Properties

Label 400.2.l.h.301.6
Level $400$
Weight $2$
Character 400.301
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(101,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 301.6
Root \(1.21331 + 0.726558i\) of defining polynomial
Character \(\chi\) \(=\) 400.301
Dual form 400.2.l.h.101.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.376912 - 1.36306i) q^{2} +(-1.82762 - 1.82762i) q^{3} +(-1.71587 - 1.02751i) q^{4} +(-3.18001 + 1.80230i) q^{6} +4.50961i q^{7} +(-2.04729 + 1.95156i) q^{8} +3.68037i q^{9} +(-1.64080 + 1.64080i) q^{11} +(1.25807 + 5.01385i) q^{12} +(-1.51857 - 1.51857i) q^{13} +(6.14687 + 1.69972i) q^{14} +(1.88845 + 3.52615i) q^{16} -1.45616 q^{17} +(5.01657 + 1.38717i) q^{18} +(-2.67964 - 2.67964i) q^{19} +(8.24183 - 8.24183i) q^{21} +(1.61808 + 2.85495i) q^{22} +2.37423i q^{23} +(7.30837 + 0.174953i) q^{24} +(-2.64228 + 1.49754i) q^{26} +(1.24345 - 1.24345i) q^{27} +(4.63366 - 7.73792i) q^{28} +(0.924966 + 0.924966i) q^{29} -7.20435 q^{31} +(5.51814 - 1.24503i) q^{32} +5.99752 q^{33} +(-0.548843 + 1.98483i) q^{34} +(3.78161 - 6.31505i) q^{36} +(5.21123 - 5.21123i) q^{37} +(-4.66251 + 2.64253i) q^{38} +5.55074i q^{39} +6.41166i q^{41} +(-8.12768 - 14.3406i) q^{42} +(-7.65800 + 7.65800i) q^{43} +(4.50135 - 1.12947i) q^{44} +(3.23622 + 0.894875i) q^{46} +2.51027 q^{47} +(2.99308 - 9.89582i) q^{48} -13.3366 q^{49} +(2.66130 + 2.66130i) q^{51} +(1.04534 + 4.16603i) q^{52} +(-1.50312 + 1.50312i) q^{53} +(-1.22623 - 2.16357i) q^{54} +(-8.80078 - 9.23248i) q^{56} +9.79472i q^{57} +(1.60942 - 0.912155i) q^{58} +(-5.31807 + 5.31807i) q^{59} +(-1.02169 - 1.02169i) q^{61} +(-2.71541 + 9.81998i) q^{62} -16.5970 q^{63} +(0.382800 - 7.99084i) q^{64} +(2.26054 - 8.17499i) q^{66} +(-5.22745 - 5.22745i) q^{67} +(2.49859 + 1.49622i) q^{68} +(4.33918 - 4.33918i) q^{69} +1.92097i q^{71} +(-7.18247 - 7.53478i) q^{72} -1.39412i q^{73} +(-5.13905 - 9.06740i) q^{74} +(1.84458 + 7.35129i) q^{76} +(-7.39938 - 7.39938i) q^{77} +(7.56600 + 2.09214i) q^{78} +5.06317 q^{79} +6.49599 q^{81} +(8.73949 + 2.41663i) q^{82} +(2.44974 + 2.44974i) q^{83} +(-22.6105 + 5.67340i) q^{84} +(7.55194 + 13.3247i) q^{86} -3.38097i q^{87} +(0.157070 - 6.56133i) q^{88} -9.36007i q^{89} +(6.84817 - 6.84817i) q^{91} +(2.43954 - 4.07388i) q^{92} +(13.1668 + 13.1668i) q^{93} +(0.946152 - 3.42166i) q^{94} +(-12.3605 - 7.80961i) q^{96} -18.6313 q^{97} +(-5.02671 + 18.1785i) q^{98} +(-6.03876 - 6.03876i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6} - 8 q^{11} + 12 q^{12} + 4 q^{14} + 16 q^{16} - 8 q^{19} + 20 q^{22} + 8 q^{24} - 16 q^{26} - 24 q^{27} + 4 q^{28} - 16 q^{29} + 16 q^{34} - 4 q^{36} + 16 q^{37} - 20 q^{38} - 60 q^{42}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.376912 1.36306i 0.266517 0.963830i
\(3\) −1.82762 1.82762i −1.05518 1.05518i −0.998386 0.0567890i \(-0.981914\pi\)
−0.0567890 0.998386i \(-0.518086\pi\)
\(4\) −1.71587 1.02751i −0.857937 0.513754i
\(5\) 0 0
\(6\) −3.18001 + 1.80230i −1.29823 + 0.735788i
\(7\) 4.50961i 1.70447i 0.523158 + 0.852236i \(0.324754\pi\)
−0.523158 + 0.852236i \(0.675246\pi\)
\(8\) −2.04729 + 1.95156i −0.723827 + 0.689982i
\(9\) 3.68037i 1.22679i
\(10\) 0 0
\(11\) −1.64080 + 1.64080i −0.494721 + 0.494721i −0.909790 0.415069i \(-0.863757\pi\)
0.415069 + 0.909790i \(0.363757\pi\)
\(12\) 1.25807 + 5.01385i 0.363174 + 1.44737i
\(13\) −1.51857 1.51857i −0.421176 0.421176i 0.464432 0.885609i \(-0.346258\pi\)
−0.885609 + 0.464432i \(0.846258\pi\)
\(14\) 6.14687 + 1.69972i 1.64282 + 0.454270i
\(15\) 0 0
\(16\) 1.88845 + 3.52615i 0.472113 + 0.881538i
\(17\) −1.45616 −0.353170 −0.176585 0.984285i \(-0.556505\pi\)
−0.176585 + 0.984285i \(0.556505\pi\)
\(18\) 5.01657 + 1.38717i 1.18242 + 0.326960i
\(19\) −2.67964 2.67964i −0.614752 0.614752i 0.329428 0.944181i \(-0.393144\pi\)
−0.944181 + 0.329428i \(0.893144\pi\)
\(20\) 0 0
\(21\) 8.24183 8.24183i 1.79852 1.79852i
\(22\) 1.61808 + 2.85495i 0.344975 + 0.608678i
\(23\) 2.37423i 0.495061i 0.968880 + 0.247530i \(0.0796190\pi\)
−0.968880 + 0.247530i \(0.920381\pi\)
\(24\) 7.30837 + 0.174953i 1.49182 + 0.0357121i
\(25\) 0 0
\(26\) −2.64228 + 1.49754i −0.518193 + 0.293692i
\(27\) 1.24345 1.24345i 0.239303 0.239303i
\(28\) 4.63366 7.73792i 0.875679 1.46233i
\(29\) 0.924966 + 0.924966i 0.171762 + 0.171762i 0.787753 0.615991i \(-0.211244\pi\)
−0.615991 + 0.787753i \(0.711244\pi\)
\(30\) 0 0
\(31\) −7.20435 −1.29394 −0.646970 0.762515i \(-0.723964\pi\)
−0.646970 + 0.762515i \(0.723964\pi\)
\(32\) 5.51814 1.24503i 0.975479 0.220092i
\(33\) 5.99752 1.04403
\(34\) −0.548843 + 1.98483i −0.0941259 + 0.340396i
\(35\) 0 0
\(36\) 3.78161 6.31505i 0.630268 1.05251i
\(37\) 5.21123 5.21123i 0.856720 0.856720i −0.134230 0.990950i \(-0.542856\pi\)
0.990950 + 0.134230i \(0.0428560\pi\)
\(38\) −4.66251 + 2.64253i −0.756359 + 0.428675i
\(39\) 5.55074i 0.888830i
\(40\) 0 0
\(41\) 6.41166i 1.00133i 0.865640 + 0.500667i \(0.166912\pi\)
−0.865640 + 0.500667i \(0.833088\pi\)
\(42\) −8.12768 14.3406i −1.25413 2.21280i
\(43\) −7.65800 + 7.65800i −1.16783 + 1.16783i −0.185118 + 0.982716i \(0.559267\pi\)
−0.982716 + 0.185118i \(0.940733\pi\)
\(44\) 4.50135 1.12947i 0.678604 0.170275i
\(45\) 0 0
\(46\) 3.23622 + 0.894875i 0.477155 + 0.131942i
\(47\) 2.51027 0.366161 0.183081 0.983098i \(-0.441393\pi\)
0.183081 + 0.983098i \(0.441393\pi\)
\(48\) 2.99308 9.89582i 0.432015 1.42834i
\(49\) −13.3366 −1.90522
\(50\) 0 0
\(51\) 2.66130 + 2.66130i 0.372657 + 0.372657i
\(52\) 1.04534 + 4.16603i 0.144962 + 0.577724i
\(53\) −1.50312 + 1.50312i −0.206470 + 0.206470i −0.802765 0.596295i \(-0.796639\pi\)
0.596295 + 0.802765i \(0.296639\pi\)
\(54\) −1.22623 2.16357i −0.166869 0.294425i
\(55\) 0 0
\(56\) −8.80078 9.23248i −1.17605 1.23374i
\(57\) 9.79472i 1.29734i
\(58\) 1.60942 0.912155i 0.211327 0.119772i
\(59\) −5.31807 + 5.31807i −0.692353 + 0.692353i −0.962749 0.270396i \(-0.912845\pi\)
0.270396 + 0.962749i \(0.412845\pi\)
\(60\) 0 0
\(61\) −1.02169 1.02169i −0.130815 0.130815i 0.638668 0.769483i \(-0.279486\pi\)
−0.769483 + 0.638668i \(0.779486\pi\)
\(62\) −2.71541 + 9.81998i −0.344857 + 1.24714i
\(63\) −16.5970 −2.09103
\(64\) 0.382800 7.99084i 0.0478499 0.998855i
\(65\) 0 0
\(66\) 2.26054 8.17499i 0.278253 1.00627i
\(67\) −5.22745 5.22745i −0.638635 0.638635i 0.311584 0.950219i \(-0.399141\pi\)
−0.950219 + 0.311584i \(0.899141\pi\)
\(68\) 2.49859 + 1.49622i 0.302998 + 0.181443i
\(69\) 4.33918 4.33918i 0.522376 0.522376i
\(70\) 0 0
\(71\) 1.92097i 0.227978i 0.993482 + 0.113989i \(0.0363628\pi\)
−0.993482 + 0.113989i \(0.963637\pi\)
\(72\) −7.18247 7.53478i −0.846462 0.887983i
\(73\) 1.39412i 0.163169i −0.996666 0.0815847i \(-0.974002\pi\)
0.996666 0.0815847i \(-0.0259981\pi\)
\(74\) −5.13905 9.06740i −0.597403 1.05406i
\(75\) 0 0
\(76\) 1.84458 + 7.35129i 0.211587 + 0.843250i
\(77\) −7.39938 7.39938i −0.843237 0.843237i
\(78\) 7.56600 + 2.09214i 0.856681 + 0.236888i
\(79\) 5.06317 0.569651 0.284825 0.958579i \(-0.408064\pi\)
0.284825 + 0.958579i \(0.408064\pi\)
\(80\) 0 0
\(81\) 6.49599 0.721777
\(82\) 8.73949 + 2.41663i 0.965115 + 0.266872i
\(83\) 2.44974 + 2.44974i 0.268894 + 0.268894i 0.828654 0.559761i \(-0.189107\pi\)
−0.559761 + 0.828654i \(0.689107\pi\)
\(84\) −22.6105 + 5.67340i −2.46701 + 0.619019i
\(85\) 0 0
\(86\) 7.55194 + 13.3247i 0.814347 + 1.43684i
\(87\) 3.38097i 0.362478i
\(88\) 0.157070 6.56133i 0.0167437 0.699440i
\(89\) 9.36007i 0.992165i −0.868275 0.496083i \(-0.834771\pi\)
0.868275 0.496083i \(-0.165229\pi\)
\(90\) 0 0
\(91\) 6.84817 6.84817i 0.717883 0.717883i
\(92\) 2.43954 4.07388i 0.254340 0.424731i
\(93\) 13.1668 + 13.1668i 1.36533 + 1.36533i
\(94\) 0.946152 3.42166i 0.0975882 0.352917i
\(95\) 0 0
\(96\) −12.3605 7.80961i −1.26154 0.797065i
\(97\) −18.6313 −1.89172 −0.945859 0.324579i \(-0.894777\pi\)
−0.945859 + 0.324579i \(0.894777\pi\)
\(98\) −5.02671 + 18.1785i −0.507774 + 1.83631i
\(99\) −6.03876 6.03876i −0.606918 0.606918i
\(100\) 0 0
\(101\) −4.84108 + 4.84108i −0.481705 + 0.481705i −0.905676 0.423971i \(-0.860636\pi\)
0.423971 + 0.905676i \(0.360636\pi\)
\(102\) 4.63059 2.62444i 0.458497 0.259858i
\(103\) 9.12540i 0.899153i −0.893242 0.449576i \(-0.851575\pi\)
0.893242 0.449576i \(-0.148425\pi\)
\(104\) 6.07255 + 0.145369i 0.595463 + 0.0142546i
\(105\) 0 0
\(106\) 1.48230 + 2.61539i 0.143974 + 0.254029i
\(107\) 10.1505 10.1505i 0.981290 0.981290i −0.0185385 0.999828i \(-0.505901\pi\)
0.999828 + 0.0185385i \(0.00590132\pi\)
\(108\) −3.41127 + 0.855951i −0.328249 + 0.0823639i
\(109\) 1.35489 + 1.35489i 0.129775 + 0.129775i 0.769011 0.639236i \(-0.220749\pi\)
−0.639236 + 0.769011i \(0.720749\pi\)
\(110\) 0 0
\(111\) −19.0483 −1.80798
\(112\) −15.9016 + 8.51618i −1.50256 + 0.804704i
\(113\) 2.56039 0.240861 0.120431 0.992722i \(-0.461572\pi\)
0.120431 + 0.992722i \(0.461572\pi\)
\(114\) 13.3508 + 3.69175i 1.25042 + 0.345764i
\(115\) 0 0
\(116\) −0.636716 2.53754i −0.0591176 0.235604i
\(117\) 5.58891 5.58891i 0.516695 0.516695i
\(118\) 5.24441 + 9.25329i 0.482787 + 0.851835i
\(119\) 6.56670i 0.601969i
\(120\) 0 0
\(121\) 5.61553i 0.510503i
\(122\) −1.77772 + 1.00754i −0.160947 + 0.0912188i
\(123\) 11.7181 11.7181i 1.05658 1.05658i
\(124\) 12.3618 + 7.40253i 1.11012 + 0.664767i
\(125\) 0 0
\(126\) −6.25561 + 22.6228i −0.557294 + 2.01540i
\(127\) −13.7354 −1.21882 −0.609409 0.792856i \(-0.708593\pi\)
−0.609409 + 0.792856i \(0.708593\pi\)
\(128\) −10.7477 3.53362i −0.949973 0.312331i
\(129\) 27.9918 2.46454
\(130\) 0 0
\(131\) 5.20726 + 5.20726i 0.454960 + 0.454960i 0.896997 0.442037i \(-0.145744\pi\)
−0.442037 + 0.896997i \(0.645744\pi\)
\(132\) −10.2910 6.16250i −0.895716 0.536377i
\(133\) 12.0841 12.0841i 1.04783 1.04783i
\(134\) −9.09563 + 5.15505i −0.785743 + 0.445329i
\(135\) 0 0
\(136\) 2.98118 2.84179i 0.255634 0.243681i
\(137\) 22.7563i 1.94420i 0.234559 + 0.972102i \(0.424635\pi\)
−0.234559 + 0.972102i \(0.575365\pi\)
\(138\) −4.27908 7.55006i −0.364260 0.642704i
\(139\) 6.28085 6.28085i 0.532734 0.532734i −0.388651 0.921385i \(-0.627059\pi\)
0.921385 + 0.388651i \(0.127059\pi\)
\(140\) 0 0
\(141\) −4.58782 4.58782i −0.386364 0.386364i
\(142\) 2.61841 + 0.724038i 0.219732 + 0.0607599i
\(143\) 4.98336 0.416729
\(144\) −12.9775 + 6.95020i −1.08146 + 0.579184i
\(145\) 0 0
\(146\) −1.90027 0.525460i −0.157268 0.0434874i
\(147\) 24.3741 + 24.3741i 2.01034 + 2.01034i
\(148\) −14.2964 + 3.58723i −1.17516 + 0.294869i
\(149\) −12.9574 + 12.9574i −1.06151 + 1.06151i −0.0635329 + 0.997980i \(0.520237\pi\)
−0.997980 + 0.0635329i \(0.979763\pi\)
\(150\) 0 0
\(151\) 14.3417i 1.16711i −0.812073 0.583555i \(-0.801661\pi\)
0.812073 0.583555i \(-0.198339\pi\)
\(152\) 10.7155 + 0.256515i 0.869142 + 0.0208061i
\(153\) 5.35920i 0.433266i
\(154\) −12.8747 + 7.29689i −1.03747 + 0.588001i
\(155\) 0 0
\(156\) 5.70343 9.52438i 0.456640 0.762560i
\(157\) 2.10564 + 2.10564i 0.168049 + 0.168049i 0.786121 0.618073i \(-0.212086\pi\)
−0.618073 + 0.786121i \(0.712086\pi\)
\(158\) 1.90837 6.90141i 0.151822 0.549047i
\(159\) 5.49426 0.435723
\(160\) 0 0
\(161\) −10.7068 −0.843817
\(162\) 2.44842 8.85444i 0.192366 0.695671i
\(163\) 5.34004 + 5.34004i 0.418265 + 0.418265i 0.884605 0.466341i \(-0.154428\pi\)
−0.466341 + 0.884605i \(0.654428\pi\)
\(164\) 6.58804 11.0016i 0.514439 0.859081i
\(165\) 0 0
\(166\) 4.26248 2.41581i 0.330833 0.187503i
\(167\) 16.0686i 1.24343i −0.783245 0.621714i \(-0.786437\pi\)
0.783245 0.621714i \(-0.213563\pi\)
\(168\) −0.788969 + 32.9579i −0.0608702 + 2.54276i
\(169\) 8.38787i 0.645221i
\(170\) 0 0
\(171\) 9.86207 9.86207i 0.754171 0.754171i
\(172\) 21.0088 5.27151i 1.60191 0.401949i
\(173\) −17.1133 17.1133i −1.30110 1.30110i −0.927649 0.373453i \(-0.878174\pi\)
−0.373453 0.927649i \(-0.621826\pi\)
\(174\) −4.60847 1.27433i −0.349367 0.0966065i
\(175\) 0 0
\(176\) −8.88430 2.68714i −0.669679 0.202551i
\(177\) 19.4388 1.46111
\(178\) −12.7584 3.52792i −0.956279 0.264429i
\(179\) 1.04482 + 1.04482i 0.0780933 + 0.0780933i 0.745075 0.666981i \(-0.232414\pi\)
−0.666981 + 0.745075i \(0.732414\pi\)
\(180\) 0 0
\(181\) 11.9886 11.9886i 0.891104 0.891104i −0.103523 0.994627i \(-0.533012\pi\)
0.994627 + 0.103523i \(0.0330115\pi\)
\(182\) −6.75332 11.9156i −0.500589 0.883245i
\(183\) 3.73453i 0.276065i
\(184\) −4.63346 4.86074i −0.341583 0.358338i
\(185\) 0 0
\(186\) 22.9099 12.9844i 1.67983 0.952065i
\(187\) 2.38927 2.38927i 0.174721 0.174721i
\(188\) −4.30732 2.57933i −0.314143 0.188117i
\(189\) 5.60748 + 5.60748i 0.407884 + 0.407884i
\(190\) 0 0
\(191\) 0.0667471 0.00482965 0.00241483 0.999997i \(-0.499231\pi\)
0.00241483 + 0.999997i \(0.499231\pi\)
\(192\) −15.3038 + 13.9046i −1.10446 + 1.00348i
\(193\) 1.09895 0.0791039 0.0395520 0.999218i \(-0.487407\pi\)
0.0395520 + 0.999218i \(0.487407\pi\)
\(194\) −7.02234 + 25.3956i −0.504175 + 1.82329i
\(195\) 0 0
\(196\) 22.8839 + 13.7034i 1.63456 + 0.978816i
\(197\) −11.9289 + 11.9289i −0.849899 + 0.849899i −0.990120 0.140222i \(-0.955218\pi\)
0.140222 + 0.990120i \(0.455218\pi\)
\(198\) −10.5073 + 5.95512i −0.746720 + 0.423212i
\(199\) 11.0397i 0.782584i 0.920267 + 0.391292i \(0.127972\pi\)
−0.920267 + 0.391292i \(0.872028\pi\)
\(200\) 0 0
\(201\) 19.1076i 1.34774i
\(202\) 4.77403 + 8.42334i 0.335899 + 0.592664i
\(203\) −4.17123 + 4.17123i −0.292763 + 0.292763i
\(204\) −1.83195 7.30097i −0.128262 0.511170i
\(205\) 0 0
\(206\) −12.4385 3.43947i −0.866631 0.239639i
\(207\) −8.73803 −0.607335
\(208\) 2.48696 8.22247i 0.172440 0.570126i
\(209\) 8.79353 0.608261
\(210\) 0 0
\(211\) −8.59737 8.59737i −0.591868 0.591868i 0.346268 0.938136i \(-0.387449\pi\)
−0.938136 + 0.346268i \(0.887449\pi\)
\(212\) 4.12364 1.03470i 0.283213 0.0710634i
\(213\) 3.51080 3.51080i 0.240556 0.240556i
\(214\) −10.0100 17.6617i −0.684266 1.20733i
\(215\) 0 0
\(216\) −0.119032 + 4.97238i −0.00809912 + 0.338328i
\(217\) 32.4888i 2.20548i
\(218\) 2.35748 1.33613i 0.159669 0.0904941i
\(219\) −2.54792 + 2.54792i −0.172172 + 0.172172i
\(220\) 0 0
\(221\) 2.21128 + 2.21128i 0.148747 + 0.148747i
\(222\) −7.17951 + 25.9639i −0.481857 + 1.74259i
\(223\) 21.4238 1.43465 0.717323 0.696741i \(-0.245367\pi\)
0.717323 + 0.696741i \(0.245367\pi\)
\(224\) 5.61460 + 24.8847i 0.375141 + 1.66268i
\(225\) 0 0
\(226\) 0.965041 3.48997i 0.0641936 0.232149i
\(227\) 8.06331 + 8.06331i 0.535181 + 0.535181i 0.922110 0.386929i \(-0.126464\pi\)
−0.386929 + 0.922110i \(0.626464\pi\)
\(228\) 10.0642 16.8065i 0.666515 1.11304i
\(229\) 4.63169 4.63169i 0.306071 0.306071i −0.537313 0.843383i \(-0.680560\pi\)
0.843383 + 0.537313i \(0.180560\pi\)
\(230\) 0 0
\(231\) 27.0465i 1.77953i
\(232\) −3.69880 0.0885445i −0.242838 0.00581323i
\(233\) 26.0672i 1.70772i 0.520502 + 0.853860i \(0.325745\pi\)
−0.520502 + 0.853860i \(0.674255\pi\)
\(234\) −5.51150 9.72455i −0.360298 0.635714i
\(235\) 0 0
\(236\) 14.5895 3.66078i 0.949695 0.238296i
\(237\) −9.25353 9.25353i −0.601081 0.601081i
\(238\) −8.95082 2.47507i −0.580196 0.160435i
\(239\) 5.12209 0.331320 0.165660 0.986183i \(-0.447025\pi\)
0.165660 + 0.986183i \(0.447025\pi\)
\(240\) 0 0
\(241\) 11.4987 0.740695 0.370347 0.928893i \(-0.379239\pi\)
0.370347 + 0.928893i \(0.379239\pi\)
\(242\) 7.65432 + 2.11656i 0.492038 + 0.136058i
\(243\) −15.6025 15.6025i −1.00090 1.00090i
\(244\) 0.703301 + 2.80290i 0.0450242 + 0.179437i
\(245\) 0 0
\(246\) −11.5558 20.3891i −0.736769 1.29996i
\(247\) 8.13847i 0.517838i
\(248\) 14.7494 14.0598i 0.936588 0.892795i
\(249\) 8.95437i 0.567460i
\(250\) 0 0
\(251\) −19.8270 + 19.8270i −1.25147 + 1.25147i −0.296408 + 0.955061i \(0.595789\pi\)
−0.955061 + 0.296408i \(0.904211\pi\)
\(252\) 28.4784 + 17.0536i 1.79397 + 1.07427i
\(253\) −3.89564 3.89564i −0.244917 0.244917i
\(254\) −5.17703 + 18.7222i −0.324836 + 1.17473i
\(255\) 0 0
\(256\) −8.86749 + 13.3179i −0.554218 + 0.832372i
\(257\) 24.2494 1.51264 0.756319 0.654203i \(-0.226996\pi\)
0.756319 + 0.654203i \(0.226996\pi\)
\(258\) 10.5504 38.1545i 0.656842 2.37540i
\(259\) 23.5006 + 23.5006i 1.46026 + 1.46026i
\(260\) 0 0
\(261\) −3.40422 + 3.40422i −0.210716 + 0.210716i
\(262\) 9.06049 5.13514i 0.559759 0.317250i
\(263\) 22.5680i 1.39160i 0.718234 + 0.695802i \(0.244951\pi\)
−0.718234 + 0.695802i \(0.755049\pi\)
\(264\) −12.2787 + 11.7045i −0.755700 + 0.720365i
\(265\) 0 0
\(266\) −11.9168 21.0261i −0.730664 1.28919i
\(267\) −17.1066 + 17.1066i −1.04691 + 1.04691i
\(268\) 3.59840 + 14.3409i 0.219807 + 0.876010i
\(269\) −5.10558 5.10558i −0.311293 0.311293i 0.534117 0.845410i \(-0.320644\pi\)
−0.845410 + 0.534117i \(0.820644\pi\)
\(270\) 0 0
\(271\) 6.67920 0.405733 0.202866 0.979206i \(-0.434974\pi\)
0.202866 + 0.979206i \(0.434974\pi\)
\(272\) −2.74989 5.13464i −0.166736 0.311333i
\(273\) −25.0317 −1.51498
\(274\) 31.0183 + 8.57713i 1.87388 + 0.518163i
\(275\) 0 0
\(276\) −11.9040 + 2.98695i −0.716539 + 0.179793i
\(277\) 11.8524 11.8524i 0.712141 0.712141i −0.254842 0.966983i \(-0.582023\pi\)
0.966983 + 0.254842i \(0.0820234\pi\)
\(278\) −6.19386 10.9285i −0.371483 0.655448i
\(279\) 26.5147i 1.58739i
\(280\) 0 0
\(281\) 0.477460i 0.0284829i −0.999899 0.0142414i \(-0.995467\pi\)
0.999899 0.0142414i \(-0.00453334\pi\)
\(282\) −7.98269 + 4.52428i −0.475362 + 0.269417i
\(283\) 0.482914 0.482914i 0.0287063 0.0287063i −0.692608 0.721314i \(-0.743538\pi\)
0.721314 + 0.692608i \(0.243538\pi\)
\(284\) 1.97382 3.29615i 0.117124 0.195591i
\(285\) 0 0
\(286\) 1.87829 6.79263i 0.111065 0.401656i
\(287\) −28.9141 −1.70674
\(288\) 4.58217 + 20.3088i 0.270007 + 1.19671i
\(289\) −14.8796 −0.875271
\(290\) 0 0
\(291\) 34.0508 + 34.0508i 1.99609 + 1.99609i
\(292\) −1.43247 + 2.39214i −0.0838290 + 0.139989i
\(293\) −7.46638 + 7.46638i −0.436190 + 0.436190i −0.890728 0.454537i \(-0.849805\pi\)
0.454537 + 0.890728i \(0.349805\pi\)
\(294\) 42.4103 24.0365i 2.47342 1.40184i
\(295\) 0 0
\(296\) −0.498857 + 20.8389i −0.0289955 + 1.21124i
\(297\) 4.08052i 0.236776i
\(298\) 12.7780 + 22.5456i 0.740207 + 1.30603i
\(299\) 3.60544 3.60544i 0.208508 0.208508i
\(300\) 0 0
\(301\) −34.5346 34.5346i −1.99054 1.99054i
\(302\) −19.5486 5.40556i −1.12490 0.311055i
\(303\) 17.6953 1.01657
\(304\) 4.38845 14.5092i 0.251695 0.832160i
\(305\) 0 0
\(306\) −7.30492 2.01995i −0.417595 0.115473i
\(307\) −2.39349 2.39349i −0.136604 0.136604i 0.635498 0.772102i \(-0.280795\pi\)
−0.772102 + 0.635498i \(0.780795\pi\)
\(308\) 5.09348 + 20.2993i 0.290228 + 1.15666i
\(309\) −16.6777 + 16.6777i −0.948764 + 0.948764i
\(310\) 0 0
\(311\) 20.4404i 1.15907i −0.814948 0.579534i \(-0.803235\pi\)
0.814948 0.579534i \(-0.196765\pi\)
\(312\) −10.8326 11.3640i −0.613276 0.643359i
\(313\) 2.46975i 0.139598i −0.997561 0.0697992i \(-0.977764\pi\)
0.997561 0.0697992i \(-0.0222359\pi\)
\(314\) 3.66376 2.07648i 0.206758 0.117182i
\(315\) 0 0
\(316\) −8.68776 5.20245i −0.488725 0.292660i
\(317\) 16.2241 + 16.2241i 0.911234 + 0.911234i 0.996369 0.0851350i \(-0.0271322\pi\)
−0.0851350 + 0.996369i \(0.527132\pi\)
\(318\) 2.07085 7.48902i 0.116128 0.419963i
\(319\) −3.03537 −0.169948
\(320\) 0 0
\(321\) −37.1026 −2.07086
\(322\) −4.03553 + 14.5941i −0.224891 + 0.813296i
\(323\) 3.90198 + 3.90198i 0.217112 + 0.217112i
\(324\) −11.1463 6.67469i −0.619240 0.370816i
\(325\) 0 0
\(326\) 9.29154 5.26608i 0.514611 0.291661i
\(327\) 4.95246i 0.273871i
\(328\) −12.5128 13.1265i −0.690902 0.724792i
\(329\) 11.3204i 0.624111i
\(330\) 0 0
\(331\) 3.42340 3.42340i 0.188167 0.188167i −0.606736 0.794903i \(-0.707521\pi\)
0.794903 + 0.606736i \(0.207521\pi\)
\(332\) −1.68632 6.72057i −0.0925487 0.368839i
\(333\) 19.1792 + 19.1792i 1.05102 + 1.05102i
\(334\) −21.9025 6.05645i −1.19845 0.331394i
\(335\) 0 0
\(336\) 44.6263 + 13.4976i 2.43456 + 0.736356i
\(337\) 5.40017 0.294166 0.147083 0.989124i \(-0.453012\pi\)
0.147083 + 0.989124i \(0.453012\pi\)
\(338\) −11.4332 3.16149i −0.621883 0.171962i
\(339\) −4.67941 4.67941i −0.254151 0.254151i
\(340\) 0 0
\(341\) 11.8209 11.8209i 0.640139 0.640139i
\(342\) −9.72548 17.1597i −0.525894 0.927893i
\(343\) 28.5754i 1.54292i
\(344\) 0.733080 30.6232i 0.0395250 1.65109i
\(345\) 0 0
\(346\) −29.7767 + 16.8763i −1.60081 + 0.907276i
\(347\) 4.07531 4.07531i 0.218774 0.218774i −0.589208 0.807982i \(-0.700560\pi\)
0.807982 + 0.589208i \(0.200560\pi\)
\(348\) −3.47397 + 5.80132i −0.186224 + 0.310983i
\(349\) 1.55681 + 1.55681i 0.0833339 + 0.0833339i 0.747545 0.664211i \(-0.231232\pi\)
−0.664211 + 0.747545i \(0.731232\pi\)
\(350\) 0 0
\(351\) −3.77655 −0.201577
\(352\) −7.01133 + 11.0970i −0.373705 + 0.591474i
\(353\) −1.34919 −0.0718103 −0.0359052 0.999355i \(-0.511431\pi\)
−0.0359052 + 0.999355i \(0.511431\pi\)
\(354\) 7.32670 26.4963i 0.389410 1.40826i
\(355\) 0 0
\(356\) −9.61755 + 16.0607i −0.509729 + 0.851216i
\(357\) −12.0014 + 12.0014i −0.635182 + 0.635182i
\(358\) 1.81795 1.03035i 0.0960819 0.0544555i
\(359\) 23.2192i 1.22546i −0.790291 0.612732i \(-0.790071\pi\)
0.790291 0.612732i \(-0.209929\pi\)
\(360\) 0 0
\(361\) 4.63903i 0.244159i
\(362\) −11.8225 20.8598i −0.621379 1.09637i
\(363\) 10.2630 10.2630i 0.538670 0.538670i
\(364\) −18.7871 + 4.71405i −0.984714 + 0.247083i
\(365\) 0 0
\(366\) 5.09040 + 1.40759i 0.266080 + 0.0735759i
\(367\) 5.16452 0.269586 0.134793 0.990874i \(-0.456963\pi\)
0.134793 + 0.990874i \(0.456963\pi\)
\(368\) −8.37189 + 4.48362i −0.436415 + 0.233725i
\(369\) −23.5973 −1.22843
\(370\) 0 0
\(371\) −6.77849 6.77849i −0.351922 0.351922i
\(372\) −9.06359 36.1216i −0.469925 1.87282i
\(373\) −18.5056 + 18.5056i −0.958185 + 0.958185i −0.999160 0.0409750i \(-0.986954\pi\)
0.0409750 + 0.999160i \(0.486954\pi\)
\(374\) −2.35618 4.15727i −0.121835 0.214967i
\(375\) 0 0
\(376\) −5.13926 + 4.89896i −0.265037 + 0.252645i
\(377\) 2.80926i 0.144684i
\(378\) 9.75687 5.52982i 0.501839 0.284423i
\(379\) −13.5254 + 13.5254i −0.694754 + 0.694754i −0.963274 0.268520i \(-0.913465\pi\)
0.268520 + 0.963274i \(0.413465\pi\)
\(380\) 0 0
\(381\) 25.1030 + 25.1030i 1.28607 + 1.28607i
\(382\) 0.0251578 0.0909805i 0.00128718 0.00465497i
\(383\) −21.9051 −1.11930 −0.559650 0.828729i \(-0.689064\pi\)
−0.559650 + 0.828729i \(0.689064\pi\)
\(384\) 13.1846 + 26.1008i 0.672825 + 1.33195i
\(385\) 0 0
\(386\) 0.414206 1.49793i 0.0210825 0.0762427i
\(387\) −28.1843 28.1843i −1.43269 1.43269i
\(388\) 31.9689 + 19.1438i 1.62298 + 0.971878i
\(389\) 4.48844 4.48844i 0.227573 0.227573i −0.584105 0.811678i \(-0.698554\pi\)
0.811678 + 0.584105i \(0.198554\pi\)
\(390\) 0 0
\(391\) 3.45725i 0.174841i
\(392\) 27.3038 26.0271i 1.37905 1.31457i
\(393\) 19.0337i 0.960126i
\(394\) 11.7637 + 20.7560i 0.592646 + 1.04567i
\(395\) 0 0
\(396\) 4.15688 + 16.5666i 0.208891 + 0.832504i
\(397\) −11.7892 11.7892i −0.591682 0.591682i 0.346404 0.938086i \(-0.387403\pi\)
−0.938086 + 0.346404i \(0.887403\pi\)
\(398\) 15.0478 + 4.16100i 0.754278 + 0.208572i
\(399\) −44.1703 −2.21128
\(400\) 0 0
\(401\) 24.9259 1.24474 0.622371 0.782722i \(-0.286170\pi\)
0.622371 + 0.782722i \(0.286170\pi\)
\(402\) 26.0448 + 7.20187i 1.29900 + 0.359196i
\(403\) 10.9403 + 10.9403i 0.544977 + 0.544977i
\(404\) 13.2809 3.33244i 0.660751 0.165795i
\(405\) 0 0
\(406\) 4.11346 + 7.25784i 0.204148 + 0.360200i
\(407\) 17.1012i 0.847675i
\(408\) −10.6422 0.254759i −0.526865 0.0126125i
\(409\) 21.5355i 1.06486i 0.846474 + 0.532430i \(0.178721\pi\)
−0.846474 + 0.532430i \(0.821279\pi\)
\(410\) 0 0
\(411\) 41.5898 41.5898i 2.05148 2.05148i
\(412\) −9.37643 + 15.6581i −0.461943 + 0.771417i
\(413\) −23.9824 23.9824i −1.18010 1.18010i
\(414\) −3.29347 + 11.9105i −0.161865 + 0.585368i
\(415\) 0 0
\(416\) −10.2704 6.48903i −0.503546 0.318151i
\(417\) −22.9580 −1.12426
\(418\) 3.31439 11.9861i 0.162112 0.586261i
\(419\) −17.2979 17.2979i −0.845060 0.845060i 0.144452 0.989512i \(-0.453858\pi\)
−0.989512 + 0.144452i \(0.953858\pi\)
\(420\) 0 0
\(421\) −19.4330 + 19.4330i −0.947105 + 0.947105i −0.998670 0.0515648i \(-0.983579\pi\)
0.0515648 + 0.998670i \(0.483579\pi\)
\(422\) −14.9592 + 8.47830i −0.728203 + 0.412717i
\(423\) 9.23874i 0.449203i
\(424\) 0.143890 6.01077i 0.00698791 0.291909i
\(425\) 0 0
\(426\) −3.46218 6.10871i −0.167743 0.295968i
\(427\) 4.60744 4.60744i 0.222970 0.222970i
\(428\) −27.8468 + 6.98729i −1.34603 + 0.337744i
\(429\) −9.10767 9.10767i −0.439723 0.439723i
\(430\) 0 0
\(431\) 28.3769 1.36687 0.683433 0.730013i \(-0.260486\pi\)
0.683433 + 0.730013i \(0.260486\pi\)
\(432\) 6.73280 + 2.03640i 0.323932 + 0.0979763i
\(433\) −9.04007 −0.434438 −0.217219 0.976123i \(-0.569699\pi\)
−0.217219 + 0.976123i \(0.569699\pi\)
\(434\) −44.2842 12.2454i −2.12571 0.587799i
\(435\) 0 0
\(436\) −0.932664 3.71699i −0.0446665 0.178012i
\(437\) 6.36208 6.36208i 0.304340 0.304340i
\(438\) 2.51263 + 4.43331i 0.120058 + 0.211832i
\(439\) 28.2949i 1.35044i 0.737615 + 0.675221i \(0.235952\pi\)
−0.737615 + 0.675221i \(0.764048\pi\)
\(440\) 0 0
\(441\) 49.0834i 2.33731i
\(442\) 3.84757 2.18066i 0.183010 0.103723i
\(443\) 13.1232 13.1232i 0.623504 0.623504i −0.322922 0.946426i \(-0.604665\pi\)
0.946426 + 0.322922i \(0.104665\pi\)
\(444\) 32.6844 + 19.5722i 1.55113 + 0.928857i
\(445\) 0 0
\(446\) 8.07489 29.2020i 0.382357 1.38275i
\(447\) 47.3624 2.24016
\(448\) 36.0355 + 1.72628i 1.70252 + 0.0815588i
\(449\) −14.3902 −0.679116 −0.339558 0.940585i \(-0.610277\pi\)
−0.339558 + 0.940585i \(0.610277\pi\)
\(450\) 0 0
\(451\) −10.5203 10.5203i −0.495380 0.495380i
\(452\) −4.39331 2.63082i −0.206644 0.123743i
\(453\) −26.2111 + 26.2111i −1.23151 + 1.23151i
\(454\) 14.0299 7.95163i 0.658458 0.373189i
\(455\) 0 0
\(456\) −19.1150 20.0526i −0.895143 0.939051i
\(457\) 4.54538i 0.212624i 0.994333 + 0.106312i \(0.0339042\pi\)
−0.994333 + 0.106312i \(0.966096\pi\)
\(458\) −4.56754 8.05902i −0.213427 0.376573i
\(459\) −1.81066 + 1.81066i −0.0845146 + 0.0845146i
\(460\) 0 0
\(461\) 19.8046 + 19.8046i 0.922393 + 0.922393i 0.997198 0.0748050i \(-0.0238334\pi\)
−0.0748050 + 0.997198i \(0.523833\pi\)
\(462\) 36.8660 + 10.1941i 1.71516 + 0.474274i
\(463\) 14.5997 0.678506 0.339253 0.940695i \(-0.389826\pi\)
0.339253 + 0.940695i \(0.389826\pi\)
\(464\) −1.51481 + 5.00833i −0.0703235 + 0.232506i
\(465\) 0 0
\(466\) 35.5312 + 9.82505i 1.64595 + 0.455137i
\(467\) −19.8105 19.8105i −0.916722 0.916722i 0.0800671 0.996789i \(-0.474487\pi\)
−0.996789 + 0.0800671i \(0.974487\pi\)
\(468\) −15.3325 + 3.84722i −0.708746 + 0.177838i
\(469\) 23.5738 23.5738i 1.08853 1.08853i
\(470\) 0 0
\(471\) 7.69661i 0.354641i
\(472\) 0.509084 21.2662i 0.0234325 0.978855i
\(473\) 25.1306i 1.15550i
\(474\) −16.1009 + 9.12537i −0.739539 + 0.419142i
\(475\) 0 0
\(476\) −6.74734 + 11.2676i −0.309264 + 0.516451i
\(477\) −5.53204 5.53204i −0.253295 0.253295i
\(478\) 1.93058 6.98172i 0.0883025 0.319337i
\(479\) 21.0378 0.961243 0.480621 0.876928i \(-0.340411\pi\)
0.480621 + 0.876928i \(0.340411\pi\)
\(480\) 0 0
\(481\) −15.8273 −0.721661
\(482\) 4.33399 15.6734i 0.197408 0.713904i
\(483\) 19.5680 + 19.5680i 0.890375 + 0.890375i
\(484\) 5.77000 9.63555i 0.262273 0.437980i
\(485\) 0 0
\(486\) −27.1480 + 15.3865i −1.23146 + 0.697944i
\(487\) 10.2724i 0.465485i −0.972538 0.232743i \(-0.925230\pi\)
0.972538 0.232743i \(-0.0747699\pi\)
\(488\) 4.08561 + 0.0978041i 0.184947 + 0.00442738i
\(489\) 19.5191i 0.882685i
\(490\) 0 0
\(491\) −5.95681 + 5.95681i −0.268827 + 0.268827i −0.828627 0.559801i \(-0.810878\pi\)
0.559801 + 0.828627i \(0.310878\pi\)
\(492\) −32.1471 + 8.06632i −1.44930 + 0.363658i
\(493\) −1.34690 1.34690i −0.0606612 0.0606612i
\(494\) 11.0932 + 3.06748i 0.499108 + 0.138013i
\(495\) 0 0
\(496\) −13.6051 25.4036i −0.610886 1.14066i
\(497\) −8.66284 −0.388581
\(498\) −12.2054 3.37501i −0.546935 0.151238i
\(499\) −2.81466 2.81466i −0.126002 0.126002i 0.641294 0.767295i \(-0.278398\pi\)
−0.767295 + 0.641294i \(0.778398\pi\)
\(500\) 0 0
\(501\) −29.3673 + 29.3673i −1.31203 + 1.31203i
\(502\) 19.5524 + 34.4985i 0.872666 + 1.53974i
\(503\) 5.49759i 0.245125i 0.992461 + 0.122563i \(0.0391113\pi\)
−0.992461 + 0.122563i \(0.960889\pi\)
\(504\) 33.9789 32.3901i 1.51354 1.44277i
\(505\) 0 0
\(506\) −6.77831 + 3.84169i −0.301333 + 0.170784i
\(507\) −15.3298 + 15.3298i −0.680821 + 0.680821i
\(508\) 23.5682 + 14.1132i 1.04567 + 0.626173i
\(509\) −4.37578 4.37578i −0.193953 0.193953i 0.603449 0.797402i \(-0.293793\pi\)
−0.797402 + 0.603449i \(0.793793\pi\)
\(510\) 0 0
\(511\) 6.28693 0.278118
\(512\) 14.8109 + 17.1066i 0.654556 + 0.756013i
\(513\) −6.66402 −0.294224
\(514\) 9.13990 33.0535i 0.403144 1.45793i
\(515\) 0 0
\(516\) −48.0304 28.7618i −2.11442 1.26617i
\(517\) −4.11887 + 4.11887i −0.181148 + 0.181148i
\(518\) 40.8904 23.1751i 1.79662 1.01826i
\(519\) 62.5532i 2.74578i
\(520\) 0 0
\(521\) 33.8729i 1.48400i 0.670401 + 0.741999i \(0.266122\pi\)
−0.670401 + 0.741999i \(0.733878\pi\)
\(522\) 3.35707 + 5.92325i 0.146935 + 0.259253i
\(523\) −27.8060 + 27.8060i −1.21587 + 1.21587i −0.246804 + 0.969065i \(0.579380\pi\)
−0.969065 + 0.246804i \(0.920620\pi\)
\(524\) −3.58450 14.2855i −0.156590 0.624065i
\(525\) 0 0
\(526\) 30.7616 + 8.50615i 1.34127 + 0.370886i
\(527\) 10.4907 0.456981
\(528\) 11.3260 + 21.1482i 0.492902 + 0.920356i
\(529\) 17.3630 0.754915
\(530\) 0 0
\(531\) −19.5724 19.5724i −0.849372 0.849372i
\(532\) −33.1514 + 8.31832i −1.43730 + 0.360645i
\(533\) 9.73658 9.73658i 0.421738 0.421738i
\(534\) 16.8697 + 29.7651i 0.730023 + 1.28806i
\(535\) 0 0
\(536\) 20.9038 + 0.500410i 0.902907 + 0.0216144i
\(537\) 3.81905i 0.164804i
\(538\) −8.88358 + 5.03487i −0.382998 + 0.217069i
\(539\) 21.8827 21.8827i 0.942553 0.942553i
\(540\) 0 0
\(541\) 3.03066 + 3.03066i 0.130298 + 0.130298i 0.769248 0.638950i \(-0.220631\pi\)
−0.638950 + 0.769248i \(0.720631\pi\)
\(542\) 2.51747 9.10416i 0.108135 0.391057i
\(543\) −43.8211 −1.88054
\(544\) −8.03529 + 1.81296i −0.344510 + 0.0777301i
\(545\) 0 0
\(546\) −9.43473 + 34.1197i −0.403769 + 1.46019i
\(547\) 18.4783 + 18.4783i 0.790074 + 0.790074i 0.981506 0.191432i \(-0.0613131\pi\)
−0.191432 + 0.981506i \(0.561313\pi\)
\(548\) 23.3823 39.0470i 0.998843 1.66801i
\(549\) 3.76021 3.76021i 0.160482 0.160482i
\(550\) 0 0
\(551\) 4.95716i 0.211182i
\(552\) −0.415378 + 17.3517i −0.0176797 + 0.738539i
\(553\) 22.8329i 0.970953i
\(554\) −11.6882 20.6228i −0.496585 0.876181i
\(555\) 0 0
\(556\) −17.2308 + 4.32353i −0.730747 + 0.183358i
\(557\) 30.2060 + 30.2060i 1.27987 + 1.27987i 0.940741 + 0.339127i \(0.110132\pi\)
0.339127 + 0.940741i \(0.389868\pi\)
\(558\) −36.1411 9.99370i −1.52998 0.423067i
\(559\) 23.2585 0.983729
\(560\) 0 0
\(561\) −8.73334 −0.368722
\(562\) −0.650807 0.179960i −0.0274526 0.00759117i
\(563\) −2.86747 2.86747i −0.120850 0.120850i 0.644095 0.764945i \(-0.277234\pi\)
−0.764945 + 0.644095i \(0.777234\pi\)
\(564\) 3.15810 + 12.5862i 0.132980 + 0.529973i
\(565\) 0 0
\(566\) −0.476226 0.840258i −0.0200173 0.0353187i
\(567\) 29.2944i 1.23025i
\(568\) −3.74890 3.93279i −0.157300 0.165016i
\(569\) 35.8628i 1.50345i 0.659479 + 0.751723i \(0.270777\pi\)
−0.659479 + 0.751723i \(0.729223\pi\)
\(570\) 0 0
\(571\) −17.6509 + 17.6509i −0.738667 + 0.738667i −0.972320 0.233653i \(-0.924932\pi\)
0.233653 + 0.972320i \(0.424932\pi\)
\(572\) −8.55082 5.12044i −0.357528 0.214096i
\(573\) −0.121988 0.121988i −0.00509613 0.00509613i
\(574\) −10.8981 + 39.4117i −0.454876 + 1.64501i
\(575\) 0 0
\(576\) 29.4092 + 1.40884i 1.22538 + 0.0587018i
\(577\) −36.1387 −1.50448 −0.752238 0.658892i \(-0.771025\pi\)
−0.752238 + 0.658892i \(0.771025\pi\)
\(578\) −5.60830 + 20.2818i −0.233274 + 0.843612i
\(579\) −2.00845 2.00845i −0.0834685 0.0834685i
\(580\) 0 0
\(581\) −11.0474 + 11.0474i −0.458322 + 0.458322i
\(582\) 59.2475 33.5792i 2.45589 1.39190i
\(583\) 4.93265i 0.204290i
\(584\) 2.72071 + 2.85417i 0.112584 + 0.118106i
\(585\) 0 0
\(586\) 7.36297 + 12.9913i 0.304161 + 0.536666i
\(587\) 11.4005 11.4005i 0.470550 0.470550i −0.431542 0.902093i \(-0.642030\pi\)
0.902093 + 0.431542i \(0.142030\pi\)
\(588\) −16.7783 66.8675i −0.691927 2.75757i
\(589\) 19.3051 + 19.3051i 0.795453 + 0.795453i
\(590\) 0 0
\(591\) 43.6029 1.79358
\(592\) 28.2167 + 8.53441i 1.15970 + 0.350762i
\(593\) 35.0454 1.43914 0.719572 0.694418i \(-0.244338\pi\)
0.719572 + 0.694418i \(0.244338\pi\)
\(594\) 5.56200 + 1.53800i 0.228212 + 0.0631048i
\(595\) 0 0
\(596\) 35.5472 8.91945i 1.45607 0.365355i
\(597\) 20.1764 20.1764i 0.825764 0.825764i
\(598\) −3.55550 6.27337i −0.145395 0.256537i
\(599\) 18.2753i 0.746707i 0.927689 + 0.373354i \(0.121792\pi\)
−0.927689 + 0.373354i \(0.878208\pi\)
\(600\) 0 0
\(601\) 0.480142i 0.0195854i −0.999952 0.00979269i \(-0.996883\pi\)
0.999952 0.00979269i \(-0.00311716\pi\)
\(602\) −60.0893 + 34.0563i −2.44906 + 1.38803i
\(603\) 19.2389 19.2389i 0.783470 0.783470i
\(604\) −14.7362 + 24.6086i −0.599608 + 1.00131i
\(605\) 0 0
\(606\) 6.66956 24.1197i 0.270932 0.979798i
\(607\) 38.6107 1.56716 0.783581 0.621290i \(-0.213391\pi\)
0.783581 + 0.621290i \(0.213391\pi\)
\(608\) −18.1229 11.4504i −0.734980 0.464376i
\(609\) 15.2468 0.617833
\(610\) 0 0
\(611\) −3.81204 3.81204i −0.154218 0.154218i
\(612\) −5.50662 + 9.19572i −0.222592 + 0.371715i
\(613\) 5.53592 5.53592i 0.223594 0.223594i −0.586416 0.810010i \(-0.699462\pi\)
0.810010 + 0.586416i \(0.199462\pi\)
\(614\) −4.16461 + 2.36034i −0.168070 + 0.0952557i
\(615\) 0 0
\(616\) 29.5890 + 0.708322i 1.19218 + 0.0285391i
\(617\) 31.8836i 1.28358i 0.766879 + 0.641792i \(0.221809\pi\)
−0.766879 + 0.641792i \(0.778191\pi\)
\(618\) 16.4468 + 29.0188i 0.661586 + 1.16731i
\(619\) −29.4054 + 29.4054i −1.18190 + 1.18190i −0.202650 + 0.979251i \(0.564955\pi\)
−0.979251 + 0.202650i \(0.935045\pi\)
\(620\) 0 0
\(621\) 2.95224 + 2.95224i 0.118469 + 0.118469i
\(622\) −27.8615 7.70422i −1.11714 0.308911i
\(623\) 42.2102 1.69112
\(624\) −19.5728 + 10.4823i −0.783537 + 0.419628i
\(625\) 0 0
\(626\) −3.36642 0.930878i −0.134549 0.0372054i
\(627\) −16.0712 16.0712i −0.641822 0.641822i
\(628\) −1.44945 5.77658i −0.0578395 0.230511i
\(629\) −7.58837 + 7.58837i −0.302568 + 0.302568i
\(630\) 0 0
\(631\) 30.7381i 1.22367i 0.790987 + 0.611833i \(0.209568\pi\)
−0.790987 + 0.611833i \(0.790432\pi\)
\(632\) −10.3658 + 9.88109i −0.412328 + 0.393049i
\(633\) 31.4254i 1.24905i
\(634\) 28.2294 15.9994i 1.12113 0.635416i
\(635\) 0 0
\(636\) −9.42747 5.64540i −0.373823 0.223855i
\(637\) 20.2525 + 20.2525i 0.802435 + 0.802435i
\(638\) −1.14407 + 4.13740i −0.0452941 + 0.163801i
\(639\) −7.06989 −0.279681
\(640\) 0 0
\(641\) 13.6348 0.538540 0.269270 0.963065i \(-0.413218\pi\)
0.269270 + 0.963065i \(0.413218\pi\)
\(642\) −13.9844 + 50.5731i −0.551921 + 1.99596i
\(643\) −14.9224 14.9224i −0.588480 0.588480i 0.348740 0.937220i \(-0.386610\pi\)
−0.937220 + 0.348740i \(0.886610\pi\)
\(644\) 18.3716 + 11.0014i 0.723942 + 0.433514i
\(645\) 0 0
\(646\) 6.78935 3.84794i 0.267123 0.151395i
\(647\) 4.87972i 0.191841i −0.995389 0.0959207i \(-0.969420\pi\)
0.995389 0.0959207i \(-0.0305795\pi\)
\(648\) −13.2992 + 12.6773i −0.522442 + 0.498013i
\(649\) 17.4518i 0.685043i
\(650\) 0 0
\(651\) −59.3771 + 59.3771i −2.32717 + 2.32717i
\(652\) −3.67591 14.6498i −0.143960 0.573730i
\(653\) 10.2913 + 10.2913i 0.402731 + 0.402731i 0.879194 0.476463i \(-0.158081\pi\)
−0.476463 + 0.879194i \(0.658081\pi\)
\(654\) −6.75050 1.86664i −0.263966 0.0729914i
\(655\) 0 0
\(656\) −22.6085 + 12.1081i −0.882713 + 0.472743i
\(657\) 5.13088 0.200174
\(658\) 15.4303 + 4.26677i 0.601537 + 0.166336i
\(659\) −21.9025 21.9025i −0.853201 0.853201i 0.137325 0.990526i \(-0.456149\pi\)
−0.990526 + 0.137325i \(0.956149\pi\)
\(660\) 0 0
\(661\) 5.40595 5.40595i 0.210267 0.210267i −0.594114 0.804381i \(-0.702497\pi\)
0.804381 + 0.594114i \(0.202497\pi\)
\(662\) −3.37599 5.95663i −0.131212 0.231511i
\(663\) 8.08276i 0.313908i
\(664\) −9.79615 0.234507i −0.380164 0.00910063i
\(665\) 0 0
\(666\) 33.3714 18.9136i 1.29311 0.732887i
\(667\) −2.19608 + 2.19608i −0.0850326 + 0.0850326i
\(668\) −16.5106 + 27.5717i −0.638816 + 1.06678i
\(669\) −39.1546 39.1546i −1.51380 1.51380i
\(670\) 0 0
\(671\) 3.35280 0.129433
\(672\) 35.2183 55.7410i 1.35857 2.15025i
\(673\) −35.3820 −1.36388 −0.681938 0.731410i \(-0.738862\pi\)
−0.681938 + 0.731410i \(0.738862\pi\)
\(674\) 2.03539 7.36076i 0.0784002 0.283526i
\(675\) 0 0
\(676\) −8.61861 + 14.3925i −0.331485 + 0.553559i
\(677\) −5.17061 + 5.17061i −0.198723 + 0.198723i −0.799452 0.600730i \(-0.794877\pi\)
0.600730 + 0.799452i \(0.294877\pi\)
\(678\) −8.14205 + 4.61460i −0.312694 + 0.177223i
\(679\) 84.0196i 3.22438i
\(680\) 0 0
\(681\) 29.4733i 1.12942i
\(682\) −11.6572 20.5681i −0.446377 0.787593i
\(683\) −26.5989 + 26.5989i −1.01778 + 1.01778i −0.0179409 + 0.999839i \(0.505711\pi\)
−0.999839 + 0.0179409i \(0.994289\pi\)
\(684\) −27.0554 + 6.78872i −1.03449 + 0.259573i
\(685\) 0 0
\(686\) −38.9500 10.7704i −1.48712 0.411216i
\(687\) −16.9299 −0.645916
\(688\) −41.4651 12.5415i −1.58084 0.478140i
\(689\) 4.56520 0.173920
\(690\) 0 0
\(691\) −21.7989 21.7989i −0.829270 0.829270i 0.158146 0.987416i \(-0.449448\pi\)
−0.987416 + 0.158146i \(0.949448\pi\)
\(692\) 11.7802 + 46.9484i 0.447818 + 1.78471i
\(693\) 27.2324 27.2324i 1.03447 1.03447i
\(694\) −4.01887 7.09093i −0.152554 0.269168i
\(695\) 0 0
\(696\) 6.59817 + 6.92182i 0.250103 + 0.262371i
\(697\) 9.33640i 0.353641i
\(698\) 2.70880 1.53524i 0.102530 0.0581099i
\(699\) 47.6409 47.6409i 1.80194 1.80194i
\(700\) 0 0
\(701\) −15.2175 15.2175i −0.574756 0.574756i 0.358698 0.933454i \(-0.383221\pi\)
−0.933454 + 0.358698i \(0.883221\pi\)
\(702\) −1.42343 + 5.14767i −0.0537237 + 0.194286i
\(703\) −27.9285 −1.05334
\(704\) 12.4833 + 13.7395i 0.470482 + 0.517826i
\(705\) 0 0
\(706\) −0.508527 + 1.83903i −0.0191387 + 0.0692130i
\(707\) −21.8313 21.8313i −0.821052 0.821052i
\(708\) −33.3545 19.9735i −1.25354 0.750650i
\(709\) 4.87350 4.87350i 0.183028 0.183028i −0.609646 0.792674i \(-0.708688\pi\)
0.792674 + 0.609646i \(0.208688\pi\)
\(710\) 0 0
\(711\) 18.6343i 0.698842i
\(712\) 18.2668 + 19.1628i 0.684576 + 0.718156i
\(713\) 17.1048i 0.640579i
\(714\) 11.8352 + 20.8822i 0.442921 + 0.781495i
\(715\) 0 0
\(716\) −0.719218 2.86633i −0.0268784 0.107120i
\(717\) −9.36121 9.36121i −0.349601 0.349601i
\(718\) −31.6492 8.75160i −1.18114 0.326607i
\(719\) 9.27351 0.345843 0.172922 0.984936i \(-0.444679\pi\)
0.172922 + 0.984936i \(0.444679\pi\)
\(720\) 0 0
\(721\) 41.1520 1.53258
\(722\) −6.32328 1.74850i −0.235328 0.0650726i
\(723\) −21.0152 21.0152i −0.781563 0.781563i
\(724\) −32.8893 + 8.25254i −1.22232 + 0.306703i
\(725\) 0 0
\(726\) −10.1209 17.8574i −0.375622 0.662751i
\(727\) 10.6056i 0.393341i −0.980470 0.196670i \(-0.936987\pi\)
0.980470 0.196670i \(-0.0630129\pi\)
\(728\) −0.655557 + 27.3848i −0.0242965 + 1.01495i
\(729\) 37.5430i 1.39048i
\(730\) 0 0
\(731\) 11.1513 11.1513i 0.412445 0.412445i
\(732\) 3.83726 6.40799i 0.141829 0.236846i
\(733\) 29.6530 + 29.6530i 1.09526 + 1.09526i 0.994957 + 0.100301i \(0.0319806\pi\)
0.100301 + 0.994957i \(0.468019\pi\)
\(734\) 1.94657 7.03956i 0.0718492 0.259835i
\(735\) 0 0
\(736\) 2.95599 + 13.1013i 0.108959 + 0.482921i
\(737\) 17.1544 0.631892
\(738\) −8.89409 + 32.1645i −0.327396 + 1.18399i
\(739\) 30.8751 + 30.8751i 1.13576 + 1.13576i 0.989202 + 0.146559i \(0.0468197\pi\)
0.146559 + 0.989202i \(0.453180\pi\)
\(740\) 0 0
\(741\) 14.8740 14.8740i 0.546410 0.546410i
\(742\) −11.7944 + 6.68461i −0.432986 + 0.245400i
\(743\) 22.3956i 0.821617i −0.911722 0.410808i \(-0.865247\pi\)
0.911722 0.410808i \(-0.134753\pi\)
\(744\) −52.6521 1.26042i −1.93032 0.0462093i
\(745\) 0 0
\(746\) 18.2493 + 32.1993i 0.668155 + 1.17890i
\(747\) −9.01594 + 9.01594i −0.329876 + 0.329876i
\(748\) −6.55468 + 1.64469i −0.239663 + 0.0601359i
\(749\) 45.7749 + 45.7749i 1.67258 + 1.67258i
\(750\) 0 0
\(751\) 20.6448 0.753341 0.376670 0.926347i \(-0.377069\pi\)
0.376670 + 0.926347i \(0.377069\pi\)
\(752\) 4.74054 + 8.85161i 0.172870 + 0.322785i
\(753\) 72.4724 2.64104
\(754\) −3.82919 1.05884i −0.139451 0.0385608i
\(755\) 0 0
\(756\) −3.86000 15.3835i −0.140387 0.559491i
\(757\) −24.1323 + 24.1323i −0.877104 + 0.877104i −0.993234 0.116130i \(-0.962951\pi\)
0.116130 + 0.993234i \(0.462951\pi\)
\(758\) 13.3381 + 23.5339i 0.484461 + 0.854788i
\(759\) 14.2395i 0.516860i
\(760\) 0 0
\(761\) 50.1874i 1.81929i −0.415383 0.909647i \(-0.636352\pi\)
0.415383 0.909647i \(-0.363648\pi\)
\(762\) 43.6786 24.7554i 1.58231 0.896792i
\(763\) −6.11004 + 6.11004i −0.221198 + 0.221198i
\(764\) −0.114530 0.0685832i −0.00414354 0.00248125i
\(765\) 0 0
\(766\) −8.25631 + 29.8581i −0.298312 + 1.07882i
\(767\) 16.1517 0.583206
\(768\) 40.5465 8.13374i 1.46309 0.293501i
\(769\) −28.6887 −1.03454 −0.517270 0.855822i \(-0.673052\pi\)
−0.517270 + 0.855822i \(0.673052\pi\)
\(770\) 0 0
\(771\) −44.3187 44.3187i −1.59610 1.59610i
\(772\) −1.88565 1.12918i −0.0678662 0.0406400i
\(773\) 37.5957 37.5957i 1.35222 1.35222i 0.469052 0.883171i \(-0.344596\pi\)
0.883171 0.469052i \(-0.155404\pi\)
\(774\) −49.0399 + 27.7939i −1.76270 + 0.999032i
\(775\) 0 0
\(776\) 38.1436 36.3601i 1.36928 1.30525i
\(777\) 85.9001i 3.08165i
\(778\) −4.42628 7.80977i −0.158690 0.279994i
\(779\) 17.1810 17.1810i 0.615572 0.615572i
\(780\) 0 0
\(781\) −3.15194 3.15194i −0.112785 0.112785i
\(782\) −4.71245 1.30308i −0.168517 0.0465980i
\(783\) 2.30030 0.0822061
\(784\) −25.1855 47.0267i −0.899481 1.67953i
\(785\) 0 0
\(786\) −25.9442 7.17404i −0.925398 0.255890i
\(787\) 3.13285 + 3.13285i 0.111674 + 0.111674i 0.760736 0.649062i \(-0.224838\pi\)
−0.649062 + 0.760736i \(0.724838\pi\)
\(788\) 32.7255 8.21145i 1.16580 0.292521i
\(789\) 41.2457 41.2457i 1.46839 1.46839i
\(790\) 0 0
\(791\) 11.5463i 0.410541i
\(792\) 24.1481 + 0.578074i 0.858066 + 0.0205410i
\(793\) 3.10304i 0.110192i
\(794\) −20.5129 + 11.6259i −0.727974 + 0.412588i
\(795\) 0 0
\(796\) 11.3434 18.9428i 0.402056 0.671408i
\(797\) −0.0562195 0.0562195i −0.00199140 0.00199140i 0.706110 0.708102i \(-0.250448\pi\)
−0.708102 + 0.706110i \(0.750448\pi\)
\(798\) −16.6483 + 60.2069i −0.589344 + 2.13130i
\(799\) −3.65536 −0.129317
\(800\) 0 0
\(801\) 34.4485 1.21718
\(802\) 9.39488 33.9756i 0.331745 1.19972i
\(803\) 2.28748 + 2.28748i 0.0807233 + 0.0807233i
\(804\) 19.6332 32.7862i 0.692409 1.15628i
\(805\) 0 0
\(806\) 19.0359 10.7888i 0.670511 0.380020i
\(807\) 18.6621i 0.656937i
\(808\) 0.463423 19.3588i 0.0163032 0.681039i
\(809\) 3.59856i 0.126518i 0.997997 + 0.0632592i \(0.0201495\pi\)
−0.997997 + 0.0632592i \(0.979851\pi\)
\(810\) 0 0
\(811\) −7.36274 + 7.36274i −0.258541 + 0.258541i −0.824460 0.565920i \(-0.808521\pi\)
0.565920 + 0.824460i \(0.308521\pi\)
\(812\) 11.4433 2.87134i 0.401581 0.100764i
\(813\) −12.2070 12.2070i −0.428119 0.428119i
\(814\) 23.3100 + 6.44564i 0.817014 + 0.225920i
\(815\) 0 0
\(816\) −4.35841 + 14.4099i −0.152575 + 0.504447i
\(817\) 41.0414 1.43586
\(818\) 29.3542 + 8.11697i 1.02634 + 0.283803i
\(819\) 25.2038 + 25.2038i 0.880691 + 0.880691i
\(820\) 0 0
\(821\) 14.7799 14.7799i 0.515824 0.515824i −0.400481 0.916305i \(-0.631157\pi\)
0.916305 + 0.400481i \(0.131157\pi\)
\(822\) −41.0138 72.3652i −1.43052 2.52403i
\(823\) 52.7544i 1.83890i −0.393203 0.919452i \(-0.628633\pi\)
0.393203 0.919452i \(-0.371367\pi\)
\(824\) 17.8088 + 18.6824i 0.620399 + 0.650831i
\(825\) 0 0
\(826\) −41.7287 + 23.6502i −1.45193 + 0.822897i
\(827\) −16.8883 + 16.8883i −0.587265 + 0.587265i −0.936890 0.349625i \(-0.886309\pi\)
0.349625 + 0.936890i \(0.386309\pi\)
\(828\) 14.9934 + 8.97840i 0.521056 + 0.312021i
\(829\) −8.55974 8.55974i −0.297292 0.297292i 0.542660 0.839952i \(-0.317417\pi\)
−0.839952 + 0.542660i \(0.817417\pi\)
\(830\) 0 0
\(831\) −43.3232 −1.50287
\(832\) −12.7160 + 11.5534i −0.440847 + 0.400541i
\(833\) 19.4201 0.672868
\(834\) −8.65313 + 31.2931i −0.299633 + 1.08359i
\(835\) 0 0
\(836\) −15.0886 9.03543i −0.521850 0.312497i
\(837\) −8.95827 + 8.95827i −0.309643 + 0.309643i
\(838\) −30.0980 + 17.0584i −1.03972 + 0.589271i
\(839\) 17.5407i 0.605572i 0.953059 + 0.302786i \(0.0979168\pi\)
−0.953059 + 0.302786i \(0.902083\pi\)
\(840\) 0 0
\(841\) 27.2889i 0.940996i
\(842\) 19.1638 + 33.8129i 0.660429 + 1.16527i
\(843\) −0.872614 + 0.872614i −0.0300544 + 0.0300544i
\(844\) 5.91814 + 23.5859i 0.203711 + 0.811860i
\(845\) 0 0
\(846\) 12.5930 + 3.48219i 0.432955 + 0.119720i
\(847\) −25.3238 −0.870137
\(848\) −8.13881 2.46166i −0.279488 0.0845337i
\(849\) −1.76516 −0.0605803
\(850\) 0 0
\(851\) 12.3726 + 12.3726i 0.424129 + 0.424129i
\(852\) −9.63148 + 2.41672i −0.329969 + 0.0827955i
\(853\) 15.3577 15.3577i 0.525839 0.525839i −0.393490 0.919329i \(-0.628732\pi\)
0.919329 + 0.393490i \(0.128732\pi\)
\(854\) −4.54363 8.01683i −0.155480 0.274330i
\(855\) 0 0
\(856\) −0.971684 + 40.5905i −0.0332115 + 1.38736i
\(857\) 17.9553i 0.613341i −0.951816 0.306671i \(-0.900785\pi\)
0.951816 0.306671i \(-0.0992150\pi\)
\(858\) −15.8471 + 8.98153i −0.541011 + 0.306624i
\(859\) −33.3048 + 33.3048i −1.13634 + 1.13634i −0.147245 + 0.989100i \(0.547040\pi\)
−0.989100 + 0.147245i \(0.952960\pi\)
\(860\) 0 0
\(861\) 52.8439 + 52.8439i 1.80091 + 1.80091i
\(862\) 10.6956 38.6795i 0.364293 1.31743i
\(863\) 32.3557 1.10140 0.550701 0.834703i \(-0.314361\pi\)
0.550701 + 0.834703i \(0.314361\pi\)
\(864\) 5.31341 8.40968i 0.180766 0.286103i
\(865\) 0 0
\(866\) −3.40731 + 12.3222i −0.115785 + 0.418724i
\(867\) 27.1942 + 27.1942i 0.923564 + 0.923564i
\(868\) −33.3825 + 55.7467i −1.13308 + 1.89217i
\(869\) −8.30766 + 8.30766i −0.281818 + 0.281818i
\(870\) 0 0
\(871\) 15.8765i 0.537956i
\(872\) −5.41803 0.129700i −0.183477 0.00439221i
\(873\) 68.5699i 2.32074i
\(874\) −6.27397 11.0699i −0.212220 0.374444i
\(875\) 0 0
\(876\) 6.98991 1.75390i 0.236167 0.0592588i
\(877\) −26.2297 26.2297i −0.885714 0.885714i 0.108394 0.994108i \(-0.465429\pi\)
−0.994108 + 0.108394i \(0.965429\pi\)
\(878\) 38.5677 + 10.6647i 1.30160 + 0.359916i
\(879\) 27.2914 0.920515
\(880\) 0 0
\(881\) −47.3359 −1.59479 −0.797394 0.603459i \(-0.793789\pi\)
−0.797394 + 0.603459i \(0.793789\pi\)
\(882\) −66.9037 18.5001i −2.25277 0.622932i
\(883\) −8.08371 8.08371i −0.272039 0.272039i 0.557882 0.829920i \(-0.311614\pi\)
−0.829920 + 0.557882i \(0.811614\pi\)
\(884\) −1.52217 6.06640i −0.0511962 0.204035i
\(885\) 0 0
\(886\) −12.9415 22.8341i −0.434778 0.767127i
\(887\) 12.9255i 0.433994i −0.976172 0.216997i \(-0.930374\pi\)
0.976172 0.216997i \(-0.0696263\pi\)
\(888\) 38.9973 37.1739i 1.30866 1.24747i
\(889\) 61.9412i 2.07744i
\(890\) 0 0
\(891\) −10.6586 + 10.6586i −0.357078 + 0.357078i
\(892\) −36.7606 22.0132i −1.23084 0.737055i
\(893\) −6.72664 6.72664i −0.225098 0.225098i
\(894\) 17.8514 64.5578i 0.597042 2.15914i
\(895\) 0 0
\(896\) 15.9352 48.4680i 0.532359 1.61920i
\(897\) −13.1787 −0.440025
\(898\) −5.42384 + 19.6147i −0.180996 + 0.654553i
\(899\) −6.66378 6.66378i −0.222250 0.222250i
\(900\) 0 0
\(901\) 2.18878 2.18878i 0.0729190 0.0729190i
\(902\) −18.3050 + 10.3746i −0.609490 + 0.345435i
\(903\) 126.232i 4.20074i
\(904\) −5.24186 + 4.99676i −0.174342 + 0.166190i
\(905\) 0 0
\(906\) 25.8481 + 45.6067i 0.858746 + 1.51518i
\(907\) −16.4991 + 16.4991i −0.547844 + 0.547844i −0.925817 0.377973i \(-0.876621\pi\)
0.377973 + 0.925817i \(0.376621\pi\)
\(908\) −5.55051 22.1207i −0.184200 0.734103i
\(909\) −17.8169 17.8169i −0.590951 0.590951i
\(910\) 0 0
\(911\) −26.6745 −0.883765 −0.441883 0.897073i \(-0.645689\pi\)
−0.441883 + 0.897073i \(0.645689\pi\)
\(912\) −34.5377 + 18.4969i −1.14366 + 0.612493i
\(913\) −8.03908 −0.266055
\(914\) 6.19563 + 1.71321i 0.204933 + 0.0566678i
\(915\) 0 0
\(916\) −12.7065 + 3.18830i −0.419834 + 0.105344i
\(917\) −23.4827 + 23.4827i −0.775467 + 0.775467i
\(918\) 1.78559 + 3.15051i 0.0589331 + 0.103982i
\(919\) 57.7425i 1.90475i −0.304932 0.952374i \(-0.598634\pi\)
0.304932 0.952374i \(-0.401366\pi\)
\(920\) 0 0
\(921\) 8.74878i 0.288282i
\(922\) 34.4595 19.5303i 1.13486 0.643197i
\(923\) 2.91714 2.91714i 0.0960188 0.0960188i
\(924\) 27.7905 46.4083i 0.914239 1.52672i
\(925\) 0 0
\(926\) 5.50280 19.9003i 0.180833 0.653965i
\(927\) 33.5848 1.10307
\(928\) 6.25571 + 3.95248i 0.205354 + 0.129747i
\(929\) 42.5386 1.39565 0.697823 0.716270i \(-0.254152\pi\)
0.697823 + 0.716270i \(0.254152\pi\)
\(930\) 0 0
\(931\) 35.7372 + 35.7372i 1.17124 + 1.17124i
\(932\) 26.7843 44.7281i 0.877349 1.46512i
\(933\) −37.3572 + 37.3572i −1.22302 + 1.22302i
\(934\) −34.4698 + 19.5362i −1.12789 + 0.639243i
\(935\) 0 0
\(936\) −0.535011 + 22.3492i −0.0174874 + 0.730507i
\(937\) 16.6795i 0.544894i −0.962171 0.272447i \(-0.912167\pi\)
0.962171 0.272447i \(-0.0878330\pi\)
\(938\) −23.2473 41.0177i −0.759050 1.33928i
\(939\) −4.51376 + 4.51376i −0.147301 + 0.147301i
\(940\) 0 0
\(941\) 9.63152 + 9.63152i 0.313979 + 0.313979i 0.846449 0.532470i \(-0.178736\pi\)
−0.532470 + 0.846449i \(0.678736\pi\)
\(942\) −10.4910 2.90094i −0.341814 0.0945179i
\(943\) −15.2227 −0.495721
\(944\) −28.7952 8.70938i −0.937205 0.283466i
\(945\) 0 0
\(946\) −34.2545 9.47200i −1.11371 0.307961i
\(947\) 3.44034 + 3.44034i 0.111796 + 0.111796i 0.760792 0.648996i \(-0.224811\pi\)
−0.648996 + 0.760792i \(0.724811\pi\)
\(948\) 6.36982 + 25.3860i 0.206882 + 0.824498i
\(949\) −2.11707 + 2.11707i −0.0687231 + 0.0687231i
\(950\) 0 0
\(951\) 59.3028i 1.92302i
\(952\) 12.8153 + 13.4440i 0.415347 + 0.435721i
\(953\) 17.6965i 0.573247i 0.958043 + 0.286623i \(0.0925328\pi\)
−0.958043 + 0.286623i \(0.907467\pi\)
\(954\) −9.62561 + 5.45542i −0.311641 + 0.176626i
\(955\) 0 0
\(956\) −8.78886 5.26299i −0.284252 0.170217i
\(957\) 5.54750 + 5.54750i 0.179325 + 0.179325i
\(958\) 7.92940 28.6759i 0.256187 0.926475i
\(959\) −102.622 −3.31384
\(960\) 0 0
\(961\) 20.9027 0.674281
\(962\) −5.96548 + 21.5735i −0.192335 + 0.695559i
\(963\) 37.3577 + 37.3577i 1.20384 + 1.20384i
\(964\) −19.7303 11.8150i −0.635470 0.380535i
\(965\) 0 0
\(966\) 34.0478 19.2970i 1.09547 0.620870i
\(967\) 15.0023i 0.482442i −0.970470 0.241221i \(-0.922452\pi\)
0.970470 0.241221i \(-0.0775479\pi\)
\(968\) −10.9591 11.4966i −0.352238 0.369516i
\(969\) 14.2627i 0.458183i
\(970\) 0 0
\(971\) −14.3135 + 14.3135i −0.459340 + 0.459340i −0.898439 0.439098i \(-0.855298\pi\)
0.439098 + 0.898439i \(0.355298\pi\)
\(972\) 10.7403 + 42.8038i 0.344494 + 1.37293i
\(973\) 28.3241 + 28.3241i 0.908030 + 0.908030i
\(974\) −14.0019 3.87177i −0.448649 0.124060i
\(975\) 0 0
\(976\) 1.67323 5.53207i 0.0535587 0.177077i
\(977\) −48.1433 −1.54024 −0.770120 0.637900i \(-0.779804\pi\)
−0.770120 + 0.637900i \(0.779804\pi\)
\(978\) −26.6058 7.35698i −0.850758 0.235250i
\(979\) 15.3580 + 15.3580i 0.490845 + 0.490845i
\(980\) 0 0
\(981\) −4.98651 + 4.98651i −0.159207 + 0.159207i
\(982\) 5.87430 + 10.3647i 0.187457 + 0.330750i
\(983\) 0.791292i 0.0252383i 0.999920 + 0.0126191i \(0.00401690\pi\)
−0.999920 + 0.0126191i \(0.995983\pi\)
\(984\) −1.12174 + 46.8588i −0.0357597 + 1.49380i
\(985\) 0 0
\(986\) −2.34357 + 1.32824i −0.0746343 + 0.0422999i
\(987\) 20.6893 20.6893i 0.658547 0.658547i
\(988\) 8.36234 13.9646i 0.266042 0.444273i
\(989\) −18.1818 18.1818i −0.578149 0.578149i
\(990\) 0 0
\(991\) −60.2424 −1.91366 −0.956832 0.290643i \(-0.906131\pi\)
−0.956832 + 0.290643i \(0.906131\pi\)
\(992\) −39.7547 + 8.96964i −1.26221 + 0.284786i
\(993\) −12.5133 −0.397099
\(994\) −3.26513 + 11.8080i −0.103563 + 0.374526i
\(995\) 0 0
\(996\) −9.20069 + 15.3646i −0.291535 + 0.486845i
\(997\) −1.15773 + 1.15773i −0.0366655 + 0.0366655i −0.725202 0.688536i \(-0.758254\pi\)
0.688536 + 0.725202i \(0.258254\pi\)
\(998\) −4.89744 + 2.77568i −0.155026 + 0.0878626i
\(999\) 12.9598i 0.410031i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.l.h.301.6 16
4.3 odd 2 1600.2.l.i.401.8 16
5.2 odd 4 400.2.q.g.349.8 16
5.3 odd 4 400.2.q.h.349.1 16
5.4 even 2 80.2.l.a.61.3 yes 16
15.14 odd 2 720.2.t.c.541.6 16
16.5 even 4 inner 400.2.l.h.101.6 16
16.11 odd 4 1600.2.l.i.1201.8 16
20.3 even 4 1600.2.q.g.849.1 16
20.7 even 4 1600.2.q.h.849.8 16
20.19 odd 2 320.2.l.a.81.1 16
40.19 odd 2 640.2.l.a.161.8 16
40.29 even 2 640.2.l.b.161.1 16
60.59 even 2 2880.2.t.c.721.8 16
80.19 odd 4 640.2.l.a.481.8 16
80.27 even 4 1600.2.q.g.49.1 16
80.29 even 4 640.2.l.b.481.1 16
80.37 odd 4 400.2.q.h.149.1 16
80.43 even 4 1600.2.q.h.49.8 16
80.53 odd 4 400.2.q.g.149.8 16
80.59 odd 4 320.2.l.a.241.1 16
80.69 even 4 80.2.l.a.21.3 16
160.59 odd 8 5120.2.a.u.1.7 8
160.69 even 8 5120.2.a.s.1.2 8
160.139 odd 8 5120.2.a.t.1.2 8
160.149 even 8 5120.2.a.v.1.7 8
240.59 even 4 2880.2.t.c.2161.5 16
240.149 odd 4 720.2.t.c.181.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.3 16 80.69 even 4
80.2.l.a.61.3 yes 16 5.4 even 2
320.2.l.a.81.1 16 20.19 odd 2
320.2.l.a.241.1 16 80.59 odd 4
400.2.l.h.101.6 16 16.5 even 4 inner
400.2.l.h.301.6 16 1.1 even 1 trivial
400.2.q.g.149.8 16 80.53 odd 4
400.2.q.g.349.8 16 5.2 odd 4
400.2.q.h.149.1 16 80.37 odd 4
400.2.q.h.349.1 16 5.3 odd 4
640.2.l.a.161.8 16 40.19 odd 2
640.2.l.a.481.8 16 80.19 odd 4
640.2.l.b.161.1 16 40.29 even 2
640.2.l.b.481.1 16 80.29 even 4
720.2.t.c.181.6 16 240.149 odd 4
720.2.t.c.541.6 16 15.14 odd 2
1600.2.l.i.401.8 16 4.3 odd 2
1600.2.l.i.1201.8 16 16.11 odd 4
1600.2.q.g.49.1 16 80.27 even 4
1600.2.q.g.849.1 16 20.3 even 4
1600.2.q.h.49.8 16 80.43 even 4
1600.2.q.h.849.8 16 20.7 even 4
2880.2.t.c.721.8 16 60.59 even 2
2880.2.t.c.2161.5 16 240.59 even 4
5120.2.a.s.1.2 8 160.69 even 8
5120.2.a.t.1.2 8 160.139 odd 8
5120.2.a.u.1.7 8 160.59 odd 8
5120.2.a.v.1.7 8 160.149 even 8