Properties

Label 640.2.l.b.161.1
Level $640$
Weight $2$
Character 640.161
Analytic conductor $5.110$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(161,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.1
Root \(1.21331 + 0.726558i\) of defining polynomial
Character \(\chi\) \(=\) 640.161
Dual form 640.2.l.b.481.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.82762 - 1.82762i) q^{3} +(0.707107 - 0.707107i) q^{5} -4.50961i q^{7} +3.68037i q^{9} +(1.64080 - 1.64080i) q^{11} +(-1.51857 - 1.51857i) q^{13} -2.58464 q^{15} +1.45616 q^{17} +(2.67964 + 2.67964i) q^{19} +(-8.24183 + 8.24183i) q^{21} -2.37423i q^{23} -1.00000i q^{25} +(1.24345 - 1.24345i) q^{27} +(-0.924966 - 0.924966i) q^{29} -7.20435 q^{31} -5.99752 q^{33} +(-3.18877 - 3.18877i) q^{35} +(5.21123 - 5.21123i) q^{37} +5.55074i q^{39} +6.41166i q^{41} +(-7.65800 + 7.65800i) q^{43} +(2.60241 + 2.60241i) q^{45} -2.51027 q^{47} -13.3366 q^{49} +(-2.66130 - 2.66130i) q^{51} +(-1.50312 + 1.50312i) q^{53} -2.32045i q^{55} -9.79472i q^{57} +(5.31807 - 5.31807i) q^{59} +(1.02169 + 1.02169i) q^{61} +16.5970 q^{63} -2.14759 q^{65} +(-5.22745 - 5.22745i) q^{67} +(-4.33918 + 4.33918i) q^{69} +1.92097i q^{71} +1.39412i q^{73} +(-1.82762 + 1.82762i) q^{75} +(-7.39938 - 7.39938i) q^{77} +5.06317 q^{79} +6.49599 q^{81} +(2.44974 + 2.44974i) q^{83} +(1.02966 - 1.02966i) q^{85} +3.38097i q^{87} -9.36007i q^{89} +(-6.84817 + 6.84817i) q^{91} +(13.1668 + 13.1668i) q^{93} +3.78959 q^{95} +18.6313 q^{97} +(6.03876 + 6.03876i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{15} + 8 q^{19} - 24 q^{27} + 16 q^{29} + 16 q^{37} - 8 q^{43} - 40 q^{47} - 16 q^{49} + 32 q^{51} - 16 q^{53} + 8 q^{59} - 16 q^{61} + 40 q^{63} - 40 q^{67} - 16 q^{69} - 16 q^{77}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.82762 1.82762i −1.05518 1.05518i −0.998386 0.0567890i \(-0.981914\pi\)
−0.0567890 0.998386i \(-0.518086\pi\)
\(4\) 0 0
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0 0
\(7\) 4.50961i 1.70447i −0.523158 0.852236i \(-0.675246\pi\)
0.523158 0.852236i \(-0.324754\pi\)
\(8\) 0 0
\(9\) 3.68037i 1.22679i
\(10\) 0 0
\(11\) 1.64080 1.64080i 0.494721 0.494721i −0.415069 0.909790i \(-0.636243\pi\)
0.909790 + 0.415069i \(0.136243\pi\)
\(12\) 0 0
\(13\) −1.51857 1.51857i −0.421176 0.421176i 0.464432 0.885609i \(-0.346258\pi\)
−0.885609 + 0.464432i \(0.846258\pi\)
\(14\) 0 0
\(15\) −2.58464 −0.667351
\(16\) 0 0
\(17\) 1.45616 0.353170 0.176585 0.984285i \(-0.443495\pi\)
0.176585 + 0.984285i \(0.443495\pi\)
\(18\) 0 0
\(19\) 2.67964 + 2.67964i 0.614752 + 0.614752i 0.944181 0.329428i \(-0.106856\pi\)
−0.329428 + 0.944181i \(0.606856\pi\)
\(20\) 0 0
\(21\) −8.24183 + 8.24183i −1.79852 + 1.79852i
\(22\) 0 0
\(23\) 2.37423i 0.495061i −0.968880 0.247530i \(-0.920381\pi\)
0.968880 0.247530i \(-0.0796190\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 1.24345 1.24345i 0.239303 0.239303i
\(28\) 0 0
\(29\) −0.924966 0.924966i −0.171762 0.171762i 0.615991 0.787753i \(-0.288756\pi\)
−0.787753 + 0.615991i \(0.788756\pi\)
\(30\) 0 0
\(31\) −7.20435 −1.29394 −0.646970 0.762515i \(-0.723964\pi\)
−0.646970 + 0.762515i \(0.723964\pi\)
\(32\) 0 0
\(33\) −5.99752 −1.04403
\(34\) 0 0
\(35\) −3.18877 3.18877i −0.539001 0.539001i
\(36\) 0 0
\(37\) 5.21123 5.21123i 0.856720 0.856720i −0.134230 0.990950i \(-0.542856\pi\)
0.990950 + 0.134230i \(0.0428560\pi\)
\(38\) 0 0
\(39\) 5.55074i 0.888830i
\(40\) 0 0
\(41\) 6.41166i 1.00133i 0.865640 + 0.500667i \(0.166912\pi\)
−0.865640 + 0.500667i \(0.833088\pi\)
\(42\) 0 0
\(43\) −7.65800 + 7.65800i −1.16783 + 1.16783i −0.185118 + 0.982716i \(0.559267\pi\)
−0.982716 + 0.185118i \(0.940733\pi\)
\(44\) 0 0
\(45\) 2.60241 + 2.60241i 0.387945 + 0.387945i
\(46\) 0 0
\(47\) −2.51027 −0.366161 −0.183081 0.983098i \(-0.558607\pi\)
−0.183081 + 0.983098i \(0.558607\pi\)
\(48\) 0 0
\(49\) −13.3366 −1.90522
\(50\) 0 0
\(51\) −2.66130 2.66130i −0.372657 0.372657i
\(52\) 0 0
\(53\) −1.50312 + 1.50312i −0.206470 + 0.206470i −0.802765 0.596295i \(-0.796639\pi\)
0.596295 + 0.802765i \(0.296639\pi\)
\(54\) 0 0
\(55\) 2.32045i 0.312889i
\(56\) 0 0
\(57\) 9.79472i 1.29734i
\(58\) 0 0
\(59\) 5.31807 5.31807i 0.692353 0.692353i −0.270396 0.962749i \(-0.587155\pi\)
0.962749 + 0.270396i \(0.0871546\pi\)
\(60\) 0 0
\(61\) 1.02169 + 1.02169i 0.130815 + 0.130815i 0.769483 0.638668i \(-0.220514\pi\)
−0.638668 + 0.769483i \(0.720514\pi\)
\(62\) 0 0
\(63\) 16.5970 2.09103
\(64\) 0 0
\(65\) −2.14759 −0.266375
\(66\) 0 0
\(67\) −5.22745 5.22745i −0.638635 0.638635i 0.311584 0.950219i \(-0.399141\pi\)
−0.950219 + 0.311584i \(0.899141\pi\)
\(68\) 0 0
\(69\) −4.33918 + 4.33918i −0.522376 + 0.522376i
\(70\) 0 0
\(71\) 1.92097i 0.227978i 0.993482 + 0.113989i \(0.0363628\pi\)
−0.993482 + 0.113989i \(0.963637\pi\)
\(72\) 0 0
\(73\) 1.39412i 0.163169i 0.996666 + 0.0815847i \(0.0259981\pi\)
−0.996666 + 0.0815847i \(0.974002\pi\)
\(74\) 0 0
\(75\) −1.82762 + 1.82762i −0.211035 + 0.211035i
\(76\) 0 0
\(77\) −7.39938 7.39938i −0.843237 0.843237i
\(78\) 0 0
\(79\) 5.06317 0.569651 0.284825 0.958579i \(-0.408064\pi\)
0.284825 + 0.958579i \(0.408064\pi\)
\(80\) 0 0
\(81\) 6.49599 0.721777
\(82\) 0 0
\(83\) 2.44974 + 2.44974i 0.268894 + 0.268894i 0.828654 0.559761i \(-0.189107\pi\)
−0.559761 + 0.828654i \(0.689107\pi\)
\(84\) 0 0
\(85\) 1.02966 1.02966i 0.111682 0.111682i
\(86\) 0 0
\(87\) 3.38097i 0.362478i
\(88\) 0 0
\(89\) 9.36007i 0.992165i −0.868275 0.496083i \(-0.834771\pi\)
0.868275 0.496083i \(-0.165229\pi\)
\(90\) 0 0
\(91\) −6.84817 + 6.84817i −0.717883 + 0.717883i
\(92\) 0 0
\(93\) 13.1668 + 13.1668i 1.36533 + 1.36533i
\(94\) 0 0
\(95\) 3.78959 0.388803
\(96\) 0 0
\(97\) 18.6313 1.89172 0.945859 0.324579i \(-0.105223\pi\)
0.945859 + 0.324579i \(0.105223\pi\)
\(98\) 0 0
\(99\) 6.03876 + 6.03876i 0.606918 + 0.606918i
\(100\) 0 0
\(101\) 4.84108 4.84108i 0.481705 0.481705i −0.423971 0.905676i \(-0.639364\pi\)
0.905676 + 0.423971i \(0.139364\pi\)
\(102\) 0 0
\(103\) 9.12540i 0.899153i 0.893242 + 0.449576i \(0.148425\pi\)
−0.893242 + 0.449576i \(0.851575\pi\)
\(104\) 0 0
\(105\) 11.6557i 1.13748i
\(106\) 0 0
\(107\) 10.1505 10.1505i 0.981290 0.981290i −0.0185385 0.999828i \(-0.505901\pi\)
0.999828 + 0.0185385i \(0.00590132\pi\)
\(108\) 0 0
\(109\) −1.35489 1.35489i −0.129775 0.129775i 0.639236 0.769011i \(-0.279251\pi\)
−0.769011 + 0.639236i \(0.779251\pi\)
\(110\) 0 0
\(111\) −19.0483 −1.80798
\(112\) 0 0
\(113\) −2.56039 −0.240861 −0.120431 0.992722i \(-0.538428\pi\)
−0.120431 + 0.992722i \(0.538428\pi\)
\(114\) 0 0
\(115\) −1.67883 1.67883i −0.156552 0.156552i
\(116\) 0 0
\(117\) 5.58891 5.58891i 0.516695 0.516695i
\(118\) 0 0
\(119\) 6.56670i 0.601969i
\(120\) 0 0
\(121\) 5.61553i 0.510503i
\(122\) 0 0
\(123\) 11.7181 11.7181i 1.05658 1.05658i
\(124\) 0 0
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 13.7354 1.21882 0.609409 0.792856i \(-0.291407\pi\)
0.609409 + 0.792856i \(0.291407\pi\)
\(128\) 0 0
\(129\) 27.9918 2.46454
\(130\) 0 0
\(131\) −5.20726 5.20726i −0.454960 0.454960i 0.442037 0.896997i \(-0.354256\pi\)
−0.896997 + 0.442037i \(0.854256\pi\)
\(132\) 0 0
\(133\) 12.0841 12.0841i 1.04783 1.04783i
\(134\) 0 0
\(135\) 1.75851i 0.151348i
\(136\) 0 0
\(137\) 22.7563i 1.94420i −0.234559 0.972102i \(-0.575365\pi\)
0.234559 0.972102i \(-0.424635\pi\)
\(138\) 0 0
\(139\) −6.28085 + 6.28085i −0.532734 + 0.532734i −0.921385 0.388651i \(-0.872941\pi\)
0.388651 + 0.921385i \(0.372941\pi\)
\(140\) 0 0
\(141\) 4.58782 + 4.58782i 0.386364 + 0.386364i
\(142\) 0 0
\(143\) −4.98336 −0.416729
\(144\) 0 0
\(145\) −1.30810 −0.108632
\(146\) 0 0
\(147\) 24.3741 + 24.3741i 2.01034 + 2.01034i
\(148\) 0 0
\(149\) 12.9574 12.9574i 1.06151 1.06151i 0.0635329 0.997980i \(-0.479763\pi\)
0.997980 0.0635329i \(-0.0202368\pi\)
\(150\) 0 0
\(151\) 14.3417i 1.16711i −0.812073 0.583555i \(-0.801661\pi\)
0.812073 0.583555i \(-0.198339\pi\)
\(152\) 0 0
\(153\) 5.35920i 0.433266i
\(154\) 0 0
\(155\) −5.09425 + 5.09425i −0.409180 + 0.409180i
\(156\) 0 0
\(157\) 2.10564 + 2.10564i 0.168049 + 0.168049i 0.786121 0.618073i \(-0.212086\pi\)
−0.618073 + 0.786121i \(0.712086\pi\)
\(158\) 0 0
\(159\) 5.49426 0.435723
\(160\) 0 0
\(161\) −10.7068 −0.843817
\(162\) 0 0
\(163\) 5.34004 + 5.34004i 0.418265 + 0.418265i 0.884605 0.466341i \(-0.154428\pi\)
−0.466341 + 0.884605i \(0.654428\pi\)
\(164\) 0 0
\(165\) −4.24089 + 4.24089i −0.330153 + 0.330153i
\(166\) 0 0
\(167\) 16.0686i 1.24343i 0.783245 + 0.621714i \(0.213563\pi\)
−0.783245 + 0.621714i \(0.786437\pi\)
\(168\) 0 0
\(169\) 8.38787i 0.645221i
\(170\) 0 0
\(171\) −9.86207 + 9.86207i −0.754171 + 0.754171i
\(172\) 0 0
\(173\) −17.1133 17.1133i −1.30110 1.30110i −0.927649 0.373453i \(-0.878174\pi\)
−0.373453 0.927649i \(-0.621826\pi\)
\(174\) 0 0
\(175\) −4.50961 −0.340894
\(176\) 0 0
\(177\) −19.4388 −1.46111
\(178\) 0 0
\(179\) −1.04482 1.04482i −0.0780933 0.0780933i 0.666981 0.745075i \(-0.267586\pi\)
−0.745075 + 0.666981i \(0.767586\pi\)
\(180\) 0 0
\(181\) −11.9886 + 11.9886i −0.891104 + 0.891104i −0.994627 0.103523i \(-0.966988\pi\)
0.103523 + 0.994627i \(0.466988\pi\)
\(182\) 0 0
\(183\) 3.73453i 0.276065i
\(184\) 0 0
\(185\) 7.36979i 0.541838i
\(186\) 0 0
\(187\) 2.38927 2.38927i 0.174721 0.174721i
\(188\) 0 0
\(189\) −5.60748 5.60748i −0.407884 0.407884i
\(190\) 0 0
\(191\) 0.0667471 0.00482965 0.00241483 0.999997i \(-0.499231\pi\)
0.00241483 + 0.999997i \(0.499231\pi\)
\(192\) 0 0
\(193\) −1.09895 −0.0791039 −0.0395520 0.999218i \(-0.512593\pi\)
−0.0395520 + 0.999218i \(0.512593\pi\)
\(194\) 0 0
\(195\) 3.92497 + 3.92497i 0.281073 + 0.281073i
\(196\) 0 0
\(197\) −11.9289 + 11.9289i −0.849899 + 0.849899i −0.990120 0.140222i \(-0.955218\pi\)
0.140222 + 0.990120i \(0.455218\pi\)
\(198\) 0 0
\(199\) 11.0397i 0.782584i 0.920267 + 0.391292i \(0.127972\pi\)
−0.920267 + 0.391292i \(0.872028\pi\)
\(200\) 0 0
\(201\) 19.1076i 1.34774i
\(202\) 0 0
\(203\) −4.17123 + 4.17123i −0.292763 + 0.292763i
\(204\) 0 0
\(205\) 4.53373 + 4.53373i 0.316649 + 0.316649i
\(206\) 0 0
\(207\) 8.73803 0.607335
\(208\) 0 0
\(209\) 8.79353 0.608261
\(210\) 0 0
\(211\) 8.59737 + 8.59737i 0.591868 + 0.591868i 0.938136 0.346268i \(-0.112551\pi\)
−0.346268 + 0.938136i \(0.612551\pi\)
\(212\) 0 0
\(213\) 3.51080 3.51080i 0.240556 0.240556i
\(214\) 0 0
\(215\) 10.8301i 0.738603i
\(216\) 0 0
\(217\) 32.4888i 2.20548i
\(218\) 0 0
\(219\) 2.54792 2.54792i 0.172172 0.172172i
\(220\) 0 0
\(221\) −2.21128 2.21128i −0.148747 0.148747i
\(222\) 0 0
\(223\) −21.4238 −1.43465 −0.717323 0.696741i \(-0.754633\pi\)
−0.717323 + 0.696741i \(0.754633\pi\)
\(224\) 0 0
\(225\) 3.68037 0.245358
\(226\) 0 0
\(227\) 8.06331 + 8.06331i 0.535181 + 0.535181i 0.922110 0.386929i \(-0.126464\pi\)
−0.386929 + 0.922110i \(0.626464\pi\)
\(228\) 0 0
\(229\) −4.63169 + 4.63169i −0.306071 + 0.306071i −0.843383 0.537313i \(-0.819440\pi\)
0.537313 + 0.843383i \(0.319440\pi\)
\(230\) 0 0
\(231\) 27.0465i 1.77953i
\(232\) 0 0
\(233\) 26.0672i 1.70772i −0.520502 0.853860i \(-0.674255\pi\)
0.520502 0.853860i \(-0.325745\pi\)
\(234\) 0 0
\(235\) −1.77503 + 1.77503i −0.115790 + 0.115790i
\(236\) 0 0
\(237\) −9.25353 9.25353i −0.601081 0.601081i
\(238\) 0 0
\(239\) 5.12209 0.331320 0.165660 0.986183i \(-0.447025\pi\)
0.165660 + 0.986183i \(0.447025\pi\)
\(240\) 0 0
\(241\) 11.4987 0.740695 0.370347 0.928893i \(-0.379239\pi\)
0.370347 + 0.928893i \(0.379239\pi\)
\(242\) 0 0
\(243\) −15.6025 15.6025i −1.00090 1.00090i
\(244\) 0 0
\(245\) −9.43037 + 9.43037i −0.602484 + 0.602484i
\(246\) 0 0
\(247\) 8.13847i 0.517838i
\(248\) 0 0
\(249\) 8.95437i 0.567460i
\(250\) 0 0
\(251\) 19.8270 19.8270i 1.25147 1.25147i 0.296408 0.955061i \(-0.404211\pi\)
0.955061 0.296408i \(-0.0957889\pi\)
\(252\) 0 0
\(253\) −3.89564 3.89564i −0.244917 0.244917i
\(254\) 0 0
\(255\) −3.76365 −0.235689
\(256\) 0 0
\(257\) −24.2494 −1.51264 −0.756319 0.654203i \(-0.773004\pi\)
−0.756319 + 0.654203i \(0.773004\pi\)
\(258\) 0 0
\(259\) −23.5006 23.5006i −1.46026 1.46026i
\(260\) 0 0
\(261\) 3.40422 3.40422i 0.210716 0.210716i
\(262\) 0 0
\(263\) 22.5680i 1.39160i −0.718234 0.695802i \(-0.755049\pi\)
0.718234 0.695802i \(-0.244951\pi\)
\(264\) 0 0
\(265\) 2.12574i 0.130583i
\(266\) 0 0
\(267\) −17.1066 + 17.1066i −1.04691 + 1.04691i
\(268\) 0 0
\(269\) 5.10558 + 5.10558i 0.311293 + 0.311293i 0.845410 0.534117i \(-0.179356\pi\)
−0.534117 + 0.845410i \(0.679356\pi\)
\(270\) 0 0
\(271\) 6.67920 0.405733 0.202866 0.979206i \(-0.434974\pi\)
0.202866 + 0.979206i \(0.434974\pi\)
\(272\) 0 0
\(273\) 25.0317 1.51498
\(274\) 0 0
\(275\) −1.64080 1.64080i −0.0989441 0.0989441i
\(276\) 0 0
\(277\) 11.8524 11.8524i 0.712141 0.712141i −0.254842 0.966983i \(-0.582023\pi\)
0.966983 + 0.254842i \(0.0820234\pi\)
\(278\) 0 0
\(279\) 26.5147i 1.58739i
\(280\) 0 0
\(281\) 0.477460i 0.0284829i −0.999899 0.0142414i \(-0.995467\pi\)
0.999899 0.0142414i \(-0.00453334\pi\)
\(282\) 0 0
\(283\) 0.482914 0.482914i 0.0287063 0.0287063i −0.692608 0.721314i \(-0.743538\pi\)
0.721314 + 0.692608i \(0.243538\pi\)
\(284\) 0 0
\(285\) −6.92591 6.92591i −0.410256 0.410256i
\(286\) 0 0
\(287\) 28.9141 1.70674
\(288\) 0 0
\(289\) −14.8796 −0.875271
\(290\) 0 0
\(291\) −34.0508 34.0508i −1.99609 1.99609i
\(292\) 0 0
\(293\) −7.46638 + 7.46638i −0.436190 + 0.436190i −0.890728 0.454537i \(-0.849805\pi\)
0.454537 + 0.890728i \(0.349805\pi\)
\(294\) 0 0
\(295\) 7.52088i 0.437883i
\(296\) 0 0
\(297\) 4.08052i 0.236776i
\(298\) 0 0
\(299\) −3.60544 + 3.60544i −0.208508 + 0.208508i
\(300\) 0 0
\(301\) 34.5346 + 34.5346i 1.99054 + 1.99054i
\(302\) 0 0
\(303\) −17.6953 −1.01657
\(304\) 0 0
\(305\) 1.44489 0.0827344
\(306\) 0 0
\(307\) −2.39349 2.39349i −0.136604 0.136604i 0.635498 0.772102i \(-0.280795\pi\)
−0.772102 + 0.635498i \(0.780795\pi\)
\(308\) 0 0
\(309\) 16.6777 16.6777i 0.948764 0.948764i
\(310\) 0 0
\(311\) 20.4404i 1.15907i −0.814948 0.579534i \(-0.803235\pi\)
0.814948 0.579534i \(-0.196765\pi\)
\(312\) 0 0
\(313\) 2.46975i 0.139598i 0.997561 + 0.0697992i \(0.0222359\pi\)
−0.997561 + 0.0697992i \(0.977764\pi\)
\(314\) 0 0
\(315\) 11.7359 11.7359i 0.661241 0.661241i
\(316\) 0 0
\(317\) 16.2241 + 16.2241i 0.911234 + 0.911234i 0.996369 0.0851350i \(-0.0271322\pi\)
−0.0851350 + 0.996369i \(0.527132\pi\)
\(318\) 0 0
\(319\) −3.03537 −0.169948
\(320\) 0 0
\(321\) −37.1026 −2.07086
\(322\) 0 0
\(323\) 3.90198 + 3.90198i 0.217112 + 0.217112i
\(324\) 0 0
\(325\) −1.51857 + 1.51857i −0.0842353 + 0.0842353i
\(326\) 0 0
\(327\) 4.95246i 0.273871i
\(328\) 0 0
\(329\) 11.3204i 0.624111i
\(330\) 0 0
\(331\) −3.42340 + 3.42340i −0.188167 + 0.188167i −0.794903 0.606736i \(-0.792479\pi\)
0.606736 + 0.794903i \(0.292479\pi\)
\(332\) 0 0
\(333\) 19.1792 + 19.1792i 1.05102 + 1.05102i
\(334\) 0 0
\(335\) −7.39273 −0.403908
\(336\) 0 0
\(337\) −5.40017 −0.294166 −0.147083 0.989124i \(-0.546988\pi\)
−0.147083 + 0.989124i \(0.546988\pi\)
\(338\) 0 0
\(339\) 4.67941 + 4.67941i 0.254151 + 0.254151i
\(340\) 0 0
\(341\) −11.8209 + 11.8209i −0.640139 + 0.640139i
\(342\) 0 0
\(343\) 28.5754i 1.54292i
\(344\) 0 0
\(345\) 6.13653i 0.330379i
\(346\) 0 0
\(347\) 4.07531 4.07531i 0.218774 0.218774i −0.589208 0.807982i \(-0.700560\pi\)
0.807982 + 0.589208i \(0.200560\pi\)
\(348\) 0 0
\(349\) −1.55681 1.55681i −0.0833339 0.0833339i 0.664211 0.747545i \(-0.268768\pi\)
−0.747545 + 0.664211i \(0.768768\pi\)
\(350\) 0 0
\(351\) −3.77655 −0.201577
\(352\) 0 0
\(353\) 1.34919 0.0718103 0.0359052 0.999355i \(-0.488569\pi\)
0.0359052 + 0.999355i \(0.488569\pi\)
\(354\) 0 0
\(355\) 1.35833 + 1.35833i 0.0720929 + 0.0720929i
\(356\) 0 0
\(357\) −12.0014 + 12.0014i −0.635182 + 0.635182i
\(358\) 0 0
\(359\) 23.2192i 1.22546i −0.790291 0.612732i \(-0.790071\pi\)
0.790291 0.612732i \(-0.209929\pi\)
\(360\) 0 0
\(361\) 4.63903i 0.244159i
\(362\) 0 0
\(363\) 10.2630 10.2630i 0.538670 0.538670i
\(364\) 0 0
\(365\) 0.985792 + 0.985792i 0.0515987 + 0.0515987i
\(366\) 0 0
\(367\) −5.16452 −0.269586 −0.134793 0.990874i \(-0.543037\pi\)
−0.134793 + 0.990874i \(0.543037\pi\)
\(368\) 0 0
\(369\) −23.5973 −1.22843
\(370\) 0 0
\(371\) 6.77849 + 6.77849i 0.351922 + 0.351922i
\(372\) 0 0
\(373\) −18.5056 + 18.5056i −0.958185 + 0.958185i −0.999160 0.0409750i \(-0.986954\pi\)
0.0409750 + 0.999160i \(0.486954\pi\)
\(374\) 0 0
\(375\) 2.58464i 0.133470i
\(376\) 0 0
\(377\) 2.80926i 0.144684i
\(378\) 0 0
\(379\) 13.5254 13.5254i 0.694754 0.694754i −0.268520 0.963274i \(-0.586535\pi\)
0.963274 + 0.268520i \(0.0865346\pi\)
\(380\) 0 0
\(381\) −25.1030 25.1030i −1.28607 1.28607i
\(382\) 0 0
\(383\) 21.9051 1.11930 0.559650 0.828729i \(-0.310936\pi\)
0.559650 + 0.828729i \(0.310936\pi\)
\(384\) 0 0
\(385\) −10.4643 −0.533310
\(386\) 0 0
\(387\) −28.1843 28.1843i −1.43269 1.43269i
\(388\) 0 0
\(389\) −4.48844 + 4.48844i −0.227573 + 0.227573i −0.811678 0.584105i \(-0.801446\pi\)
0.584105 + 0.811678i \(0.301446\pi\)
\(390\) 0 0
\(391\) 3.45725i 0.174841i
\(392\) 0 0
\(393\) 19.0337i 0.960126i
\(394\) 0 0
\(395\) 3.58020 3.58020i 0.180139 0.180139i
\(396\) 0 0
\(397\) −11.7892 11.7892i −0.591682 0.591682i 0.346404 0.938086i \(-0.387403\pi\)
−0.938086 + 0.346404i \(0.887403\pi\)
\(398\) 0 0
\(399\) −44.1703 −2.21128
\(400\) 0 0
\(401\) 24.9259 1.24474 0.622371 0.782722i \(-0.286170\pi\)
0.622371 + 0.782722i \(0.286170\pi\)
\(402\) 0 0
\(403\) 10.9403 + 10.9403i 0.544977 + 0.544977i
\(404\) 0 0
\(405\) 4.59336 4.59336i 0.228246 0.228246i
\(406\) 0 0
\(407\) 17.1012i 0.847675i
\(408\) 0 0
\(409\) 21.5355i 1.06486i 0.846474 + 0.532430i \(0.178721\pi\)
−0.846474 + 0.532430i \(0.821279\pi\)
\(410\) 0 0
\(411\) −41.5898 + 41.5898i −2.05148 + 2.05148i
\(412\) 0 0
\(413\) −23.9824 23.9824i −1.18010 1.18010i
\(414\) 0 0
\(415\) 3.46445 0.170063
\(416\) 0 0
\(417\) 22.9580 1.12426
\(418\) 0 0
\(419\) 17.2979 + 17.2979i 0.845060 + 0.845060i 0.989512 0.144452i \(-0.0461419\pi\)
−0.144452 + 0.989512i \(0.546142\pi\)
\(420\) 0 0
\(421\) 19.4330 19.4330i 0.947105 0.947105i −0.0515648 0.998670i \(-0.516421\pi\)
0.998670 + 0.0515648i \(0.0164209\pi\)
\(422\) 0 0
\(423\) 9.23874i 0.449203i
\(424\) 0 0
\(425\) 1.45616i 0.0706341i
\(426\) 0 0
\(427\) 4.60744 4.60744i 0.222970 0.222970i
\(428\) 0 0
\(429\) 9.10767 + 9.10767i 0.439723 + 0.439723i
\(430\) 0 0
\(431\) 28.3769 1.36687 0.683433 0.730013i \(-0.260486\pi\)
0.683433 + 0.730013i \(0.260486\pi\)
\(432\) 0 0
\(433\) 9.04007 0.434438 0.217219 0.976123i \(-0.430301\pi\)
0.217219 + 0.976123i \(0.430301\pi\)
\(434\) 0 0
\(435\) 2.39071 + 2.39071i 0.114626 + 0.114626i
\(436\) 0 0
\(437\) 6.36208 6.36208i 0.304340 0.304340i
\(438\) 0 0
\(439\) 28.2949i 1.35044i 0.737615 + 0.675221i \(0.235952\pi\)
−0.737615 + 0.675221i \(0.764048\pi\)
\(440\) 0 0
\(441\) 49.0834i 2.33731i
\(442\) 0 0
\(443\) 13.1232 13.1232i 0.623504 0.623504i −0.322922 0.946426i \(-0.604665\pi\)
0.946426 + 0.322922i \(0.104665\pi\)
\(444\) 0 0
\(445\) −6.61857 6.61857i −0.313750 0.313750i
\(446\) 0 0
\(447\) −47.3624 −2.24016
\(448\) 0 0
\(449\) −14.3902 −0.679116 −0.339558 0.940585i \(-0.610277\pi\)
−0.339558 + 0.940585i \(0.610277\pi\)
\(450\) 0 0
\(451\) 10.5203 + 10.5203i 0.495380 + 0.495380i
\(452\) 0 0
\(453\) −26.2111 + 26.2111i −1.23151 + 1.23151i
\(454\) 0 0
\(455\) 9.68477i 0.454029i
\(456\) 0 0
\(457\) 4.54538i 0.212624i −0.994333 0.106312i \(-0.966096\pi\)
0.994333 0.106312i \(-0.0339042\pi\)
\(458\) 0 0
\(459\) 1.81066 1.81066i 0.0845146 0.0845146i
\(460\) 0 0
\(461\) −19.8046 19.8046i −0.922393 0.922393i 0.0748050 0.997198i \(-0.476167\pi\)
−0.997198 + 0.0748050i \(0.976167\pi\)
\(462\) 0 0
\(463\) −14.5997 −0.678506 −0.339253 0.940695i \(-0.610174\pi\)
−0.339253 + 0.940695i \(0.610174\pi\)
\(464\) 0 0
\(465\) 18.6207 0.863513
\(466\) 0 0
\(467\) −19.8105 19.8105i −0.916722 0.916722i 0.0800671 0.996789i \(-0.474487\pi\)
−0.996789 + 0.0800671i \(0.974487\pi\)
\(468\) 0 0
\(469\) −23.5738 + 23.5738i −1.08853 + 1.08853i
\(470\) 0 0
\(471\) 7.69661i 0.354641i
\(472\) 0 0
\(473\) 25.1306i 1.15550i
\(474\) 0 0
\(475\) 2.67964 2.67964i 0.122950 0.122950i
\(476\) 0 0
\(477\) −5.53204 5.53204i −0.253295 0.253295i
\(478\) 0 0
\(479\) 21.0378 0.961243 0.480621 0.876928i \(-0.340411\pi\)
0.480621 + 0.876928i \(0.340411\pi\)
\(480\) 0 0
\(481\) −15.8273 −0.721661
\(482\) 0 0
\(483\) 19.5680 + 19.5680i 0.890375 + 0.890375i
\(484\) 0 0
\(485\) 13.1743 13.1743i 0.598214 0.598214i
\(486\) 0 0
\(487\) 10.2724i 0.465485i 0.972538 + 0.232743i \(0.0747699\pi\)
−0.972538 + 0.232743i \(0.925230\pi\)
\(488\) 0 0
\(489\) 19.5191i 0.882685i
\(490\) 0 0
\(491\) 5.95681 5.95681i 0.268827 0.268827i −0.559801 0.828627i \(-0.689122\pi\)
0.828627 + 0.559801i \(0.189122\pi\)
\(492\) 0 0
\(493\) −1.34690 1.34690i −0.0606612 0.0606612i
\(494\) 0 0
\(495\) 8.54009 0.383849
\(496\) 0 0
\(497\) 8.66284 0.388581
\(498\) 0 0
\(499\) 2.81466 + 2.81466i 0.126002 + 0.126002i 0.767295 0.641294i \(-0.221602\pi\)
−0.641294 + 0.767295i \(0.721602\pi\)
\(500\) 0 0
\(501\) 29.3673 29.3673i 1.31203 1.31203i
\(502\) 0 0
\(503\) 5.49759i 0.245125i −0.992461 0.122563i \(-0.960889\pi\)
0.992461 0.122563i \(-0.0391113\pi\)
\(504\) 0 0
\(505\) 6.84632i 0.304657i
\(506\) 0 0
\(507\) −15.3298 + 15.3298i −0.680821 + 0.680821i
\(508\) 0 0
\(509\) 4.37578 + 4.37578i 0.193953 + 0.193953i 0.797402 0.603449i \(-0.206207\pi\)
−0.603449 + 0.797402i \(0.706207\pi\)
\(510\) 0 0
\(511\) 6.28693 0.278118
\(512\) 0 0
\(513\) 6.66402 0.294224
\(514\) 0 0
\(515\) 6.45263 + 6.45263i 0.284337 + 0.284337i
\(516\) 0 0
\(517\) −4.11887 + 4.11887i −0.181148 + 0.181148i
\(518\) 0 0
\(519\) 62.5532i 2.74578i
\(520\) 0 0
\(521\) 33.8729i 1.48400i 0.670401 + 0.741999i \(0.266122\pi\)
−0.670401 + 0.741999i \(0.733878\pi\)
\(522\) 0 0
\(523\) −27.8060 + 27.8060i −1.21587 + 1.21587i −0.246804 + 0.969065i \(0.579380\pi\)
−0.969065 + 0.246804i \(0.920620\pi\)
\(524\) 0 0
\(525\) 8.24183 + 8.24183i 0.359703 + 0.359703i
\(526\) 0 0
\(527\) −10.4907 −0.456981
\(528\) 0 0
\(529\) 17.3630 0.754915
\(530\) 0 0
\(531\) 19.5724 + 19.5724i 0.849372 + 0.849372i
\(532\) 0 0
\(533\) 9.73658 9.73658i 0.421738 0.421738i
\(534\) 0 0
\(535\) 14.3550i 0.620622i
\(536\) 0 0
\(537\) 3.81905i 0.164804i
\(538\) 0 0
\(539\) −21.8827 + 21.8827i −0.942553 + 0.942553i
\(540\) 0 0
\(541\) −3.03066 3.03066i −0.130298 0.130298i 0.638950 0.769248i \(-0.279369\pi\)
−0.769248 + 0.638950i \(0.779369\pi\)
\(542\) 0 0
\(543\) 43.8211 1.88054
\(544\) 0 0
\(545\) −1.91611 −0.0820771
\(546\) 0 0
\(547\) 18.4783 + 18.4783i 0.790074 + 0.790074i 0.981506 0.191432i \(-0.0613131\pi\)
−0.191432 + 0.981506i \(0.561313\pi\)
\(548\) 0 0
\(549\) −3.76021 + 3.76021i −0.160482 + 0.160482i
\(550\) 0 0
\(551\) 4.95716i 0.211182i
\(552\) 0 0
\(553\) 22.8329i 0.970953i
\(554\) 0 0
\(555\) −13.4691 + 13.4691i −0.571734 + 0.571734i
\(556\) 0 0
\(557\) 30.2060 + 30.2060i 1.27987 + 1.27987i 0.940741 + 0.339127i \(0.110132\pi\)
0.339127 + 0.940741i \(0.389868\pi\)
\(558\) 0 0
\(559\) 23.2585 0.983729
\(560\) 0 0
\(561\) −8.73334 −0.368722
\(562\) 0 0
\(563\) −2.86747 2.86747i −0.120850 0.120850i 0.644095 0.764945i \(-0.277234\pi\)
−0.764945 + 0.644095i \(0.777234\pi\)
\(564\) 0 0
\(565\) −1.81047 + 1.81047i −0.0761670 + 0.0761670i
\(566\) 0 0
\(567\) 29.2944i 1.23025i
\(568\) 0 0
\(569\) 35.8628i 1.50345i 0.659479 + 0.751723i \(0.270777\pi\)
−0.659479 + 0.751723i \(0.729223\pi\)
\(570\) 0 0
\(571\) 17.6509 17.6509i 0.738667 0.738667i −0.233653 0.972320i \(-0.575068\pi\)
0.972320 + 0.233653i \(0.0750679\pi\)
\(572\) 0 0
\(573\) −0.121988 0.121988i −0.00509613 0.00509613i
\(574\) 0 0
\(575\) −2.37423 −0.0990122
\(576\) 0 0
\(577\) 36.1387 1.50448 0.752238 0.658892i \(-0.228975\pi\)
0.752238 + 0.658892i \(0.228975\pi\)
\(578\) 0 0
\(579\) 2.00845 + 2.00845i 0.0834685 + 0.0834685i
\(580\) 0 0
\(581\) 11.0474 11.0474i 0.458322 0.458322i
\(582\) 0 0
\(583\) 4.93265i 0.204290i
\(584\) 0 0
\(585\) 7.90391i 0.326786i
\(586\) 0 0
\(587\) 11.4005 11.4005i 0.470550 0.470550i −0.431542 0.902093i \(-0.642030\pi\)
0.902093 + 0.431542i \(0.142030\pi\)
\(588\) 0 0
\(589\) −19.3051 19.3051i −0.795453 0.795453i
\(590\) 0 0
\(591\) 43.6029 1.79358
\(592\) 0 0
\(593\) −35.0454 −1.43914 −0.719572 0.694418i \(-0.755662\pi\)
−0.719572 + 0.694418i \(0.755662\pi\)
\(594\) 0 0
\(595\) −4.64336 4.64336i −0.190359 0.190359i
\(596\) 0 0
\(597\) 20.1764 20.1764i 0.825764 0.825764i
\(598\) 0 0
\(599\) 18.2753i 0.746707i 0.927689 + 0.373354i \(0.121792\pi\)
−0.927689 + 0.373354i \(0.878208\pi\)
\(600\) 0 0
\(601\) 0.480142i 0.0195854i −0.999952 0.00979269i \(-0.996883\pi\)
0.999952 0.00979269i \(-0.00311716\pi\)
\(602\) 0 0
\(603\) 19.2389 19.2389i 0.783470 0.783470i
\(604\) 0 0
\(605\) 3.97078 + 3.97078i 0.161435 + 0.161435i
\(606\) 0 0
\(607\) −38.6107 −1.56716 −0.783581 0.621290i \(-0.786609\pi\)
−0.783581 + 0.621290i \(0.786609\pi\)
\(608\) 0 0
\(609\) 15.2468 0.617833
\(610\) 0 0
\(611\) 3.81204 + 3.81204i 0.154218 + 0.154218i
\(612\) 0 0
\(613\) 5.53592 5.53592i 0.223594 0.223594i −0.586416 0.810010i \(-0.699462\pi\)
0.810010 + 0.586416i \(0.199462\pi\)
\(614\) 0 0
\(615\) 16.5718i 0.668241i
\(616\) 0 0
\(617\) 31.8836i 1.28358i −0.766879 0.641792i \(-0.778191\pi\)
0.766879 0.641792i \(-0.221809\pi\)
\(618\) 0 0
\(619\) 29.4054 29.4054i 1.18190 1.18190i 0.202650 0.979251i \(-0.435045\pi\)
0.979251 0.202650i \(-0.0649553\pi\)
\(620\) 0 0
\(621\) −2.95224 2.95224i −0.118469 0.118469i
\(622\) 0 0
\(623\) −42.2102 −1.69112
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) −16.0712 16.0712i −0.641822 0.641822i
\(628\) 0 0
\(629\) 7.58837 7.58837i 0.302568 0.302568i
\(630\) 0 0
\(631\) 30.7381i 1.22367i 0.790987 + 0.611833i \(0.209568\pi\)
−0.790987 + 0.611833i \(0.790432\pi\)
\(632\) 0 0
\(633\) 31.4254i 1.24905i
\(634\) 0 0
\(635\) 9.71239 9.71239i 0.385424 0.385424i
\(636\) 0 0
\(637\) 20.2525 + 20.2525i 0.802435 + 0.802435i
\(638\) 0 0
\(639\) −7.06989 −0.279681
\(640\) 0 0
\(641\) 13.6348 0.538540 0.269270 0.963065i \(-0.413218\pi\)
0.269270 + 0.963065i \(0.413218\pi\)
\(642\) 0 0
\(643\) −14.9224 14.9224i −0.588480 0.588480i 0.348740 0.937220i \(-0.386610\pi\)
−0.937220 + 0.348740i \(0.886610\pi\)
\(644\) 0 0
\(645\) 19.7932 19.7932i 0.779356 0.779356i
\(646\) 0 0
\(647\) 4.87972i 0.191841i 0.995389 + 0.0959207i \(0.0305795\pi\)
−0.995389 + 0.0959207i \(0.969420\pi\)
\(648\) 0 0
\(649\) 17.4518i 0.685043i
\(650\) 0 0
\(651\) 59.3771 59.3771i 2.32717 2.32717i
\(652\) 0 0
\(653\) 10.2913 + 10.2913i 0.402731 + 0.402731i 0.879194 0.476463i \(-0.158081\pi\)
−0.476463 + 0.879194i \(0.658081\pi\)
\(654\) 0 0
\(655\) −7.36417 −0.287742
\(656\) 0 0
\(657\) −5.13088 −0.200174
\(658\) 0 0
\(659\) 21.9025 + 21.9025i 0.853201 + 0.853201i 0.990526 0.137325i \(-0.0438505\pi\)
−0.137325 + 0.990526i \(0.543851\pi\)
\(660\) 0 0
\(661\) −5.40595 + 5.40595i −0.210267 + 0.210267i −0.804381 0.594114i \(-0.797503\pi\)
0.594114 + 0.804381i \(0.297503\pi\)
\(662\) 0 0
\(663\) 8.08276i 0.313908i
\(664\) 0 0
\(665\) 17.0895i 0.662704i
\(666\) 0 0
\(667\) −2.19608 + 2.19608i −0.0850326 + 0.0850326i
\(668\) 0 0
\(669\) 39.1546 + 39.1546i 1.51380 + 1.51380i
\(670\) 0 0
\(671\) 3.35280 0.129433
\(672\) 0 0
\(673\) 35.3820 1.36388 0.681938 0.731410i \(-0.261138\pi\)
0.681938 + 0.731410i \(0.261138\pi\)
\(674\) 0 0
\(675\) −1.24345 1.24345i −0.0478605 0.0478605i
\(676\) 0 0
\(677\) −5.17061 + 5.17061i −0.198723 + 0.198723i −0.799452 0.600730i \(-0.794877\pi\)
0.600730 + 0.799452i \(0.294877\pi\)
\(678\) 0 0
\(679\) 84.0196i 3.22438i
\(680\) 0 0
\(681\) 29.4733i 1.12942i
\(682\) 0 0
\(683\) −26.5989 + 26.5989i −1.01778 + 1.01778i −0.0179409 + 0.999839i \(0.505711\pi\)
−0.999839 + 0.0179409i \(0.994289\pi\)
\(684\) 0 0
\(685\) −16.0912 16.0912i −0.614811 0.614811i
\(686\) 0 0
\(687\) 16.9299 0.645916
\(688\) 0 0
\(689\) 4.56520 0.173920
\(690\) 0 0
\(691\) 21.7989 + 21.7989i 0.829270 + 0.829270i 0.987416 0.158146i \(-0.0505516\pi\)
−0.158146 + 0.987416i \(0.550552\pi\)
\(692\) 0 0
\(693\) 27.2324 27.2324i 1.03447 1.03447i
\(694\) 0 0
\(695\) 8.88246i 0.336931i
\(696\) 0 0
\(697\) 9.33640i 0.353641i
\(698\) 0 0
\(699\) −47.6409 + 47.6409i −1.80194 + 1.80194i
\(700\) 0 0
\(701\) 15.2175 + 15.2175i 0.574756 + 0.574756i 0.933454 0.358698i \(-0.116779\pi\)
−0.358698 + 0.933454i \(0.616779\pi\)
\(702\) 0 0
\(703\) 27.9285 1.05334
\(704\) 0 0
\(705\) 6.48816 0.244358
\(706\) 0 0
\(707\) −21.8313 21.8313i −0.821052 0.821052i
\(708\) 0 0
\(709\) −4.87350 + 4.87350i −0.183028 + 0.183028i −0.792674 0.609646i \(-0.791312\pi\)
0.609646 + 0.792674i \(0.291312\pi\)
\(710\) 0 0
\(711\) 18.6343i 0.698842i
\(712\) 0 0
\(713\) 17.1048i 0.640579i
\(714\) 0 0
\(715\) −3.52377 + 3.52377i −0.131781 + 0.131781i
\(716\) 0 0
\(717\) −9.36121 9.36121i −0.349601 0.349601i
\(718\) 0 0
\(719\) 9.27351 0.345843 0.172922 0.984936i \(-0.444679\pi\)
0.172922 + 0.984936i \(0.444679\pi\)
\(720\) 0 0
\(721\) 41.1520 1.53258
\(722\) 0 0
\(723\) −21.0152 21.0152i −0.781563 0.781563i
\(724\) 0 0
\(725\) −0.924966 + 0.924966i −0.0343524 + 0.0343524i
\(726\) 0 0
\(727\) 10.6056i 0.393341i 0.980470 + 0.196670i \(0.0630129\pi\)
−0.980470 + 0.196670i \(0.936987\pi\)
\(728\) 0 0
\(729\) 37.5430i 1.39048i
\(730\) 0 0
\(731\) −11.1513 + 11.1513i −0.412445 + 0.412445i
\(732\) 0 0
\(733\) 29.6530 + 29.6530i 1.09526 + 1.09526i 0.994957 + 0.100301i \(0.0319806\pi\)
0.100301 + 0.994957i \(0.468019\pi\)
\(734\) 0 0
\(735\) 34.4702 1.27145
\(736\) 0 0
\(737\) −17.1544 −0.631892
\(738\) 0 0
\(739\) −30.8751 30.8751i −1.13576 1.13576i −0.989202 0.146559i \(-0.953180\pi\)
−0.146559 0.989202i \(-0.546820\pi\)
\(740\) 0 0
\(741\) −14.8740 + 14.8740i −0.546410 + 0.546410i
\(742\) 0 0
\(743\) 22.3956i 0.821617i 0.911722 + 0.410808i \(0.134753\pi\)
−0.911722 + 0.410808i \(0.865247\pi\)
\(744\) 0 0
\(745\) 18.3245i 0.671360i
\(746\) 0 0
\(747\) −9.01594 + 9.01594i −0.329876 + 0.329876i
\(748\) 0 0
\(749\) −45.7749 45.7749i −1.67258 1.67258i
\(750\) 0 0
\(751\) 20.6448 0.753341 0.376670 0.926347i \(-0.377069\pi\)
0.376670 + 0.926347i \(0.377069\pi\)
\(752\) 0 0
\(753\) −72.4724 −2.64104
\(754\) 0 0
\(755\) −10.1411 10.1411i −0.369073 0.369073i
\(756\) 0 0
\(757\) −24.1323 + 24.1323i −0.877104 + 0.877104i −0.993234 0.116130i \(-0.962951\pi\)
0.116130 + 0.993234i \(0.462951\pi\)
\(758\) 0 0
\(759\) 14.2395i 0.516860i
\(760\) 0 0
\(761\) 50.1874i 1.81929i −0.415383 0.909647i \(-0.636352\pi\)
0.415383 0.909647i \(-0.363648\pi\)
\(762\) 0 0
\(763\) −6.11004 + 6.11004i −0.221198 + 0.221198i
\(764\) 0 0
\(765\) 3.78953 + 3.78953i 0.137011 + 0.137011i
\(766\) 0 0
\(767\) −16.1517 −0.583206
\(768\) 0 0
\(769\) −28.6887 −1.03454 −0.517270 0.855822i \(-0.673052\pi\)
−0.517270 + 0.855822i \(0.673052\pi\)
\(770\) 0 0
\(771\) 44.3187 + 44.3187i 1.59610 + 1.59610i
\(772\) 0 0
\(773\) 37.5957 37.5957i 1.35222 1.35222i 0.469052 0.883171i \(-0.344596\pi\)
0.883171 0.469052i \(-0.155404\pi\)
\(774\) 0 0
\(775\) 7.20435i 0.258788i
\(776\) 0 0
\(777\) 85.9001i 3.08165i
\(778\) 0 0
\(779\) −17.1810 + 17.1810i −0.615572 + 0.615572i
\(780\) 0 0
\(781\) 3.15194 + 3.15194i 0.112785 + 0.112785i
\(782\) 0 0
\(783\) −2.30030 −0.0822061
\(784\) 0 0
\(785\) 2.97783 0.106283
\(786\) 0 0
\(787\) 3.13285 + 3.13285i 0.111674 + 0.111674i 0.760736 0.649062i \(-0.224838\pi\)
−0.649062 + 0.760736i \(0.724838\pi\)
\(788\) 0 0
\(789\) −41.2457 + 41.2457i −1.46839 + 1.46839i
\(790\) 0 0
\(791\) 11.5463i 0.410541i
\(792\) 0 0
\(793\) 3.10304i 0.110192i
\(794\) 0 0
\(795\) 3.88503 3.88503i 0.137788 0.137788i
\(796\) 0 0
\(797\) −0.0562195 0.0562195i −0.00199140 0.00199140i 0.706110 0.708102i \(-0.250448\pi\)
−0.708102 + 0.706110i \(0.750448\pi\)
\(798\) 0 0
\(799\) −3.65536 −0.129317
\(800\) 0 0
\(801\) 34.4485 1.21718
\(802\) 0 0
\(803\) 2.28748 + 2.28748i 0.0807233 + 0.0807233i
\(804\) 0 0
\(805\) −7.57088 + 7.57088i −0.266838 + 0.266838i
\(806\) 0 0
\(807\) 18.6621i 0.656937i
\(808\) 0 0
\(809\) 3.59856i 0.126518i 0.997997 + 0.0632592i \(0.0201495\pi\)
−0.997997 + 0.0632592i \(0.979851\pi\)
\(810\) 0 0
\(811\) 7.36274 7.36274i 0.258541 0.258541i −0.565920 0.824460i \(-0.691479\pi\)
0.824460 + 0.565920i \(0.191479\pi\)
\(812\) 0 0
\(813\) −12.2070 12.2070i −0.428119 0.428119i
\(814\) 0 0
\(815\) 7.55196 0.264534
\(816\) 0 0
\(817\) −41.0414 −1.43586
\(818\) 0 0
\(819\) −25.2038 25.2038i −0.880691 0.880691i
\(820\) 0 0
\(821\) −14.7799 + 14.7799i −0.515824 + 0.515824i −0.916305 0.400481i \(-0.868843\pi\)
0.400481 + 0.916305i \(0.368843\pi\)
\(822\) 0 0
\(823\) 52.7544i 1.83890i 0.393203 + 0.919452i \(0.371367\pi\)
−0.393203 + 0.919452i \(0.628633\pi\)
\(824\) 0 0
\(825\) 5.99752i 0.208807i
\(826\) 0 0
\(827\) −16.8883 + 16.8883i −0.587265 + 0.587265i −0.936890 0.349625i \(-0.886309\pi\)
0.349625 + 0.936890i \(0.386309\pi\)
\(828\) 0 0
\(829\) 8.55974 + 8.55974i 0.297292 + 0.297292i 0.839952 0.542660i \(-0.182583\pi\)
−0.542660 + 0.839952i \(0.682583\pi\)
\(830\) 0 0
\(831\) −43.3232 −1.50287
\(832\) 0 0
\(833\) −19.4201 −0.672868
\(834\) 0 0
\(835\) 11.3622 + 11.3622i 0.393206 + 0.393206i
\(836\) 0 0
\(837\) −8.95827 + 8.95827i −0.309643 + 0.309643i
\(838\) 0 0
\(839\) 17.5407i 0.605572i 0.953059 + 0.302786i \(0.0979168\pi\)
−0.953059 + 0.302786i \(0.902083\pi\)
\(840\) 0 0
\(841\) 27.2889i 0.940996i
\(842\) 0 0
\(843\) −0.872614 + 0.872614i −0.0300544 + 0.0300544i
\(844\) 0 0
\(845\) −5.93112 5.93112i −0.204037 0.204037i
\(846\) 0 0
\(847\) 25.3238 0.870137
\(848\) 0 0
\(849\) −1.76516 −0.0605803
\(850\) 0 0
\(851\) −12.3726 12.3726i −0.424129 0.424129i
\(852\) 0 0
\(853\) 15.3577 15.3577i 0.525839 0.525839i −0.393490 0.919329i \(-0.628732\pi\)
0.919329 + 0.393490i \(0.128732\pi\)
\(854\) 0 0
\(855\) 13.9471i 0.476980i
\(856\) 0 0
\(857\) 17.9553i 0.613341i 0.951816 + 0.306671i \(0.0992150\pi\)
−0.951816 + 0.306671i \(0.900785\pi\)
\(858\) 0 0
\(859\) 33.3048 33.3048i 1.13634 1.13634i 0.147245 0.989100i \(-0.452960\pi\)
0.989100 0.147245i \(-0.0470405\pi\)
\(860\) 0 0
\(861\) −52.8439 52.8439i −1.80091 1.80091i
\(862\) 0 0
\(863\) −32.3557 −1.10140 −0.550701 0.834703i \(-0.685639\pi\)
−0.550701 + 0.834703i \(0.685639\pi\)
\(864\) 0 0
\(865\) −24.2019 −0.822889
\(866\) 0 0
\(867\) 27.1942 + 27.1942i 0.923564 + 0.923564i
\(868\) 0 0
\(869\) 8.30766 8.30766i 0.281818 0.281818i
\(870\) 0 0
\(871\) 15.8765i 0.537956i
\(872\) 0 0
\(873\) 68.5699i 2.32074i
\(874\) 0 0
\(875\) −3.18877 + 3.18877i −0.107800 + 0.107800i
\(876\) 0 0
\(877\) −26.2297 26.2297i −0.885714 0.885714i 0.108394 0.994108i \(-0.465429\pi\)
−0.994108 + 0.108394i \(0.965429\pi\)
\(878\) 0 0
\(879\) 27.2914 0.920515
\(880\) 0 0
\(881\) −47.3359 −1.59479 −0.797394 0.603459i \(-0.793789\pi\)
−0.797394 + 0.603459i \(0.793789\pi\)
\(882\) 0 0
\(883\) −8.08371 8.08371i −0.272039 0.272039i 0.557882 0.829920i \(-0.311614\pi\)
−0.829920 + 0.557882i \(0.811614\pi\)
\(884\) 0 0
\(885\) −13.7453 + 13.7453i −0.462043 + 0.462043i
\(886\) 0 0
\(887\) 12.9255i 0.433994i 0.976172 + 0.216997i \(0.0696263\pi\)
−0.976172 + 0.216997i \(0.930374\pi\)
\(888\) 0 0
\(889\) 61.9412i 2.07744i
\(890\) 0 0
\(891\) 10.6586 10.6586i 0.357078 0.357078i
\(892\) 0 0
\(893\) −6.72664 6.72664i −0.225098 0.225098i
\(894\) 0 0
\(895\) −1.47760 −0.0493906
\(896\) 0 0
\(897\) 13.1787 0.440025
\(898\) 0 0
\(899\) 6.66378 + 6.66378i 0.222250 + 0.222250i
\(900\) 0 0
\(901\) −2.18878 + 2.18878i −0.0729190 + 0.0729190i
\(902\) 0 0
\(903\) 126.232i 4.20074i
\(904\) 0 0
\(905\) 16.9544i 0.563584i
\(906\) 0 0
\(907\) −16.4991 + 16.4991i −0.547844 + 0.547844i −0.925817 0.377973i \(-0.876621\pi\)
0.377973 + 0.925817i \(0.376621\pi\)
\(908\) 0 0
\(909\) 17.8169 + 17.8169i 0.590951 + 0.590951i
\(910\) 0 0
\(911\) −26.6745 −0.883765 −0.441883 0.897073i \(-0.645689\pi\)
−0.441883 + 0.897073i \(0.645689\pi\)
\(912\) 0 0
\(913\) 8.03908 0.266055
\(914\) 0 0
\(915\) −2.64071 2.64071i −0.0872993 0.0872993i
\(916\) 0 0
\(917\) −23.4827 + 23.4827i −0.775467 + 0.775467i
\(918\) 0 0
\(919\) 57.7425i 1.90475i −0.304932 0.952374i \(-0.598634\pi\)
0.304932 0.952374i \(-0.401366\pi\)
\(920\) 0 0
\(921\) 8.74878i 0.288282i
\(922\) 0 0
\(923\) 2.91714 2.91714i 0.0960188 0.0960188i
\(924\) 0 0
\(925\) −5.21123 5.21123i −0.171344 0.171344i
\(926\) 0 0
\(927\) −33.5848 −1.10307
\(928\) 0 0
\(929\) 42.5386 1.39565 0.697823 0.716270i \(-0.254152\pi\)
0.697823 + 0.716270i \(0.254152\pi\)
\(930\) 0 0
\(931\) −35.7372 35.7372i −1.17124 1.17124i
\(932\) 0 0
\(933\) −37.3572 + 37.3572i −1.22302 + 1.22302i
\(934\) 0 0
\(935\) 3.37894i 0.110503i
\(936\) 0 0
\(937\) 16.6795i 0.544894i 0.962171 + 0.272447i \(0.0878330\pi\)
−0.962171 + 0.272447i \(0.912167\pi\)
\(938\) 0 0
\(939\) 4.51376 4.51376i 0.147301 0.147301i
\(940\) 0 0
\(941\) −9.63152 9.63152i −0.313979 0.313979i 0.532470 0.846449i \(-0.321264\pi\)
−0.846449 + 0.532470i \(0.821264\pi\)
\(942\) 0 0
\(943\) 15.2227 0.495721
\(944\) 0 0
\(945\) −7.93018 −0.257969
\(946\) 0 0
\(947\) 3.44034 + 3.44034i 0.111796 + 0.111796i 0.760792 0.648996i \(-0.224811\pi\)
−0.648996 + 0.760792i \(0.724811\pi\)
\(948\) 0 0
\(949\) 2.11707 2.11707i 0.0687231 0.0687231i
\(950\) 0 0
\(951\) 59.3028i 1.92302i
\(952\) 0 0
\(953\) 17.6965i 0.573247i −0.958043 0.286623i \(-0.907467\pi\)
0.958043 0.286623i \(-0.0925328\pi\)
\(954\) 0 0
\(955\) 0.0471973 0.0471973i 0.00152727 0.00152727i
\(956\) 0 0
\(957\) 5.54750 + 5.54750i 0.179325 + 0.179325i
\(958\) 0 0
\(959\) −102.622 −3.31384
\(960\) 0 0
\(961\) 20.9027 0.674281
\(962\) 0 0
\(963\) 37.3577 + 37.3577i 1.20384 + 1.20384i
\(964\) 0 0
\(965\) −0.777073 + 0.777073i −0.0250149 + 0.0250149i
\(966\) 0 0
\(967\) 15.0023i 0.482442i 0.970470 + 0.241221i \(0.0775479\pi\)
−0.970470 + 0.241221i \(0.922452\pi\)
\(968\) 0 0
\(969\) 14.2627i 0.458183i
\(970\) 0 0
\(971\) 14.3135 14.3135i 0.459340 0.459340i −0.439098 0.898439i \(-0.644702\pi\)
0.898439 + 0.439098i \(0.144702\pi\)
\(972\) 0 0
\(973\) 28.3241 + 28.3241i 0.908030 + 0.908030i
\(974\) 0 0
\(975\) 5.55074 0.177766
\(976\) 0 0
\(977\) 48.1433 1.54024 0.770120 0.637900i \(-0.220196\pi\)
0.770120 + 0.637900i \(0.220196\pi\)
\(978\) 0 0
\(979\) −15.3580 15.3580i −0.490845 0.490845i
\(980\) 0 0
\(981\) 4.98651 4.98651i 0.159207 0.159207i
\(982\) 0 0
\(983\) 0.791292i 0.0252383i −0.999920 0.0126191i \(-0.995983\pi\)
0.999920 0.0126191i \(-0.00401690\pi\)
\(984\) 0 0
\(985\) 16.8700i 0.537523i
\(986\) 0 0
\(987\) 20.6893 20.6893i 0.658547 0.658547i
\(988\) 0 0
\(989\) 18.1818 + 18.1818i 0.578149 + 0.578149i
\(990\) 0 0
\(991\) −60.2424 −1.91366 −0.956832 0.290643i \(-0.906131\pi\)
−0.956832 + 0.290643i \(0.906131\pi\)
\(992\) 0 0
\(993\) 12.5133 0.397099
\(994\) 0 0
\(995\) 7.80625 + 7.80625i 0.247475 + 0.247475i
\(996\) 0 0
\(997\) −1.15773 + 1.15773i −0.0366655 + 0.0366655i −0.725202 0.688536i \(-0.758254\pi\)
0.688536 + 0.725202i \(0.258254\pi\)
\(998\) 0 0
\(999\) 12.9598i 0.410031i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.l.b.161.1 16
4.3 odd 2 640.2.l.a.161.8 16
8.3 odd 2 320.2.l.a.81.1 16
8.5 even 2 80.2.l.a.61.3 yes 16
16.3 odd 4 320.2.l.a.241.1 16
16.5 even 4 inner 640.2.l.b.481.1 16
16.11 odd 4 640.2.l.a.481.8 16
16.13 even 4 80.2.l.a.21.3 16
24.5 odd 2 720.2.t.c.541.6 16
24.11 even 2 2880.2.t.c.721.8 16
32.5 even 8 5120.2.a.v.1.7 8
32.11 odd 8 5120.2.a.u.1.7 8
32.21 even 8 5120.2.a.s.1.2 8
32.27 odd 8 5120.2.a.t.1.2 8
40.3 even 4 1600.2.q.h.849.8 16
40.13 odd 4 400.2.q.g.349.8 16
40.19 odd 2 1600.2.l.i.401.8 16
40.27 even 4 1600.2.q.g.849.1 16
40.29 even 2 400.2.l.h.301.6 16
40.37 odd 4 400.2.q.h.349.1 16
48.29 odd 4 720.2.t.c.181.6 16
48.35 even 4 2880.2.t.c.2161.5 16
80.3 even 4 1600.2.q.g.49.1 16
80.13 odd 4 400.2.q.h.149.1 16
80.19 odd 4 1600.2.l.i.1201.8 16
80.29 even 4 400.2.l.h.101.6 16
80.67 even 4 1600.2.q.h.49.8 16
80.77 odd 4 400.2.q.g.149.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.3 16 16.13 even 4
80.2.l.a.61.3 yes 16 8.5 even 2
320.2.l.a.81.1 16 8.3 odd 2
320.2.l.a.241.1 16 16.3 odd 4
400.2.l.h.101.6 16 80.29 even 4
400.2.l.h.301.6 16 40.29 even 2
400.2.q.g.149.8 16 80.77 odd 4
400.2.q.g.349.8 16 40.13 odd 4
400.2.q.h.149.1 16 80.13 odd 4
400.2.q.h.349.1 16 40.37 odd 4
640.2.l.a.161.8 16 4.3 odd 2
640.2.l.a.481.8 16 16.11 odd 4
640.2.l.b.161.1 16 1.1 even 1 trivial
640.2.l.b.481.1 16 16.5 even 4 inner
720.2.t.c.181.6 16 48.29 odd 4
720.2.t.c.541.6 16 24.5 odd 2
1600.2.l.i.401.8 16 40.19 odd 2
1600.2.l.i.1201.8 16 80.19 odd 4
1600.2.q.g.49.1 16 80.3 even 4
1600.2.q.g.849.1 16 40.27 even 4
1600.2.q.h.49.8 16 80.67 even 4
1600.2.q.h.849.8 16 40.3 even 4
2880.2.t.c.721.8 16 24.11 even 2
2880.2.t.c.2161.5 16 48.35 even 4
5120.2.a.s.1.2 8 32.21 even 8
5120.2.a.t.1.2 8 32.27 odd 8
5120.2.a.u.1.7 8 32.11 odd 8
5120.2.a.v.1.7 8 32.5 even 8