0.631055i 0.183986 0.982929i \(-0.441100\pi\)
−0.936047 + 0.351874i \(0.885544\pi\)
\(312\) 0 0
\(313\) −3.42361 + 9.40628i −0.193514 + 0.531675i −0.998063 0.0622113i \(-0.980185\pi\)
0.804549 + 0.593886i \(0.202407\pi\)
\(314\) −1.04492 + 1.80986i −0.0589684 + 0.102136i
\(315\) 0 0
\(316\) −1.89888 3.28897i −0.106821 0.185019i
\(317\) −7.89475 + 1.39206i −0.443413 + 0.0781857i −0.390897 0.920434i \(-0.627835\pi\)
−0.0525162 + 0.998620i \(0.516724\pi\)
\(318\) 0 0
\(319\) −1.29905 + 0.472815i −0.0727327 + 0.0264725i
\(320\) −19.6410 + 2.36071i −1.09796 + 0.131967i
\(321\) 0 0
\(322\) 2.08407 + 2.48370i 0.116141 + 0.138411i
\(323\) 11.8248i 0.657950i
\(324\) 0 0
\(325\) 14.1984 + 21.2836i 0.787583 + 1.18060i
\(326\) 3.16426 2.65513i 0.175252 0.147054i
\(327\) 0 0
\(328\) 35.7673 + 6.30673i 1.97492 + 0.348231i
\(329\) −1.91484 + 0.696946i −0.105569 + 0.0384239i
\(330\) 0 0
\(331\) −4.48752 25.4500i −0.246656 1.39886i −0.816615 0.577183i \(-0.804152\pi\)
0.569958 0.821674i \(-0.306959\pi\)
\(332\) −1.58201 + 0.913374i −0.0868240 + 0.0501279i
\(333\) 0 0
\(334\) 3.57099 6.18513i 0.195396 0.338435i
\(335\) 8.88904 + 0.488621i 0.485660 + 0.0266962i
\(336\) 0 0
\(337\) 12.6980 15.1328i 0.691702 0.824338i −0.299859 0.953984i \(-0.596940\pi\)
0.991560 + 0.129646i \(0.0413840\pi\)
\(338\) 10.9559 13.0567i 0.595921 0.710191i
\(339\) 0 0
\(340\) −2.86519 0.157496i −0.155387 0.00854144i
\(341\) 5.27369 9.13430i 0.285586 0.494650i
\(342\) 0 0
\(343\) −9.01329 + 5.20383i −0.486672 + 0.280980i
\(344\) 0.184207 + 1.04469i 0.00993177 + 0.0563259i
\(345\) 0 0
\(346\) 12.9492 4.71312i 0.696153 0.253379i
\(347\) −24.8142 4.37541i −1.33210 0.234884i −0.538138 0.842857i \(-0.680872\pi\)
−0.793958 + 0.607973i \(0.791983\pi\)
\(348\) 0 0
\(349\) −22.8639 + 19.1851i −1.22388 + 1.02695i −0.225263 + 0.974298i \(0.572324\pi\)
−0.998613 + 0.0526561i \(0.983231\pi\)
\(350\) −4.17779 + 2.78702i −0.223312 + 0.148972i
\(351\) 0 0
\(352\) 7.16322i 0.381801i
\(353\) −8.34269 9.94244i −0.444037 0.529182i 0.496880 0.867819i \(-0.334479\pi\)
−0.940917 + 0.338637i \(0.890034\pi\)
\(354\) 0 0
\(355\) −26.9495 + 3.23914i −1.43033 + 0.171916i
\(356\) 1.60854 0.585459i 0.0852523 0.0310293i
\(357\) 0 0
\(358\) −17.8727 + 3.15144i −0.944602 + 0.166559i
\(359\) 6.77215 + 11.7297i 0.357421 + 0.619071i 0.987529 0.157436i \(-0.0503230\pi\)
−0.630109 + 0.776507i \(0.716990\pi\)
\(360\) 0 0
\(361\) 4.91829 8.51873i 0.258857 0.448354i
\(362\) −6.86051 + 18.8491i −0.360581 + 0.990687i
\(363\) 0 0
\(364\) −1.00043 0.839464i −0.0524370 0.0439999i
\(365\) −28.9699 12.3844i −1.51636 0.648230i
\(366\) 0 0
\(367\) −8.56238 + 23.5250i −0.446953 + 1.22799i 0.487882 + 0.872910i \(0.337770\pi\)
−0.934835 + 0.355083i \(0.884453\pi\)
\(368\) 9.04359 + 5.22132i 0.471430 + 0.272180i
\(369\) 0 0
\(370\) −8.44881 + 9.01398i −0.439233 + 0.468614i
\(371\) 1.25357 + 7.10937i 0.0650823 + 0.369100i
\(372\) 0 0
\(373\) 0.713033 + 1.95904i 0.0369195 + 0.101435i 0.956783 0.290804i \(-0.0939227\pi\)
−0.919863 + 0.392239i \(0.871701\pi\)
\(374\) 3.41702 19.3789i 0.176690 1.00206i
\(375\) 0 0
\(376\) −6.04879 + 5.07553i −0.311942 + 0.261751i
\(377\) 1.81548i 0.0935021i
\(378\) 0 0
\(379\) −9.13522 −0.469245 −0.234622 0.972087i \(-0.575385\pi\)
−0.234622 + 0.972087i \(0.575385\pi\)
\(380\) 1.86183 + 1.21586i 0.0955100 + 0.0623723i
\(381\) 0 0
\(382\) −5.56181 0.980698i −0.284567 0.0501769i
\(383\) 3.49449 + 9.60103i 0.178560 + 0.490590i 0.996392 0.0848669i \(-0.0270465\pi\)
−0.817832 + 0.575457i \(0.804824\pi\)
\(384\) 0 0
\(385\) 3.05754 + 6.03884i 0.155827 + 0.307768i
\(386\) 2.12732 + 3.68463i 0.108278 + 0.187543i
\(387\) 0 0
\(388\) 2.02269 + 1.16780i 0.102687 + 0.0592861i
\(389\) −16.4031 5.97024i −0.831670 0.302703i −0.109126 0.994028i \(-0.534805\pi\)
−0.722544 + 0.691325i \(0.757027\pi\)
\(390\) 0 0
\(391\) 9.65938 + 8.10519i 0.488496 + 0.409897i
\(392\) −12.3776 + 14.7510i −0.625162 + 0.745039i
\(393\) 0 0
\(394\) 26.0312 + 9.47457i 1.31143 + 0.477322i
\(395\) −25.1723 5.87923i −1.26655 0.295816i
\(396\) 0 0
\(397\) −11.4657 + 6.61971i −0.575445 + 0.332233i −0.759321 0.650716i \(-0.774469\pi\)
0.183876 + 0.982949i \(0.441136\pi\)
\(398\) −17.9018 + 3.15656i −0.897334 + 0.158224i
\(399\) 0 0
\(400\) −9.57427 + 13.0373i −0.478713 + 0.651865i
\(401\) −6.80556 + 38.5962i −0.339853 + 1.92740i 0.0328639 + 0.999460i \(0.489537\pi\)
−0.372717 + 0.927945i \(0.621574\pi\)
\(402\) 0 0
\(403\) 8.90359 + 10.6109i 0.443519 + 0.528566i
\(404\) −0.579252 −0.0288189
\(405\) 0 0
\(406\) 0.356364 0.0176860
\(407\) 10.7033 + 12.7557i 0.530543 + 0.632277i
\(408\) 0 0
\(409\) 3.44309 19.5268i 0.170250 0.965536i −0.773235 0.634120i \(-0.781363\pi\)
0.943485 0.331416i \(-0.107526\pi\)
\(410\) 27.9076 20.9183i 1.37826 1.03308i
\(411\) 0 0
\(412\) 6.20021 1.09326i 0.305462 0.0538612i
\(413\) −8.90009 + 5.13847i −0.437945 + 0.252847i
\(414\) 0 0
\(415\) −2.82794 + 12.1080i −0.138818 + 0.594358i
\(416\) −8.83989 3.21746i −0.433411 0.157749i
\(417\) 0 0
\(418\) −9.80184 + 11.6814i −0.479424 + 0.571355i
\(419\) 20.8598 + 17.5035i 1.01907 + 0.855101i 0.989510 0.144462i \(-0.0461450\pi\)
0.0295598 + 0.999563i \(0.490589\pi\)
\(420\) 0 0
\(421\) −2.12407 0.773098i −0.103521 0.0376785i 0.289740 0.957105i \(-0.406431\pi\)
−0.393261 + 0.919427i \(0.628653\pi\)
\(422\) 4.65617 + 2.68824i 0.226659 + 0.130862i
\(423\) 0 0
\(424\) 13.9867 + 24.2257i 0.679256 + 1.17651i
\(425\) −14.1189 + 13.4958i −0.684867 + 0.654641i
\(426\) 0 0
\(427\) 1.75150 + 4.81222i 0.0847612 + 0.232880i
\(428\) −1.78362 0.314500i −0.0862145 0.0152019i
\(429\) 0 0
\(430\) 0.852924 + 0.556997i 0.0411317 + 0.0268608i
\(431\) −9.69510 −0.466996 −0.233498 0.972357i \(-0.575017\pi\)
−0.233498 + 0.972357i \(0.575017\pi\)
\(432\) 0 0
\(433\) 32.3437i 1.55434i −0.629292 0.777169i \(-0.716655\pi\)
0.629292 0.777169i \(-0.283345\pi\)
\(434\) −2.08282 + 1.74770i −0.0999788 + 0.0838922i
\(435\) 0 0
\(436\) −0.813906 + 4.61589i −0.0389790 + 0.221061i
\(437\) −3.34203 9.18216i −0.159871 0.439242i
\(438\) 0 0
\(439\) 1.71544 + 9.72872i 0.0818733 + 0.464327i 0.997988 + 0.0634094i \(0.0201974\pi\)
−0.916114 + 0.400917i \(0.868692\pi\)
\(440\) 19.1367 + 17.9368i 0.912305 + 0.855104i
\(441\) 0 0
\(442\) 22.3800 + 12.9211i 1.06451 + 0.614594i
\(443\) 8.94805 24.5846i 0.425135 1.16805i −0.523597 0.851966i \(-0.675410\pi\)
0.948732 0.316082i \(-0.102368\pi\)
\(444\) 0 0
\(445\) 4.57988 10.7134i 0.217107 0.507862i
\(446\) −16.4520 13.8049i −0.779025 0.653680i
\(447\) 0 0
\(448\) 2.35075 6.45865i 0.111063 0.305142i
\(449\) 8.04462 13.9337i 0.379649 0.657572i −0.611362 0.791351i \(-0.709378\pi\)
0.991011 + 0.133779i \(0.0427113\pi\)
\(450\) 0 0
\(451\) −23.5036 40.7094i −1.10674 1.91693i
\(452\) 2.00752 0.353981i 0.0944260 0.0166499i
\(453\) 0 0
\(454\) −6.43484 + 2.34209i −0.302002 + 0.109920i
\(455\) −8.82566 + 1.06078i −0.413754 + 0.0497303i
\(456\) 0 0
\(457\) −19.5646 23.3162i −0.915193 1.09068i −0.995580 0.0939208i \(-0.970060\pi\)
0.0803867 0.996764i \(-0.474384\pi\)
\(458\) 26.3509i 1.23130i
\(459\) 0 0
\(460\) −2.26938 + 0.687486i −0.105810 + 0.0320542i
\(461\) −12.5270 + 10.5114i −0.583438 + 0.489563i −0.886074 0.463543i \(-0.846578\pi\)
0.302636 + 0.953106i \(0.402133\pi\)
\(462\) 0 0
\(463\) −7.19625 1.26889i −0.334438 0.0589705i 0.00390751 0.999992i \(-0.498756\pi\)
−0.338346 + 0.941022i \(0.609867\pi\)
\(464\) 1.07856 0.392564i 0.0500709 0.0182243i
\(465\) 0 0
\(466\) 0.275403 + 1.56189i 0.0127578 + 0.0723531i
\(467\) −8.71268 + 5.03027i −0.403175 + 0.232773i −0.687853 0.725850i \(-0.741447\pi\)
0.284678 + 0.958623i \(0.408113\pi\)
\(468\) 0 0
\(469\) −1.54653 + 2.67867i −0.0714121 + 0.123689i
\(470\) −0.416181 + 7.57120i −0.0191970 + 0.349233i
\(471\) 0 0
\(472\) −25.5975 + 30.5059i −1.17822 + 1.40415i
\(473\) 0.882537 1.05177i 0.0405791 0.0483603i
\(474\) 0 0
\(475\) 14.7045 3.58657i 0.674688 0.164563i
\(476\) 0.498490 0.863411i 0.0228483 0.0395744i
\(477\) 0 0
\(478\) 17.2085 9.93536i 0.787100 0.454433i
\(479\) 1.39286 + 7.89931i 0.0636415 + 0.360929i 0.999952 + 0.00975657i \(0.00310566\pi\)
−0.936311 + 0.351172i \(0.885783\pi\)
\(480\) 0 0
\(481\) −20.5489 + 7.47920i −0.936950 + 0.341022i
\(482\) 23.6644 + 4.17267i 1.07788 + 0.190060i
\(483\) 0 0
\(484\) 1.05236 0.883038i 0.0478347 0.0401381i
\(485\) 15.2146 4.60911i 0.690858 0.209289i
\(486\) 0 0
\(487\) 1.30014i 0.0589151i 0.999566 + 0.0294575i \(0.00937799\pi\)
−0.999566 + 0.0294575i \(0.990622\pi\)
\(488\) 12.7554 + 15.2013i 0.577409 + 0.688130i
\(489\) 0 0
\(490\) 2.20668 + 18.3594i 0.0996874 + 0.829394i
\(491\) −10.4561 + 3.80573i −0.471879 + 0.171750i −0.567003 0.823715i \(-0.691897\pi\)
0.0951242 + 0.995465i \(0.469675\pi\)
\(492\) 0 0
\(493\) 1.36488 0.240666i 0.0614713 0.0108390i
\(494\) −10.0130 17.3430i −0.450505 0.780298i
\(495\) 0 0
\(496\) −4.37859 + 7.58394i −0.196604 + 0.340529i
\(497\) 3.22548 8.86195i 0.144683 0.397513i
\(498\) 0 0
\(499\) −13.6131 11.4227i −0.609404 0.511351i 0.285049 0.958513i \(-0.407990\pi\)
−0.894453 + 0.447162i \(0.852435\pi\)
\(500\) −0.673185 3.61071i −0.0301057 0.161476i
\(501\) 0 0
\(502\) 2.74182 7.53309i 0.122374 0.336218i
\(503\) −11.2798 6.51241i −0.502942 0.290374i 0.226985 0.973898i \(-0.427113\pi\)
−0.729928 + 0.683524i \(0.760446\pi\)
\(504\) 0 0
\(505\) −2.69628 + 2.87664i −0.119983 + 0.128009i
\(506\) −2.82366 16.0137i −0.125527 0.711898i
\(507\) 0 0
\(508\) −1.35740 3.72942i −0.0602248 0.165466i
\(509\) −3.60691 + 20.4558i −0.159873 + 0.906687i 0.794321 + 0.607499i \(0.207827\pi\)
−0.954194 + 0.299188i \(0.903284\pi\)
\(510\) 0 0
\(511\) 8.38545 7.03623i 0.370951 0.311265i
\(512\) 25.4252i 1.12365i
\(513\) 0 0
\(514\) 25.5788 1.12823
\(515\) 23.4312 35.8799i 1.03250 1.58106i
\(516\) 0 0
\(517\) 10.0646 + 1.77466i 0.442640 + 0.0780493i
\(518\) −1.46810 4.03358i −0.0645047 0.177225i
\(519\) 0 0
\(520\) −30.7307 + 15.5594i −1.34763 + 0.682323i
\(521\) −12.5826 21.7937i −0.551255 0.954801i −0.998184 0.0602320i \(-0.980816\pi\)
0.446930 0.894569i \(-0.352517\pi\)
\(522\) 0 0
\(523\) 21.4096 + 12.3608i 0.936177 + 0.540502i 0.888760 0.458373i \(-0.151568\pi\)
0.0474173 + 0.998875i \(0.484901\pi\)
\(524\) 0.249252 + 0.0907203i 0.0108886 + 0.00396313i
\(525\) 0 0
\(526\) −16.8572 14.1449i −0.735010 0.616746i
\(527\) −6.79700 + 8.10034i −0.296082 + 0.352857i
\(528\) 0 0
\(529\) −11.8215 4.30268i −0.513978 0.187073i
\(530\) 26.1588 + 6.10965i 1.13627 + 0.265386i
\(531\) 0 0
\(532\) −0.669084 + 0.386296i −0.0290085 + 0.0167481i
\(533\) 60.7951 10.7198i 2.63333 0.464327i
\(534\) 0 0
\(535\) −9.86416 + 7.39376i −0.426465 + 0.319660i
\(536\) −2.08126 + 11.8034i −0.0898966 + 0.509829i
\(537\) 0 0
\(538\) −5.05038 6.01881i −0.217737 0.259489i
\(539\) 24.9229 1.07350
\(540\) 0 0
\(541\) 16.9208 0.727482 0.363741 0.931500i \(-0.381499\pi\)
0.363741 + 0.931500i \(0.381499\pi\)
\(542\) −25.6734 30.5964i −1.10277 1.31423i
\(543\) 0 0
\(544\) 1.24705 7.07237i 0.0534668 0.303225i
\(545\) 19.1346 + 25.5278i 0.819635 + 1.09349i
\(546\) 0 0
\(547\) −1.40276 + 0.247344i −0.0599776 + 0.0105757i −0.203556 0.979063i \(-0.565250\pi\)
0.143579 + 0.989639i \(0.454139\pi\)
\(548\) 0.203048 0.117230i 0.00867379 0.00500781i
\(549\) 0 0
\(550\) 25.1346 1.62862i 1.07174 0.0694446i
\(551\) −1.00924 0.367332i −0.0429950 0.0156489i
\(552\) 0 0
\(553\) 5.77301 6.88000i 0.245493 0.292567i
\(554\) 24.4495 + 20.5156i 1.03876 + 0.871624i
\(555\) 0 0
\(556\) 4.07887 + 1.48459i 0.172983 + 0.0629605i
\(557\) −8.38178 4.83922i −0.355147 0.205044i 0.311803 0.950147i \(-0.399067\pi\)
−0.666950 + 0.745102i \(0.732401\pi\)
\(558\) 0 0
\(559\) 0.901548 + 1.56153i 0.0381314 + 0.0660455i
\(560\) −2.53859 5.01387i −0.107275 0.211875i
\(561\) 0 0
\(562\) −7.86609 21.6119i −0.331811 0.911644i
\(563\) 37.5918 + 6.62845i 1.58431 + 0.279356i 0.895322 0.445420i \(-0.146945\pi\)
0.688985 + 0.724776i \(0.258057\pi\)
\(564\) 0 0
\(565\) 7.58662 11.6173i 0.319172 0.488744i
\(566\) −3.76035 −0.158059
\(567\) 0 0
\(568\) 36.5435i 1.53333i
\(569\) −25.8444 + 21.6860i −1.08345 + 0.909126i −0.996203 0.0870599i \(-0.972253\pi\)
−0.0872516 + 0.996186i \(0.527808\pi\)
\(570\) 0 0
\(571\) 0.954517 5.41334i 0.0399453 0.226541i −0.958299 0.285766i \(-0.907752\pi\)
0.998245 + 0.0592252i \(0.0188630\pi\)
\(572\) 2.24018 + 6.15485i 0.0936667 + 0.257347i
\(573\) 0 0
\(574\) 2.10421 + 11.9336i 0.0878279 + 0.498097i
\(575\) −7.14926 + 14.4701i −0.298145 + 0.603445i
\(576\) 0 0
\(577\) 23.6596 + 13.6599i 0.984962 + 0.568668i 0.903765 0.428030i \(-0.140792\pi\)
0.0811975 + 0.996698i \(0.474126\pi\)
\(578\) 0.769769 2.11492i 0.0320182 0.0879692i
\(579\) 0 0
\(580\) −0.102448 + 0.239649i −0.00425392 + 0.00995087i
\(581\) −3.30932 2.77685i −0.137294 0.115203i
\(582\) 0 0
\(583\) 12.3831 34.0222i 0.512854 1.40906i
\(584\) 21.2085 36.7342i 0.877613 1.52007i
\(585\) 0 0
\(586\) 3.99891 + 6.92632i 0.165193 + 0.286123i
\(587\) 11.7130 2.06533i 0.483449 0.0852451i 0.0733885 0.997303i \(-0.476619\pi\)
0.410061 + 0.912058i \(0.365508\pi\)
\(588\) 0 0
\(589\) 7.70014 2.80262i 0.317279 0.115480i
\(590\) 4.56353 + 37.9683i 0.187877 + 1.56313i
\(591\) 0 0
\(592\) −8.88664 10.5907i −0.365239 0.435274i
\(593\) 9.14301i 0.375459i 0.982221 + 0.187729i \(0.0601128\pi\)
−0.982221 + 0.187729i \(0.939887\pi\)
\(594\) 0 0
\(595\) −1.96746 6.49453i −0.0806578 0.266250i
\(596\) 1.33610 1.12112i 0.0547287 0.0459229i
\(597\) 0 0
\(598\) 21.0303 + 3.70821i 0.859994 + 0.151640i
\(599\) −24.8634 + 9.04955i −1.01589 + 0.369755i −0.795693 0.605700i \(-0.792893\pi\)
−0.220200 + 0.975455i \(0.570671\pi\)
\(600\) 0 0
\(601\) 3.19159 + 18.1004i 0.130188 + 0.738330i 0.978091 + 0.208179i \(0.0667537\pi\)
−0.847903 + 0.530151i \(0.822135\pi\)
\(602\) −0.306514 + 0.176966i −0.0124926 + 0.00721260i
\(603\) 0 0
\(604\) 0.958297 1.65982i 0.0389925 0.0675371i
\(605\) 0.513218 9.33650i 0.0208653 0.379583i
\(606\) 0 0
\(607\) 19.6443 23.4111i 0.797336 0.950228i −0.202240 0.979336i \(-0.564822\pi\)
0.999576 + 0.0291076i \(0.00926655\pi\)
\(608\) −3.57721 + 4.26315i −0.145075 + 0.172894i
\(609\) 0 0
\(610\) 19.0273 + 1.04591i 0.770392 + 0.0423477i
\(611\) −6.71069 + 11.6233i −0.271486 + 0.470227i
\(612\) 0 0
\(613\) −17.3635 + 10.0248i −0.701304 + 0.404898i −0.807833 0.589411i \(-0.799360\pi\)
0.106529 + 0.994310i \(0.466026\pi\)
\(614\) −6.25164 35.4548i −0.252295 1.43084i
\(615\) 0 0
\(616\) −8.56328 + 3.11678i −0.345024 + 0.125579i
\(617\) −24.8810 4.38720i −1.00167 0.176622i −0.351321 0.936255i \(-0.614267\pi\)
−0.650352 + 0.759633i \(0.725379\pi\)
\(618\) 0 0
\(619\) −13.4670 + 11.3002i −0.541285 + 0.454192i −0.871977 0.489547i \(-0.837162\pi\)
0.330692 + 0.943739i \(0.392718\pi\)
\(620\) −0.576525 1.90310i −0.0231538 0.0764302i
\(621\) 0 0
\(622\) 22.3836i 0.897502i
\(623\) 2.60207 + 3.10102i 0.104250 + 0.124240i
\(624\) 0 0
\(625\) −21.0648 13.4639i −0.842591 0.538555i
\(626\) −12.1610 + 4.42624i −0.486051 + 0.176908i
\(627\) 0 0
\(628\) 0.522965 0.0922128i 0.0208686 0.00367969i
\(629\) −8.34690 14.4573i −0.332813 0.576449i
\(630\) 0 0
\(631\) 15.3587 26.6020i 0.611420 1.05901i −0.379581 0.925158i \(-0.623932\pi\)
0.991001 0.133852i \(-0.0427347\pi\)
\(632\) 11.9029 32.7030i 0.473472 1.30085i
\(633\) 0 0
\(634\) −7.93948 6.66201i −0.315317 0.264582i
\(635\) −24.8392 10.6185i −0.985712 0.421384i
\(636\) 0 0
\(637\) −11.1944 + 30.7565i −0.443540 + 1.21862i
\(638\) −1.54782 0.893635i −0.0612788 0.0353794i
\(639\) 0 0
\(640\) −12.6617 11.8678i −0.500496 0.469115i
\(641\) −1.59110 9.02357i −0.0628446 0.356409i −0.999972 0.00742320i \(-0.997637\pi\)
0.937128 0.348986i \(-0.113474\pi\)
\(642\) 0 0
\(643\) −4.97910 13.6800i −0.196357 0.539486i 0.801967 0.597369i \(-0.203787\pi\)
−0.998323 + 0.0578831i \(0.981565\pi\)
\(644\) 0.143061 0.811340i 0.00563740 0.0319713i
\(645\) 0 0
\(646\) 11.7111 9.82681i 0.460769 0.386631i
\(647\) 16.6946i 0.656331i 0.944620 + 0.328165i \(0.106430\pi\)
−0.944620 + 0.328165i \(0.893570\pi\)
\(648\) 0 0
\(649\) 51.5419 2.02320
\(650\) −9.27972 + 31.7493i −0.363980 + 1.24531i
\(651\) 0 0
\(652\) −1.03366 0.182262i −0.0404811 0.00713791i
\(653\) 6.31264 + 17.3438i 0.247033 + 0.678716i 0.999791 + 0.0204201i \(0.00650038\pi\)
−0.752759 + 0.658296i \(0.771277\pi\)
\(654\) 0 0
\(655\) 1.61074 0.815536i 0.0629367 0.0318656i
\(656\) 19.5143 + 33.7998i 0.761907 + 1.31966i
\(657\) 0 0
\(658\) −2.28155 1.31725i −0.0889439 0.0513518i
\(659\) −8.26055 3.00660i −0.321785 0.117120i 0.176077 0.984376i \(-0.443659\pi\)
−0.497862 + 0.867256i \(0.665882\pi\)
\(660\) 0 0
\(661\) −13.7931 11.5737i −0.536487 0.450166i 0.333847 0.942627i \(-0.391653\pi\)
−0.870335 + 0.492461i \(0.836097\pi\)
\(662\) 21.4760 25.5942i 0.834690 0.994745i
\(663\) 0 0
\(664\) −15.7303 5.72536i −0.610454 0.222187i
\(665\) −1.19603 + 5.12087i −0.0463800 + 0.198579i
\(666\) 0 0
\(667\) 0.991835 0.572636i 0.0384040 0.0221726i
\(668\) −1.78721 + 0.315134i −0.0691494 + 0.0121929i
\(669\) 0 0
\(670\) 6.90316 + 9.20965i 0.266692 + 0.355800i
\(671\) 4.45992 25.2934i 0.172173 0.976442i
\(672\) 0 0
\(673\) −5.25324 6.26057i −0.202498 0.241327i 0.655233 0.755427i \(-0.272571\pi\)
−0.857730 + 0.514100i \(0.828126\pi\)
\(674\) 25.5398 0.983756
\(675\) 0 0
\(676\) −4.33098 −0.166576
\(677\) −0.529394 0.630907i −0.0203462 0.0242477i 0.755775 0.654831i \(-0.227260\pi\)
−0.776122 + 0.630583i \(0.782816\pi\)
\(678\) 0 0
\(679\) −0.959124 + 5.43946i −0.0368078 + 0.208747i
\(680\) −15.7713 21.0408i −0.604802 0.806879i
\(681\) 0 0
\(682\) 13.4291 2.36791i 0.514227 0.0906721i
\(683\) 33.6587 19.4328i 1.28791 0.743577i 0.309631 0.950857i \(-0.399794\pi\)
0.978282 + 0.207280i \(0.0664611\pi\)
\(684\) 0 0
\(685\) 0.362961 1.55404i 0.0138680 0.0593768i
\(686\) −12.6441 4.60209i −0.482756 0.175709i
\(687\) 0 0
\(688\) −0.732745 + 0.873251i −0.0279356 + 0.0332924i
\(689\) 36.4236 + 30.5631i 1.38763 + 1.16436i
\(690\) 0 0
\(691\) 33.1809 + 12.0769i 1.26226 + 0.459426i 0.884527 0.466488i \(-0.154481\pi\)
0.377734 + 0.925914i \(0.376703\pi\)
\(692\) −3.03245 1.75079i −0.115277 0.0665549i
\(693\) 0 0
\(694\) −16.2881 28.2118i −0.618287 1.07090i
\(695\) 26.3588 13.3458i 0.999846 0.506235i
\(696\) 0 0
\(697\) 16.1184 + 44.2848i 0.610526 + 1.67741i
\(698\) −38.0013 6.70066i −1.43837 0.253624i
\(699\) 0 0
\(700\) 1.22487 + 0.358007i 0.0462958 + 0.0135314i
\(701\) 26.7698 1.01108 0.505541 0.862803i \(-0.331293\pi\)
0.505541 + 0.862803i \(0.331293\pi\)
\(702\) 0 0
\(703\) 12.9366i 0.487912i
\(704\) −26.4062 + 22.1575i −0.995222 + 0.835091i
\(705\) 0 0
\(706\) 2.91380 16.5250i 0.109662 0.621926i
\(707\) −0.468517 1.28724i −0.0176204 0.0484116i
\(708\) 0 0
\(709\) 5.90817 + 33.5069i 0.221886 + 1.25838i 0.868550 + 0.495602i \(0.165053\pi\)
−0.646664 + 0.762775i \(0.723836\pi\)
\(710\) −25.6039 23.9986i −0.960898 0.900650i
\(711\) 0 0
\(712\) 13.5846 + 7.84310i 0.509106 + 0.293933i
\(713\) −2.98859 + 8.21108i −0.111923 + 0.307507i
\(714\) 0 0
\(715\) 40.9933 + 17.5243i 1.53306 + 0.655371i
\(716\) 3.53264 + 2.96424i 0.132021 + 0.110779i
\(717\) 0 0
\(718\) −5.98907 + 16.4548i −0.223510 + 0.614089i
\(719\) −3.78251 + 6.55150i −0.141064 + 0.244330i −0.927898 0.372835i \(-0.878386\pi\)
0.786834 + 0.617165i \(0.211719\pi\)
\(720\) 0 0
\(721\) 7.44442 + 12.8941i 0.277245 + 0.480202i
\(722\) 12.5241 2.20834i 0.466099 0.0821858i
\(723\) 0 0
\(724\) 4.78958 1.74326i 0.178003 0.0647879i
\(725\) 0.713256 + 1.62428i 0.0264897 + 0.0603241i
\(726\) 0 0
\(727\) 18.7705 + 22.3698i 0.696158 + 0.829649i 0.992086 0.125561i \(-0.0400731\pi\)
−0.295927 + 0.955210i \(0.595629\pi\)
\(728\) 11.9676i 0.443549i
\(729\) 0 0
\(730\) −11.8096 38.9833i −0.437094 1.44284i
\(731\) −1.05445 + 0.884786i −0.0390001 + 0.0327250i
\(732\) 0 0
\(733\) −21.0725 3.71565i −0.778330 0.137241i −0.229650 0.973273i \(-0.573758\pi\)
−0.548680 + 0.836033i \(0.684869\pi\)
\(734\) −30.4144 + 11.0699i −1.12262 + 0.408599i
\(735\) 0 0
\(736\) −1.03050 5.84426i −0.0379847 0.215422i
\(737\) 13.4343 7.75631i 0.494860 0.285707i
\(738\) 0 0
\(739\) −1.12801 + 1.95377i −0.0414944 + 0.0718704i −0.886027 0.463634i \(-0.846545\pi\)
0.844532 + 0.535505i \(0.179879\pi\)
\(740\) 3.13457 + 0.172304i 0.115229 + 0.00633402i
\(741\) 0 0
\(742\) −5.99927 + 7.14965i −0.220240 + 0.262472i
\(743\) −2.12019 + 2.52675i −0.0777823 + 0.0926974i −0.803532 0.595261i \(-0.797049\pi\)
0.725750 + 0.687959i \(0.241493\pi\)
\(744\) 0 0
\(745\) 0.651590 11.8538i 0.0238724 0.434289i
\(746\) −1.34766 + 2.33421i −0.0493412 + 0.0854615i
\(747\) 0 0
\(748\) −4.33026 + 2.50008i −0.158330 + 0.0914119i
\(749\) −0.743750 4.21801i −0.0271760 0.154123i
\(750\) 0 0
\(751\) −29.9156 + 10.8884i −1.09164 + 0.397323i −0.824227 0.566260i \(-0.808390\pi\)
−0.267410 + 0.963583i \(0.586168\pi\)
\(752\) −8.35633 1.47345i −0.304724 0.0537310i
\(753\) 0 0
\(754\) 1.79803 1.50873i 0.0654804 0.0549446i
\(755\) −3.78223 12.4851i −0.137650 0.454378i
\(756\) 0 0
\(757\) 18.5287i 0.673436i −0.941605 0.336718i \(-0.890683\pi\)
0.941605 0.336718i \(-0.109317\pi\)
\(758\) −7.59167 9.04740i −0.275742 0.328616i
\(759\) 0 0
\(760\) 2.43169 + 20.2316i 0.0882068 + 0.733876i
\(761\) 38.6363 14.0625i 1.40057 0.509764i 0.472219 0.881481i \(-0.343453\pi\)
0.928346 + 0.371717i \(0.121231\pi\)
\(762\) 0 0
\(763\) −10.9159 + 1.92478i −0.395184 + 0.0696816i
\(764\) 0.717533 + 1.24280i 0.0259594 + 0.0449630i
\(765\) 0 0
\(766\) −6.60470 + 11.4397i −0.238638 + 0.413332i
\(767\) −23.1507 + 63.6062i −0.835925 + 2.29669i
\(768\) 0 0
\(769\) −26.1339 21.9289i −0.942412 0.790777i 0.0355917 0.999366i \(-0.488668\pi\)
−0.978003 + 0.208589i \(0.933113\pi\)
\(770\) −3.43987 + 8.04662i −0.123964 + 0.289980i
\(771\) 0 0
\(772\) 0.369762 1.01591i 0.0133080 0.0365635i
\(773\) −4.57453 2.64111i −0.164534 0.0949940i 0.415472 0.909606i \(-0.363617\pi\)
−0.580006 + 0.814612i \(0.696950\pi\)
\(774\) 0 0
\(775\) −12.1346 5.99536i −0.435888 0.215360i
\(776\) 3.71656 + 21.0777i 0.133417 + 0.756645i
\(777\) 0 0
\(778\) −7.71867 21.2069i −0.276728 0.760303i
\(779\) 6.34166 35.9653i 0.227213 1.28859i
\(780\) 0 0
\(781\) −36.2321 + 30.4024i −1.29649 + 1.08788i
\(782\) 16.3022i 0.582966i
\(783\) 0 0
\(784\) −20.6927 −0.739026
\(785\) 1.97633 3.02634i 0.0705384 0.108015i
\(786\) 0 0
\(787\) 11.5446 + 2.03562i 0.411520 + 0.0725620i 0.375575 0.926792i \(-0.377445\pi\)
0.0359440 + 0.999354i \(0.488556\pi\)
\(788\) −2.40750 6.61455i −0.0857636 0.235634i
\(789\) 0 0
\(790\) −15.0963 29.8161i −0.537102 1.06081i
\(791\) 2.41038 + 4.17490i 0.0857032 + 0.148442i
\(792\) 0 0
\(793\) 29.2106 + 16.8647i 1.03730 + 0.598884i
\(794\) −16.0844 5.85425i −0.570815 0.207760i
\(795\) 0 0
\(796\) 3.53839 + 2.96906i 0.125415 + 0.105235i
\(797\) −15.6442 + 18.6441i −0.554147 + 0.660406i −0.968297 0.249802i \(-0.919634\pi\)
0.414150 + 0.910209i \(0.364079\pi\)
\(798\) 0 0
\(799\) −9.62798 3.50430i −0.340613 0.123973i
\(800\) 9.17293 0.594369i 0.324312 0.0210141i
\(801\) 0 0
\(802\) −43.8809 + 25.3346i −1.54949 + 0.894597i
\(803\) −54.0656 + 9.53322i −1.90793 + 0.336420i
\(804\) 0 0
\(805\) −3.36330 4.48705i −0.118541 0.158148i
\(806\) −3.10970 + 17.6360i −0.109535 + 0.621201i
\(807\) 0 0
\(808\) −3.41199 4.06625i −0.120033 0.143050i
\(809\) −2.84260 −0.0999405 −0.0499703 0.998751i \(-0.515913\pi\)
−0.0499703 + 0.998751i \(0.515913\pi\)
\(810\) 0 0
\(811\) 25.2940 0.888194 0.444097 0.895979i \(-0.353525\pi\)
0.444097 + 0.895979i \(0.353525\pi\)
\(812\) −0.0582060 0.0693672i −0.00204263 0.00243431i
\(813\) 0 0
\(814\) −3.73828 + 21.2008i −0.131027 + 0.743089i
\(815\) −5.71655 + 4.28489i −0.200242 + 0.150093i
\(816\) 0 0
\(817\) 1.05047 0.185227i 0.0367514 0.00648027i
\(818\) 22.2004 12.8174i 0.776218 0.448149i
\(819\) 0 0
\(820\) −8.63004 2.01563i −0.301374 0.0703889i
\(821\) 39.7487 + 14.4673i 1.38724 + 0.504914i 0.924365 0.381510i \(-0.124596\pi\)
0.462874 + 0.886424i \(0.346818\pi\)
\(822\) 0 0
\(823\) 1.42693 1.70055i 0.0497397 0.0592774i −0.740601 0.671945i \(-0.765459\pi\)
0.790341 + 0.612668i \(0.209904\pi\)
\(824\) 44.1958 + 37.0847i 1.53964 + 1.29191i
\(825\) 0 0
\(826\) −12.4853 4.54429i −0.434421 0.158116i
\(827\) 15.7822 + 9.11184i 0.548800 + 0.316850i 0.748638 0.662979i \(-0.230708\pi\)
−0.199838 + 0.979829i \(0.564042\pi\)
\(828\) 0 0
\(829\) 15.8943 + 27.5298i 0.552033 + 0.956149i 0.998128 + 0.0611633i \(0.0194810\pi\)
−0.446095 + 0.894986i \(0.647186\pi\)
\(830\) −14.3417 + 7.26139i −0.497808 + 0.252047i
\(831\) 0 0
\(832\) −15.4831 42.5394i −0.536779 1.47479i
\(833\) −24.6068 4.33884i −0.852574 0.150332i
\(834\) 0 0
\(835\) −6.75405 + 10.3424i −0.233734 + 0.357914i
\(836\) 3.87478 0.134012
\(837\) 0 0
\(838\) 35.2053i 1.21615i
\(839\) 14.1865 11.9039i 0.489772 0.410968i −0.364173 0.931331i \(-0.618648\pi\)
0.853945 + 0.520364i \(0.174204\pi\)
\(840\) 0 0
\(841\) −5.01394 + 28.4355i −0.172894 + 0.980533i
\(842\) −0.999506 2.74612i −0.0344453 0.0946376i
\(843\) 0 0
\(844\) −0.237233 1.34542i −0.00816591 0.0463112i
\(845\) −20.1597 + 21.5082i −0.693514 + 0.739905i
\(846\) 0 0
\(847\) 2.81351 + 1.62438i 0.0966734 + 0.0558144i
\(848\) −10.2813 + 28.2476i −0.353061 + 0.970027i
\(849\) 0 0
\(850\) −25.0993 2.76773i −0.860899 0.0949324i
\(851\) −10.5675 8.86722i −0.362251 0.303964i
\(852\) 0 0
\(853\) −7.92056 + 21.7616i −0.271195 + 0.745102i 0.727089 + 0.686543i \(0.240873\pi\)
−0.998284 + 0.0585587i \(0.981350\pi\)
\(854\) −3.31040 + 5.73378i −0.113280 + 0.196206i
\(855\) 0 0
\(856\) −8.29838 14.3732i −0.283633 0.491266i
\(857\) −23.4792 + 4.14002i −0.802035 + 0.141420i −0.559617 0.828751i \(-0.689052\pi\)
−0.242418 + 0.970172i \(0.577941\pi\)
\(858\) 0 0
\(859\) −7.58350 + 2.76017i −0.258746 + 0.0941757i −0.468136 0.883656i \(-0.655074\pi\)
0.209390 + 0.977832i \(0.432852\pi\)
\(860\) −0.0308896 0.257000i −0.00105333 0.00876363i
\(861\) 0 0
\(862\) −8.05695 9.60190i −0.274421 0.327042i
\(863\) 18.5552i 0.631628i 0.948821 + 0.315814i \(0.102277\pi\)
−0.948821 + 0.315814i \(0.897723\pi\)
\(864\) 0 0
\(865\) −22.8100 + 6.91006i −0.775562 + 0.234949i
\(866\) 32.0328 26.8787i 1.08852 0.913375i
\(867\) 0 0
\(868\) 0.680388 + 0.119971i 0.0230939 + 0.00407208i
\(869\) −42.3270 + 15.4058i −1.43584 + 0.522604i
\(870\) 0 0
\(871\) 3.53760 + 20.0627i 0.119867 + 0.679799i
\(872\) −37.1970 + 21.4757i −1.25965 + 0.727258i
\(873\) 0 0
\(874\) 6.31655 10.9406i 0.213660 0.370071i
\(875\) 7.47939 4.41643i 0.252850 0.149303i
\(876\) 0 0
\(877\) 6.79778 8.10128i 0.229545 0.273561i −0.638962 0.769238i \(-0.720636\pi\)
0.868507 + 0.495678i \(0.165080\pi\)
\(878\) −8.20962 + 9.78384i −0.277061 + 0.330189i
\(879\) 0 0
\(880\) −1.54699 + 28.1430i −0.0521491 + 0.948700i
\(881\) 5.52419 9.56817i 0.186115 0.322360i −0.757837 0.652444i \(-0.773744\pi\)
0.943952 + 0.330084i \(0.107077\pi\)
\(882\) 0 0
\(883\) −45.6600 + 26.3618i −1.53658 + 0.887146i −0.537546 + 0.843234i \(0.680649\pi\)
−0.999035 + 0.0439118i \(0.986018\pi\)
\(884\) −1.14027 6.46678i −0.0383513 0.217501i
\(885\) 0 0
\(886\) 31.7844 11.5686i 1.06782 0.388654i
\(887\) 41.4529 + 7.30927i 1.39185 + 0.245421i 0.818792 0.574091i \(-0.194644\pi\)
0.573062 + 0.819512i \(0.305755\pi\)
\(888\) 0 0
\(889\) 7.18978 6.03294i 0.241138 0.202338i
\(890\) 14.4164 4.36731i 0.483239 0.146393i
\(891\) 0 0
\(892\) 5.45722i 0.182721i
\(893\) 5.10364 + 6.08228i 0.170787 + 0.203536i
\(894\) 0 0
\(895\) 31.1644 3.74574i 1.04171 0.125206i
\(896\) 5.66584 2.06220i 0.189282 0.0688932i
\(897\) 0 0
\(898\) 20.4851 3.61208i 0.683597 0.120537i
\(899\) 0.480212 + 0.831752i 0.0160160 + 0.0277405i
\(900\) 0 0
\(901\) −18.1489 + 31.4349i −0.604629 + 1.04725i
\(902\) 20.7858 57.1085i 0.692092 1.90151i
\(903\) 0 0
\(904\) 14.3099 + 12.0074i 0.475940 + 0.399361i
\(905\) 13.6371 31.9001i 0.453311 1.06040i
\(906\) 0 0
\(907\) −0.214958 + 0.590592i −0.00713756 + 0.0196103i −0.943210 0.332196i \(-0.892210\pi\)
0.936073 + 0.351807i \(0.114433\pi\)
\(908\) 1.50692 + 0.870019i 0.0500088 + 0.0288726i
\(909\) 0 0
\(910\) −8.38501 7.85928i −0.277960 0.260533i
\(911\) −4.64690 26.3539i −0.153959 0.873144i −0.959731 0.280919i \(-0.909361\pi\)
0.805773 0.592225i \(-0.201750\pi\)
\(912\) 0 0
\(913\) 7.41025 + 20.3595i 0.245243 + 0.673801i
\(914\) 6.83321 38.7530i 0.226022 1.28184i
\(915\) 0 0
\(916\) 5.12928 4.30398i 0.169476 0.142207i
\(917\) 0.627276i 0.0207145i
\(918\) 0 0
\(919\) −8.32555 −0.274634 −0.137317 0.990527i \(-0.543848\pi\)
−0.137317 + 0.990527i \(0.543848\pi\)
\(920\) −18.1934 11.8811i −0.599820 0.391709i
\(921\) 0 0
\(922\) −20.8206 3.67124i −0.685691 0.120906i
\(923\) −21.2444 58.3685i −0.699268 1.92122i
\(924\) 0 0
\(925\) 15.4463 14.7646i 0.507872 0.485458i
\(926\) −4.72363 8.18157i −0.155228 0.268863i
\(927\) 0 0
\(928\) −0.564881 0.326134i −0.0185431 0.0107059i
\(929\) −20.0134 7.28427i −0.656618 0.238989i −0.00784221 0.999969i \(-0.502496\pi\)
−0.648775 + 0.760980i \(0.724719\pi\)
\(930\) 0 0
\(931\) 14.8327 + 12.4461i 0.486122 + 0.407905i
\(932\) 0.259044 0.308716i 0.00848525 0.0101123i
\(933\) 0 0
\(934\) −12.2224 4.44860i −0.399930 0.145563i
\(935\) −7.74061 + 33.1419i −0.253145 + 1.08386i
\(936\) 0 0
\(937\) 2.68331 1.54921i 0.0876598 0.0506104i −0.455529 0.890221i \(-0.650550\pi\)
0.543189 + 0.839610i \(0.317217\pi\)
\(938\) −3.93814 + 0.694400i −0.128585 + 0.0226730i
\(939\) 0 0
\(940\) 1.54173 1.15562i 0.0502857 0.0376921i
\(941\) 2.52290 14.3081i 0.0822442 0.466430i −0.915673 0.401924i \(-0.868342\pi\)
0.997917 0.0645063i \(-0.0205473\pi\)
\(942\) 0 0
\(943\) 25.0323 + 29.8324i 0.815165 + 0.971476i
\(944\) −42.7937 −1.39282
\(945\) 0 0
\(946\) 1.77507 0.0577127
\(947\) 2.63542 + 3.14077i 0.0856396 + 0.102061i 0.807163 0.590329i \(-0.201002\pi\)
−0.721523 + 0.692390i \(0.756558\pi\)
\(948\) 0 0
\(949\) 12.5197 71.0025i 0.406406 2.30484i
\(950\) 15.7720 + 11.5826i 0.511712 + 0.375788i
\(951\) 0 0
\(952\) 8.99727 1.58646i 0.291603 0.0514175i
\(953\) −24.8072 + 14.3224i −0.803584 + 0.463950i −0.844723 0.535204i \(-0.820235\pi\)
0.0411387 + 0.999153i \(0.486901\pi\)
\(954\) 0 0
\(955\) 9.51186 + 2.22159i 0.307797 + 0.0718889i
\(956\) −4.74467 1.72692i −0.153454 0.0558525i
\(957\) 0 0
\(958\) −6.66586 + 7.94406i −0.215364 + 0.256661i
\(959\) 0.424745 + 0.356403i 0.0137157 + 0.0115089i
\(960\) 0 0
\(961\) 22.2447 + 8.09640i 0.717570 + 0.261174i
\(962\) −24.4841 14.1359i −0.789401 0.455761i
\(963\) 0 0
\(964\) −3.05296 5.28788i −0.0983291 0.170311i
\(965\) −3.32400 6.56510i −0.107003 0.211338i
\(966\) 0 0
\(967\) 7.35273 + 20.2015i 0.236448 + 0.649635i 0.999992 + 0.00388011i \(0.00123508\pi\)
−0.763545 + 0.645755i \(0.776543\pi\)
\(968\) 12.3976 + 2.18602i 0.398473 + 0.0702615i
\(969\) 0 0
\(970\) 17.2086 + 11.2380i 0.552535 + 0.360830i
\(971\) −39.3784 −1.26371 −0.631857 0.775085i \(-0.717707\pi\)
−0.631857 + 0.775085i \(0.717707\pi\)
\(972\) 0 0
\(973\) 10.2650i 0.329081i
\(974\) −1.28764 + 1.08046i −0.0412588 + 0.0346202i
\(975\) 0 0
\(976\) −3.70294 + 21.0004i −0.118528 + 0.672206i
\(977\) −7.02896 19.3119i −0.224876 0.617843i 0.775024 0.631931i \(-0.217738\pi\)
−0.999901 + 0.0140884i \(0.995515\pi\)
\(978\) 0 0
\(979\) −3.52548 19.9940i −0.112675 0.639010i
\(980\) 3.21329 3.42824i 0.102645 0.109511i
\(981\) 0 0
\(982\) −12.4585 7.19295i −0.397568 0.229536i
\(983\) −7.78235 + 21.3818i −0.248218 + 0.681975i 0.751533 + 0.659695i \(0.229315\pi\)
−0.999752 + 0.0222795i \(0.992908\pi\)
\(984\) 0 0
\(985\) −44.0550 18.8332i −1.40371 0.600075i
\(986\) 1.37262 + 1.15176i 0.0437130 + 0.0366796i
\(987\) 0 0
\(988\) −1.74041 + 4.78174i −0.0553698 + 0.152127i
\(989\) −0.568729 + 0.985067i −0.0180845 + 0.0313233i
\(990\) 0 0
\(991\) −8.61401 14.9199i −0.273633 0.473946i 0.696156 0.717890i \(-0.254892\pi\)
−0.969789 + 0.243944i \(0.921559\pi\)
\(992\) 4.90099 0.864176i 0.155606 0.0274376i
\(993\) 0 0
\(994\) 11.4572 4.17010i 0.363402 0.132267i
\(995\) 31.2150 3.75183i 0.989583 0.118941i
\(996\) 0 0
\(997\) −8.68705 10.3528i −0.275122 0.327877i 0.610736 0.791834i \(-0.290874\pi\)
−0.885858 + 0.463957i \(0.846429\pi\)
\(998\) 22.9749i 0.727256i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.p.a.199.12 96
3.2 odd 2 135.2.p.a.49.5 96
5.4 even 2 inner 405.2.p.a.199.5 96
15.2 even 4 675.2.l.h.76.12 96
15.8 even 4 675.2.l.h.76.5 96
15.14 odd 2 135.2.p.a.49.12 yes 96
27.11 odd 18 135.2.p.a.124.12 yes 96
27.16 even 9 inner 405.2.p.a.289.5 96
135.38 even 36 675.2.l.h.151.5 96
135.92 even 36 675.2.l.h.151.12 96
135.119 odd 18 135.2.p.a.124.5 yes 96
135.124 even 18 inner 405.2.p.a.289.12 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.5 96 3.2 odd 2
135.2.p.a.49.12 yes 96 15.14 odd 2
135.2.p.a.124.5 yes 96 135.119 odd 18
135.2.p.a.124.12 yes 96 27.11 odd 18
405.2.p.a.199.5 96 5.4 even 2 inner
405.2.p.a.199.12 96 1.1 even 1 trivial
405.2.p.a.289.5 96 27.16 even 9 inner
405.2.p.a.289.12 96 135.124 even 18 inner
675.2.l.h.76.5 96 15.8 even 4
675.2.l.h.76.12 96 15.2 even 4
675.2.l.h.151.5 96 135.38 even 36
675.2.l.h.151.12 96 135.92 even 36