Properties

Label 5120.2.a.u.1.7
Level $5120$
Weight $2$
Character 5120.1
Self dual yes
Analytic conductor $40.883$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5120,2,Mod(1,5120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5120.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5120 = 2^{10} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,0,-8,0,-4,0,8,0,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8834058349\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 8x^{5} + 21x^{4} + 12x^{3} - 10x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 80)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.187687\) of defining polynomial
Character \(\chi\) \(=\) 5120.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58464 q^{3} -1.00000 q^{5} -4.50961 q^{7} +3.68037 q^{9} -2.32045 q^{11} +2.14759 q^{13} -2.58464 q^{15} -1.45616 q^{17} +3.78959 q^{19} -11.6557 q^{21} +2.37423 q^{23} +1.00000 q^{25} +1.75851 q^{27} -1.30810 q^{29} +7.20435 q^{31} -5.99752 q^{33} +4.50961 q^{35} -7.36979 q^{37} +5.55074 q^{39} +6.41166 q^{41} +10.8301 q^{43} -3.68037 q^{45} -2.51027 q^{47} +13.3366 q^{49} -3.76365 q^{51} -2.12574 q^{53} +2.32045 q^{55} +9.79472 q^{57} +7.52088 q^{59} +1.44489 q^{61} -16.5970 q^{63} -2.14759 q^{65} +7.39273 q^{67} +6.13653 q^{69} +1.92097 q^{71} +1.39412 q^{73} +2.58464 q^{75} +10.4643 q^{77} +5.06317 q^{79} -6.49599 q^{81} +3.46445 q^{83} +1.45616 q^{85} -3.38097 q^{87} +9.36007 q^{89} -9.68477 q^{91} +18.6207 q^{93} -3.78959 q^{95} +18.6313 q^{97} -8.54009 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{5} - 4 q^{7} + 8 q^{9} + 8 q^{11} - 4 q^{15} + 16 q^{19} - 12 q^{23} + 8 q^{25} + 16 q^{27} + 4 q^{35} + 28 q^{43} - 8 q^{45} - 20 q^{47} + 8 q^{49} + 24 q^{51} - 8 q^{55} + 16 q^{59}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.58464 1.49224 0.746122 0.665810i \(-0.231914\pi\)
0.746122 + 0.665810i \(0.231914\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.50961 −1.70447 −0.852236 0.523158i \(-0.824754\pi\)
−0.852236 + 0.523158i \(0.824754\pi\)
\(8\) 0 0
\(9\) 3.68037 1.22679
\(10\) 0 0
\(11\) −2.32045 −0.699641 −0.349820 0.936817i \(-0.613757\pi\)
−0.349820 + 0.936817i \(0.613757\pi\)
\(12\) 0 0
\(13\) 2.14759 0.595633 0.297817 0.954623i \(-0.403742\pi\)
0.297817 + 0.954623i \(0.403742\pi\)
\(14\) 0 0
\(15\) −2.58464 −0.667351
\(16\) 0 0
\(17\) −1.45616 −0.353170 −0.176585 0.984285i \(-0.556505\pi\)
−0.176585 + 0.984285i \(0.556505\pi\)
\(18\) 0 0
\(19\) 3.78959 0.869391 0.434695 0.900578i \(-0.356856\pi\)
0.434695 + 0.900578i \(0.356856\pi\)
\(20\) 0 0
\(21\) −11.6557 −2.54349
\(22\) 0 0
\(23\) 2.37423 0.495061 0.247530 0.968880i \(-0.420381\pi\)
0.247530 + 0.968880i \(0.420381\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.75851 0.338425
\(28\) 0 0
\(29\) −1.30810 −0.242908 −0.121454 0.992597i \(-0.538756\pi\)
−0.121454 + 0.992597i \(0.538756\pi\)
\(30\) 0 0
\(31\) 7.20435 1.29394 0.646970 0.762515i \(-0.276036\pi\)
0.646970 + 0.762515i \(0.276036\pi\)
\(32\) 0 0
\(33\) −5.99752 −1.04403
\(34\) 0 0
\(35\) 4.50961 0.762263
\(36\) 0 0
\(37\) −7.36979 −1.21159 −0.605793 0.795622i \(-0.707144\pi\)
−0.605793 + 0.795622i \(0.707144\pi\)
\(38\) 0 0
\(39\) 5.55074 0.888830
\(40\) 0 0
\(41\) 6.41166 1.00133 0.500667 0.865640i \(-0.333088\pi\)
0.500667 + 0.865640i \(0.333088\pi\)
\(42\) 0 0
\(43\) 10.8301 1.65157 0.825784 0.563987i \(-0.190733\pi\)
0.825784 + 0.563987i \(0.190733\pi\)
\(44\) 0 0
\(45\) −3.68037 −0.548637
\(46\) 0 0
\(47\) −2.51027 −0.366161 −0.183081 0.983098i \(-0.558607\pi\)
−0.183081 + 0.983098i \(0.558607\pi\)
\(48\) 0 0
\(49\) 13.3366 1.90522
\(50\) 0 0
\(51\) −3.76365 −0.527016
\(52\) 0 0
\(53\) −2.12574 −0.291992 −0.145996 0.989285i \(-0.546639\pi\)
−0.145996 + 0.989285i \(0.546639\pi\)
\(54\) 0 0
\(55\) 2.32045 0.312889
\(56\) 0 0
\(57\) 9.79472 1.29734
\(58\) 0 0
\(59\) 7.52088 0.979135 0.489568 0.871965i \(-0.337155\pi\)
0.489568 + 0.871965i \(0.337155\pi\)
\(60\) 0 0
\(61\) 1.44489 0.185000 0.0924999 0.995713i \(-0.470514\pi\)
0.0924999 + 0.995713i \(0.470514\pi\)
\(62\) 0 0
\(63\) −16.5970 −2.09103
\(64\) 0 0
\(65\) −2.14759 −0.266375
\(66\) 0 0
\(67\) 7.39273 0.903166 0.451583 0.892229i \(-0.350859\pi\)
0.451583 + 0.892229i \(0.350859\pi\)
\(68\) 0 0
\(69\) 6.13653 0.738751
\(70\) 0 0
\(71\) 1.92097 0.227978 0.113989 0.993482i \(-0.463637\pi\)
0.113989 + 0.993482i \(0.463637\pi\)
\(72\) 0 0
\(73\) 1.39412 0.163169 0.0815847 0.996666i \(-0.474002\pi\)
0.0815847 + 0.996666i \(0.474002\pi\)
\(74\) 0 0
\(75\) 2.58464 0.298449
\(76\) 0 0
\(77\) 10.4643 1.19252
\(78\) 0 0
\(79\) 5.06317 0.569651 0.284825 0.958579i \(-0.408064\pi\)
0.284825 + 0.958579i \(0.408064\pi\)
\(80\) 0 0
\(81\) −6.49599 −0.721777
\(82\) 0 0
\(83\) 3.46445 0.380273 0.190137 0.981758i \(-0.439107\pi\)
0.190137 + 0.981758i \(0.439107\pi\)
\(84\) 0 0
\(85\) 1.45616 0.157943
\(86\) 0 0
\(87\) −3.38097 −0.362478
\(88\) 0 0
\(89\) 9.36007 0.992165 0.496083 0.868275i \(-0.334771\pi\)
0.496083 + 0.868275i \(0.334771\pi\)
\(90\) 0 0
\(91\) −9.68477 −1.01524
\(92\) 0 0
\(93\) 18.6207 1.93087
\(94\) 0 0
\(95\) −3.78959 −0.388803
\(96\) 0 0
\(97\) 18.6313 1.89172 0.945859 0.324579i \(-0.105223\pi\)
0.945859 + 0.324579i \(0.105223\pi\)
\(98\) 0 0
\(99\) −8.54009 −0.858312
\(100\) 0 0
\(101\) −6.84632 −0.681234 −0.340617 0.940202i \(-0.610636\pi\)
−0.340617 + 0.940202i \(0.610636\pi\)
\(102\) 0 0
\(103\) 9.12540 0.899153 0.449576 0.893242i \(-0.351575\pi\)
0.449576 + 0.893242i \(0.351575\pi\)
\(104\) 0 0
\(105\) 11.6557 1.13748
\(106\) 0 0
\(107\) −14.3550 −1.38775 −0.693877 0.720094i \(-0.744099\pi\)
−0.693877 + 0.720094i \(0.744099\pi\)
\(108\) 0 0
\(109\) 1.91611 0.183530 0.0917650 0.995781i \(-0.470749\pi\)
0.0917650 + 0.995781i \(0.470749\pi\)
\(110\) 0 0
\(111\) −19.0483 −1.80798
\(112\) 0 0
\(113\) 2.56039 0.240861 0.120431 0.992722i \(-0.461572\pi\)
0.120431 + 0.992722i \(0.461572\pi\)
\(114\) 0 0
\(115\) −2.37423 −0.221398
\(116\) 0 0
\(117\) 7.90391 0.730717
\(118\) 0 0
\(119\) 6.56670 0.601969
\(120\) 0 0
\(121\) −5.61553 −0.510503
\(122\) 0 0
\(123\) 16.5718 1.49423
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −13.7354 −1.21882 −0.609409 0.792856i \(-0.708593\pi\)
−0.609409 + 0.792856i \(0.708593\pi\)
\(128\) 0 0
\(129\) 27.9918 2.46454
\(130\) 0 0
\(131\) 7.36417 0.643411 0.321705 0.946840i \(-0.395744\pi\)
0.321705 + 0.946840i \(0.395744\pi\)
\(132\) 0 0
\(133\) −17.0895 −1.48185
\(134\) 0 0
\(135\) −1.75851 −0.151348
\(136\) 0 0
\(137\) −22.7563 −1.94420 −0.972102 0.234559i \(-0.924635\pi\)
−0.972102 + 0.234559i \(0.924635\pi\)
\(138\) 0 0
\(139\) 8.88246 0.753400 0.376700 0.926335i \(-0.377059\pi\)
0.376700 + 0.926335i \(0.377059\pi\)
\(140\) 0 0
\(141\) −6.48816 −0.546402
\(142\) 0 0
\(143\) −4.98336 −0.416729
\(144\) 0 0
\(145\) 1.30810 0.108632
\(146\) 0 0
\(147\) 34.4702 2.84305
\(148\) 0 0
\(149\) 18.3245 1.50121 0.750603 0.660754i \(-0.229763\pi\)
0.750603 + 0.660754i \(0.229763\pi\)
\(150\) 0 0
\(151\) 14.3417 1.16711 0.583555 0.812073i \(-0.301661\pi\)
0.583555 + 0.812073i \(0.301661\pi\)
\(152\) 0 0
\(153\) −5.35920 −0.433266
\(154\) 0 0
\(155\) −7.20435 −0.578668
\(156\) 0 0
\(157\) 2.97783 0.237656 0.118828 0.992915i \(-0.462086\pi\)
0.118828 + 0.992915i \(0.462086\pi\)
\(158\) 0 0
\(159\) −5.49426 −0.435723
\(160\) 0 0
\(161\) −10.7068 −0.843817
\(162\) 0 0
\(163\) −7.55196 −0.591515 −0.295758 0.955263i \(-0.595572\pi\)
−0.295758 + 0.955263i \(0.595572\pi\)
\(164\) 0 0
\(165\) 5.99752 0.466906
\(166\) 0 0
\(167\) 16.0686 1.24343 0.621714 0.783245i \(-0.286437\pi\)
0.621714 + 0.783245i \(0.286437\pi\)
\(168\) 0 0
\(169\) −8.38787 −0.645221
\(170\) 0 0
\(171\) 13.9471 1.06656
\(172\) 0 0
\(173\) 24.2019 1.84004 0.920018 0.391876i \(-0.128174\pi\)
0.920018 + 0.391876i \(0.128174\pi\)
\(174\) 0 0
\(175\) −4.50961 −0.340894
\(176\) 0 0
\(177\) 19.4388 1.46111
\(178\) 0 0
\(179\) −1.47760 −0.110441 −0.0552203 0.998474i \(-0.517586\pi\)
−0.0552203 + 0.998474i \(0.517586\pi\)
\(180\) 0 0
\(181\) −16.9544 −1.26021 −0.630106 0.776509i \(-0.716988\pi\)
−0.630106 + 0.776509i \(0.716988\pi\)
\(182\) 0 0
\(183\) 3.73453 0.276065
\(184\) 0 0
\(185\) 7.36979 0.541838
\(186\) 0 0
\(187\) 3.37894 0.247092
\(188\) 0 0
\(189\) −7.93018 −0.576835
\(190\) 0 0
\(191\) −0.0667471 −0.00482965 −0.00241483 0.999997i \(-0.500769\pi\)
−0.00241483 + 0.999997i \(0.500769\pi\)
\(192\) 0 0
\(193\) −1.09895 −0.0791039 −0.0395520 0.999218i \(-0.512593\pi\)
−0.0395520 + 0.999218i \(0.512593\pi\)
\(194\) 0 0
\(195\) −5.55074 −0.397497
\(196\) 0 0
\(197\) 16.8700 1.20194 0.600969 0.799272i \(-0.294782\pi\)
0.600969 + 0.799272i \(0.294782\pi\)
\(198\) 0 0
\(199\) 11.0397 0.782584 0.391292 0.920267i \(-0.372028\pi\)
0.391292 + 0.920267i \(0.372028\pi\)
\(200\) 0 0
\(201\) 19.1076 1.34774
\(202\) 0 0
\(203\) 5.89901 0.414030
\(204\) 0 0
\(205\) −6.41166 −0.447810
\(206\) 0 0
\(207\) 8.73803 0.607335
\(208\) 0 0
\(209\) −8.79353 −0.608261
\(210\) 0 0
\(211\) 12.1585 0.837027 0.418514 0.908211i \(-0.362551\pi\)
0.418514 + 0.908211i \(0.362551\pi\)
\(212\) 0 0
\(213\) 4.96503 0.340198
\(214\) 0 0
\(215\) −10.8301 −0.738603
\(216\) 0 0
\(217\) −32.4888 −2.20548
\(218\) 0 0
\(219\) 3.60330 0.243488
\(220\) 0 0
\(221\) −3.12723 −0.210360
\(222\) 0 0
\(223\) 21.4238 1.43465 0.717323 0.696741i \(-0.245367\pi\)
0.717323 + 0.696741i \(0.245367\pi\)
\(224\) 0 0
\(225\) 3.68037 0.245358
\(226\) 0 0
\(227\) −11.4032 −0.756860 −0.378430 0.925630i \(-0.623536\pi\)
−0.378430 + 0.925630i \(0.623536\pi\)
\(228\) 0 0
\(229\) 6.55020 0.432849 0.216425 0.976299i \(-0.430560\pi\)
0.216425 + 0.976299i \(0.430560\pi\)
\(230\) 0 0
\(231\) 27.0465 1.77953
\(232\) 0 0
\(233\) −26.0672 −1.70772 −0.853860 0.520502i \(-0.825745\pi\)
−0.853860 + 0.520502i \(0.825745\pi\)
\(234\) 0 0
\(235\) 2.51027 0.163752
\(236\) 0 0
\(237\) 13.0865 0.850058
\(238\) 0 0
\(239\) 5.12209 0.331320 0.165660 0.986183i \(-0.447025\pi\)
0.165660 + 0.986183i \(0.447025\pi\)
\(240\) 0 0
\(241\) −11.4987 −0.740695 −0.370347 0.928893i \(-0.620761\pi\)
−0.370347 + 0.928893i \(0.620761\pi\)
\(242\) 0 0
\(243\) −22.0653 −1.41549
\(244\) 0 0
\(245\) −13.3366 −0.852041
\(246\) 0 0
\(247\) 8.13847 0.517838
\(248\) 0 0
\(249\) 8.95437 0.567460
\(250\) 0 0
\(251\) 28.0396 1.76985 0.884923 0.465738i \(-0.154211\pi\)
0.884923 + 0.465738i \(0.154211\pi\)
\(252\) 0 0
\(253\) −5.50927 −0.346365
\(254\) 0 0
\(255\) 3.76365 0.235689
\(256\) 0 0
\(257\) −24.2494 −1.51264 −0.756319 0.654203i \(-0.773004\pi\)
−0.756319 + 0.654203i \(0.773004\pi\)
\(258\) 0 0
\(259\) 33.2348 2.06511
\(260\) 0 0
\(261\) −4.81429 −0.297997
\(262\) 0 0
\(263\) −22.5680 −1.39160 −0.695802 0.718234i \(-0.744951\pi\)
−0.695802 + 0.718234i \(0.744951\pi\)
\(264\) 0 0
\(265\) 2.12574 0.130583
\(266\) 0 0
\(267\) 24.1924 1.48055
\(268\) 0 0
\(269\) −7.22039 −0.440235 −0.220117 0.975473i \(-0.570644\pi\)
−0.220117 + 0.975473i \(0.570644\pi\)
\(270\) 0 0
\(271\) 6.67920 0.405733 0.202866 0.979206i \(-0.434974\pi\)
0.202866 + 0.979206i \(0.434974\pi\)
\(272\) 0 0
\(273\) −25.0317 −1.51498
\(274\) 0 0
\(275\) −2.32045 −0.139928
\(276\) 0 0
\(277\) 16.7618 1.00712 0.503560 0.863960i \(-0.332023\pi\)
0.503560 + 0.863960i \(0.332023\pi\)
\(278\) 0 0
\(279\) 26.5147 1.58739
\(280\) 0 0
\(281\) 0.477460 0.0284829 0.0142414 0.999899i \(-0.495467\pi\)
0.0142414 + 0.999899i \(0.495467\pi\)
\(282\) 0 0
\(283\) 0.682944 0.0405968 0.0202984 0.999794i \(-0.493538\pi\)
0.0202984 + 0.999794i \(0.493538\pi\)
\(284\) 0 0
\(285\) −9.79472 −0.580189
\(286\) 0 0
\(287\) −28.9141 −1.70674
\(288\) 0 0
\(289\) −14.8796 −0.875271
\(290\) 0 0
\(291\) 48.1551 2.82290
\(292\) 0 0
\(293\) 10.5591 0.616866 0.308433 0.951246i \(-0.400195\pi\)
0.308433 + 0.951246i \(0.400195\pi\)
\(294\) 0 0
\(295\) −7.52088 −0.437883
\(296\) 0 0
\(297\) −4.08052 −0.236776
\(298\) 0 0
\(299\) 5.09886 0.294875
\(300\) 0 0
\(301\) −48.8393 −2.81505
\(302\) 0 0
\(303\) −17.6953 −1.01657
\(304\) 0 0
\(305\) −1.44489 −0.0827344
\(306\) 0 0
\(307\) −3.38491 −0.193187 −0.0965935 0.995324i \(-0.530795\pi\)
−0.0965935 + 0.995324i \(0.530795\pi\)
\(308\) 0 0
\(309\) 23.5859 1.34175
\(310\) 0 0
\(311\) 20.4404 1.15907 0.579534 0.814948i \(-0.303235\pi\)
0.579534 + 0.814948i \(0.303235\pi\)
\(312\) 0 0
\(313\) −2.46975 −0.139598 −0.0697992 0.997561i \(-0.522236\pi\)
−0.0697992 + 0.997561i \(0.522236\pi\)
\(314\) 0 0
\(315\) 16.5970 0.935136
\(316\) 0 0
\(317\) 22.9443 1.28868 0.644340 0.764739i \(-0.277132\pi\)
0.644340 + 0.764739i \(0.277132\pi\)
\(318\) 0 0
\(319\) 3.03537 0.169948
\(320\) 0 0
\(321\) −37.1026 −2.07086
\(322\) 0 0
\(323\) −5.51824 −0.307043
\(324\) 0 0
\(325\) 2.14759 0.119127
\(326\) 0 0
\(327\) 4.95246 0.273871
\(328\) 0 0
\(329\) 11.3204 0.624111
\(330\) 0 0
\(331\) 4.84143 0.266109 0.133054 0.991109i \(-0.457521\pi\)
0.133054 + 0.991109i \(0.457521\pi\)
\(332\) 0 0
\(333\) −27.1235 −1.48636
\(334\) 0 0
\(335\) −7.39273 −0.403908
\(336\) 0 0
\(337\) 5.40017 0.294166 0.147083 0.989124i \(-0.453012\pi\)
0.147083 + 0.989124i \(0.453012\pi\)
\(338\) 0 0
\(339\) 6.61769 0.359423
\(340\) 0 0
\(341\) −16.7173 −0.905293
\(342\) 0 0
\(343\) −28.5754 −1.54292
\(344\) 0 0
\(345\) −6.13653 −0.330379
\(346\) 0 0
\(347\) 5.76336 0.309393 0.154697 0.987962i \(-0.450560\pi\)
0.154697 + 0.987962i \(0.450560\pi\)
\(348\) 0 0
\(349\) −2.20166 −0.117852 −0.0589260 0.998262i \(-0.518768\pi\)
−0.0589260 + 0.998262i \(0.518768\pi\)
\(350\) 0 0
\(351\) 3.77655 0.201577
\(352\) 0 0
\(353\) 1.34919 0.0718103 0.0359052 0.999355i \(-0.488569\pi\)
0.0359052 + 0.999355i \(0.488569\pi\)
\(354\) 0 0
\(355\) −1.92097 −0.101955
\(356\) 0 0
\(357\) 16.9726 0.898284
\(358\) 0 0
\(359\) −23.2192 −1.22546 −0.612732 0.790291i \(-0.709929\pi\)
−0.612732 + 0.790291i \(0.709929\pi\)
\(360\) 0 0
\(361\) −4.63903 −0.244159
\(362\) 0 0
\(363\) −14.5141 −0.761794
\(364\) 0 0
\(365\) −1.39412 −0.0729716
\(366\) 0 0
\(367\) −5.16452 −0.269586 −0.134793 0.990874i \(-0.543037\pi\)
−0.134793 + 0.990874i \(0.543037\pi\)
\(368\) 0 0
\(369\) 23.5973 1.22843
\(370\) 0 0
\(371\) 9.58623 0.497692
\(372\) 0 0
\(373\) −26.1709 −1.35508 −0.677539 0.735487i \(-0.736954\pi\)
−0.677539 + 0.735487i \(0.736954\pi\)
\(374\) 0 0
\(375\) −2.58464 −0.133470
\(376\) 0 0
\(377\) −2.80926 −0.144684
\(378\) 0 0
\(379\) 19.1278 0.982530 0.491265 0.871010i \(-0.336535\pi\)
0.491265 + 0.871010i \(0.336535\pi\)
\(380\) 0 0
\(381\) −35.5011 −1.81877
\(382\) 0 0
\(383\) −21.9051 −1.11930 −0.559650 0.828729i \(-0.689064\pi\)
−0.559650 + 0.828729i \(0.689064\pi\)
\(384\) 0 0
\(385\) −10.4643 −0.533310
\(386\) 0 0
\(387\) 39.8586 2.02613
\(388\) 0 0
\(389\) 6.34761 0.321837 0.160918 0.986968i \(-0.448554\pi\)
0.160918 + 0.986968i \(0.448554\pi\)
\(390\) 0 0
\(391\) −3.45725 −0.174841
\(392\) 0 0
\(393\) 19.0337 0.960126
\(394\) 0 0
\(395\) −5.06317 −0.254756
\(396\) 0 0
\(397\) 16.6724 0.836764 0.418382 0.908271i \(-0.362597\pi\)
0.418382 + 0.908271i \(0.362597\pi\)
\(398\) 0 0
\(399\) −44.1703 −2.21128
\(400\) 0 0
\(401\) −24.9259 −1.24474 −0.622371 0.782722i \(-0.713830\pi\)
−0.622371 + 0.782722i \(0.713830\pi\)
\(402\) 0 0
\(403\) 15.4720 0.770714
\(404\) 0 0
\(405\) 6.49599 0.322789
\(406\) 0 0
\(407\) 17.1012 0.847675
\(408\) 0 0
\(409\) −21.5355 −1.06486 −0.532430 0.846474i \(-0.678721\pi\)
−0.532430 + 0.846474i \(0.678721\pi\)
\(410\) 0 0
\(411\) −58.8169 −2.90122
\(412\) 0 0
\(413\) −33.9162 −1.66891
\(414\) 0 0
\(415\) −3.46445 −0.170063
\(416\) 0 0
\(417\) 22.9580 1.12426
\(418\) 0 0
\(419\) −24.4630 −1.19509 −0.597547 0.801834i \(-0.703858\pi\)
−0.597547 + 0.801834i \(0.703858\pi\)
\(420\) 0 0
\(421\) −27.4824 −1.33941 −0.669704 0.742628i \(-0.733579\pi\)
−0.669704 + 0.742628i \(0.733579\pi\)
\(422\) 0 0
\(423\) −9.23874 −0.449203
\(424\) 0 0
\(425\) −1.45616 −0.0706341
\(426\) 0 0
\(427\) −6.51591 −0.315327
\(428\) 0 0
\(429\) −12.8802 −0.621862
\(430\) 0 0
\(431\) 28.3769 1.36687 0.683433 0.730013i \(-0.260486\pi\)
0.683433 + 0.730013i \(0.260486\pi\)
\(432\) 0 0
\(433\) −9.04007 −0.434438 −0.217219 0.976123i \(-0.569699\pi\)
−0.217219 + 0.976123i \(0.569699\pi\)
\(434\) 0 0
\(435\) 3.38097 0.162105
\(436\) 0 0
\(437\) 8.99734 0.430401
\(438\) 0 0
\(439\) −28.2949 −1.35044 −0.675221 0.737615i \(-0.735952\pi\)
−0.675221 + 0.737615i \(0.735952\pi\)
\(440\) 0 0
\(441\) 49.0834 2.33731
\(442\) 0 0
\(443\) 18.5591 0.881768 0.440884 0.897564i \(-0.354665\pi\)
0.440884 + 0.897564i \(0.354665\pi\)
\(444\) 0 0
\(445\) −9.36007 −0.443710
\(446\) 0 0
\(447\) 47.3624 2.24016
\(448\) 0 0
\(449\) −14.3902 −0.679116 −0.339558 0.940585i \(-0.610277\pi\)
−0.339558 + 0.940585i \(0.610277\pi\)
\(450\) 0 0
\(451\) −14.8779 −0.700574
\(452\) 0 0
\(453\) 37.0681 1.74161
\(454\) 0 0
\(455\) 9.68477 0.454029
\(456\) 0 0
\(457\) −4.54538 −0.212624 −0.106312 0.994333i \(-0.533904\pi\)
−0.106312 + 0.994333i \(0.533904\pi\)
\(458\) 0 0
\(459\) −2.56067 −0.119522
\(460\) 0 0
\(461\) 28.0080 1.30446 0.652230 0.758021i \(-0.273833\pi\)
0.652230 + 0.758021i \(0.273833\pi\)
\(462\) 0 0
\(463\) −14.5997 −0.678506 −0.339253 0.940695i \(-0.610174\pi\)
−0.339253 + 0.940695i \(0.610174\pi\)
\(464\) 0 0
\(465\) −18.6207 −0.863513
\(466\) 0 0
\(467\) −28.0163 −1.29644 −0.648221 0.761453i \(-0.724487\pi\)
−0.648221 + 0.761453i \(0.724487\pi\)
\(468\) 0 0
\(469\) −33.3383 −1.53942
\(470\) 0 0
\(471\) 7.69661 0.354641
\(472\) 0 0
\(473\) −25.1306 −1.15550
\(474\) 0 0
\(475\) 3.78959 0.173878
\(476\) 0 0
\(477\) −7.82349 −0.358213
\(478\) 0 0
\(479\) −21.0378 −0.961243 −0.480621 0.876928i \(-0.659589\pi\)
−0.480621 + 0.876928i \(0.659589\pi\)
\(480\) 0 0
\(481\) −15.8273 −0.721661
\(482\) 0 0
\(483\) −27.6733 −1.25918
\(484\) 0 0
\(485\) −18.6313 −0.846002
\(486\) 0 0
\(487\) 10.2724 0.465485 0.232743 0.972538i \(-0.425230\pi\)
0.232743 + 0.972538i \(0.425230\pi\)
\(488\) 0 0
\(489\) −19.5191 −0.882685
\(490\) 0 0
\(491\) −8.42420 −0.380179 −0.190089 0.981767i \(-0.560878\pi\)
−0.190089 + 0.981767i \(0.560878\pi\)
\(492\) 0 0
\(493\) 1.90480 0.0857879
\(494\) 0 0
\(495\) 8.54009 0.383849
\(496\) 0 0
\(497\) −8.66284 −0.388581
\(498\) 0 0
\(499\) 3.98054 0.178193 0.0890966 0.996023i \(-0.471602\pi\)
0.0890966 + 0.996023i \(0.471602\pi\)
\(500\) 0 0
\(501\) 41.5316 1.85550
\(502\) 0 0
\(503\) 5.49759 0.245125 0.122563 0.992461i \(-0.460889\pi\)
0.122563 + 0.992461i \(0.460889\pi\)
\(504\) 0 0
\(505\) 6.84632 0.304657
\(506\) 0 0
\(507\) −21.6796 −0.962826
\(508\) 0 0
\(509\) 6.18829 0.274291 0.137146 0.990551i \(-0.456207\pi\)
0.137146 + 0.990551i \(0.456207\pi\)
\(510\) 0 0
\(511\) −6.28693 −0.278118
\(512\) 0 0
\(513\) 6.66402 0.294224
\(514\) 0 0
\(515\) −9.12540 −0.402113
\(516\) 0 0
\(517\) 5.82496 0.256181
\(518\) 0 0
\(519\) 62.5532 2.74578
\(520\) 0 0
\(521\) 33.8729 1.48400 0.741999 0.670401i \(-0.233878\pi\)
0.741999 + 0.670401i \(0.233878\pi\)
\(522\) 0 0
\(523\) 39.3236 1.71950 0.859749 0.510716i \(-0.170620\pi\)
0.859749 + 0.510716i \(0.170620\pi\)
\(524\) 0 0
\(525\) −11.6557 −0.508697
\(526\) 0 0
\(527\) −10.4907 −0.456981
\(528\) 0 0
\(529\) −17.3630 −0.754915
\(530\) 0 0
\(531\) 27.6796 1.20119
\(532\) 0 0
\(533\) 13.7696 0.596428
\(534\) 0 0
\(535\) 14.3550 0.620622
\(536\) 0 0
\(537\) −3.81905 −0.164804
\(538\) 0 0
\(539\) −30.9468 −1.33297
\(540\) 0 0
\(541\) −4.28600 −0.184270 −0.0921349 0.995747i \(-0.529369\pi\)
−0.0921349 + 0.995747i \(0.529369\pi\)
\(542\) 0 0
\(543\) −43.8211 −1.88054
\(544\) 0 0
\(545\) −1.91611 −0.0820771
\(546\) 0 0
\(547\) −26.1322 −1.11733 −0.558667 0.829392i \(-0.688687\pi\)
−0.558667 + 0.829392i \(0.688687\pi\)
\(548\) 0 0
\(549\) 5.31774 0.226956
\(550\) 0 0
\(551\) −4.95716 −0.211182
\(552\) 0 0
\(553\) −22.8329 −0.970953
\(554\) 0 0
\(555\) 19.0483 0.808553
\(556\) 0 0
\(557\) −42.7177 −1.81001 −0.905003 0.425405i \(-0.860132\pi\)
−0.905003 + 0.425405i \(0.860132\pi\)
\(558\) 0 0
\(559\) 23.2585 0.983729
\(560\) 0 0
\(561\) 8.73334 0.368722
\(562\) 0 0
\(563\) −4.05522 −0.170907 −0.0854536 0.996342i \(-0.527234\pi\)
−0.0854536 + 0.996342i \(0.527234\pi\)
\(564\) 0 0
\(565\) −2.56039 −0.107716
\(566\) 0 0
\(567\) 29.2944 1.23025
\(568\) 0 0
\(569\) −35.8628 −1.50345 −0.751723 0.659479i \(-0.770777\pi\)
−0.751723 + 0.659479i \(0.770777\pi\)
\(570\) 0 0
\(571\) 24.9621 1.04463 0.522317 0.852752i \(-0.325068\pi\)
0.522317 + 0.852752i \(0.325068\pi\)
\(572\) 0 0
\(573\) −0.172517 −0.00720702
\(574\) 0 0
\(575\) 2.37423 0.0990122
\(576\) 0 0
\(577\) 36.1387 1.50448 0.752238 0.658892i \(-0.228975\pi\)
0.752238 + 0.658892i \(0.228975\pi\)
\(578\) 0 0
\(579\) −2.84038 −0.118042
\(580\) 0 0
\(581\) −15.6233 −0.648165
\(582\) 0 0
\(583\) 4.93265 0.204290
\(584\) 0 0
\(585\) −7.90391 −0.326786
\(586\) 0 0
\(587\) −16.1228 −0.665459 −0.332729 0.943022i \(-0.607970\pi\)
−0.332729 + 0.943022i \(0.607970\pi\)
\(588\) 0 0
\(589\) 27.3015 1.12494
\(590\) 0 0
\(591\) 43.6029 1.79358
\(592\) 0 0
\(593\) 35.0454 1.43914 0.719572 0.694418i \(-0.244338\pi\)
0.719572 + 0.694418i \(0.244338\pi\)
\(594\) 0 0
\(595\) −6.56670 −0.269209
\(596\) 0 0
\(597\) 28.5337 1.16781
\(598\) 0 0
\(599\) −18.2753 −0.746707 −0.373354 0.927689i \(-0.621792\pi\)
−0.373354 + 0.927689i \(0.621792\pi\)
\(600\) 0 0
\(601\) 0.480142 0.0195854 0.00979269 0.999952i \(-0.496883\pi\)
0.00979269 + 0.999952i \(0.496883\pi\)
\(602\) 0 0
\(603\) 27.2080 1.10799
\(604\) 0 0
\(605\) 5.61553 0.228304
\(606\) 0 0
\(607\) 38.6107 1.56716 0.783581 0.621290i \(-0.213391\pi\)
0.783581 + 0.621290i \(0.213391\pi\)
\(608\) 0 0
\(609\) 15.2468 0.617833
\(610\) 0 0
\(611\) −5.39103 −0.218098
\(612\) 0 0
\(613\) −7.82897 −0.316209 −0.158105 0.987422i \(-0.550538\pi\)
−0.158105 + 0.987422i \(0.550538\pi\)
\(614\) 0 0
\(615\) −16.5718 −0.668241
\(616\) 0 0
\(617\) −31.8836 −1.28358 −0.641792 0.766879i \(-0.721809\pi\)
−0.641792 + 0.766879i \(0.721809\pi\)
\(618\) 0 0
\(619\) −41.5855 −1.67146 −0.835730 0.549140i \(-0.814955\pi\)
−0.835730 + 0.549140i \(0.814955\pi\)
\(620\) 0 0
\(621\) 4.17510 0.167541
\(622\) 0 0
\(623\) −42.2102 −1.69112
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −22.7281 −0.907674
\(628\) 0 0
\(629\) 10.7316 0.427896
\(630\) 0 0
\(631\) −30.7381 −1.22367 −0.611833 0.790987i \(-0.709568\pi\)
−0.611833 + 0.790987i \(0.709568\pi\)
\(632\) 0 0
\(633\) 31.4254 1.24905
\(634\) 0 0
\(635\) 13.7354 0.545072
\(636\) 0 0
\(637\) 28.6414 1.13481
\(638\) 0 0
\(639\) 7.06989 0.279681
\(640\) 0 0
\(641\) 13.6348 0.538540 0.269270 0.963065i \(-0.413218\pi\)
0.269270 + 0.963065i \(0.413218\pi\)
\(642\) 0 0
\(643\) 21.1034 0.832237 0.416118 0.909310i \(-0.363390\pi\)
0.416118 + 0.909310i \(0.363390\pi\)
\(644\) 0 0
\(645\) −27.9918 −1.10218
\(646\) 0 0
\(647\) 4.87972 0.191841 0.0959207 0.995389i \(-0.469420\pi\)
0.0959207 + 0.995389i \(0.469420\pi\)
\(648\) 0 0
\(649\) −17.4518 −0.685043
\(650\) 0 0
\(651\) −83.9719 −3.29112
\(652\) 0 0
\(653\) −14.5541 −0.569548 −0.284774 0.958595i \(-0.591919\pi\)
−0.284774 + 0.958595i \(0.591919\pi\)
\(654\) 0 0
\(655\) −7.36417 −0.287742
\(656\) 0 0
\(657\) 5.13088 0.200174
\(658\) 0 0
\(659\) 30.9748 1.20661 0.603304 0.797511i \(-0.293851\pi\)
0.603304 + 0.797511i \(0.293851\pi\)
\(660\) 0 0
\(661\) −7.64517 −0.297363 −0.148681 0.988885i \(-0.547503\pi\)
−0.148681 + 0.988885i \(0.547503\pi\)
\(662\) 0 0
\(663\) −8.08276 −0.313908
\(664\) 0 0
\(665\) 17.0895 0.662704
\(666\) 0 0
\(667\) −3.10573 −0.120254
\(668\) 0 0
\(669\) 55.3729 2.14084
\(670\) 0 0
\(671\) −3.35280 −0.129433
\(672\) 0 0
\(673\) 35.3820 1.36388 0.681938 0.731410i \(-0.261138\pi\)
0.681938 + 0.731410i \(0.261138\pi\)
\(674\) 0 0
\(675\) 1.75851 0.0676850
\(676\) 0 0
\(677\) 7.31235 0.281036 0.140518 0.990078i \(-0.455123\pi\)
0.140518 + 0.990078i \(0.455123\pi\)
\(678\) 0 0
\(679\) −84.0196 −3.22438
\(680\) 0 0
\(681\) −29.4733 −1.12942
\(682\) 0 0
\(683\) 37.6166 1.43936 0.719679 0.694307i \(-0.244289\pi\)
0.719679 + 0.694307i \(0.244289\pi\)
\(684\) 0 0
\(685\) 22.7563 0.869474
\(686\) 0 0
\(687\) 16.9299 0.645916
\(688\) 0 0
\(689\) −4.56520 −0.173920
\(690\) 0 0
\(691\) 30.8283 1.17276 0.586382 0.810034i \(-0.300552\pi\)
0.586382 + 0.810034i \(0.300552\pi\)
\(692\) 0 0
\(693\) 38.5125 1.46297
\(694\) 0 0
\(695\) −8.88246 −0.336931
\(696\) 0 0
\(697\) −9.33640 −0.353641
\(698\) 0 0
\(699\) −67.3744 −2.54833
\(700\) 0 0
\(701\) 21.5208 0.812828 0.406414 0.913689i \(-0.366779\pi\)
0.406414 + 0.913689i \(0.366779\pi\)
\(702\) 0 0
\(703\) −27.9285 −1.05334
\(704\) 0 0
\(705\) 6.48816 0.244358
\(706\) 0 0
\(707\) 30.8742 1.16114
\(708\) 0 0
\(709\) 6.89217 0.258841 0.129421 0.991590i \(-0.458688\pi\)
0.129421 + 0.991590i \(0.458688\pi\)
\(710\) 0 0
\(711\) 18.6343 0.698842
\(712\) 0 0
\(713\) 17.1048 0.640579
\(714\) 0 0
\(715\) 4.98336 0.186367
\(716\) 0 0
\(717\) 13.2388 0.494410
\(718\) 0 0
\(719\) 9.27351 0.345843 0.172922 0.984936i \(-0.444679\pi\)
0.172922 + 0.984936i \(0.444679\pi\)
\(720\) 0 0
\(721\) −41.1520 −1.53258
\(722\) 0 0
\(723\) −29.7199 −1.10530
\(724\) 0 0
\(725\) −1.30810 −0.0485816
\(726\) 0 0
\(727\) −10.6056 −0.393341 −0.196670 0.980470i \(-0.563013\pi\)
−0.196670 + 0.980470i \(0.563013\pi\)
\(728\) 0 0
\(729\) −37.5430 −1.39048
\(730\) 0 0
\(731\) −15.7703 −0.583285
\(732\) 0 0
\(733\) 41.9357 1.54893 0.774465 0.632617i \(-0.218019\pi\)
0.774465 + 0.632617i \(0.218019\pi\)
\(734\) 0 0
\(735\) −34.4702 −1.27145
\(736\) 0 0
\(737\) −17.1544 −0.631892
\(738\) 0 0
\(739\) 43.6641 1.60621 0.803104 0.595839i \(-0.203180\pi\)
0.803104 + 0.595839i \(0.203180\pi\)
\(740\) 0 0
\(741\) 21.0350 0.772741
\(742\) 0 0
\(743\) 22.3956 0.821617 0.410808 0.911722i \(-0.365247\pi\)
0.410808 + 0.911722i \(0.365247\pi\)
\(744\) 0 0
\(745\) −18.3245 −0.671360
\(746\) 0 0
\(747\) 12.7505 0.466515
\(748\) 0 0
\(749\) 64.7355 2.36539
\(750\) 0 0
\(751\) 20.6448 0.753341 0.376670 0.926347i \(-0.377069\pi\)
0.376670 + 0.926347i \(0.377069\pi\)
\(752\) 0 0
\(753\) 72.4724 2.64104
\(754\) 0 0
\(755\) −14.3417 −0.521948
\(756\) 0 0
\(757\) −34.1282 −1.24041 −0.620206 0.784439i \(-0.712951\pi\)
−0.620206 + 0.784439i \(0.712951\pi\)
\(758\) 0 0
\(759\) −14.2395 −0.516860
\(760\) 0 0
\(761\) 50.1874 1.81929 0.909647 0.415383i \(-0.136352\pi\)
0.909647 + 0.415383i \(0.136352\pi\)
\(762\) 0 0
\(763\) −8.64090 −0.312822
\(764\) 0 0
\(765\) 5.35920 0.193762
\(766\) 0 0
\(767\) 16.1517 0.583206
\(768\) 0 0
\(769\) −28.6887 −1.03454 −0.517270 0.855822i \(-0.673052\pi\)
−0.517270 + 0.855822i \(0.673052\pi\)
\(770\) 0 0
\(771\) −62.6761 −2.25722
\(772\) 0 0
\(773\) −53.1683 −1.91233 −0.956166 0.292826i \(-0.905404\pi\)
−0.956166 + 0.292826i \(0.905404\pi\)
\(774\) 0 0
\(775\) 7.20435 0.258788
\(776\) 0 0
\(777\) 85.9001 3.08165
\(778\) 0 0
\(779\) 24.2976 0.870550
\(780\) 0 0
\(781\) −4.45752 −0.159502
\(782\) 0 0
\(783\) −2.30030 −0.0822061
\(784\) 0 0
\(785\) −2.97783 −0.106283
\(786\) 0 0
\(787\) 4.43052 0.157931 0.0789655 0.996877i \(-0.474838\pi\)
0.0789655 + 0.996877i \(0.474838\pi\)
\(788\) 0 0
\(789\) −58.3302 −2.07661
\(790\) 0 0
\(791\) −11.5463 −0.410541
\(792\) 0 0
\(793\) 3.10304 0.110192
\(794\) 0 0
\(795\) 5.49426 0.194861
\(796\) 0 0
\(797\) −0.0795064 −0.00281626 −0.00140813 0.999999i \(-0.500448\pi\)
−0.00140813 + 0.999999i \(0.500448\pi\)
\(798\) 0 0
\(799\) 3.65536 0.129317
\(800\) 0 0
\(801\) 34.4485 1.21718
\(802\) 0 0
\(803\) −3.23498 −0.114160
\(804\) 0 0
\(805\) 10.7068 0.377366
\(806\) 0 0
\(807\) −18.6621 −0.656937
\(808\) 0 0
\(809\) 3.59856 0.126518 0.0632592 0.997997i \(-0.479851\pi\)
0.0632592 + 0.997997i \(0.479851\pi\)
\(810\) 0 0
\(811\) −10.4125 −0.365632 −0.182816 0.983147i \(-0.558521\pi\)
−0.182816 + 0.983147i \(0.558521\pi\)
\(812\) 0 0
\(813\) 17.2633 0.605452
\(814\) 0 0
\(815\) 7.55196 0.264534
\(816\) 0 0
\(817\) 41.0414 1.43586
\(818\) 0 0
\(819\) −35.6435 −1.24549
\(820\) 0 0
\(821\) −20.9020 −0.729485 −0.364742 0.931108i \(-0.618843\pi\)
−0.364742 + 0.931108i \(0.618843\pi\)
\(822\) 0 0
\(823\) −52.7544 −1.83890 −0.919452 0.393203i \(-0.871367\pi\)
−0.919452 + 0.393203i \(0.871367\pi\)
\(824\) 0 0
\(825\) −5.99752 −0.208807
\(826\) 0 0
\(827\) −23.8837 −0.830518 −0.415259 0.909703i \(-0.636309\pi\)
−0.415259 + 0.909703i \(0.636309\pi\)
\(828\) 0 0
\(829\) 12.1053 0.420434 0.210217 0.977655i \(-0.432583\pi\)
0.210217 + 0.977655i \(0.432583\pi\)
\(830\) 0 0
\(831\) 43.3232 1.50287
\(832\) 0 0
\(833\) −19.4201 −0.672868
\(834\) 0 0
\(835\) −16.0686 −0.556078
\(836\) 0 0
\(837\) 12.6689 0.437902
\(838\) 0 0
\(839\) 17.5407 0.605572 0.302786 0.953059i \(-0.402083\pi\)
0.302786 + 0.953059i \(0.402083\pi\)
\(840\) 0 0
\(841\) −27.2889 −0.940996
\(842\) 0 0
\(843\) 1.23406 0.0425034
\(844\) 0 0
\(845\) 8.38787 0.288552
\(846\) 0 0
\(847\) 25.3238 0.870137
\(848\) 0 0
\(849\) 1.76516 0.0605803
\(850\) 0 0
\(851\) −17.4976 −0.599808
\(852\) 0 0
\(853\) 21.7191 0.743648 0.371824 0.928303i \(-0.378732\pi\)
0.371824 + 0.928303i \(0.378732\pi\)
\(854\) 0 0
\(855\) −13.9471 −0.476980
\(856\) 0 0
\(857\) −17.9553 −0.613341 −0.306671 0.951816i \(-0.599215\pi\)
−0.306671 + 0.951816i \(0.599215\pi\)
\(858\) 0 0
\(859\) 47.1001 1.60703 0.803517 0.595282i \(-0.202960\pi\)
0.803517 + 0.595282i \(0.202960\pi\)
\(860\) 0 0
\(861\) −74.7325 −2.54688
\(862\) 0 0
\(863\) 32.3557 1.10140 0.550701 0.834703i \(-0.314361\pi\)
0.550701 + 0.834703i \(0.314361\pi\)
\(864\) 0 0
\(865\) −24.2019 −0.822889
\(866\) 0 0
\(867\) −38.4584 −1.30612
\(868\) 0 0
\(869\) −11.7488 −0.398551
\(870\) 0 0
\(871\) 15.8765 0.537956
\(872\) 0 0
\(873\) 68.5699 2.32074
\(874\) 0 0
\(875\) 4.50961 0.152453
\(876\) 0 0
\(877\) 37.0944 1.25259 0.626295 0.779586i \(-0.284571\pi\)
0.626295 + 0.779586i \(0.284571\pi\)
\(878\) 0 0
\(879\) 27.2914 0.920515
\(880\) 0 0
\(881\) 47.3359 1.59479 0.797394 0.603459i \(-0.206211\pi\)
0.797394 + 0.603459i \(0.206211\pi\)
\(882\) 0 0
\(883\) −11.4321 −0.384721 −0.192360 0.981324i \(-0.561614\pi\)
−0.192360 + 0.981324i \(0.561614\pi\)
\(884\) 0 0
\(885\) −19.4388 −0.653427
\(886\) 0 0
\(887\) −12.9255 −0.433994 −0.216997 0.976172i \(-0.569626\pi\)
−0.216997 + 0.976172i \(0.569626\pi\)
\(888\) 0 0
\(889\) 61.9412 2.07744
\(890\) 0 0
\(891\) 15.0736 0.504985
\(892\) 0 0
\(893\) −9.51291 −0.318337
\(894\) 0 0
\(895\) 1.47760 0.0493906
\(896\) 0 0
\(897\) 13.1787 0.440025
\(898\) 0 0
\(899\) −9.42401 −0.314308
\(900\) 0 0
\(901\) 3.09541 0.103123
\(902\) 0 0
\(903\) −126.232 −4.20074
\(904\) 0 0
\(905\) 16.9544 0.563584
\(906\) 0 0
\(907\) 23.3332 0.774768 0.387384 0.921918i \(-0.373379\pi\)
0.387384 + 0.921918i \(0.373379\pi\)
\(908\) 0 0
\(909\) −25.1970 −0.835730
\(910\) 0 0
\(911\) −26.6745 −0.883765 −0.441883 0.897073i \(-0.645689\pi\)
−0.441883 + 0.897073i \(0.645689\pi\)
\(912\) 0 0
\(913\) −8.03908 −0.266055
\(914\) 0 0
\(915\) −3.73453 −0.123460
\(916\) 0 0
\(917\) −33.2095 −1.09668
\(918\) 0 0
\(919\) 57.7425 1.90475 0.952374 0.304932i \(-0.0986336\pi\)
0.952374 + 0.304932i \(0.0986336\pi\)
\(920\) 0 0
\(921\) −8.74878 −0.288282
\(922\) 0 0
\(923\) 4.12546 0.135791
\(924\) 0 0
\(925\) −7.36979 −0.242317
\(926\) 0 0
\(927\) 33.5848 1.10307
\(928\) 0 0
\(929\) 42.5386 1.39565 0.697823 0.716270i \(-0.254152\pi\)
0.697823 + 0.716270i \(0.254152\pi\)
\(930\) 0 0
\(931\) 50.5400 1.65638
\(932\) 0 0
\(933\) 52.8310 1.72961
\(934\) 0 0
\(935\) −3.37894 −0.110503
\(936\) 0 0
\(937\) 16.6795 0.544894 0.272447 0.962171i \(-0.412167\pi\)
0.272447 + 0.962171i \(0.412167\pi\)
\(938\) 0 0
\(939\) −6.38342 −0.208315
\(940\) 0 0
\(941\) 13.6210 0.444033 0.222016 0.975043i \(-0.428736\pi\)
0.222016 + 0.975043i \(0.428736\pi\)
\(942\) 0 0
\(943\) 15.2227 0.495721
\(944\) 0 0
\(945\) 7.93018 0.257969
\(946\) 0 0
\(947\) 4.86538 0.158104 0.0790518 0.996871i \(-0.474811\pi\)
0.0790518 + 0.996871i \(0.474811\pi\)
\(948\) 0 0
\(949\) 2.99399 0.0971891
\(950\) 0 0
\(951\) 59.3028 1.92302
\(952\) 0 0
\(953\) 17.6965 0.573247 0.286623 0.958043i \(-0.407467\pi\)
0.286623 + 0.958043i \(0.407467\pi\)
\(954\) 0 0
\(955\) 0.0667471 0.00215989
\(956\) 0 0
\(957\) 7.84535 0.253604
\(958\) 0 0
\(959\) 102.622 3.31384
\(960\) 0 0
\(961\) 20.9027 0.674281
\(962\) 0 0
\(963\) −52.8318 −1.70248
\(964\) 0 0
\(965\) 1.09895 0.0353763
\(966\) 0 0
\(967\) 15.0023 0.482442 0.241221 0.970470i \(-0.422452\pi\)
0.241221 + 0.970470i \(0.422452\pi\)
\(968\) 0 0
\(969\) −14.2627 −0.458183
\(970\) 0 0
\(971\) −20.2423 −0.649606 −0.324803 0.945782i \(-0.605298\pi\)
−0.324803 + 0.945782i \(0.605298\pi\)
\(972\) 0 0
\(973\) −40.0564 −1.28415
\(974\) 0 0
\(975\) 5.55074 0.177766
\(976\) 0 0
\(977\) −48.1433 −1.54024 −0.770120 0.637900i \(-0.779804\pi\)
−0.770120 + 0.637900i \(0.779804\pi\)
\(978\) 0 0
\(979\) −21.7195 −0.694159
\(980\) 0 0
\(981\) 7.05199 0.225153
\(982\) 0 0
\(983\) 0.791292 0.0252383 0.0126191 0.999920i \(-0.495983\pi\)
0.0126191 + 0.999920i \(0.495983\pi\)
\(984\) 0 0
\(985\) −16.8700 −0.537523
\(986\) 0 0
\(987\) 29.2590 0.931326
\(988\) 0 0
\(989\) 25.7130 0.817626
\(990\) 0 0
\(991\) 60.2424 1.91366 0.956832 0.290643i \(-0.0938690\pi\)
0.956832 + 0.290643i \(0.0938690\pi\)
\(992\) 0 0
\(993\) 12.5133 0.397099
\(994\) 0 0
\(995\) −11.0397 −0.349982
\(996\) 0 0
\(997\) 1.63727 0.0518529 0.0259264 0.999664i \(-0.491746\pi\)
0.0259264 + 0.999664i \(0.491746\pi\)
\(998\) 0 0
\(999\) −12.9598 −0.410031
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5120.2.a.u.1.7 8
4.3 odd 2 5120.2.a.s.1.2 8
8.3 odd 2 5120.2.a.v.1.7 8
8.5 even 2 5120.2.a.t.1.2 8
32.3 odd 8 640.2.l.b.161.1 16
32.5 even 8 320.2.l.a.241.1 16
32.11 odd 8 640.2.l.b.481.1 16
32.13 even 8 320.2.l.a.81.1 16
32.19 odd 8 80.2.l.a.61.3 yes 16
32.21 even 8 640.2.l.a.481.8 16
32.27 odd 8 80.2.l.a.21.3 16
32.29 even 8 640.2.l.a.161.8 16
96.5 odd 8 2880.2.t.c.2161.5 16
96.59 even 8 720.2.t.c.181.6 16
96.77 odd 8 2880.2.t.c.721.8 16
96.83 even 8 720.2.t.c.541.6 16
160.13 odd 8 1600.2.q.h.849.8 16
160.19 odd 8 400.2.l.h.301.6 16
160.27 even 8 400.2.q.g.149.8 16
160.37 odd 8 1600.2.q.h.49.8 16
160.59 odd 8 400.2.l.h.101.6 16
160.69 even 8 1600.2.l.i.1201.8 16
160.77 odd 8 1600.2.q.g.849.1 16
160.83 even 8 400.2.q.g.349.8 16
160.109 even 8 1600.2.l.i.401.8 16
160.123 even 8 400.2.q.h.149.1 16
160.133 odd 8 1600.2.q.g.49.1 16
160.147 even 8 400.2.q.h.349.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.3 16 32.27 odd 8
80.2.l.a.61.3 yes 16 32.19 odd 8
320.2.l.a.81.1 16 32.13 even 8
320.2.l.a.241.1 16 32.5 even 8
400.2.l.h.101.6 16 160.59 odd 8
400.2.l.h.301.6 16 160.19 odd 8
400.2.q.g.149.8 16 160.27 even 8
400.2.q.g.349.8 16 160.83 even 8
400.2.q.h.149.1 16 160.123 even 8
400.2.q.h.349.1 16 160.147 even 8
640.2.l.a.161.8 16 32.29 even 8
640.2.l.a.481.8 16 32.21 even 8
640.2.l.b.161.1 16 32.3 odd 8
640.2.l.b.481.1 16 32.11 odd 8
720.2.t.c.181.6 16 96.59 even 8
720.2.t.c.541.6 16 96.83 even 8
1600.2.l.i.401.8 16 160.109 even 8
1600.2.l.i.1201.8 16 160.69 even 8
1600.2.q.g.49.1 16 160.133 odd 8
1600.2.q.g.849.1 16 160.77 odd 8
1600.2.q.h.49.8 16 160.37 odd 8
1600.2.q.h.849.8 16 160.13 odd 8
2880.2.t.c.721.8 16 96.77 odd 8
2880.2.t.c.2161.5 16 96.5 odd 8
5120.2.a.s.1.2 8 4.3 odd 2
5120.2.a.t.1.2 8 8.5 even 2
5120.2.a.u.1.7 8 1.1 even 1 trivial
5120.2.a.v.1.7 8 8.3 odd 2