Properties

Label 640.2
Level 640
Weight 2
Dimension 6192
Nonzero newspaces 18
Newform subspaces 66
Sturm bound 49152
Trace bound 33

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 66 \)
Sturm bound: \(49152\)
Trace bound: \(33\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(640))\).

Total New Old
Modular forms 12928 6480 6448
Cusp forms 11649 6192 5457
Eisenstein series 1279 288 991

Trace form

\( 6192 q - 32 q^{2} - 24 q^{3} - 32 q^{4} - 48 q^{5} - 96 q^{6} - 24 q^{7} - 32 q^{8} - 40 q^{9} - 48 q^{10} - 72 q^{11} - 32 q^{12} - 32 q^{13} - 32 q^{14} - 32 q^{15} - 96 q^{16} - 48 q^{17} - 32 q^{18}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(640))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
640.2.a \(\chi_{640}(1, \cdot)\) 640.2.a.a 1 1
640.2.a.b 1
640.2.a.c 1
640.2.a.d 1
640.2.a.e 1
640.2.a.f 1
640.2.a.g 1
640.2.a.h 1
640.2.a.i 2
640.2.a.j 2
640.2.a.k 2
640.2.a.l 2
640.2.c \(\chi_{640}(129, \cdot)\) 640.2.c.a 6 1
640.2.c.b 6
640.2.c.c 6
640.2.c.d 6
640.2.d \(\chi_{640}(321, \cdot)\) 640.2.d.a 4 1
640.2.d.b 4
640.2.d.c 4
640.2.d.d 4
640.2.f \(\chi_{640}(449, \cdot)\) 640.2.f.a 2 1
640.2.f.b 2
640.2.f.c 4
640.2.f.d 4
640.2.f.e 4
640.2.f.f 4
640.2.f.g 4
640.2.j \(\chi_{640}(543, \cdot)\) 640.2.j.a 2 2
640.2.j.b 2
640.2.j.c 18
640.2.j.d 18
640.2.l \(\chi_{640}(161, \cdot)\) 640.2.l.a 16 2
640.2.l.b 16
640.2.n \(\chi_{640}(127, \cdot)\) 640.2.n.a 12 2
640.2.n.b 12
640.2.n.c 12
640.2.n.d 12
640.2.o \(\chi_{640}(63, \cdot)\) 640.2.o.a 2 2
640.2.o.b 2
640.2.o.c 2
640.2.o.d 2
640.2.o.e 2
640.2.o.f 2
640.2.o.g 2
640.2.o.h 2
640.2.o.i 8
640.2.o.j 12
640.2.o.k 12
640.2.q \(\chi_{640}(289, \cdot)\) 640.2.q.a 2 2
640.2.q.b 2
640.2.q.c 2
640.2.q.d 2
640.2.q.e 16
640.2.q.f 16
640.2.s \(\chi_{640}(223, \cdot)\) 640.2.s.a 2 2
640.2.s.b 2
640.2.s.c 18
640.2.s.d 18
640.2.u \(\chi_{640}(47, \cdot)\) 640.2.u.a 88 4
640.2.x \(\chi_{640}(81, \cdot)\) 640.2.x.a 64 4
640.2.z \(\chi_{640}(49, \cdot)\) 640.2.z.a 88 4
640.2.ba \(\chi_{640}(207, \cdot)\) 640.2.ba.a 88 4
640.2.bd \(\chi_{640}(87, \cdot)\) None 0 8
640.2.be \(\chi_{640}(41, \cdot)\) None 0 8
640.2.bf \(\chi_{640}(9, \cdot)\) None 0 8
640.2.bj \(\chi_{640}(7, \cdot)\) None 0 8
640.2.bl \(\chi_{640}(3, \cdot)\) 640.2.bl.a 1504 16
640.2.bm \(\chi_{640}(21, \cdot)\) 640.2.bm.a 1024 16
640.2.bo \(\chi_{640}(29, \cdot)\) 640.2.bo.a 1504 16
640.2.br \(\chi_{640}(43, \cdot)\) 640.2.br.a 1504 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(640))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(640)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(320))\)\(^{\oplus 2}\)