Properties

Label 400.2.q
Level $400$
Weight $2$
Character orbit 400.q
Rep. character $\chi_{400}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $68$
Newform subspaces $8$
Sturm bound $120$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 8 \)
Sturm bound: \(120\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(400, [\chi])\).

Total New Old
Modular forms 132 76 56
Cusp forms 108 68 40
Eisenstein series 24 8 16

Trace form

\( 68 q + 4 q^{4} - 4 q^{6} - 4 q^{11} - 20 q^{14} - 12 q^{16} + 20 q^{19} + 8 q^{21} + 28 q^{24} - 56 q^{26} + 4 q^{29} - 32 q^{31} - 12 q^{34} - 60 q^{36} - 8 q^{44} - 28 q^{46} + 52 q^{49} + 4 q^{54} + 12 q^{56}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
400.2.q.a 400.q 80.q $2$ $3.194$ \(\Q(\sqrt{-1}) \) None 16.2.e.a \(-2\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}+(-i-1)q^{3}-2 i q^{4}+\cdots\)
400.2.q.b 400.q 80.q $2$ $3.194$ \(\Q(\sqrt{-1}) \) None 16.2.e.a \(2\) \(2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{2}+(i+1)q^{3}-2 i q^{4}+\cdots\)
400.2.q.c 400.q 80.q $4$ $3.194$ \(\Q(i, \sqrt{11})\) None 400.2.l.d \(-4\) \(2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{1})q^{2}+(\beta _{1}-\beta _{2})q^{3}+2\beta _{1}q^{4}+\cdots\)
400.2.q.d 400.q 80.q $4$ $3.194$ \(\Q(i, \sqrt{11})\) None 400.2.l.d \(4\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1})q^{2}+(-1-\beta _{2})q^{3}+2\beta _{1}q^{4}+\cdots\)
400.2.q.e 400.q 80.q $12$ $3.194$ 12.0.\(\cdots\).1 None 400.2.l.f \(-2\) \(2\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}-\beta _{7}q^{3}+\beta _{10}q^{4}+(-\beta _{3}+\cdots)q^{6}+\cdots\)
400.2.q.f 400.q 80.q $12$ $3.194$ 12.0.\(\cdots\).1 None 400.2.l.f \(2\) \(-2\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{2}+\beta _{7}q^{3}+\beta _{10}q^{4}+(-\beta _{3}+\cdots)q^{6}+\cdots\)
400.2.q.g 400.q 80.q $16$ $3.194$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 80.2.l.a \(-4\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(-\beta _{6}-\beta _{11})q^{3}+(-\beta _{2}+\cdots)q^{4}+\cdots\)
400.2.q.h 400.q 80.q $16$ $3.194$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 80.2.l.a \(4\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{2}+(\beta _{6}+\beta _{11})q^{3}+(-\beta _{2}-\beta _{12}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)