Properties

Label 400.2.q.g.349.8
Level $400$
Weight $2$
Character 400.349
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(149,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 349.8
Root \(1.21331 - 0.726558i\) of defining polynomial
Character \(\chi\) \(=\) 400.349
Dual form 400.2.q.g.149.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36306 + 0.376912i) q^{2} +(-1.82762 + 1.82762i) q^{3} +(1.71587 + 1.02751i) q^{4} +(-3.18001 + 1.80230i) q^{6} -4.50961 q^{7} +(1.95156 + 2.04729i) q^{8} -3.68037i q^{9} +(-1.64080 + 1.64080i) q^{11} +(-5.01385 + 1.25807i) q^{12} +(-1.51857 + 1.51857i) q^{13} +(-6.14687 - 1.69972i) q^{14} +(1.88845 + 3.52615i) q^{16} -1.45616i q^{17} +(1.38717 - 5.01657i) q^{18} +(2.67964 + 2.67964i) q^{19} +(8.24183 - 8.24183i) q^{21} +(-2.85495 + 1.61808i) q^{22} +2.37423 q^{23} +(-7.30837 - 0.174953i) q^{24} +(-2.64228 + 1.49754i) q^{26} +(1.24345 + 1.24345i) q^{27} +(-7.73792 - 4.63366i) q^{28} +(-0.924966 - 0.924966i) q^{29} -7.20435 q^{31} +(1.24503 + 5.51814i) q^{32} -5.99752i q^{33} +(0.548843 - 1.98483i) q^{34} +(3.78161 - 6.31505i) q^{36} +(5.21123 + 5.21123i) q^{37} +(2.64253 + 4.66251i) q^{38} -5.55074i q^{39} +6.41166i q^{41} +(14.3406 - 8.12768i) q^{42} +(7.65800 + 7.65800i) q^{43} +(-4.50135 + 1.12947i) q^{44} +(3.23622 + 0.894875i) q^{46} +2.51027i q^{47} +(-9.89582 - 2.99308i) q^{48} +13.3366 q^{49} +(2.66130 + 2.66130i) q^{51} +(-4.16603 + 1.04534i) q^{52} +(1.50312 + 1.50312i) q^{53} +(1.22623 + 2.16357i) q^{54} +(-8.80078 - 9.23248i) q^{56} -9.79472 q^{57} +(-0.912155 - 1.60942i) q^{58} +(5.31807 - 5.31807i) q^{59} +(-1.02169 - 1.02169i) q^{61} +(-9.81998 - 2.71541i) q^{62} +16.5970i q^{63} +(-0.382800 + 7.99084i) q^{64} +(2.26054 - 8.17499i) q^{66} +(5.22745 - 5.22745i) q^{67} +(1.49622 - 2.49859i) q^{68} +(-4.33918 + 4.33918i) q^{69} +1.92097i q^{71} +(7.53478 - 7.18247i) q^{72} -1.39412 q^{73} +(5.13905 + 9.06740i) q^{74} +(1.84458 + 7.35129i) q^{76} +(7.39938 - 7.39938i) q^{77} +(2.09214 - 7.56600i) q^{78} -5.06317 q^{79} +6.49599 q^{81} +(-2.41663 + 8.73949i) q^{82} +(2.44974 - 2.44974i) q^{83} +(22.6105 - 5.67340i) q^{84} +(7.55194 + 13.3247i) q^{86} +3.38097 q^{87} +(-6.56133 - 0.157070i) q^{88} +9.36007i q^{89} +(6.84817 - 6.84817i) q^{91} +(4.07388 + 2.43954i) q^{92} +(13.1668 - 13.1668i) q^{93} +(-0.946152 + 3.42166i) q^{94} +(-12.3605 - 7.80961i) q^{96} -18.6313i q^{97} +(18.1785 + 5.02671i) q^{98} +(6.03876 + 6.03876i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 4 q^{4} - 12 q^{6} - 8 q^{7} + 8 q^{8} - 8 q^{11} - 20 q^{12} - 4 q^{14} + 16 q^{16} - 12 q^{18} + 8 q^{19} + 20 q^{22} - 24 q^{23} - 8 q^{24} - 16 q^{26} - 24 q^{27} - 20 q^{28} + 16 q^{29}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36306 + 0.376912i 0.963830 + 0.266517i
\(3\) −1.82762 + 1.82762i −1.05518 + 1.05518i −0.0567890 + 0.998386i \(0.518086\pi\)
−0.998386 + 0.0567890i \(0.981914\pi\)
\(4\) 1.71587 + 1.02751i 0.857937 + 0.513754i
\(5\) 0 0
\(6\) −3.18001 + 1.80230i −1.29823 + 0.735788i
\(7\) −4.50961 −1.70447 −0.852236 0.523158i \(-0.824754\pi\)
−0.852236 + 0.523158i \(0.824754\pi\)
\(8\) 1.95156 + 2.04729i 0.689982 + 0.723827i
\(9\) 3.68037i 1.22679i
\(10\) 0 0
\(11\) −1.64080 + 1.64080i −0.494721 + 0.494721i −0.909790 0.415069i \(-0.863757\pi\)
0.415069 + 0.909790i \(0.363757\pi\)
\(12\) −5.01385 + 1.25807i −1.44737 + 0.363174i
\(13\) −1.51857 + 1.51857i −0.421176 + 0.421176i −0.885609 0.464432i \(-0.846258\pi\)
0.464432 + 0.885609i \(0.346258\pi\)
\(14\) −6.14687 1.69972i −1.64282 0.454270i
\(15\) 0 0
\(16\) 1.88845 + 3.52615i 0.472113 + 0.881538i
\(17\) 1.45616i 0.353170i −0.984285 0.176585i \(-0.943495\pi\)
0.984285 0.176585i \(-0.0565051\pi\)
\(18\) 1.38717 5.01657i 0.326960 1.18242i
\(19\) 2.67964 + 2.67964i 0.614752 + 0.614752i 0.944181 0.329428i \(-0.106856\pi\)
−0.329428 + 0.944181i \(0.606856\pi\)
\(20\) 0 0
\(21\) 8.24183 8.24183i 1.79852 1.79852i
\(22\) −2.85495 + 1.61808i −0.608678 + 0.344975i
\(23\) 2.37423 0.495061 0.247530 0.968880i \(-0.420381\pi\)
0.247530 + 0.968880i \(0.420381\pi\)
\(24\) −7.30837 0.174953i −1.49182 0.0357121i
\(25\) 0 0
\(26\) −2.64228 + 1.49754i −0.518193 + 0.293692i
\(27\) 1.24345 + 1.24345i 0.239303 + 0.239303i
\(28\) −7.73792 4.63366i −1.46233 0.875679i
\(29\) −0.924966 0.924966i −0.171762 0.171762i 0.615991 0.787753i \(-0.288756\pi\)
−0.787753 + 0.615991i \(0.788756\pi\)
\(30\) 0 0
\(31\) −7.20435 −1.29394 −0.646970 0.762515i \(-0.723964\pi\)
−0.646970 + 0.762515i \(0.723964\pi\)
\(32\) 1.24503 + 5.51814i 0.220092 + 0.975479i
\(33\) 5.99752i 1.04403i
\(34\) 0.548843 1.98483i 0.0941259 0.340396i
\(35\) 0 0
\(36\) 3.78161 6.31505i 0.630268 1.05251i
\(37\) 5.21123 + 5.21123i 0.856720 + 0.856720i 0.990950 0.134230i \(-0.0428560\pi\)
−0.134230 + 0.990950i \(0.542856\pi\)
\(38\) 2.64253 + 4.66251i 0.428675 + 0.756359i
\(39\) 5.55074i 0.888830i
\(40\) 0 0
\(41\) 6.41166i 1.00133i 0.865640 + 0.500667i \(0.166912\pi\)
−0.865640 + 0.500667i \(0.833088\pi\)
\(42\) 14.3406 8.12768i 2.21280 1.25413i
\(43\) 7.65800 + 7.65800i 1.16783 + 1.16783i 0.982716 + 0.185118i \(0.0592669\pi\)
0.185118 + 0.982716i \(0.440733\pi\)
\(44\) −4.50135 + 1.12947i −0.678604 + 0.170275i
\(45\) 0 0
\(46\) 3.23622 + 0.894875i 0.477155 + 0.131942i
\(47\) 2.51027i 0.366161i 0.983098 + 0.183081i \(0.0586069\pi\)
−0.983098 + 0.183081i \(0.941393\pi\)
\(48\) −9.89582 2.99308i −1.42834 0.432015i
\(49\) 13.3366 1.90522
\(50\) 0 0
\(51\) 2.66130 + 2.66130i 0.372657 + 0.372657i
\(52\) −4.16603 + 1.04534i −0.577724 + 0.144962i
\(53\) 1.50312 + 1.50312i 0.206470 + 0.206470i 0.802765 0.596295i \(-0.203361\pi\)
−0.596295 + 0.802765i \(0.703361\pi\)
\(54\) 1.22623 + 2.16357i 0.166869 + 0.294425i
\(55\) 0 0
\(56\) −8.80078 9.23248i −1.17605 1.23374i
\(57\) −9.79472 −1.29734
\(58\) −0.912155 1.60942i −0.119772 0.211327i
\(59\) 5.31807 5.31807i 0.692353 0.692353i −0.270396 0.962749i \(-0.587155\pi\)
0.962749 + 0.270396i \(0.0871546\pi\)
\(60\) 0 0
\(61\) −1.02169 1.02169i −0.130815 0.130815i 0.638668 0.769483i \(-0.279486\pi\)
−0.769483 + 0.638668i \(0.779486\pi\)
\(62\) −9.81998 2.71541i −1.24714 0.344857i
\(63\) 16.5970i 2.09103i
\(64\) −0.382800 + 7.99084i −0.0478499 + 0.998855i
\(65\) 0 0
\(66\) 2.26054 8.17499i 0.278253 1.00627i
\(67\) 5.22745 5.22745i 0.638635 0.638635i −0.311584 0.950219i \(-0.600859\pi\)
0.950219 + 0.311584i \(0.100859\pi\)
\(68\) 1.49622 2.49859i 0.181443 0.302998i
\(69\) −4.33918 + 4.33918i −0.522376 + 0.522376i
\(70\) 0 0
\(71\) 1.92097i 0.227978i 0.993482 + 0.113989i \(0.0363628\pi\)
−0.993482 + 0.113989i \(0.963637\pi\)
\(72\) 7.53478 7.18247i 0.887983 0.846462i
\(73\) −1.39412 −0.163169 −0.0815847 0.996666i \(-0.525998\pi\)
−0.0815847 + 0.996666i \(0.525998\pi\)
\(74\) 5.13905 + 9.06740i 0.597403 + 1.05406i
\(75\) 0 0
\(76\) 1.84458 + 7.35129i 0.211587 + 0.843250i
\(77\) 7.39938 7.39938i 0.843237 0.843237i
\(78\) 2.09214 7.56600i 0.236888 0.856681i
\(79\) −5.06317 −0.569651 −0.284825 0.958579i \(-0.591936\pi\)
−0.284825 + 0.958579i \(0.591936\pi\)
\(80\) 0 0
\(81\) 6.49599 0.721777
\(82\) −2.41663 + 8.73949i −0.266872 + 0.965115i
\(83\) 2.44974 2.44974i 0.268894 0.268894i −0.559761 0.828654i \(-0.689107\pi\)
0.828654 + 0.559761i \(0.189107\pi\)
\(84\) 22.6105 5.67340i 2.46701 0.619019i
\(85\) 0 0
\(86\) 7.55194 + 13.3247i 0.814347 + 1.43684i
\(87\) 3.38097 0.362478
\(88\) −6.56133 0.157070i −0.699440 0.0167437i
\(89\) 9.36007i 0.992165i 0.868275 + 0.496083i \(0.165229\pi\)
−0.868275 + 0.496083i \(0.834771\pi\)
\(90\) 0 0
\(91\) 6.84817 6.84817i 0.717883 0.717883i
\(92\) 4.07388 + 2.43954i 0.424731 + 0.254340i
\(93\) 13.1668 13.1668i 1.36533 1.36533i
\(94\) −0.946152 + 3.42166i −0.0975882 + 0.352917i
\(95\) 0 0
\(96\) −12.3605 7.80961i −1.26154 0.797065i
\(97\) 18.6313i 1.89172i −0.324579 0.945859i \(-0.605223\pi\)
0.324579 0.945859i \(-0.394777\pi\)
\(98\) 18.1785 + 5.02671i 1.83631 + 0.507774i
\(99\) 6.03876 + 6.03876i 0.606918 + 0.606918i
\(100\) 0 0
\(101\) −4.84108 + 4.84108i −0.481705 + 0.481705i −0.905676 0.423971i \(-0.860636\pi\)
0.423971 + 0.905676i \(0.360636\pi\)
\(102\) 2.62444 + 4.63059i 0.259858 + 0.458497i
\(103\) −9.12540 −0.899153 −0.449576 0.893242i \(-0.648425\pi\)
−0.449576 + 0.893242i \(0.648425\pi\)
\(104\) −6.07255 0.145369i −0.595463 0.0142546i
\(105\) 0 0
\(106\) 1.48230 + 2.61539i 0.143974 + 0.254029i
\(107\) 10.1505 + 10.1505i 0.981290 + 0.981290i 0.999828 0.0185385i \(-0.00590132\pi\)
−0.0185385 + 0.999828i \(0.505901\pi\)
\(108\) 0.855951 + 3.41127i 0.0823639 + 0.328249i
\(109\) −1.35489 1.35489i −0.129775 0.129775i 0.639236 0.769011i \(-0.279251\pi\)
−0.769011 + 0.639236i \(0.779251\pi\)
\(110\) 0 0
\(111\) −19.0483 −1.80798
\(112\) −8.51618 15.9016i −0.804704 1.50256i
\(113\) 2.56039i 0.240861i −0.992722 0.120431i \(-0.961572\pi\)
0.992722 0.120431i \(-0.0384275\pi\)
\(114\) −13.3508 3.69175i −1.25042 0.345764i
\(115\) 0 0
\(116\) −0.636716 2.53754i −0.0591176 0.235604i
\(117\) 5.58891 + 5.58891i 0.516695 + 0.516695i
\(118\) 9.25329 5.24441i 0.851835 0.482787i
\(119\) 6.56670i 0.601969i
\(120\) 0 0
\(121\) 5.61553i 0.510503i
\(122\) −1.00754 1.77772i −0.0912188 0.160947i
\(123\) −11.7181 11.7181i −1.05658 1.05658i
\(124\) −12.3618 7.40253i −1.11012 0.664767i
\(125\) 0 0
\(126\) −6.25561 + 22.6228i −0.557294 + 2.01540i
\(127\) 13.7354i 1.21882i −0.792856 0.609409i \(-0.791407\pi\)
0.792856 0.609409i \(-0.208593\pi\)
\(128\) −3.53362 + 10.7477i −0.312331 + 0.949973i
\(129\) −27.9918 −2.46454
\(130\) 0 0
\(131\) 5.20726 + 5.20726i 0.454960 + 0.454960i 0.896997 0.442037i \(-0.145744\pi\)
−0.442037 + 0.896997i \(0.645744\pi\)
\(132\) 6.16250 10.2910i 0.536377 0.895716i
\(133\) −12.0841 12.0841i −1.04783 1.04783i
\(134\) 9.09563 5.15505i 0.785743 0.445329i
\(135\) 0 0
\(136\) 2.98118 2.84179i 0.255634 0.243681i
\(137\) −22.7563 −1.94420 −0.972102 0.234559i \(-0.924635\pi\)
−0.972102 + 0.234559i \(0.924635\pi\)
\(138\) −7.55006 + 4.27908i −0.642704 + 0.364260i
\(139\) −6.28085 + 6.28085i −0.532734 + 0.532734i −0.921385 0.388651i \(-0.872941\pi\)
0.388651 + 0.921385i \(0.372941\pi\)
\(140\) 0 0
\(141\) −4.58782 4.58782i −0.386364 0.386364i
\(142\) −0.724038 + 2.61841i −0.0607599 + 0.219732i
\(143\) 4.98336i 0.416729i
\(144\) 12.9775 6.95020i 1.08146 0.579184i
\(145\) 0 0
\(146\) −1.90027 0.525460i −0.157268 0.0434874i
\(147\) −24.3741 + 24.3741i −2.01034 + 2.01034i
\(148\) 3.58723 + 14.2964i 0.294869 + 1.17516i
\(149\) 12.9574 12.9574i 1.06151 1.06151i 0.0635329 0.997980i \(-0.479763\pi\)
0.997980 0.0635329i \(-0.0202368\pi\)
\(150\) 0 0
\(151\) 14.3417i 1.16711i −0.812073 0.583555i \(-0.801661\pi\)
0.812073 0.583555i \(-0.198339\pi\)
\(152\) −0.256515 + 10.7155i −0.0208061 + 0.869142i
\(153\) −5.35920 −0.433266
\(154\) 12.8747 7.29689i 1.03747 0.588001i
\(155\) 0 0
\(156\) 5.70343 9.52438i 0.456640 0.762560i
\(157\) −2.10564 + 2.10564i −0.168049 + 0.168049i −0.786121 0.618073i \(-0.787914\pi\)
0.618073 + 0.786121i \(0.287914\pi\)
\(158\) −6.90141 1.90837i −0.549047 0.151822i
\(159\) −5.49426 −0.435723
\(160\) 0 0
\(161\) −10.7068 −0.843817
\(162\) 8.85444 + 2.44842i 0.695671 + 0.192366i
\(163\) 5.34004 5.34004i 0.418265 0.418265i −0.466341 0.884605i \(-0.654428\pi\)
0.884605 + 0.466341i \(0.154428\pi\)
\(164\) −6.58804 + 11.0016i −0.514439 + 0.859081i
\(165\) 0 0
\(166\) 4.26248 2.41581i 0.330833 0.187503i
\(167\) 16.0686 1.24343 0.621714 0.783245i \(-0.286437\pi\)
0.621714 + 0.783245i \(0.286437\pi\)
\(168\) 32.9579 + 0.788969i 2.54276 + 0.0608702i
\(169\) 8.38787i 0.645221i
\(170\) 0 0
\(171\) 9.86207 9.86207i 0.754171 0.754171i
\(172\) 5.27151 + 21.0088i 0.401949 + 1.60191i
\(173\) −17.1133 + 17.1133i −1.30110 + 1.30110i −0.373453 + 0.927649i \(0.621826\pi\)
−0.927649 + 0.373453i \(0.878174\pi\)
\(174\) 4.60847 + 1.27433i 0.349367 + 0.0966065i
\(175\) 0 0
\(176\) −8.88430 2.68714i −0.669679 0.202551i
\(177\) 19.4388i 1.46111i
\(178\) −3.52792 + 12.7584i −0.264429 + 0.956279i
\(179\) −1.04482 1.04482i −0.0780933 0.0780933i 0.666981 0.745075i \(-0.267586\pi\)
−0.745075 + 0.666981i \(0.767586\pi\)
\(180\) 0 0
\(181\) 11.9886 11.9886i 0.891104 0.891104i −0.103523 0.994627i \(-0.533012\pi\)
0.994627 + 0.103523i \(0.0330115\pi\)
\(182\) 11.9156 6.75332i 0.883245 0.500589i
\(183\) 3.73453 0.276065
\(184\) 4.63346 + 4.86074i 0.341583 + 0.358338i
\(185\) 0 0
\(186\) 22.9099 12.9844i 1.67983 0.952065i
\(187\) 2.38927 + 2.38927i 0.174721 + 0.174721i
\(188\) −2.57933 + 4.30732i −0.188117 + 0.314143i
\(189\) −5.60748 5.60748i −0.407884 0.407884i
\(190\) 0 0
\(191\) 0.0667471 0.00482965 0.00241483 0.999997i \(-0.499231\pi\)
0.00241483 + 0.999997i \(0.499231\pi\)
\(192\) −13.9046 15.3038i −1.00348 1.10446i
\(193\) 1.09895i 0.0791039i −0.999218 0.0395520i \(-0.987407\pi\)
0.999218 0.0395520i \(-0.0125931\pi\)
\(194\) 7.02234 25.3956i 0.504175 1.82329i
\(195\) 0 0
\(196\) 22.8839 + 13.7034i 1.63456 + 0.978816i
\(197\) −11.9289 11.9289i −0.849899 0.849899i 0.140222 0.990120i \(-0.455218\pi\)
−0.990120 + 0.140222i \(0.955218\pi\)
\(198\) 5.95512 + 10.5073i 0.423212 + 0.746720i
\(199\) 11.0397i 0.782584i −0.920267 0.391292i \(-0.872028\pi\)
0.920267 0.391292i \(-0.127972\pi\)
\(200\) 0 0
\(201\) 19.1076i 1.34774i
\(202\) −8.42334 + 4.77403i −0.592664 + 0.335899i
\(203\) 4.17123 + 4.17123i 0.292763 + 0.292763i
\(204\) 1.83195 + 7.30097i 0.128262 + 0.511170i
\(205\) 0 0
\(206\) −12.4385 3.43947i −0.866631 0.239639i
\(207\) 8.73803i 0.607335i
\(208\) −8.22247 2.48696i −0.570126 0.172440i
\(209\) −8.79353 −0.608261
\(210\) 0 0
\(211\) −8.59737 8.59737i −0.591868 0.591868i 0.346268 0.938136i \(-0.387449\pi\)
−0.938136 + 0.346268i \(0.887449\pi\)
\(212\) 1.03470 + 4.12364i 0.0710634 + 0.283213i
\(213\) −3.51080 3.51080i −0.240556 0.240556i
\(214\) 10.0100 + 17.6617i 0.684266 + 1.20733i
\(215\) 0 0
\(216\) −0.119032 + 4.97238i −0.00809912 + 0.338328i
\(217\) 32.4888 2.20548
\(218\) −1.33613 2.35748i −0.0904941 0.159669i
\(219\) 2.54792 2.54792i 0.172172 0.172172i
\(220\) 0 0
\(221\) 2.21128 + 2.21128i 0.148747 + 0.148747i
\(222\) −25.9639 7.17951i −1.74259 0.481857i
\(223\) 21.4238i 1.43465i −0.696741 0.717323i \(-0.745367\pi\)
0.696741 0.717323i \(-0.254633\pi\)
\(224\) −5.61460 24.8847i −0.375141 1.66268i
\(225\) 0 0
\(226\) 0.965041 3.48997i 0.0641936 0.232149i
\(227\) −8.06331 + 8.06331i −0.535181 + 0.535181i −0.922110 0.386929i \(-0.873536\pi\)
0.386929 + 0.922110i \(0.373536\pi\)
\(228\) −16.8065 10.0642i −1.11304 0.666515i
\(229\) −4.63169 + 4.63169i −0.306071 + 0.306071i −0.843383 0.537313i \(-0.819440\pi\)
0.537313 + 0.843383i \(0.319440\pi\)
\(230\) 0 0
\(231\) 27.0465i 1.77953i
\(232\) 0.0885445 3.69880i 0.00581323 0.242838i
\(233\) 26.0672 1.70772 0.853860 0.520502i \(-0.174255\pi\)
0.853860 + 0.520502i \(0.174255\pi\)
\(234\) 5.51150 + 9.72455i 0.360298 + 0.635714i
\(235\) 0 0
\(236\) 14.5895 3.66078i 0.949695 0.238296i
\(237\) 9.25353 9.25353i 0.601081 0.601081i
\(238\) −2.47507 + 8.95082i −0.160435 + 0.580196i
\(239\) −5.12209 −0.331320 −0.165660 0.986183i \(-0.552975\pi\)
−0.165660 + 0.986183i \(0.552975\pi\)
\(240\) 0 0
\(241\) 11.4987 0.740695 0.370347 0.928893i \(-0.379239\pi\)
0.370347 + 0.928893i \(0.379239\pi\)
\(242\) −2.11656 + 7.65432i −0.136058 + 0.492038i
\(243\) −15.6025 + 15.6025i −1.00090 + 1.00090i
\(244\) −0.703301 2.80290i −0.0450242 0.179437i
\(245\) 0 0
\(246\) −11.5558 20.3891i −0.736769 1.29996i
\(247\) −8.13847 −0.517838
\(248\) −14.0598 14.7494i −0.892795 0.936588i
\(249\) 8.95437i 0.567460i
\(250\) 0 0
\(251\) −19.8270 + 19.8270i −1.25147 + 1.25147i −0.296408 + 0.955061i \(0.595789\pi\)
−0.955061 + 0.296408i \(0.904211\pi\)
\(252\) −17.0536 + 28.4784i −1.07427 + 1.79397i
\(253\) −3.89564 + 3.89564i −0.244917 + 0.244917i
\(254\) 5.17703 18.7222i 0.324836 1.17473i
\(255\) 0 0
\(256\) −8.86749 + 13.3179i −0.554218 + 0.832372i
\(257\) 24.2494i 1.51264i 0.654203 + 0.756319i \(0.273004\pi\)
−0.654203 + 0.756319i \(0.726996\pi\)
\(258\) −38.1545 10.5504i −2.37540 0.656842i
\(259\) −23.5006 23.5006i −1.46026 1.46026i
\(260\) 0 0
\(261\) −3.40422 + 3.40422i −0.210716 + 0.210716i
\(262\) 5.13514 + 9.06049i 0.317250 + 0.559759i
\(263\) 22.5680 1.39160 0.695802 0.718234i \(-0.255049\pi\)
0.695802 + 0.718234i \(0.255049\pi\)
\(264\) 12.2787 11.7045i 0.755700 0.720365i
\(265\) 0 0
\(266\) −11.9168 21.0261i −0.730664 1.28919i
\(267\) −17.1066 17.1066i −1.04691 1.04691i
\(268\) 14.3409 3.59840i 0.876010 0.219807i
\(269\) 5.10558 + 5.10558i 0.311293 + 0.311293i 0.845410 0.534117i \(-0.179356\pi\)
−0.534117 + 0.845410i \(0.679356\pi\)
\(270\) 0 0
\(271\) 6.67920 0.405733 0.202866 0.979206i \(-0.434974\pi\)
0.202866 + 0.979206i \(0.434974\pi\)
\(272\) 5.13464 2.74989i 0.311333 0.166736i
\(273\) 25.0317i 1.51498i
\(274\) −31.0183 8.57713i −1.87388 0.518163i
\(275\) 0 0
\(276\) −11.9040 + 2.98695i −0.716539 + 0.179793i
\(277\) 11.8524 + 11.8524i 0.712141 + 0.712141i 0.966983 0.254842i \(-0.0820234\pi\)
−0.254842 + 0.966983i \(0.582023\pi\)
\(278\) −10.9285 + 6.19386i −0.655448 + 0.371483i
\(279\) 26.5147i 1.58739i
\(280\) 0 0
\(281\) 0.477460i 0.0284829i −0.999899 0.0142414i \(-0.995467\pi\)
0.999899 0.0142414i \(-0.00453334\pi\)
\(282\) −4.52428 7.98269i −0.269417 0.475362i
\(283\) −0.482914 0.482914i −0.0287063 0.0287063i 0.692608 0.721314i \(-0.256462\pi\)
−0.721314 + 0.692608i \(0.756462\pi\)
\(284\) −1.97382 + 3.29615i −0.117124 + 0.195591i
\(285\) 0 0
\(286\) 1.87829 6.79263i 0.111065 0.401656i
\(287\) 28.9141i 1.70674i
\(288\) 20.3088 4.58217i 1.19671 0.270007i
\(289\) 14.8796 0.875271
\(290\) 0 0
\(291\) 34.0508 + 34.0508i 1.99609 + 1.99609i
\(292\) −2.39214 1.43247i −0.139989 0.0838290i
\(293\) 7.46638 + 7.46638i 0.436190 + 0.436190i 0.890728 0.454537i \(-0.150195\pi\)
−0.454537 + 0.890728i \(0.650195\pi\)
\(294\) −42.4103 + 24.0365i −2.47342 + 1.40184i
\(295\) 0 0
\(296\) −0.498857 + 20.8389i −0.0289955 + 1.21124i
\(297\) −4.08052 −0.236776
\(298\) 22.5456 12.7780i 1.30603 0.740207i
\(299\) −3.60544 + 3.60544i −0.208508 + 0.208508i
\(300\) 0 0
\(301\) −34.5346 34.5346i −1.99054 1.99054i
\(302\) 5.40556 19.5486i 0.311055 1.12490i
\(303\) 17.6953i 1.01657i
\(304\) −4.38845 + 14.5092i −0.251695 + 0.832160i
\(305\) 0 0
\(306\) −7.30492 2.01995i −0.417595 0.115473i
\(307\) 2.39349 2.39349i 0.136604 0.136604i −0.635498 0.772102i \(-0.719205\pi\)
0.772102 + 0.635498i \(0.219205\pi\)
\(308\) 20.2993 5.09348i 1.15666 0.290228i
\(309\) 16.6777 16.6777i 0.948764 0.948764i
\(310\) 0 0
\(311\) 20.4404i 1.15907i −0.814948 0.579534i \(-0.803235\pi\)
0.814948 0.579534i \(-0.196765\pi\)
\(312\) 11.3640 10.8326i 0.643359 0.613276i
\(313\) −2.46975 −0.139598 −0.0697992 0.997561i \(-0.522236\pi\)
−0.0697992 + 0.997561i \(0.522236\pi\)
\(314\) −3.66376 + 2.07648i −0.206758 + 0.117182i
\(315\) 0 0
\(316\) −8.68776 5.20245i −0.488725 0.292660i
\(317\) −16.2241 + 16.2241i −0.911234 + 0.911234i −0.996369 0.0851350i \(-0.972868\pi\)
0.0851350 + 0.996369i \(0.472868\pi\)
\(318\) −7.48902 2.07085i −0.419963 0.116128i
\(319\) 3.03537 0.169948
\(320\) 0 0
\(321\) −37.1026 −2.07086
\(322\) −14.5941 4.03553i −0.813296 0.224891i
\(323\) 3.90198 3.90198i 0.217112 0.217112i
\(324\) 11.1463 + 6.67469i 0.619240 + 0.370816i
\(325\) 0 0
\(326\) 9.29154 5.26608i 0.514611 0.291661i
\(327\) 4.95246 0.273871
\(328\) −13.1265 + 12.5128i −0.724792 + 0.690902i
\(329\) 11.3204i 0.624111i
\(330\) 0 0
\(331\) 3.42340 3.42340i 0.188167 0.188167i −0.606736 0.794903i \(-0.707521\pi\)
0.794903 + 0.606736i \(0.207521\pi\)
\(332\) 6.72057 1.68632i 0.368839 0.0925487i
\(333\) 19.1792 19.1792i 1.05102 1.05102i
\(334\) 21.9025 + 6.05645i 1.19845 + 0.331394i
\(335\) 0 0
\(336\) 44.6263 + 13.4976i 2.43456 + 0.736356i
\(337\) 5.40017i 0.294166i 0.989124 + 0.147083i \(0.0469884\pi\)
−0.989124 + 0.147083i \(0.953012\pi\)
\(338\) −3.16149 + 11.4332i −0.171962 + 0.621883i
\(339\) 4.67941 + 4.67941i 0.254151 + 0.254151i
\(340\) 0 0
\(341\) 11.8209 11.8209i 0.640139 0.640139i
\(342\) 17.1597 9.72548i 0.927893 0.525894i
\(343\) −28.5754 −1.54292
\(344\) −0.733080 + 30.6232i −0.0395250 + 1.65109i
\(345\) 0 0
\(346\) −29.7767 + 16.8763i −1.60081 + 0.907276i
\(347\) 4.07531 + 4.07531i 0.218774 + 0.218774i 0.807982 0.589208i \(-0.200560\pi\)
−0.589208 + 0.807982i \(0.700560\pi\)
\(348\) 5.80132 + 3.47397i 0.310983 + 0.186224i
\(349\) −1.55681 1.55681i −0.0833339 0.0833339i 0.664211 0.747545i \(-0.268768\pi\)
−0.747545 + 0.664211i \(0.768768\pi\)
\(350\) 0 0
\(351\) −3.77655 −0.201577
\(352\) −11.0970 7.01133i −0.591474 0.373705i
\(353\) 1.34919i 0.0718103i 0.999355 + 0.0359052i \(0.0114314\pi\)
−0.999355 + 0.0359052i \(0.988569\pi\)
\(354\) −7.32670 + 26.4963i −0.389410 + 1.40826i
\(355\) 0 0
\(356\) −9.61755 + 16.0607i −0.509729 + 0.851216i
\(357\) −12.0014 12.0014i −0.635182 0.635182i
\(358\) −1.03035 1.81795i −0.0544555 0.0960819i
\(359\) 23.2192i 1.22546i 0.790291 + 0.612732i \(0.209929\pi\)
−0.790291 + 0.612732i \(0.790071\pi\)
\(360\) 0 0
\(361\) 4.63903i 0.244159i
\(362\) 20.8598 11.8225i 1.09637 0.621379i
\(363\) −10.2630 10.2630i −0.538670 0.538670i
\(364\) 18.7871 4.71405i 0.984714 0.247083i
\(365\) 0 0
\(366\) 5.09040 + 1.40759i 0.266080 + 0.0735759i
\(367\) 5.16452i 0.269586i 0.990874 + 0.134793i \(0.0430369\pi\)
−0.990874 + 0.134793i \(0.956963\pi\)
\(368\) 4.48362 + 8.37189i 0.233725 + 0.436415i
\(369\) 23.5973 1.22843
\(370\) 0 0
\(371\) −6.77849 6.77849i −0.351922 0.351922i
\(372\) 36.1216 9.06359i 1.87282 0.469925i
\(373\) 18.5056 + 18.5056i 0.958185 + 0.958185i 0.999160 0.0409750i \(-0.0130464\pi\)
−0.0409750 + 0.999160i \(0.513046\pi\)
\(374\) 2.35618 + 4.15727i 0.121835 + 0.214967i
\(375\) 0 0
\(376\) −5.13926 + 4.89896i −0.265037 + 0.252645i
\(377\) 2.80926 0.144684
\(378\) −5.52982 9.75687i −0.284423 0.501839i
\(379\) 13.5254 13.5254i 0.694754 0.694754i −0.268520 0.963274i \(-0.586535\pi\)
0.963274 + 0.268520i \(0.0865346\pi\)
\(380\) 0 0
\(381\) 25.1030 + 25.1030i 1.28607 + 1.28607i
\(382\) 0.0909805 + 0.0251578i 0.00465497 + 0.00128718i
\(383\) 21.9051i 1.11930i 0.828729 + 0.559650i \(0.189064\pi\)
−0.828729 + 0.559650i \(0.810936\pi\)
\(384\) −13.1846 26.1008i −0.672825 1.33195i
\(385\) 0 0
\(386\) 0.414206 1.49793i 0.0210825 0.0762427i
\(387\) 28.1843 28.1843i 1.43269 1.43269i
\(388\) 19.1438 31.9689i 0.971878 1.62298i
\(389\) −4.48844 + 4.48844i −0.227573 + 0.227573i −0.811678 0.584105i \(-0.801446\pi\)
0.584105 + 0.811678i \(0.301446\pi\)
\(390\) 0 0
\(391\) 3.45725i 0.174841i
\(392\) 26.0271 + 27.3038i 1.31457 + 1.37905i
\(393\) −19.0337 −0.960126
\(394\) −11.7637 20.7560i −0.592646 1.04567i
\(395\) 0 0
\(396\) 4.15688 + 16.5666i 0.208891 + 0.832504i
\(397\) 11.7892 11.7892i 0.591682 0.591682i −0.346404 0.938086i \(-0.612597\pi\)
0.938086 + 0.346404i \(0.112597\pi\)
\(398\) 4.16100 15.0478i 0.208572 0.754278i
\(399\) 44.1703 2.21128
\(400\) 0 0
\(401\) 24.9259 1.24474 0.622371 0.782722i \(-0.286170\pi\)
0.622371 + 0.782722i \(0.286170\pi\)
\(402\) −7.20187 + 26.0448i −0.359196 + 1.29900i
\(403\) 10.9403 10.9403i 0.544977 0.544977i
\(404\) −13.2809 + 3.33244i −0.660751 + 0.165795i
\(405\) 0 0
\(406\) 4.11346 + 7.25784i 0.204148 + 0.360200i
\(407\) −17.1012 −0.847675
\(408\) −0.254759 + 10.6422i −0.0126125 + 0.526865i
\(409\) 21.5355i 1.06486i −0.846474 0.532430i \(-0.821279\pi\)
0.846474 0.532430i \(-0.178721\pi\)
\(410\) 0 0
\(411\) 41.5898 41.5898i 2.05148 2.05148i
\(412\) −15.6581 9.37643i −0.771417 0.461943i
\(413\) −23.9824 + 23.9824i −1.18010 + 1.18010i
\(414\) 3.29347 11.9105i 0.161865 0.585368i
\(415\) 0 0
\(416\) −10.2704 6.48903i −0.503546 0.318151i
\(417\) 22.9580i 1.12426i
\(418\) −11.9861 3.31439i −0.586261 0.162112i
\(419\) 17.2979 + 17.2979i 0.845060 + 0.845060i 0.989512 0.144452i \(-0.0461419\pi\)
−0.144452 + 0.989512i \(0.546142\pi\)
\(420\) 0 0
\(421\) −19.4330 + 19.4330i −0.947105 + 0.947105i −0.998670 0.0515648i \(-0.983579\pi\)
0.0515648 + 0.998670i \(0.483579\pi\)
\(422\) −8.47830 14.9592i −0.412717 0.728203i
\(423\) 9.23874 0.449203
\(424\) −0.143890 + 6.01077i −0.00698791 + 0.291909i
\(425\) 0 0
\(426\) −3.46218 6.10871i −0.167743 0.295968i
\(427\) 4.60744 + 4.60744i 0.222970 + 0.222970i
\(428\) 6.98729 + 27.8468i 0.337744 + 1.34603i
\(429\) 9.10767 + 9.10767i 0.439723 + 0.439723i
\(430\) 0 0
\(431\) 28.3769 1.36687 0.683433 0.730013i \(-0.260486\pi\)
0.683433 + 0.730013i \(0.260486\pi\)
\(432\) −2.03640 + 6.73280i −0.0979763 + 0.323932i
\(433\) 9.04007i 0.434438i 0.976123 + 0.217219i \(0.0696986\pi\)
−0.976123 + 0.217219i \(0.930301\pi\)
\(434\) 44.2842 + 12.2454i 2.12571 + 0.587799i
\(435\) 0 0
\(436\) −0.932664 3.71699i −0.0446665 0.178012i
\(437\) 6.36208 + 6.36208i 0.304340 + 0.304340i
\(438\) 4.43331 2.51263i 0.211832 0.120058i
\(439\) 28.2949i 1.35044i −0.737615 0.675221i \(-0.764048\pi\)
0.737615 0.675221i \(-0.235952\pi\)
\(440\) 0 0
\(441\) 49.0834i 2.33731i
\(442\) 2.18066 + 3.84757i 0.103723 + 0.183010i
\(443\) −13.1232 13.1232i −0.623504 0.623504i 0.322922 0.946426i \(-0.395335\pi\)
−0.946426 + 0.322922i \(0.895335\pi\)
\(444\) −32.6844 19.5722i −1.55113 0.928857i
\(445\) 0 0
\(446\) 8.07489 29.2020i 0.382357 1.38275i
\(447\) 47.3624i 2.24016i
\(448\) 1.72628 36.0355i 0.0815588 1.70252i
\(449\) 14.3902 0.679116 0.339558 0.940585i \(-0.389723\pi\)
0.339558 + 0.940585i \(0.389723\pi\)
\(450\) 0 0
\(451\) −10.5203 10.5203i −0.495380 0.495380i
\(452\) 2.63082 4.39331i 0.123743 0.206644i
\(453\) 26.2111 + 26.2111i 1.23151 + 1.23151i
\(454\) −14.0299 + 7.95163i −0.658458 + 0.373189i
\(455\) 0 0
\(456\) −19.1150 20.0526i −0.895143 0.939051i
\(457\) −4.54538 −0.212624 −0.106312 0.994333i \(-0.533904\pi\)
−0.106312 + 0.994333i \(0.533904\pi\)
\(458\) −8.05902 + 4.56754i −0.376573 + 0.213427i
\(459\) 1.81066 1.81066i 0.0845146 0.0845146i
\(460\) 0 0
\(461\) 19.8046 + 19.8046i 0.922393 + 0.922393i 0.997198 0.0748050i \(-0.0238334\pi\)
−0.0748050 + 0.997198i \(0.523833\pi\)
\(462\) −10.1941 + 36.8660i −0.474274 + 1.71516i
\(463\) 14.5997i 0.678506i −0.940695 0.339253i \(-0.889826\pi\)
0.940695 0.339253i \(-0.110174\pi\)
\(464\) 1.51481 5.00833i 0.0703235 0.232506i
\(465\) 0 0
\(466\) 35.5312 + 9.82505i 1.64595 + 0.455137i
\(467\) 19.8105 19.8105i 0.916722 0.916722i −0.0800671 0.996789i \(-0.525513\pi\)
0.996789 + 0.0800671i \(0.0255135\pi\)
\(468\) 3.84722 + 15.3325i 0.177838 + 0.708746i
\(469\) −23.5738 + 23.5738i −1.08853 + 1.08853i
\(470\) 0 0
\(471\) 7.69661i 0.354641i
\(472\) 21.2662 + 0.509084i 0.978855 + 0.0234325i
\(473\) −25.1306 −1.15550
\(474\) 16.1009 9.12537i 0.739539 0.419142i
\(475\) 0 0
\(476\) −6.74734 + 11.2676i −0.309264 + 0.516451i
\(477\) 5.53204 5.53204i 0.253295 0.253295i
\(478\) −6.98172 1.93058i −0.319337 0.0883025i
\(479\) −21.0378 −0.961243 −0.480621 0.876928i \(-0.659589\pi\)
−0.480621 + 0.876928i \(0.659589\pi\)
\(480\) 0 0
\(481\) −15.8273 −0.721661
\(482\) 15.6734 + 4.33399i 0.713904 + 0.197408i
\(483\) 19.5680 19.5680i 0.890375 0.890375i
\(484\) −5.77000 + 9.63555i −0.262273 + 0.437980i
\(485\) 0 0
\(486\) −27.1480 + 15.3865i −1.23146 + 0.697944i
\(487\) 10.2724 0.465485 0.232743 0.972538i \(-0.425230\pi\)
0.232743 + 0.972538i \(0.425230\pi\)
\(488\) 0.0978041 4.08561i 0.00442738 0.184947i
\(489\) 19.5191i 0.882685i
\(490\) 0 0
\(491\) −5.95681 + 5.95681i −0.268827 + 0.268827i −0.828627 0.559801i \(-0.810878\pi\)
0.559801 + 0.828627i \(0.310878\pi\)
\(492\) −8.06632 32.1471i −0.363658 1.44930i
\(493\) −1.34690 + 1.34690i −0.0606612 + 0.0606612i
\(494\) −11.0932 3.06748i −0.499108 0.138013i
\(495\) 0 0
\(496\) −13.6051 25.4036i −0.610886 1.14066i
\(497\) 8.66284i 0.388581i
\(498\) −3.37501 + 12.2054i −0.151238 + 0.546935i
\(499\) 2.81466 + 2.81466i 0.126002 + 0.126002i 0.767295 0.641294i \(-0.221602\pi\)
−0.641294 + 0.767295i \(0.721602\pi\)
\(500\) 0 0
\(501\) −29.3673 + 29.3673i −1.31203 + 1.31203i
\(502\) −34.4985 + 19.5524i −1.53974 + 0.872666i
\(503\) 5.49759 0.245125 0.122563 0.992461i \(-0.460889\pi\)
0.122563 + 0.992461i \(0.460889\pi\)
\(504\) −33.9789 + 32.3901i −1.51354 + 1.44277i
\(505\) 0 0
\(506\) −6.77831 + 3.84169i −0.301333 + 0.170784i
\(507\) −15.3298 15.3298i −0.680821 0.680821i
\(508\) 14.1132 23.5682i 0.626173 1.04567i
\(509\) 4.37578 + 4.37578i 0.193953 + 0.193953i 0.797402 0.603449i \(-0.206207\pi\)
−0.603449 + 0.797402i \(0.706207\pi\)
\(510\) 0 0
\(511\) 6.28693 0.278118
\(512\) −17.1066 + 14.8109i −0.756013 + 0.654556i
\(513\) 6.66402i 0.294224i
\(514\) −9.13990 + 33.0535i −0.403144 + 1.45793i
\(515\) 0 0
\(516\) −48.0304 28.7618i −2.11442 1.26617i
\(517\) −4.11887 4.11887i −0.181148 0.181148i
\(518\) −23.1751 40.8904i −1.01826 1.79662i
\(519\) 62.5532i 2.74578i
\(520\) 0 0
\(521\) 33.8729i 1.48400i 0.670401 + 0.741999i \(0.266122\pi\)
−0.670401 + 0.741999i \(0.733878\pi\)
\(522\) −5.92325 + 3.35707i −0.259253 + 0.146935i
\(523\) 27.8060 + 27.8060i 1.21587 + 1.21587i 0.969065 + 0.246804i \(0.0793803\pi\)
0.246804 + 0.969065i \(0.420620\pi\)
\(524\) 3.58450 + 14.2855i 0.156590 + 0.624065i
\(525\) 0 0
\(526\) 30.7616 + 8.50615i 1.34127 + 0.370886i
\(527\) 10.4907i 0.456981i
\(528\) 21.1482 11.3260i 0.920356 0.492902i
\(529\) −17.3630 −0.754915
\(530\) 0 0
\(531\) −19.5724 19.5724i −0.849372 0.849372i
\(532\) −8.31832 33.1514i −0.360645 1.43730i
\(533\) −9.73658 9.73658i −0.421738 0.421738i
\(534\) −16.8697 29.7651i −0.730023 1.28806i
\(535\) 0 0
\(536\) 20.9038 + 0.500410i 0.902907 + 0.0216144i
\(537\) 3.81905 0.164804
\(538\) 5.03487 + 8.88358i 0.217069 + 0.382998i
\(539\) −21.8827 + 21.8827i −0.942553 + 0.942553i
\(540\) 0 0
\(541\) 3.03066 + 3.03066i 0.130298 + 0.130298i 0.769248 0.638950i \(-0.220631\pi\)
−0.638950 + 0.769248i \(0.720631\pi\)
\(542\) 9.10416 + 2.51747i 0.391057 + 0.108135i
\(543\) 43.8211i 1.88054i
\(544\) 8.03529 1.81296i 0.344510 0.0777301i
\(545\) 0 0
\(546\) −9.43473 + 34.1197i −0.403769 + 1.46019i
\(547\) −18.4783 + 18.4783i −0.790074 + 0.790074i −0.981506 0.191432i \(-0.938687\pi\)
0.191432 + 0.981506i \(0.438687\pi\)
\(548\) −39.0470 23.3823i −1.66801 0.998843i
\(549\) −3.76021 + 3.76021i −0.160482 + 0.160482i
\(550\) 0 0
\(551\) 4.95716i 0.211182i
\(552\) −17.3517 0.415378i −0.738539 0.0176797i
\(553\) 22.8329 0.970953
\(554\) 11.6882 + 20.6228i 0.496585 + 0.876181i
\(555\) 0 0
\(556\) −17.2308 + 4.32353i −0.730747 + 0.183358i
\(557\) −30.2060 + 30.2060i −1.27987 + 1.27987i −0.339127 + 0.940741i \(0.610132\pi\)
−0.940741 + 0.339127i \(0.889868\pi\)
\(558\) −9.99370 + 36.1411i −0.423067 + 1.52998i
\(559\) −23.2585 −0.983729
\(560\) 0 0
\(561\) −8.73334 −0.368722
\(562\) 0.179960 0.650807i 0.00759117 0.0274526i
\(563\) −2.86747 + 2.86747i −0.120850 + 0.120850i −0.764945 0.644095i \(-0.777234\pi\)
0.644095 + 0.764945i \(0.277234\pi\)
\(564\) −3.15810 12.5862i −0.132980 0.529973i
\(565\) 0 0
\(566\) −0.476226 0.840258i −0.0200173 0.0353187i
\(567\) −29.2944 −1.23025
\(568\) −3.93279 + 3.74890i −0.165016 + 0.157300i
\(569\) 35.8628i 1.50345i −0.659479 0.751723i \(-0.729223\pi\)
0.659479 0.751723i \(-0.270777\pi\)
\(570\) 0 0
\(571\) −17.6509 + 17.6509i −0.738667 + 0.738667i −0.972320 0.233653i \(-0.924932\pi\)
0.233653 + 0.972320i \(0.424932\pi\)
\(572\) 5.12044 8.55082i 0.214096 0.357528i
\(573\) −0.121988 + 0.121988i −0.00509613 + 0.00509613i
\(574\) 10.8981 39.4117i 0.454876 1.64501i
\(575\) 0 0
\(576\) 29.4092 + 1.40884i 1.22538 + 0.0587018i
\(577\) 36.1387i 1.50448i −0.658892 0.752238i \(-0.728975\pi\)
0.658892 0.752238i \(-0.271025\pi\)
\(578\) 20.2818 + 5.60830i 0.843612 + 0.233274i
\(579\) 2.00845 + 2.00845i 0.0834685 + 0.0834685i
\(580\) 0 0
\(581\) −11.0474 + 11.0474i −0.458322 + 0.458322i
\(582\) 33.5792 + 59.2475i 1.39190 + 2.45589i
\(583\) −4.93265 −0.204290
\(584\) −2.72071 2.85417i −0.112584 0.118106i
\(585\) 0 0
\(586\) 7.36297 + 12.9913i 0.304161 + 0.536666i
\(587\) 11.4005 + 11.4005i 0.470550 + 0.470550i 0.902093 0.431542i \(-0.142030\pi\)
−0.431542 + 0.902093i \(0.642030\pi\)
\(588\) −66.8675 + 16.7783i −2.75757 + 0.691927i
\(589\) −19.3051 19.3051i −0.795453 0.795453i
\(590\) 0 0
\(591\) 43.6029 1.79358
\(592\) −8.53441 + 28.2167i −0.350762 + 1.15970i
\(593\) 35.0454i 1.43914i −0.694418 0.719572i \(-0.744338\pi\)
0.694418 0.719572i \(-0.255662\pi\)
\(594\) −5.56200 1.53800i −0.228212 0.0631048i
\(595\) 0 0
\(596\) 35.5472 8.91945i 1.45607 0.365355i
\(597\) 20.1764 + 20.1764i 0.825764 + 0.825764i
\(598\) −6.27337 + 3.55550i −0.256537 + 0.145395i
\(599\) 18.2753i 0.746707i −0.927689 0.373354i \(-0.878208\pi\)
0.927689 0.373354i \(-0.121792\pi\)
\(600\) 0 0
\(601\) 0.480142i 0.0195854i −0.999952 0.00979269i \(-0.996883\pi\)
0.999952 0.00979269i \(-0.00311716\pi\)
\(602\) −34.0563 60.0893i −1.38803 2.44906i
\(603\) −19.2389 19.2389i −0.783470 0.783470i
\(604\) 14.7362 24.6086i 0.599608 1.00131i
\(605\) 0 0
\(606\) 6.66956 24.1197i 0.270932 0.979798i
\(607\) 38.6107i 1.56716i 0.621290 + 0.783581i \(0.286609\pi\)
−0.621290 + 0.783581i \(0.713391\pi\)
\(608\) −11.4504 + 18.1229i −0.464376 + 0.734980i
\(609\) −15.2468 −0.617833
\(610\) 0 0
\(611\) −3.81204 3.81204i −0.154218 0.154218i
\(612\) −9.19572 5.50662i −0.371715 0.222592i
\(613\) −5.53592 5.53592i −0.223594 0.223594i 0.586416 0.810010i \(-0.300538\pi\)
−0.810010 + 0.586416i \(0.800538\pi\)
\(614\) 4.16461 2.36034i 0.168070 0.0952557i
\(615\) 0 0
\(616\) 29.5890 + 0.708322i 1.19218 + 0.0285391i
\(617\) −31.8836 −1.28358 −0.641792 0.766879i \(-0.721809\pi\)
−0.641792 + 0.766879i \(0.721809\pi\)
\(618\) 29.0188 16.4468i 1.16731 0.661586i
\(619\) 29.4054 29.4054i 1.18190 1.18190i 0.202650 0.979251i \(-0.435045\pi\)
0.979251 0.202650i \(-0.0649553\pi\)
\(620\) 0 0
\(621\) 2.95224 + 2.95224i 0.118469 + 0.118469i
\(622\) 7.70422 27.8615i 0.308911 1.11714i
\(623\) 42.2102i 1.69112i
\(624\) 19.5728 10.4823i 0.783537 0.419628i
\(625\) 0 0
\(626\) −3.36642 0.930878i −0.134549 0.0372054i
\(627\) 16.0712 16.0712i 0.641822 0.641822i
\(628\) −5.77658 + 1.44945i −0.230511 + 0.0578395i
\(629\) 7.58837 7.58837i 0.302568 0.302568i
\(630\) 0 0
\(631\) 30.7381i 1.22367i 0.790987 + 0.611833i \(0.209568\pi\)
−0.790987 + 0.611833i \(0.790432\pi\)
\(632\) −9.88109 10.3658i −0.393049 0.412328i
\(633\) 31.4254 1.24905
\(634\) −28.2294 + 15.9994i −1.12113 + 0.635416i
\(635\) 0 0
\(636\) −9.42747 5.64540i −0.373823 0.223855i
\(637\) −20.2525 + 20.2525i −0.802435 + 0.802435i
\(638\) 4.13740 + 1.14407i 0.163801 + 0.0452941i
\(639\) 7.06989 0.279681
\(640\) 0 0
\(641\) 13.6348 0.538540 0.269270 0.963065i \(-0.413218\pi\)
0.269270 + 0.963065i \(0.413218\pi\)
\(642\) −50.5731 13.9844i −1.99596 0.551921i
\(643\) −14.9224 + 14.9224i −0.588480 + 0.588480i −0.937220 0.348740i \(-0.886610\pi\)
0.348740 + 0.937220i \(0.386610\pi\)
\(644\) −18.3716 11.0014i −0.723942 0.433514i
\(645\) 0 0
\(646\) 6.78935 3.84794i 0.267123 0.151395i
\(647\) 4.87972 0.191841 0.0959207 0.995389i \(-0.469420\pi\)
0.0959207 + 0.995389i \(0.469420\pi\)
\(648\) 12.6773 + 13.2992i 0.498013 + 0.522442i
\(649\) 17.4518i 0.685043i
\(650\) 0 0
\(651\) −59.3771 + 59.3771i −2.32717 + 2.32717i
\(652\) 14.6498 3.67591i 0.573730 0.143960i
\(653\) 10.2913 10.2913i 0.402731 0.402731i −0.476463 0.879194i \(-0.658081\pi\)
0.879194 + 0.476463i \(0.158081\pi\)
\(654\) 6.75050 + 1.86664i 0.263966 + 0.0729914i
\(655\) 0 0
\(656\) −22.6085 + 12.1081i −0.882713 + 0.472743i
\(657\) 5.13088i 0.200174i
\(658\) 4.26677 15.4303i 0.166336 0.601537i
\(659\) 21.9025 + 21.9025i 0.853201 + 0.853201i 0.990526 0.137325i \(-0.0438505\pi\)
−0.137325 + 0.990526i \(0.543851\pi\)
\(660\) 0 0
\(661\) 5.40595 5.40595i 0.210267 0.210267i −0.594114 0.804381i \(-0.702497\pi\)
0.804381 + 0.594114i \(0.202497\pi\)
\(662\) 5.95663 3.37599i 0.231511 0.131212i
\(663\) −8.08276 −0.313908
\(664\) 9.79615 + 0.234507i 0.380164 + 0.00910063i
\(665\) 0 0
\(666\) 33.3714 18.9136i 1.29311 0.732887i
\(667\) −2.19608 2.19608i −0.0850326 0.0850326i
\(668\) 27.5717 + 16.5106i 1.06678 + 0.638816i
\(669\) 39.1546 + 39.1546i 1.51380 + 1.51380i
\(670\) 0 0
\(671\) 3.35280 0.129433
\(672\) 55.7410 + 35.2183i 2.15025 + 1.35857i
\(673\) 35.3820i 1.36388i 0.731410 + 0.681938i \(0.238862\pi\)
−0.731410 + 0.681938i \(0.761138\pi\)
\(674\) −2.03539 + 7.36076i −0.0784002 + 0.283526i
\(675\) 0 0
\(676\) −8.61861 + 14.3925i −0.331485 + 0.553559i
\(677\) −5.17061 5.17061i −0.198723 0.198723i 0.600730 0.799452i \(-0.294877\pi\)
−0.799452 + 0.600730i \(0.794877\pi\)
\(678\) 4.61460 + 8.14205i 0.177223 + 0.312694i
\(679\) 84.0196i 3.22438i
\(680\) 0 0
\(681\) 29.4733i 1.12942i
\(682\) 20.5681 11.6572i 0.787593 0.446377i
\(683\) 26.5989 + 26.5989i 1.01778 + 1.01778i 0.999839 + 0.0179409i \(0.00571108\pi\)
0.0179409 + 0.999839i \(0.494289\pi\)
\(684\) 27.0554 6.78872i 1.03449 0.259573i
\(685\) 0 0
\(686\) −38.9500 10.7704i −1.48712 0.411216i
\(687\) 16.9299i 0.645916i
\(688\) −12.5415 + 41.4651i −0.478140 + 1.58084i
\(689\) −4.56520 −0.173920
\(690\) 0 0
\(691\) −21.7989 21.7989i −0.829270 0.829270i 0.158146 0.987416i \(-0.449448\pi\)
−0.987416 + 0.158146i \(0.949448\pi\)
\(692\) −46.9484 + 11.7802i −1.78471 + 0.447818i
\(693\) −27.2324 27.2324i −1.03447 1.03447i
\(694\) 4.01887 + 7.09093i 0.152554 + 0.269168i
\(695\) 0 0
\(696\) 6.59817 + 6.92182i 0.250103 + 0.262371i
\(697\) 9.33640 0.353641
\(698\) −1.53524 2.70880i −0.0581099 0.102530i
\(699\) −47.6409 + 47.6409i −1.80194 + 1.80194i
\(700\) 0 0
\(701\) −15.2175 15.2175i −0.574756 0.574756i 0.358698 0.933454i \(-0.383221\pi\)
−0.933454 + 0.358698i \(0.883221\pi\)
\(702\) −5.14767 1.42343i −0.194286 0.0537237i
\(703\) 27.9285i 1.05334i
\(704\) −12.4833 13.7395i −0.470482 0.517826i
\(705\) 0 0
\(706\) −0.508527 + 1.83903i −0.0191387 + 0.0692130i
\(707\) 21.8313 21.8313i 0.821052 0.821052i
\(708\) −19.9735 + 33.3545i −0.750650 + 1.25354i
\(709\) −4.87350 + 4.87350i −0.183028 + 0.183028i −0.792674 0.609646i \(-0.791312\pi\)
0.609646 + 0.792674i \(0.291312\pi\)
\(710\) 0 0
\(711\) 18.6343i 0.698842i
\(712\) −19.1628 + 18.2668i −0.718156 + 0.684576i
\(713\) −17.1048 −0.640579
\(714\) −11.8352 20.8822i −0.442921 0.781495i
\(715\) 0 0
\(716\) −0.719218 2.86633i −0.0268784 0.107120i
\(717\) 9.36121 9.36121i 0.349601 0.349601i
\(718\) −8.75160 + 31.6492i −0.326607 + 1.18114i
\(719\) −9.27351 −0.345843 −0.172922 0.984936i \(-0.555321\pi\)
−0.172922 + 0.984936i \(0.555321\pi\)
\(720\) 0 0
\(721\) 41.1520 1.53258
\(722\) 1.74850 6.32328i 0.0650726 0.235328i
\(723\) −21.0152 + 21.0152i −0.781563 + 0.781563i
\(724\) 32.8893 8.25254i 1.22232 0.306703i
\(725\) 0 0
\(726\) −10.1209 17.8574i −0.375622 0.662751i
\(727\) 10.6056 0.393341 0.196670 0.980470i \(-0.436987\pi\)
0.196670 + 0.980470i \(0.436987\pi\)
\(728\) 27.3848 + 0.655557i 1.01495 + 0.0242965i
\(729\) 37.5430i 1.39048i
\(730\) 0 0
\(731\) 11.1513 11.1513i 0.412445 0.412445i
\(732\) 6.40799 + 3.83726i 0.236846 + 0.141829i
\(733\) 29.6530 29.6530i 1.09526 1.09526i 0.100301 0.994957i \(-0.468019\pi\)
0.994957 0.100301i \(-0.0319806\pi\)
\(734\) −1.94657 + 7.03956i −0.0718492 + 0.259835i
\(735\) 0 0
\(736\) 2.95599 + 13.1013i 0.108959 + 0.482921i
\(737\) 17.1544i 0.631892i
\(738\) 32.1645 + 8.89409i 1.18399 + 0.327396i
\(739\) −30.8751 30.8751i −1.13576 1.13576i −0.989202 0.146559i \(-0.953180\pi\)
−0.146559 0.989202i \(-0.546820\pi\)
\(740\) 0 0
\(741\) 14.8740 14.8740i 0.546410 0.546410i
\(742\) −6.68461 11.7944i −0.245400 0.432986i
\(743\) −22.3956 −0.821617 −0.410808 0.911722i \(-0.634753\pi\)
−0.410808 + 0.911722i \(0.634753\pi\)
\(744\) 52.6521 + 1.26042i 1.93032 + 0.0462093i
\(745\) 0 0
\(746\) 18.2493 + 32.1993i 0.668155 + 1.17890i
\(747\) −9.01594 9.01594i −0.329876 0.329876i
\(748\) 1.64469 + 6.55468i 0.0601359 + 0.239663i
\(749\) −45.7749 45.7749i −1.67258 1.67258i
\(750\) 0 0
\(751\) 20.6448 0.753341 0.376670 0.926347i \(-0.377069\pi\)
0.376670 + 0.926347i \(0.377069\pi\)
\(752\) −8.85161 + 4.74054i −0.322785 + 0.172870i
\(753\) 72.4724i 2.64104i
\(754\) 3.82919 + 1.05884i 0.139451 + 0.0385608i
\(755\) 0 0
\(756\) −3.86000 15.3835i −0.140387 0.559491i
\(757\) −24.1323 24.1323i −0.877104 0.877104i 0.116130 0.993234i \(-0.462951\pi\)
−0.993234 + 0.116130i \(0.962951\pi\)
\(758\) 23.5339 13.3381i 0.854788 0.484461i
\(759\) 14.2395i 0.516860i
\(760\) 0 0
\(761\) 50.1874i 1.81929i −0.415383 0.909647i \(-0.636352\pi\)
0.415383 0.909647i \(-0.363648\pi\)
\(762\) 24.7554 + 43.6786i 0.896792 + 1.58231i
\(763\) 6.11004 + 6.11004i 0.221198 + 0.221198i
\(764\) 0.114530 + 0.0685832i 0.00414354 + 0.00248125i
\(765\) 0 0
\(766\) −8.25631 + 29.8581i −0.298312 + 1.07882i
\(767\) 16.1517i 0.583206i
\(768\) −8.13374 40.5465i −0.293501 1.46309i
\(769\) 28.6887 1.03454 0.517270 0.855822i \(-0.326948\pi\)
0.517270 + 0.855822i \(0.326948\pi\)
\(770\) 0 0
\(771\) −44.3187 44.3187i −1.59610 1.59610i
\(772\) 1.12918 1.88565i 0.0406400 0.0678662i
\(773\) −37.5957 37.5957i −1.35222 1.35222i −0.883171 0.469052i \(-0.844596\pi\)
−0.469052 0.883171i \(-0.655404\pi\)
\(774\) 49.0399 27.7939i 1.76270 0.999032i
\(775\) 0 0
\(776\) 38.1436 36.3601i 1.36928 1.30525i
\(777\) 85.9001 3.08165
\(778\) −7.80977 + 4.42628i −0.279994 + 0.158690i
\(779\) −17.1810 + 17.1810i −0.615572 + 0.615572i
\(780\) 0 0
\(781\) −3.15194 3.15194i −0.112785 0.112785i
\(782\) 1.30308 4.71245i 0.0465980 0.168517i
\(783\) 2.30030i 0.0822061i
\(784\) 25.1855 + 47.0267i 0.899481 + 1.67953i
\(785\) 0 0
\(786\) −25.9442 7.17404i −0.925398 0.255890i
\(787\) −3.13285 + 3.13285i −0.111674 + 0.111674i −0.760736 0.649062i \(-0.775162\pi\)
0.649062 + 0.760736i \(0.275162\pi\)
\(788\) −8.21145 32.7255i −0.292521 1.16580i
\(789\) −41.2457 + 41.2457i −1.46839 + 1.46839i
\(790\) 0 0
\(791\) 11.5463i 0.410541i
\(792\) −0.578074 + 24.1481i −0.0205410 + 0.858066i
\(793\) 3.10304 0.110192
\(794\) 20.5129 11.6259i 0.727974 0.412588i
\(795\) 0 0
\(796\) 11.3434 18.9428i 0.402056 0.671408i
\(797\) 0.0562195 0.0562195i 0.00199140 0.00199140i −0.706110 0.708102i \(-0.749552\pi\)
0.708102 + 0.706110i \(0.249552\pi\)
\(798\) 60.2069 + 16.6483i 2.13130 + 0.589344i
\(799\) 3.65536 0.129317
\(800\) 0 0
\(801\) 34.4485 1.21718
\(802\) 33.9756 + 9.39488i 1.19972 + 0.331745i
\(803\) 2.28748 2.28748i 0.0807233 0.0807233i
\(804\) −19.6332 + 32.7862i −0.692409 + 1.15628i
\(805\) 0 0
\(806\) 19.0359 10.7888i 0.670511 0.380020i
\(807\) −18.6621 −0.656937
\(808\) −19.3588 0.463423i −0.681039 0.0163032i
\(809\) 3.59856i 0.126518i −0.997997 0.0632592i \(-0.979851\pi\)
0.997997 0.0632592i \(-0.0201495\pi\)
\(810\) 0 0
\(811\) −7.36274 + 7.36274i −0.258541 + 0.258541i −0.824460 0.565920i \(-0.808521\pi\)
0.565920 + 0.824460i \(0.308521\pi\)
\(812\) 2.87134 + 11.4433i 0.100764 + 0.401581i
\(813\) −12.2070 + 12.2070i −0.428119 + 0.428119i
\(814\) −23.3100 6.44564i −0.817014 0.225920i
\(815\) 0 0
\(816\) −4.35841 + 14.4099i −0.152575 + 0.504447i
\(817\) 41.0414i 1.43586i
\(818\) 8.11697 29.3542i 0.283803 1.02634i
\(819\) −25.2038 25.2038i −0.880691 0.880691i
\(820\) 0 0
\(821\) 14.7799 14.7799i 0.515824 0.515824i −0.400481 0.916305i \(-0.631157\pi\)
0.916305 + 0.400481i \(0.131157\pi\)
\(822\) 72.3652 41.0138i 2.52403 1.43052i
\(823\) −52.7544 −1.83890 −0.919452 0.393203i \(-0.871367\pi\)
−0.919452 + 0.393203i \(0.871367\pi\)
\(824\) −17.8088 18.6824i −0.620399 0.650831i
\(825\) 0 0
\(826\) −41.7287 + 23.6502i −1.45193 + 0.822897i
\(827\) −16.8883 16.8883i −0.587265 0.587265i 0.349625 0.936890i \(-0.386309\pi\)
−0.936890 + 0.349625i \(0.886309\pi\)
\(828\) 8.97840 14.9934i 0.312021 0.521056i
\(829\) 8.55974 + 8.55974i 0.297292 + 0.297292i 0.839952 0.542660i \(-0.182583\pi\)
−0.542660 + 0.839952i \(0.682583\pi\)
\(830\) 0 0
\(831\) −43.3232 −1.50287
\(832\) −11.5534 12.7160i −0.400541 0.440847i
\(833\) 19.4201i 0.672868i
\(834\) 8.65313 31.2931i 0.299633 1.08359i
\(835\) 0 0
\(836\) −15.0886 9.03543i −0.521850 0.312497i
\(837\) −8.95827 8.95827i −0.309643 0.309643i
\(838\) 17.0584 + 30.0980i 0.589271 + 1.03972i
\(839\) 17.5407i 0.605572i −0.953059 0.302786i \(-0.902083\pi\)
0.953059 0.302786i \(-0.0979168\pi\)
\(840\) 0 0
\(841\) 27.2889i 0.940996i
\(842\) −33.8129 + 19.1638i −1.16527 + 0.660429i
\(843\) 0.872614 + 0.872614i 0.0300544 + 0.0300544i
\(844\) −5.91814 23.5859i −0.203711 0.811860i
\(845\) 0 0
\(846\) 12.5930 + 3.48219i 0.432955 + 0.119720i
\(847\) 25.3238i 0.870137i
\(848\) −2.46166 + 8.13881i −0.0845337 + 0.279488i
\(849\) 1.76516 0.0605803
\(850\) 0 0
\(851\) 12.3726 + 12.3726i 0.424129 + 0.424129i
\(852\) −2.41672 9.63148i −0.0827955 0.329969i
\(853\) −15.3577 15.3577i −0.525839 0.525839i 0.393490 0.919329i \(-0.371268\pi\)
−0.919329 + 0.393490i \(0.871268\pi\)
\(854\) 4.54363 + 8.01683i 0.155480 + 0.274330i
\(855\) 0 0
\(856\) −0.971684 + 40.5905i −0.0332115 + 1.38736i
\(857\) 17.9553 0.613341 0.306671 0.951816i \(-0.400785\pi\)
0.306671 + 0.951816i \(0.400785\pi\)
\(858\) 8.98153 + 15.8471i 0.306624 + 0.541011i
\(859\) 33.3048 33.3048i 1.13634 1.13634i 0.147245 0.989100i \(-0.452960\pi\)
0.989100 0.147245i \(-0.0470405\pi\)
\(860\) 0 0
\(861\) 52.8439 + 52.8439i 1.80091 + 1.80091i
\(862\) 38.6795 + 10.6956i 1.31743 + 0.364293i
\(863\) 32.3557i 1.10140i −0.834703 0.550701i \(-0.814361\pi\)
0.834703 0.550701i \(-0.185639\pi\)
\(864\) −5.31341 + 8.40968i −0.180766 + 0.286103i
\(865\) 0 0
\(866\) −3.40731 + 12.3222i −0.115785 + 0.418724i
\(867\) −27.1942 + 27.1942i −0.923564 + 0.923564i
\(868\) 55.7467 + 33.3825i 1.89217 + 1.13308i
\(869\) 8.30766 8.30766i 0.281818 0.281818i
\(870\) 0 0
\(871\) 15.8765i 0.537956i
\(872\) 0.129700 5.41803i 0.00439221 0.183477i
\(873\) −68.5699 −2.32074
\(874\) 6.27397 + 11.0699i 0.212220 + 0.374444i
\(875\) 0 0
\(876\) 6.98991 1.75390i 0.236167 0.0592588i
\(877\) 26.2297 26.2297i 0.885714 0.885714i −0.108394 0.994108i \(-0.534571\pi\)
0.994108 + 0.108394i \(0.0345707\pi\)
\(878\) 10.6647 38.5677i 0.359916 1.30160i
\(879\) −27.2914 −0.920515
\(880\) 0 0
\(881\) −47.3359 −1.59479 −0.797394 0.603459i \(-0.793789\pi\)
−0.797394 + 0.603459i \(0.793789\pi\)
\(882\) 18.5001 66.9037i 0.622932 2.25277i
\(883\) −8.08371 + 8.08371i −0.272039 + 0.272039i −0.829920 0.557882i \(-0.811614\pi\)
0.557882 + 0.829920i \(0.311614\pi\)
\(884\) 1.52217 + 6.06640i 0.0511962 + 0.204035i
\(885\) 0 0
\(886\) −12.9415 22.8341i −0.434778 0.767127i
\(887\) 12.9255 0.433994 0.216997 0.976172i \(-0.430374\pi\)
0.216997 + 0.976172i \(0.430374\pi\)
\(888\) −37.1739 38.9973i −1.24747 1.30866i
\(889\) 61.9412i 2.07744i
\(890\) 0 0
\(891\) −10.6586 + 10.6586i −0.357078 + 0.357078i
\(892\) 22.0132 36.7606i 0.737055 1.23084i
\(893\) −6.72664 + 6.72664i −0.225098 + 0.225098i
\(894\) −17.8514 + 64.5578i −0.597042 + 2.15914i
\(895\) 0 0
\(896\) 15.9352 48.4680i 0.532359 1.61920i
\(897\) 13.1787i 0.440025i
\(898\) 19.6147 + 5.42384i 0.654553 + 0.180996i
\(899\) 6.66378 + 6.66378i 0.222250 + 0.222250i
\(900\) 0 0
\(901\) 2.18878 2.18878i 0.0729190 0.0729190i
\(902\) −10.3746 18.3050i −0.345435 0.609490i
\(903\) 126.232 4.20074
\(904\) 5.24186 4.99676i 0.174342 0.166190i
\(905\) 0 0
\(906\) 25.8481 + 45.6067i 0.858746 + 1.51518i
\(907\) −16.4991 16.4991i −0.547844 0.547844i 0.377973 0.925817i \(-0.376621\pi\)
−0.925817 + 0.377973i \(0.876621\pi\)
\(908\) −22.1207 + 5.55051i −0.734103 + 0.184200i
\(909\) 17.8169 + 17.8169i 0.590951 + 0.590951i
\(910\) 0 0
\(911\) −26.6745 −0.883765 −0.441883 0.897073i \(-0.645689\pi\)
−0.441883 + 0.897073i \(0.645689\pi\)
\(912\) −18.4969 34.5377i −0.612493 1.14366i
\(913\) 8.03908i 0.266055i
\(914\) −6.19563 1.71321i −0.204933 0.0566678i
\(915\) 0 0
\(916\) −12.7065 + 3.18830i −0.419834 + 0.105344i
\(917\) −23.4827 23.4827i −0.775467 0.775467i
\(918\) 3.15051 1.78559i 0.103982 0.0589331i
\(919\) 57.7425i 1.90475i 0.304932 + 0.952374i \(0.401366\pi\)
−0.304932 + 0.952374i \(0.598634\pi\)
\(920\) 0 0
\(921\) 8.74878i 0.288282i
\(922\) 19.5303 + 34.4595i 0.643197 + 1.13486i
\(923\) −2.91714 2.91714i −0.0960188 0.0960188i
\(924\) −27.7905 + 46.4083i −0.914239 + 1.52672i
\(925\) 0 0
\(926\) 5.50280 19.9003i 0.180833 0.653965i
\(927\) 33.5848i 1.10307i
\(928\) 3.95248 6.25571i 0.129747 0.205354i
\(929\) −42.5386 −1.39565 −0.697823 0.716270i \(-0.745848\pi\)
−0.697823 + 0.716270i \(0.745848\pi\)
\(930\) 0 0
\(931\) 35.7372 + 35.7372i 1.17124 + 1.17124i
\(932\) 44.7281 + 26.7843i 1.46512 + 0.877349i
\(933\) 37.3572 + 37.3572i 1.22302 + 1.22302i
\(934\) 34.4698 19.5362i 1.12789 0.639243i
\(935\) 0 0
\(936\) −0.535011 + 22.3492i −0.0174874 + 0.730507i
\(937\) 16.6795 0.544894 0.272447 0.962171i \(-0.412167\pi\)
0.272447 + 0.962171i \(0.412167\pi\)
\(938\) −41.0177 + 23.2473i −1.33928 + 0.759050i
\(939\) 4.51376 4.51376i 0.147301 0.147301i
\(940\) 0 0
\(941\) 9.63152 + 9.63152i 0.313979 + 0.313979i 0.846449 0.532470i \(-0.178736\pi\)
−0.532470 + 0.846449i \(0.678736\pi\)
\(942\) 2.90094 10.4910i 0.0945179 0.341814i
\(943\) 15.2227i 0.495721i
\(944\) 28.7952 + 8.70938i 0.937205 + 0.283466i
\(945\) 0 0
\(946\) −34.2545 9.47200i −1.11371 0.307961i
\(947\) −3.44034 + 3.44034i −0.111796 + 0.111796i −0.760792 0.648996i \(-0.775189\pi\)
0.648996 + 0.760792i \(0.275189\pi\)
\(948\) 25.3860 6.36982i 0.824498 0.206882i
\(949\) 2.11707 2.11707i 0.0687231 0.0687231i
\(950\) 0 0
\(951\) 59.3028i 1.92302i
\(952\) −13.4440 + 12.8153i −0.435721 + 0.415347i
\(953\) 17.6965 0.573247 0.286623 0.958043i \(-0.407467\pi\)
0.286623 + 0.958043i \(0.407467\pi\)
\(954\) 9.62561 5.45542i 0.311641 0.176626i
\(955\) 0 0
\(956\) −8.78886 5.26299i −0.284252 0.170217i
\(957\) −5.54750 + 5.54750i −0.179325 + 0.179325i
\(958\) −28.6759 7.92940i −0.926475 0.256187i
\(959\) 102.622 3.31384
\(960\) 0 0
\(961\) 20.9027 0.674281
\(962\) −21.5735 5.96548i −0.695559 0.192335i
\(963\) 37.3577 37.3577i 1.20384 1.20384i
\(964\) 19.7303 + 11.8150i 0.635470 + 0.380535i
\(965\) 0 0
\(966\) 34.0478 19.2970i 1.09547 0.620870i
\(967\) 15.0023 0.482442 0.241221 0.970470i \(-0.422452\pi\)
0.241221 + 0.970470i \(0.422452\pi\)
\(968\) −11.4966 + 10.9591i −0.369516 + 0.352238i
\(969\) 14.2627i 0.458183i
\(970\) 0 0
\(971\) −14.3135 + 14.3135i −0.459340 + 0.459340i −0.898439 0.439098i \(-0.855298\pi\)
0.439098 + 0.898439i \(0.355298\pi\)
\(972\) −42.8038 + 10.7403i −1.37293 + 0.344494i
\(973\) 28.3241 28.3241i 0.908030 0.908030i
\(974\) 14.0019 + 3.87177i 0.448649 + 0.124060i
\(975\) 0 0
\(976\) 1.67323 5.53207i 0.0535587 0.177077i
\(977\) 48.1433i 1.54024i −0.637900 0.770120i \(-0.720196\pi\)
0.637900 0.770120i \(-0.279804\pi\)
\(978\) −7.35698 + 26.6058i −0.235250 + 0.850758i
\(979\) −15.3580 15.3580i −0.490845 0.490845i
\(980\) 0 0
\(981\) −4.98651 + 4.98651i −0.159207 + 0.159207i
\(982\) −10.3647 + 5.87430i −0.330750 + 0.187457i
\(983\) 0.791292 0.0252383 0.0126191 0.999920i \(-0.495983\pi\)
0.0126191 + 0.999920i \(0.495983\pi\)
\(984\) 1.12174 46.8588i 0.0357597 1.49380i
\(985\) 0 0
\(986\) −2.34357 + 1.32824i −0.0746343 + 0.0422999i
\(987\) 20.6893 + 20.6893i 0.658547 + 0.658547i
\(988\) −13.9646 8.36234i −0.444273 0.266042i
\(989\) 18.1818 + 18.1818i 0.578149 + 0.578149i
\(990\) 0 0
\(991\) −60.2424 −1.91366 −0.956832 0.290643i \(-0.906131\pi\)
−0.956832 + 0.290643i \(0.906131\pi\)
\(992\) −8.96964 39.7547i −0.284786 1.26221i
\(993\) 12.5133i 0.397099i
\(994\) 3.26513 11.8080i 0.103563 0.374526i
\(995\) 0 0
\(996\) −9.20069 + 15.3646i −0.291535 + 0.486845i
\(997\) −1.15773 1.15773i −0.0366655 0.0366655i 0.688536 0.725202i \(-0.258254\pi\)
−0.725202 + 0.688536i \(0.758254\pi\)
\(998\) 2.77568 + 4.89744i 0.0878626 + 0.155026i
\(999\) 12.9598i 0.410031i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.q.g.349.8 16
4.3 odd 2 1600.2.q.h.849.8 16
5.2 odd 4 80.2.l.a.61.3 yes 16
5.3 odd 4 400.2.l.h.301.6 16
5.4 even 2 400.2.q.h.349.1 16
15.2 even 4 720.2.t.c.541.6 16
16.5 even 4 400.2.q.h.149.1 16
16.11 odd 4 1600.2.q.g.49.1 16
20.3 even 4 1600.2.l.i.401.8 16
20.7 even 4 320.2.l.a.81.1 16
20.19 odd 2 1600.2.q.g.849.1 16
40.27 even 4 640.2.l.a.161.8 16
40.37 odd 4 640.2.l.b.161.1 16
60.47 odd 4 2880.2.t.c.721.8 16
80.27 even 4 320.2.l.a.241.1 16
80.37 odd 4 80.2.l.a.21.3 16
80.43 even 4 1600.2.l.i.1201.8 16
80.53 odd 4 400.2.l.h.101.6 16
80.59 odd 4 1600.2.q.h.49.8 16
80.67 even 4 640.2.l.a.481.8 16
80.69 even 4 inner 400.2.q.g.149.8 16
80.77 odd 4 640.2.l.b.481.1 16
160.27 even 8 5120.2.a.u.1.7 8
160.37 odd 8 5120.2.a.s.1.2 8
160.107 even 8 5120.2.a.t.1.2 8
160.117 odd 8 5120.2.a.v.1.7 8
240.107 odd 4 2880.2.t.c.2161.5 16
240.197 even 4 720.2.t.c.181.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.3 16 80.37 odd 4
80.2.l.a.61.3 yes 16 5.2 odd 4
320.2.l.a.81.1 16 20.7 even 4
320.2.l.a.241.1 16 80.27 even 4
400.2.l.h.101.6 16 80.53 odd 4
400.2.l.h.301.6 16 5.3 odd 4
400.2.q.g.149.8 16 80.69 even 4 inner
400.2.q.g.349.8 16 1.1 even 1 trivial
400.2.q.h.149.1 16 16.5 even 4
400.2.q.h.349.1 16 5.4 even 2
640.2.l.a.161.8 16 40.27 even 4
640.2.l.a.481.8 16 80.67 even 4
640.2.l.b.161.1 16 40.37 odd 4
640.2.l.b.481.1 16 80.77 odd 4
720.2.t.c.181.6 16 240.197 even 4
720.2.t.c.541.6 16 15.2 even 4
1600.2.l.i.401.8 16 20.3 even 4
1600.2.l.i.1201.8 16 80.43 even 4
1600.2.q.g.49.1 16 16.11 odd 4
1600.2.q.g.849.1 16 20.19 odd 2
1600.2.q.h.49.8 16 80.59 odd 4
1600.2.q.h.849.8 16 4.3 odd 2
2880.2.t.c.721.8 16 60.47 odd 4
2880.2.t.c.2161.5 16 240.107 odd 4
5120.2.a.s.1.2 8 160.37 odd 8
5120.2.a.t.1.2 8 160.107 even 8
5120.2.a.u.1.7 8 160.27 even 8
5120.2.a.v.1.7 8 160.117 odd 8