Properties

Label 378.3.r.a.305.5
Level $378$
Weight $3$
Character 378.305
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(233,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.233"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.5
Character \(\chi\) \(=\) 378.305
Dual form 378.3.r.a.233.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +(1.51694 + 0.875808i) q^{5} +(-1.24611 - 6.88819i) q^{7} +2.82843i q^{8} +(1.23858 - 2.14528i) q^{10} +(-3.90930 + 2.25703i) q^{11} +(-4.80730 - 8.32649i) q^{13} +(-9.74138 + 1.76226i) q^{14} +4.00000 q^{16} +(-0.491183 - 0.283585i) q^{17} +(-10.8517 - 18.7956i) q^{19} +(-3.03389 - 1.75162i) q^{20} +(3.19193 + 5.52858i) q^{22} +(23.7816 + 13.7303i) q^{23} +(-10.9659 - 18.9935i) q^{25} +(-11.7754 + 6.79855i) q^{26} +(2.49222 + 13.7764i) q^{28} +(-48.9844 - 28.2812i) q^{29} -39.9896 q^{31} -5.65685i q^{32} +(-0.401050 + 0.694638i) q^{34} +(4.14246 - 11.5404i) q^{35} +(-7.44017 - 12.8868i) q^{37} +(-26.5810 + 15.3466i) q^{38} +(-2.47716 + 4.29057i) q^{40} +(28.0456 - 16.1921i) q^{41} +(-1.47486 + 2.55453i) q^{43} +(7.81860 - 4.51407i) q^{44} +(19.4176 - 33.6323i) q^{46} +55.1749i q^{47} +(-45.8944 + 17.1669i) q^{49} +(-26.8609 + 15.5082i) q^{50} +(9.61460 + 16.6530i) q^{52} +(-48.3659 - 27.9241i) q^{53} -7.90692 q^{55} +(19.4828 - 3.52453i) q^{56} +(-39.9956 + 69.2744i) q^{58} -12.4226i q^{59} +79.5276 q^{61} +56.5538i q^{62} -8.00000 q^{64} -16.8411i q^{65} +0.284475 q^{67} +(0.982367 + 0.567170i) q^{68} +(-16.3205 - 5.85832i) q^{70} +8.92640i q^{71} +(4.02599 - 6.97323i) q^{73} +(-18.2246 + 10.5220i) q^{74} +(21.7033 + 37.5913i) q^{76} +(20.4183 + 24.1155i) q^{77} +97.6526 q^{79} +(6.06778 + 3.50323i) q^{80} +(-22.8992 - 39.6625i) q^{82} +(19.5749 + 11.3016i) q^{83} +(-0.496732 - 0.860365i) q^{85} +(3.61265 + 2.08577i) q^{86} +(-6.38386 - 11.0572i) q^{88} +(-47.1301 + 27.2106i) q^{89} +(-51.3640 + 43.4893i) q^{91} +(-47.5633 - 27.4607i) q^{92} +78.0291 q^{94} -38.0159i q^{95} +(38.0319 - 65.8731i) q^{97} +(24.2776 + 64.9045i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 2 q^{7} + 36 q^{11} + 10 q^{13} - 36 q^{14} + 128 q^{16} + 54 q^{17} + 28 q^{19} + 126 q^{23} + 80 q^{25} + 72 q^{26} - 4 q^{28} - 36 q^{29} + 16 q^{31} + 90 q^{35} + 22 q^{37} - 72 q^{41}+ \cdots - 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 1.51694 + 0.875808i 0.303389 + 0.175162i 0.643964 0.765056i \(-0.277289\pi\)
−0.340575 + 0.940217i \(0.610622\pi\)
\(6\) 0 0
\(7\) −1.24611 6.88819i −0.178016 0.984028i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 1.23858 2.14528i 0.123858 0.214528i
\(11\) −3.90930 + 2.25703i −0.355391 + 0.205185i −0.667057 0.745007i \(-0.732446\pi\)
0.311666 + 0.950192i \(0.399113\pi\)
\(12\) 0 0
\(13\) −4.80730 8.32649i −0.369792 0.640499i 0.619741 0.784807i \(-0.287238\pi\)
−0.989533 + 0.144308i \(0.953904\pi\)
\(14\) −9.74138 + 1.76226i −0.695813 + 0.125876i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −0.491183 0.283585i −0.0288931 0.0166815i 0.485484 0.874246i \(-0.338643\pi\)
−0.514377 + 0.857564i \(0.671977\pi\)
\(18\) 0 0
\(19\) −10.8517 18.7956i −0.571140 0.989244i −0.996449 0.0841959i \(-0.973168\pi\)
0.425309 0.905048i \(-0.360165\pi\)
\(20\) −3.03389 1.75162i −0.151694 0.0875808i
\(21\) 0 0
\(22\) 3.19193 + 5.52858i 0.145088 + 0.251299i
\(23\) 23.7816 + 13.7303i 1.03398 + 0.596971i 0.918123 0.396294i \(-0.129704\pi\)
0.115861 + 0.993265i \(0.463037\pi\)
\(24\) 0 0
\(25\) −10.9659 18.9935i −0.438637 0.759741i
\(26\) −11.7754 + 6.79855i −0.452901 + 0.261483i
\(27\) 0 0
\(28\) 2.49222 + 13.7764i 0.0890078 + 0.492014i
\(29\) −48.9844 28.2812i −1.68912 0.975213i −0.955193 0.295982i \(-0.904353\pi\)
−0.733925 0.679231i \(-0.762314\pi\)
\(30\) 0 0
\(31\) −39.9896 −1.28999 −0.644993 0.764188i \(-0.723140\pi\)
−0.644993 + 0.764188i \(0.723140\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −0.401050 + 0.694638i −0.0117956 + 0.0204305i
\(35\) 4.14246 11.5404i 0.118356 0.329724i
\(36\) 0 0
\(37\) −7.44017 12.8868i −0.201086 0.348291i 0.747793 0.663932i \(-0.231114\pi\)
−0.948879 + 0.315641i \(0.897780\pi\)
\(38\) −26.5810 + 15.3466i −0.699501 + 0.403857i
\(39\) 0 0
\(40\) −2.47716 + 4.29057i −0.0619290 + 0.107264i
\(41\) 28.0456 16.1921i 0.684040 0.394930i −0.117336 0.993092i \(-0.537435\pi\)
0.801375 + 0.598162i \(0.204102\pi\)
\(42\) 0 0
\(43\) −1.47486 + 2.55453i −0.0342991 + 0.0594077i −0.882665 0.470002i \(-0.844253\pi\)
0.848366 + 0.529410i \(0.177587\pi\)
\(44\) 7.81860 4.51407i 0.177695 0.102592i
\(45\) 0 0
\(46\) 19.4176 33.6323i 0.422122 0.731137i
\(47\) 55.1749i 1.17393i 0.809611 + 0.586967i \(0.199678\pi\)
−0.809611 + 0.586967i \(0.800322\pi\)
\(48\) 0 0
\(49\) −45.8944 + 17.1669i −0.936621 + 0.350345i
\(50\) −26.8609 + 15.5082i −0.537218 + 0.310163i
\(51\) 0 0
\(52\) 9.61460 + 16.6530i 0.184896 + 0.320249i
\(53\) −48.3659 27.9241i −0.912565 0.526870i −0.0313093 0.999510i \(-0.509968\pi\)
−0.881256 + 0.472640i \(0.843301\pi\)
\(54\) 0 0
\(55\) −7.90692 −0.143762
\(56\) 19.4828 3.52453i 0.347906 0.0629380i
\(57\) 0 0
\(58\) −39.9956 + 69.2744i −0.689580 + 1.19439i
\(59\) 12.4226i 0.210553i −0.994443 0.105277i \(-0.966427\pi\)
0.994443 0.105277i \(-0.0335728\pi\)
\(60\) 0 0
\(61\) 79.5276 1.30373 0.651866 0.758334i \(-0.273986\pi\)
0.651866 + 0.758334i \(0.273986\pi\)
\(62\) 56.5538i 0.912158i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 16.8411i 0.259094i
\(66\) 0 0
\(67\) 0.284475 0.00424590 0.00212295 0.999998i \(-0.499324\pi\)
0.00212295 + 0.999998i \(0.499324\pi\)
\(68\) 0.982367 + 0.567170i 0.0144466 + 0.00834073i
\(69\) 0 0
\(70\) −16.3205 5.85832i −0.233150 0.0836903i
\(71\) 8.92640i 0.125724i 0.998022 + 0.0628619i \(0.0200228\pi\)
−0.998022 + 0.0628619i \(0.979977\pi\)
\(72\) 0 0
\(73\) 4.02599 6.97323i 0.0551506 0.0955237i −0.837132 0.547001i \(-0.815769\pi\)
0.892283 + 0.451477i \(0.149103\pi\)
\(74\) −18.2246 + 10.5220i −0.246279 + 0.142189i
\(75\) 0 0
\(76\) 21.7033 + 37.5913i 0.285570 + 0.494622i
\(77\) 20.4183 + 24.1155i 0.265173 + 0.313188i
\(78\) 0 0
\(79\) 97.6526 1.23611 0.618055 0.786135i \(-0.287921\pi\)
0.618055 + 0.786135i \(0.287921\pi\)
\(80\) 6.06778 + 3.50323i 0.0758472 + 0.0437904i
\(81\) 0 0
\(82\) −22.8992 39.6625i −0.279258 0.483689i
\(83\) 19.5749 + 11.3016i 0.235842 + 0.136163i 0.613264 0.789878i \(-0.289856\pi\)
−0.377422 + 0.926041i \(0.623189\pi\)
\(84\) 0 0
\(85\) −0.496732 0.860365i −0.00584390 0.0101219i
\(86\) 3.61265 + 2.08577i 0.0420076 + 0.0242531i
\(87\) 0 0
\(88\) −6.38386 11.0572i −0.0725438 0.125650i
\(89\) −47.1301 + 27.2106i −0.529552 + 0.305737i −0.740834 0.671688i \(-0.765570\pi\)
0.211282 + 0.977425i \(0.432236\pi\)
\(90\) 0 0
\(91\) −51.3640 + 43.4893i −0.564440 + 0.477905i
\(92\) −47.5633 27.4607i −0.516992 0.298486i
\(93\) 0 0
\(94\) 78.0291 0.830097
\(95\) 38.0159i 0.400167i
\(96\) 0 0
\(97\) 38.0319 65.8731i 0.392081 0.679104i −0.600643 0.799517i \(-0.705089\pi\)
0.992724 + 0.120413i \(0.0384220\pi\)
\(98\) 24.2776 + 64.9045i 0.247731 + 0.662291i
\(99\) 0 0
\(100\) 21.9318 + 37.9871i 0.219318 + 0.379871i
\(101\) 168.803 97.4586i 1.67132 0.964937i 0.704419 0.709785i \(-0.251208\pi\)
0.966901 0.255152i \(-0.0821256\pi\)
\(102\) 0 0
\(103\) 58.2628 100.914i 0.565658 0.979748i −0.431330 0.902194i \(-0.641956\pi\)
0.996988 0.0775540i \(-0.0247110\pi\)
\(104\) 23.5509 13.5971i 0.226451 0.130741i
\(105\) 0 0
\(106\) −39.4906 + 68.3998i −0.372553 + 0.645281i
\(107\) 65.8789 38.0352i 0.615691 0.355469i −0.159498 0.987198i \(-0.550988\pi\)
0.775189 + 0.631729i \(0.217654\pi\)
\(108\) 0 0
\(109\) 79.6034 137.877i 0.730307 1.26493i −0.226446 0.974024i \(-0.572711\pi\)
0.956752 0.290904i \(-0.0939561\pi\)
\(110\) 11.1821i 0.101655i
\(111\) 0 0
\(112\) −4.98444 27.5528i −0.0445039 0.246007i
\(113\) −88.3982 + 51.0367i −0.782285 + 0.451652i −0.837239 0.546837i \(-0.815832\pi\)
0.0549546 + 0.998489i \(0.482499\pi\)
\(114\) 0 0
\(115\) 24.0503 + 41.6563i 0.209133 + 0.362229i
\(116\) 97.9689 + 56.5623i 0.844559 + 0.487606i
\(117\) 0 0
\(118\) −17.5683 −0.148883
\(119\) −1.34132 + 3.73674i −0.0112716 + 0.0314012i
\(120\) 0 0
\(121\) −50.3116 + 87.1422i −0.415798 + 0.720184i
\(122\) 112.469i 0.921878i
\(123\) 0 0
\(124\) 79.9791 0.644993
\(125\) 82.2066i 0.657652i
\(126\) 0 0
\(127\) −221.800 −1.74646 −0.873228 0.487313i \(-0.837977\pi\)
−0.873228 + 0.487313i \(0.837977\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −23.8169 −0.183207
\(131\) 2.09587 + 1.21005i 0.0159990 + 0.00923703i 0.507978 0.861370i \(-0.330393\pi\)
−0.491979 + 0.870607i \(0.663726\pi\)
\(132\) 0 0
\(133\) −115.946 + 98.1698i −0.871772 + 0.738119i
\(134\) 0.402309i 0.00300230i
\(135\) 0 0
\(136\) 0.802099 1.38928i 0.00589779 0.0102153i
\(137\) 205.101 118.415i 1.49709 0.864344i 0.497093 0.867697i \(-0.334401\pi\)
0.999994 + 0.00335292i \(0.00106727\pi\)
\(138\) 0 0
\(139\) 112.225 + 194.379i 0.807373 + 1.39841i 0.914677 + 0.404185i \(0.132445\pi\)
−0.107304 + 0.994226i \(0.534222\pi\)
\(140\) −8.28491 + 23.0807i −0.0591780 + 0.164862i
\(141\) 0 0
\(142\) 12.6238 0.0889002
\(143\) 37.5863 + 21.7005i 0.262841 + 0.151752i
\(144\) 0 0
\(145\) −49.5378 85.8019i −0.341640 0.591737i
\(146\) −9.86163 5.69362i −0.0675454 0.0389974i
\(147\) 0 0
\(148\) 14.8803 + 25.7735i 0.100543 + 0.174145i
\(149\) 71.5236 + 41.2942i 0.480024 + 0.277142i 0.720427 0.693531i \(-0.243946\pi\)
−0.240402 + 0.970673i \(0.577279\pi\)
\(150\) 0 0
\(151\) 106.866 + 185.098i 0.707724 + 1.22581i 0.965700 + 0.259662i \(0.0836111\pi\)
−0.257976 + 0.966151i \(0.583056\pi\)
\(152\) 53.1621 30.6932i 0.349751 0.201929i
\(153\) 0 0
\(154\) 34.1045 28.8758i 0.221458 0.187505i
\(155\) −60.6619 35.0232i −0.391367 0.225956i
\(156\) 0 0
\(157\) 161.794 1.03054 0.515268 0.857029i \(-0.327693\pi\)
0.515268 + 0.857029i \(0.327693\pi\)
\(158\) 138.102i 0.874061i
\(159\) 0 0
\(160\) 4.95432 8.58113i 0.0309645 0.0536321i
\(161\) 64.9427 180.922i 0.403371 1.12374i
\(162\) 0 0
\(163\) −26.8721 46.5439i −0.164860 0.285545i 0.771746 0.635931i \(-0.219384\pi\)
−0.936605 + 0.350386i \(0.886050\pi\)
\(164\) −56.0912 + 32.3843i −0.342020 + 0.197465i
\(165\) 0 0
\(166\) 15.9828 27.6831i 0.0962821 0.166765i
\(167\) 41.1006 23.7295i 0.246112 0.142093i −0.371871 0.928284i \(-0.621284\pi\)
0.617982 + 0.786192i \(0.287950\pi\)
\(168\) 0 0
\(169\) 38.2798 66.3025i 0.226507 0.392322i
\(170\) −1.21674 + 0.702485i −0.00715729 + 0.00413226i
\(171\) 0 0
\(172\) 2.94972 5.10906i 0.0171495 0.0297039i
\(173\) 91.9101i 0.531272i 0.964073 + 0.265636i \(0.0855819\pi\)
−0.964073 + 0.265636i \(0.914418\pi\)
\(174\) 0 0
\(175\) −117.166 + 99.2034i −0.669522 + 0.566877i
\(176\) −15.6372 + 9.02814i −0.0888477 + 0.0512962i
\(177\) 0 0
\(178\) 38.4816 + 66.6521i 0.216189 + 0.374450i
\(179\) −143.122 82.6317i −0.799566 0.461629i 0.0437536 0.999042i \(-0.486068\pi\)
−0.843319 + 0.537413i \(0.819402\pi\)
\(180\) 0 0
\(181\) 244.607 1.35142 0.675709 0.737169i \(-0.263838\pi\)
0.675709 + 0.737169i \(0.263838\pi\)
\(182\) 61.5032 + 72.6397i 0.337930 + 0.399119i
\(183\) 0 0
\(184\) −38.8352 + 67.2646i −0.211061 + 0.365569i
\(185\) 26.0647i 0.140890i
\(186\) 0 0
\(187\) 2.56024 0.0136911
\(188\) 110.350i 0.586967i
\(189\) 0 0
\(190\) −53.7626 −0.282961
\(191\) 146.941i 0.769324i 0.923057 + 0.384662i \(0.125682\pi\)
−0.923057 + 0.384662i \(0.874318\pi\)
\(192\) 0 0
\(193\) −253.782 −1.31493 −0.657466 0.753484i \(-0.728372\pi\)
−0.657466 + 0.753484i \(0.728372\pi\)
\(194\) −93.1586 53.7852i −0.480199 0.277243i
\(195\) 0 0
\(196\) 91.7888 34.3338i 0.468310 0.175172i
\(197\) 318.129i 1.61487i 0.589958 + 0.807434i \(0.299144\pi\)
−0.589958 + 0.807434i \(0.700856\pi\)
\(198\) 0 0
\(199\) 123.517 213.938i 0.620689 1.07506i −0.368669 0.929561i \(-0.620186\pi\)
0.989358 0.145504i \(-0.0464803\pi\)
\(200\) 53.7218 31.0163i 0.268609 0.155082i
\(201\) 0 0
\(202\) −137.827 238.724i −0.682313 1.18180i
\(203\) −133.766 + 372.656i −0.658947 + 1.83574i
\(204\) 0 0
\(205\) 56.7248 0.276707
\(206\) −142.714 82.3960i −0.692786 0.399980i
\(207\) 0 0
\(208\) −19.2292 33.3059i −0.0924481 0.160125i
\(209\) 84.8448 + 48.9852i 0.405956 + 0.234379i
\(210\) 0 0
\(211\) −107.527 186.242i −0.509605 0.882661i −0.999938 0.0111265i \(-0.996458\pi\)
0.490333 0.871535i \(-0.336875\pi\)
\(212\) 96.7319 + 55.8482i 0.456282 + 0.263435i
\(213\) 0 0
\(214\) −53.7899 93.1669i −0.251355 0.435359i
\(215\) −4.47456 + 2.58339i −0.0208119 + 0.0120158i
\(216\) 0 0
\(217\) 49.8314 + 275.456i 0.229638 + 1.26938i
\(218\) −194.988 112.576i −0.894439 0.516405i
\(219\) 0 0
\(220\) 15.8138 0.0718811
\(221\) 5.45311i 0.0246747i
\(222\) 0 0
\(223\) −40.9462 + 70.9208i −0.183615 + 0.318031i −0.943109 0.332484i \(-0.892113\pi\)
0.759494 + 0.650514i \(0.225447\pi\)
\(224\) −38.9655 + 7.04906i −0.173953 + 0.0314690i
\(225\) 0 0
\(226\) 72.1768 + 125.014i 0.319366 + 0.553159i
\(227\) 20.4484 11.8059i 0.0900811 0.0520084i −0.454283 0.890858i \(-0.650104\pi\)
0.544364 + 0.838849i \(0.316771\pi\)
\(228\) 0 0
\(229\) −19.1123 + 33.1035i −0.0834598 + 0.144557i −0.904734 0.425977i \(-0.859930\pi\)
0.821274 + 0.570534i \(0.193264\pi\)
\(230\) 58.9109 34.0122i 0.256134 0.147879i
\(231\) 0 0
\(232\) 79.9912 138.549i 0.344790 0.597193i
\(233\) −118.984 + 68.6952i −0.510659 + 0.294829i −0.733105 0.680116i \(-0.761929\pi\)
0.222445 + 0.974945i \(0.428596\pi\)
\(234\) 0 0
\(235\) −48.3226 + 83.6973i −0.205628 + 0.356159i
\(236\) 24.8453i 0.105277i
\(237\) 0 0
\(238\) 5.28455 + 1.89691i 0.0222040 + 0.00797022i
\(239\) −348.038 + 200.940i −1.45623 + 0.840753i −0.998823 0.0485057i \(-0.984554\pi\)
−0.457404 + 0.889259i \(0.651221\pi\)
\(240\) 0 0
\(241\) −219.749 380.616i −0.911821 1.57932i −0.811490 0.584366i \(-0.801343\pi\)
−0.100330 0.994954i \(-0.531990\pi\)
\(242\) 123.238 + 71.1513i 0.509247 + 0.294014i
\(243\) 0 0
\(244\) −159.055 −0.651866
\(245\) −84.6542 14.1535i −0.345527 0.0577694i
\(246\) 0 0
\(247\) −104.334 + 180.713i −0.422407 + 0.731630i
\(248\) 113.108i 0.456079i
\(249\) 0 0
\(250\) −116.258 −0.465031
\(251\) 114.101i 0.454587i 0.973826 + 0.227294i \(0.0729877\pi\)
−0.973826 + 0.227294i \(0.927012\pi\)
\(252\) 0 0
\(253\) −123.959 −0.489958
\(254\) 313.672i 1.23493i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −260.101 150.169i −1.01207 0.584317i −0.100270 0.994960i \(-0.531971\pi\)
−0.911796 + 0.410644i \(0.865304\pi\)
\(258\) 0 0
\(259\) −79.4952 + 67.3077i −0.306931 + 0.259875i
\(260\) 33.6822i 0.129547i
\(261\) 0 0
\(262\) 1.71127 2.96401i 0.00653157 0.0113130i
\(263\) −365.056 + 210.765i −1.38804 + 0.801388i −0.993095 0.117315i \(-0.962571\pi\)
−0.394949 + 0.918703i \(0.629238\pi\)
\(264\) 0 0
\(265\) −48.9123 84.7185i −0.184575 0.319693i
\(266\) 138.833 + 163.972i 0.521929 + 0.616436i
\(267\) 0 0
\(268\) −0.568950 −0.00212295
\(269\) −445.841 257.406i −1.65740 0.956901i −0.973908 0.226943i \(-0.927127\pi\)
−0.683492 0.729958i \(-0.739540\pi\)
\(270\) 0 0
\(271\) 241.395 + 418.109i 0.890758 + 1.54284i 0.838969 + 0.544179i \(0.183159\pi\)
0.0517888 + 0.998658i \(0.483508\pi\)
\(272\) −1.96473 1.13434i −0.00722329 0.00417037i
\(273\) 0 0
\(274\) −167.464 290.057i −0.611184 1.05860i
\(275\) 85.7381 + 49.5009i 0.311775 + 0.180003i
\(276\) 0 0
\(277\) −74.7657 129.498i −0.269912 0.467501i 0.698927 0.715193i \(-0.253661\pi\)
−0.968839 + 0.247692i \(0.920328\pi\)
\(278\) 274.894 158.710i 0.988826 0.570899i
\(279\) 0 0
\(280\) 32.6411 + 11.7166i 0.116575 + 0.0418451i
\(281\) 17.1238 + 9.88641i 0.0609387 + 0.0351830i 0.530160 0.847898i \(-0.322132\pi\)
−0.469221 + 0.883081i \(0.655465\pi\)
\(282\) 0 0
\(283\) 549.954 1.94330 0.971650 0.236425i \(-0.0759756\pi\)
0.971650 + 0.236425i \(0.0759756\pi\)
\(284\) 17.8528i 0.0628619i
\(285\) 0 0
\(286\) 30.6891 53.1551i 0.107305 0.185857i
\(287\) −146.483 173.006i −0.510392 0.602810i
\(288\) 0 0
\(289\) −144.339 250.003i −0.499443 0.865061i
\(290\) −121.342 + 70.0570i −0.418421 + 0.241576i
\(291\) 0 0
\(292\) −8.05199 + 13.9465i −0.0275753 + 0.0477618i
\(293\) 113.883 65.7505i 0.388680 0.224404i −0.292908 0.956141i \(-0.594623\pi\)
0.681588 + 0.731736i \(0.261290\pi\)
\(294\) 0 0
\(295\) 10.8798 18.8444i 0.0368808 0.0638794i
\(296\) 36.4493 21.0440i 0.123139 0.0710946i
\(297\) 0 0
\(298\) 58.3988 101.150i 0.195969 0.339429i
\(299\) 264.023i 0.883021i
\(300\) 0 0
\(301\) 19.4339 + 6.97589i 0.0645646 + 0.0231757i
\(302\) 261.768 151.132i 0.866781 0.500436i
\(303\) 0 0
\(304\) −43.4067 75.1826i −0.142785 0.247311i
\(305\) 120.639 + 69.6509i 0.395538 + 0.228364i
\(306\) 0 0
\(307\) 252.488 0.822437 0.411218 0.911537i \(-0.365103\pi\)
0.411218 + 0.911537i \(0.365103\pi\)
\(308\) −40.8366 48.2310i −0.132586 0.156594i
\(309\) 0 0
\(310\) −49.5303 + 85.7889i −0.159775 + 0.276738i
\(311\) 206.921i 0.665341i 0.943043 + 0.332671i \(0.107950\pi\)
−0.943043 + 0.332671i \(0.892050\pi\)
\(312\) 0 0
\(313\) −339.941 −1.08607 −0.543037 0.839709i \(-0.682726\pi\)
−0.543037 + 0.839709i \(0.682726\pi\)
\(314\) 228.811i 0.728698i
\(315\) 0 0
\(316\) −195.305 −0.618055
\(317\) 274.716i 0.866611i −0.901247 0.433306i \(-0.857347\pi\)
0.901247 0.433306i \(-0.142653\pi\)
\(318\) 0 0
\(319\) 255.326 0.800396
\(320\) −12.1356 7.00646i −0.0379236 0.0218952i
\(321\) 0 0
\(322\) −255.862 91.8428i −0.794604 0.285226i
\(323\) 12.3095i 0.0381098i
\(324\) 0 0
\(325\) −105.433 + 182.615i −0.324409 + 0.561893i
\(326\) −65.8230 + 38.0029i −0.201911 + 0.116573i
\(327\) 0 0
\(328\) 45.7983 + 79.3250i 0.139629 + 0.241844i
\(329\) 380.056 68.7540i 1.15518 0.208979i
\(330\) 0 0
\(331\) −197.017 −0.595217 −0.297609 0.954688i \(-0.596189\pi\)
−0.297609 + 0.954688i \(0.596189\pi\)
\(332\) −39.1498 22.6031i −0.117921 0.0680817i
\(333\) 0 0
\(334\) −33.5585 58.1251i −0.100475 0.174027i
\(335\) 0.431533 + 0.249146i 0.00128816 + 0.000743718i
\(336\) 0 0
\(337\) −162.571 281.581i −0.482405 0.835551i 0.517391 0.855749i \(-0.326903\pi\)
−0.999796 + 0.0201987i \(0.993570\pi\)
\(338\) −93.7659 54.1358i −0.277414 0.160165i
\(339\) 0 0
\(340\) 0.993464 + 1.72073i 0.00292195 + 0.00506097i
\(341\) 156.331 90.2578i 0.458449 0.264686i
\(342\) 0 0
\(343\) 175.438 + 294.738i 0.511482 + 0.859294i
\(344\) −7.22531 4.17153i −0.0210038 0.0121266i
\(345\) 0 0
\(346\) 129.980 0.375666
\(347\) 97.4654i 0.280880i 0.990089 + 0.140440i \(0.0448517\pi\)
−0.990089 + 0.140440i \(0.955148\pi\)
\(348\) 0 0
\(349\) −106.817 + 185.012i −0.306065 + 0.530121i −0.977498 0.210945i \(-0.932346\pi\)
0.671433 + 0.741066i \(0.265679\pi\)
\(350\) 140.295 + 165.698i 0.400842 + 0.473424i
\(351\) 0 0
\(352\) 12.7677 + 22.1143i 0.0362719 + 0.0628248i
\(353\) 555.729 320.850i 1.57430 0.908924i 0.578670 0.815562i \(-0.303572\pi\)
0.995632 0.0933624i \(-0.0297615\pi\)
\(354\) 0 0
\(355\) −7.81781 + 13.5408i −0.0220220 + 0.0381432i
\(356\) 94.2603 54.4212i 0.264776 0.152869i
\(357\) 0 0
\(358\) −116.859 + 202.405i −0.326421 + 0.565378i
\(359\) 263.839 152.328i 0.734928 0.424311i −0.0852941 0.996356i \(-0.527183\pi\)
0.820222 + 0.572045i \(0.193850\pi\)
\(360\) 0 0
\(361\) −55.0174 + 95.2929i −0.152403 + 0.263969i
\(362\) 345.926i 0.955596i
\(363\) 0 0
\(364\) 102.728 86.9786i 0.282220 0.238952i
\(365\) 12.2144 7.05200i 0.0334641 0.0193205i
\(366\) 0 0
\(367\) −62.6630 108.536i −0.170744 0.295737i 0.767936 0.640526i \(-0.221284\pi\)
−0.938680 + 0.344789i \(0.887950\pi\)
\(368\) 95.1265 + 54.9213i 0.258496 + 0.149243i
\(369\) 0 0
\(370\) −36.8610 −0.0996243
\(371\) −132.077 + 367.950i −0.356003 + 0.991780i
\(372\) 0 0
\(373\) 132.413 229.345i 0.354993 0.614867i −0.632123 0.774868i \(-0.717816\pi\)
0.987117 + 0.160001i \(0.0511498\pi\)
\(374\) 3.62073i 0.00968110i
\(375\) 0 0
\(376\) −156.058 −0.415049
\(377\) 543.824i 1.44250i
\(378\) 0 0
\(379\) −190.773 −0.503359 −0.251679 0.967811i \(-0.580983\pi\)
−0.251679 + 0.967811i \(0.580983\pi\)
\(380\) 76.0318i 0.200084i
\(381\) 0 0
\(382\) 207.806 0.543994
\(383\) −519.145 299.729i −1.35547 0.782582i −0.366461 0.930433i \(-0.619431\pi\)
−0.989010 + 0.147852i \(0.952764\pi\)
\(384\) 0 0
\(385\) 9.85288 + 54.4644i 0.0255919 + 0.141466i
\(386\) 358.902i 0.929797i
\(387\) 0 0
\(388\) −76.0637 + 131.746i −0.196040 + 0.339552i
\(389\) −87.4253 + 50.4750i −0.224744 + 0.129756i −0.608145 0.793826i \(-0.708086\pi\)
0.383401 + 0.923582i \(0.374753\pi\)
\(390\) 0 0
\(391\) −7.78743 13.4882i −0.0199167 0.0344967i
\(392\) −48.5553 129.809i −0.123866 0.331145i
\(393\) 0 0
\(394\) 449.902 1.14188
\(395\) 148.134 + 85.5250i 0.375022 + 0.216519i
\(396\) 0 0
\(397\) −154.534 267.661i −0.389255 0.674210i 0.603094 0.797670i \(-0.293934\pi\)
−0.992350 + 0.123460i \(0.960601\pi\)
\(398\) −302.554 174.680i −0.760185 0.438893i
\(399\) 0 0
\(400\) −43.8637 75.9741i −0.109659 0.189935i
\(401\) 522.234 + 301.512i 1.30233 + 0.751901i 0.980803 0.195000i \(-0.0624707\pi\)
0.321527 + 0.946900i \(0.395804\pi\)
\(402\) 0 0
\(403\) 192.242 + 332.973i 0.477027 + 0.826235i
\(404\) −337.607 + 194.917i −0.835660 + 0.482468i
\(405\) 0 0
\(406\) 527.015 + 189.174i 1.29807 + 0.465946i
\(407\) 58.1717 + 33.5855i 0.142928 + 0.0825196i
\(408\) 0 0
\(409\) 439.430 1.07440 0.537201 0.843454i \(-0.319482\pi\)
0.537201 + 0.843454i \(0.319482\pi\)
\(410\) 80.2210i 0.195661i
\(411\) 0 0
\(412\) −116.526 + 201.828i −0.282829 + 0.489874i
\(413\) −85.5695 + 15.4800i −0.207190 + 0.0374817i
\(414\) 0 0
\(415\) 19.7960 + 34.2877i 0.0477012 + 0.0826209i
\(416\) −47.1017 + 27.1942i −0.113225 + 0.0653706i
\(417\) 0 0
\(418\) 69.2755 119.989i 0.165731 0.287054i
\(419\) 49.5525 28.6092i 0.118264 0.0682796i −0.439701 0.898144i \(-0.644916\pi\)
0.557965 + 0.829864i \(0.311582\pi\)
\(420\) 0 0
\(421\) 163.713 283.558i 0.388866 0.673536i −0.603431 0.797415i \(-0.706200\pi\)
0.992297 + 0.123879i \(0.0395336\pi\)
\(422\) −263.385 + 152.066i −0.624136 + 0.360345i
\(423\) 0 0
\(424\) 78.9812 136.800i 0.186277 0.322640i
\(425\) 12.4391i 0.0292684i
\(426\) 0 0
\(427\) −99.1001 547.802i −0.232085 1.28291i
\(428\) −131.758 + 76.0704i −0.307845 + 0.177735i
\(429\) 0 0
\(430\) 3.65346 + 6.32798i 0.00849642 + 0.0147162i
\(431\) −90.4104 52.1985i −0.209769 0.121110i 0.391435 0.920206i \(-0.371979\pi\)
−0.601204 + 0.799096i \(0.705312\pi\)
\(432\) 0 0
\(433\) 426.363 0.984673 0.492337 0.870405i \(-0.336143\pi\)
0.492337 + 0.870405i \(0.336143\pi\)
\(434\) 389.553 70.4722i 0.897589 0.162378i
\(435\) 0 0
\(436\) −159.207 + 275.754i −0.365153 + 0.632464i
\(437\) 595.988i 1.36382i
\(438\) 0 0
\(439\) 284.606 0.648306 0.324153 0.946005i \(-0.394921\pi\)
0.324153 + 0.946005i \(0.394921\pi\)
\(440\) 22.3641i 0.0508276i
\(441\) 0 0
\(442\) 7.71186 0.0174476
\(443\) 460.919i 1.04045i −0.854030 0.520224i \(-0.825848\pi\)
0.854030 0.520224i \(-0.174152\pi\)
\(444\) 0 0
\(445\) −95.3250 −0.214214
\(446\) 100.297 + 57.9066i 0.224882 + 0.129835i
\(447\) 0 0
\(448\) 9.96888 + 55.1055i 0.0222520 + 0.123003i
\(449\) 184.454i 0.410811i 0.978677 + 0.205406i \(0.0658514\pi\)
−0.978677 + 0.205406i \(0.934149\pi\)
\(450\) 0 0
\(451\) −73.0925 + 126.600i −0.162068 + 0.280709i
\(452\) 176.796 102.073i 0.391142 0.225826i
\(453\) 0 0
\(454\) −16.6961 28.9184i −0.0367755 0.0636970i
\(455\) −116.005 + 20.9858i −0.254955 + 0.0461227i
\(456\) 0 0
\(457\) −158.091 −0.345933 −0.172967 0.984928i \(-0.555335\pi\)
−0.172967 + 0.984928i \(0.555335\pi\)
\(458\) 46.8154 + 27.0289i 0.102217 + 0.0590150i
\(459\) 0 0
\(460\) −48.1005 83.3126i −0.104566 0.181114i
\(461\) 301.115 + 173.849i 0.653179 + 0.377113i 0.789673 0.613528i \(-0.210250\pi\)
−0.136494 + 0.990641i \(0.543584\pi\)
\(462\) 0 0
\(463\) 170.634 + 295.547i 0.368541 + 0.638331i 0.989338 0.145640i \(-0.0465242\pi\)
−0.620797 + 0.783971i \(0.713191\pi\)
\(464\) −195.938 113.125i −0.422280 0.243803i
\(465\) 0 0
\(466\) 97.1497 + 168.268i 0.208476 + 0.361091i
\(467\) 222.692 128.571i 0.476856 0.275313i −0.242249 0.970214i \(-0.577885\pi\)
0.719105 + 0.694901i \(0.244552\pi\)
\(468\) 0 0
\(469\) −0.354487 1.95952i −0.000755836 0.00417808i
\(470\) 118.366 + 68.3385i 0.251842 + 0.145401i
\(471\) 0 0
\(472\) 35.1365 0.0744417
\(473\) 13.3152i 0.0281506i
\(474\) 0 0
\(475\) −237.997 + 412.223i −0.501046 + 0.867838i
\(476\) 2.68264 7.47349i 0.00563580 0.0157006i
\(477\) 0 0
\(478\) 284.172 + 492.200i 0.594502 + 1.02971i
\(479\) −172.286 + 99.4696i −0.359680 + 0.207661i −0.668940 0.743316i \(-0.733252\pi\)
0.309261 + 0.950977i \(0.399918\pi\)
\(480\) 0 0
\(481\) −71.5343 + 123.901i −0.148720 + 0.257590i
\(482\) −538.272 + 310.772i −1.11675 + 0.644755i
\(483\) 0 0
\(484\) 100.623 174.284i 0.207899 0.360092i
\(485\) 115.384 66.6172i 0.237906 0.137355i
\(486\) 0 0
\(487\) −231.666 + 401.257i −0.475700 + 0.823937i −0.999613 0.0278350i \(-0.991139\pi\)
0.523912 + 0.851772i \(0.324472\pi\)
\(488\) 224.938i 0.460939i
\(489\) 0 0
\(490\) −20.0161 + 119.719i −0.0408491 + 0.244325i
\(491\) 824.496 476.023i 1.67922 0.969497i 0.717056 0.697015i \(-0.245489\pi\)
0.962161 0.272482i \(-0.0878444\pi\)
\(492\) 0 0
\(493\) 16.0402 + 27.7825i 0.0325360 + 0.0563539i
\(494\) 255.566 + 147.551i 0.517340 + 0.298687i
\(495\) 0 0
\(496\) −159.958 −0.322497
\(497\) 61.4867 11.1233i 0.123716 0.0223808i
\(498\) 0 0
\(499\) −7.59991 + 13.1634i −0.0152303 + 0.0263796i −0.873540 0.486752i \(-0.838181\pi\)
0.858310 + 0.513132i \(0.171515\pi\)
\(500\) 164.413i 0.328826i
\(501\) 0 0
\(502\) 161.364 0.321442
\(503\) 247.471i 0.491989i 0.969271 + 0.245995i \(0.0791146\pi\)
−0.969271 + 0.245995i \(0.920885\pi\)
\(504\) 0 0
\(505\) 341.420 0.676080
\(506\) 175.305i 0.346453i
\(507\) 0 0
\(508\) 443.600 0.873228
\(509\) 173.870 + 100.384i 0.341591 + 0.197217i 0.660975 0.750408i \(-0.270143\pi\)
−0.319385 + 0.947625i \(0.603476\pi\)
\(510\) 0 0
\(511\) −53.0498 19.0424i −0.103816 0.0372650i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −212.372 + 367.838i −0.413174 + 0.715639i
\(515\) 176.763 102.054i 0.343228 0.198163i
\(516\) 0 0
\(517\) −124.532 215.695i −0.240874 0.417206i
\(518\) 95.1874 + 112.423i 0.183760 + 0.217033i
\(519\) 0 0
\(520\) 47.6338 0.0916034
\(521\) 248.569 + 143.512i 0.477101 + 0.275454i 0.719207 0.694795i \(-0.244505\pi\)
−0.242107 + 0.970250i \(0.577838\pi\)
\(522\) 0 0
\(523\) −280.624 486.054i −0.536565 0.929358i −0.999086 0.0427498i \(-0.986388\pi\)
0.462520 0.886609i \(-0.346945\pi\)
\(524\) −4.19174 2.42010i −0.00799951 0.00461852i
\(525\) 0 0
\(526\) 298.067 + 516.267i 0.566667 + 0.981495i
\(527\) 19.6422 + 11.3404i 0.0372718 + 0.0215189i
\(528\) 0 0
\(529\) 112.544 + 194.932i 0.212749 + 0.368492i
\(530\) −119.810 + 69.1724i −0.226057 + 0.130514i
\(531\) 0 0
\(532\) 231.891 196.340i 0.435886 0.369059i
\(533\) −269.647 155.681i −0.505905 0.292084i
\(534\) 0 0
\(535\) 133.246 0.249058
\(536\) 0.804617i 0.00150115i
\(537\) 0 0
\(538\) −364.027 + 630.514i −0.676631 + 1.17196i
\(539\) 140.669 170.696i 0.260981 0.316690i
\(540\) 0 0
\(541\) −58.2830 100.949i −0.107732 0.186597i 0.807119 0.590389i \(-0.201026\pi\)
−0.914851 + 0.403791i \(0.867692\pi\)
\(542\) 591.295 341.385i 1.09095 0.629861i
\(543\) 0 0
\(544\) −1.60420 + 2.77855i −0.00294889 + 0.00510763i
\(545\) 241.508 139.435i 0.443134 0.255843i
\(546\) 0 0
\(547\) 22.9108 39.6827i 0.0418845 0.0725461i −0.844323 0.535834i \(-0.819997\pi\)
0.886208 + 0.463288i \(0.153331\pi\)
\(548\) −410.202 + 236.830i −0.748544 + 0.432172i
\(549\) 0 0
\(550\) 70.0049 121.252i 0.127282 0.220458i
\(551\) 1227.59i 2.22793i
\(552\) 0 0
\(553\) −121.686 672.650i −0.220047 1.21637i
\(554\) −183.138 + 105.735i −0.330573 + 0.190857i
\(555\) 0 0
\(556\) −224.450 388.758i −0.403686 0.699205i
\(557\) −772.053 445.745i −1.38609 0.800260i −0.393219 0.919445i \(-0.628639\pi\)
−0.992872 + 0.119185i \(0.961972\pi\)
\(558\) 0 0
\(559\) 28.3604 0.0507341
\(560\) 16.5698 46.1614i 0.0295890 0.0824311i
\(561\) 0 0
\(562\) 13.9815 24.2167i 0.0248781 0.0430901i
\(563\) 335.625i 0.596137i 0.954544 + 0.298069i \(0.0963424\pi\)
−0.954544 + 0.298069i \(0.903658\pi\)
\(564\) 0 0
\(565\) −178.793 −0.316449
\(566\) 777.752i 1.37412i
\(567\) 0 0
\(568\) −25.2477 −0.0444501
\(569\) 945.483i 1.66166i −0.556529 0.830828i \(-0.687867\pi\)
0.556529 0.830828i \(-0.312133\pi\)
\(570\) 0 0
\(571\) −516.310 −0.904221 −0.452111 0.891962i \(-0.649329\pi\)
−0.452111 + 0.891962i \(0.649329\pi\)
\(572\) −75.1727 43.4010i −0.131421 0.0758758i
\(573\) 0 0
\(574\) −244.668 + 207.158i −0.426251 + 0.360902i
\(575\) 602.263i 1.04741i
\(576\) 0 0
\(577\) −222.167 + 384.804i −0.385038 + 0.666905i −0.991774 0.127998i \(-0.959145\pi\)
0.606737 + 0.794903i \(0.292478\pi\)
\(578\) −353.557 + 204.126i −0.611691 + 0.353160i
\(579\) 0 0
\(580\) 99.0755 + 171.604i 0.170820 + 0.295869i
\(581\) 53.4549 148.919i 0.0920050 0.256314i
\(582\) 0 0
\(583\) 252.103 0.432423
\(584\) 19.7233 + 11.3872i 0.0337727 + 0.0194987i
\(585\) 0 0
\(586\) −92.9853 161.055i −0.158678 0.274838i
\(587\) −333.063 192.294i −0.567398 0.327588i 0.188711 0.982033i \(-0.439569\pi\)
−0.756110 + 0.654445i \(0.772902\pi\)
\(588\) 0 0
\(589\) 433.954 + 751.630i 0.736763 + 1.27611i
\(590\) −26.6501 15.3864i −0.0451696 0.0260787i
\(591\) 0 0
\(592\) −29.7607 51.5470i −0.0502714 0.0870727i
\(593\) 234.426 135.346i 0.395321 0.228239i −0.289142 0.957286i \(-0.593370\pi\)
0.684463 + 0.729047i \(0.260037\pi\)
\(594\) 0 0
\(595\) −5.30738 + 4.49369i −0.00891996 + 0.00755243i
\(596\) −143.047 82.5884i −0.240012 0.138571i
\(597\) 0 0
\(598\) −373.385 −0.624390
\(599\) 290.145i 0.484383i −0.970228 0.242191i \(-0.922134\pi\)
0.970228 0.242191i \(-0.0778662\pi\)
\(600\) 0 0
\(601\) 332.538 575.974i 0.553309 0.958359i −0.444724 0.895667i \(-0.646698\pi\)
0.998033 0.0626911i \(-0.0199683\pi\)
\(602\) 9.86540 27.4838i 0.0163877 0.0456541i
\(603\) 0 0
\(604\) −213.733 370.196i −0.353862 0.612907i
\(605\) −152.640 + 88.1266i −0.252297 + 0.145664i
\(606\) 0 0
\(607\) 137.803 238.683i 0.227024 0.393217i −0.729901 0.683553i \(-0.760434\pi\)
0.956925 + 0.290336i \(0.0937672\pi\)
\(608\) −106.324 + 61.3863i −0.174875 + 0.100964i
\(609\) 0 0
\(610\) 98.5013 170.609i 0.161478 0.279687i
\(611\) 459.413 265.242i 0.751904 0.434112i
\(612\) 0 0
\(613\) 31.3289 54.2633i 0.0511075 0.0885209i −0.839340 0.543607i \(-0.817058\pi\)
0.890447 + 0.455086i \(0.150392\pi\)
\(614\) 357.072i 0.581551i
\(615\) 0 0
\(616\) −68.2089 + 57.7517i −0.110729 + 0.0937527i
\(617\) −446.057 + 257.531i −0.722945 + 0.417392i −0.815836 0.578284i \(-0.803723\pi\)
0.0928908 + 0.995676i \(0.470389\pi\)
\(618\) 0 0
\(619\) −539.269 934.042i −0.871194 1.50895i −0.860762 0.509007i \(-0.830013\pi\)
−0.0104316 0.999946i \(-0.503321\pi\)
\(620\) 121.324 + 70.0464i 0.195684 + 0.112978i
\(621\) 0 0
\(622\) 292.631 0.470467
\(623\) 246.161 + 290.734i 0.395122 + 0.466668i
\(624\) 0 0
\(625\) −202.151 + 350.136i −0.323441 + 0.560217i
\(626\) 480.749i 0.767970i
\(627\) 0 0
\(628\) −323.588 −0.515268
\(629\) 8.43968i 0.0134176i
\(630\) 0 0
\(631\) 65.5284 0.103848 0.0519242 0.998651i \(-0.483465\pi\)
0.0519242 + 0.998651i \(0.483465\pi\)
\(632\) 276.203i 0.437031i
\(633\) 0 0
\(634\) −388.507 −0.612787
\(635\) −336.458 194.254i −0.529855 0.305912i
\(636\) 0 0
\(637\) 363.568 + 299.613i 0.570750 + 0.470350i
\(638\) 361.086i 0.565966i
\(639\) 0 0
\(640\) −9.90864 + 17.1623i −0.0154822 + 0.0268160i
\(641\) −685.053 + 395.516i −1.06873 + 0.617029i −0.927833 0.372996i \(-0.878331\pi\)
−0.140893 + 0.990025i \(0.544997\pi\)
\(642\) 0 0
\(643\) −414.293 717.577i −0.644313 1.11598i −0.984460 0.175610i \(-0.943810\pi\)
0.340147 0.940372i \(-0.389523\pi\)
\(644\) −129.885 + 361.844i −0.201685 + 0.561870i
\(645\) 0 0
\(646\) 17.4082 0.0269477
\(647\) −54.8043 31.6413i −0.0847053 0.0489046i 0.457049 0.889441i \(-0.348906\pi\)
−0.541754 + 0.840537i \(0.682240\pi\)
\(648\) 0 0
\(649\) 28.0383 + 48.5638i 0.0432023 + 0.0748286i
\(650\) 258.257 + 149.105i 0.397318 + 0.229392i
\(651\) 0 0
\(652\) 53.7443 + 93.0878i 0.0824298 + 0.142773i
\(653\) −564.419 325.867i −0.864347 0.499031i 0.00111857 0.999999i \(-0.499644\pi\)
−0.865466 + 0.500968i \(0.832977\pi\)
\(654\) 0 0
\(655\) 2.11955 + 3.67116i 0.00323595 + 0.00560482i
\(656\) 112.182 64.7686i 0.171010 0.0987326i
\(657\) 0 0
\(658\) −97.2328 537.480i −0.147770 0.816839i
\(659\) 58.2921 + 33.6550i 0.0884554 + 0.0510698i 0.543575 0.839360i \(-0.317070\pi\)
−0.455120 + 0.890430i \(0.650404\pi\)
\(660\) 0 0
\(661\) −486.564 −0.736102 −0.368051 0.929806i \(-0.619975\pi\)
−0.368051 + 0.929806i \(0.619975\pi\)
\(662\) 278.624i 0.420882i
\(663\) 0 0
\(664\) −31.9656 + 55.3661i −0.0481410 + 0.0833827i
\(665\) −261.861 + 47.3720i −0.393776 + 0.0712361i
\(666\) 0 0
\(667\) −776.620 1345.15i −1.16435 2.01671i
\(668\) −82.2012 + 47.4589i −0.123056 + 0.0710463i
\(669\) 0 0
\(670\) 0.352345 0.610280i 0.000525888 0.000910865i
\(671\) −310.897 + 179.497i −0.463334 + 0.267506i
\(672\) 0 0
\(673\) 135.979 235.523i 0.202050 0.349960i −0.747139 0.664668i \(-0.768573\pi\)
0.949189 + 0.314707i \(0.101906\pi\)
\(674\) −398.215 + 229.910i −0.590824 + 0.341112i
\(675\) 0 0
\(676\) −76.5595 + 132.605i −0.113254 + 0.196161i
\(677\) 593.459i 0.876601i 0.898829 + 0.438300i \(0.144419\pi\)
−0.898829 + 0.438300i \(0.855581\pi\)
\(678\) 0 0
\(679\) −501.139 179.886i −0.738054 0.264927i
\(680\) 2.43348 1.40497i 0.00357865 0.00206613i
\(681\) 0 0
\(682\) −127.644 221.086i −0.187161 0.324173i
\(683\) 763.359 + 440.725i 1.11766 + 0.645279i 0.940801 0.338958i \(-0.110075\pi\)
0.176854 + 0.984237i \(0.443408\pi\)
\(684\) 0 0
\(685\) 414.836 0.605600
\(686\) 416.822 248.107i 0.607613 0.361672i
\(687\) 0 0
\(688\) −5.89944 + 10.2181i −0.00857477 + 0.0148519i
\(689\) 536.958i 0.779329i
\(690\) 0 0
\(691\) 876.408 1.26832 0.634159 0.773203i \(-0.281346\pi\)
0.634159 + 0.773203i \(0.281346\pi\)
\(692\) 183.820i 0.265636i
\(693\) 0 0
\(694\) 137.837 0.198612
\(695\) 393.150i 0.565683i
\(696\) 0 0
\(697\) −18.3674 −0.0263521
\(698\) 261.647 + 151.062i 0.374852 + 0.216421i
\(699\) 0 0
\(700\) 234.333 198.407i 0.334761 0.283438i
\(701\) 286.681i 0.408961i 0.978871 + 0.204480i \(0.0655504\pi\)
−0.978871 + 0.204480i \(0.934450\pi\)
\(702\) 0 0
\(703\) −161.477 + 279.686i −0.229696 + 0.397846i
\(704\) 31.2744 18.0563i 0.0444238 0.0256481i
\(705\) 0 0
\(706\) −453.751 785.919i −0.642706 1.11320i
\(707\) −881.661 1041.31i −1.24705 1.47285i
\(708\) 0 0
\(709\) 657.204 0.926945 0.463473 0.886111i \(-0.346603\pi\)
0.463473 + 0.886111i \(0.346603\pi\)
\(710\) 19.1496 + 11.0561i 0.0269713 + 0.0155719i
\(711\) 0 0
\(712\) −76.9632 133.304i −0.108094 0.187225i
\(713\) −951.017 549.070i −1.33383 0.770084i
\(714\) 0 0
\(715\) 38.0109 + 65.8368i 0.0531621 + 0.0920795i
\(716\) 286.244 + 165.263i 0.399783 + 0.230815i
\(717\) 0 0
\(718\) −215.424 373.125i −0.300033 0.519673i
\(719\) −404.412 + 233.488i −0.562465 + 0.324739i −0.754134 0.656720i \(-0.771943\pi\)
0.191669 + 0.981460i \(0.438610\pi\)
\(720\) 0 0
\(721\) −767.717 275.575i −1.06480 0.382212i
\(722\) 134.765 + 77.8064i 0.186655 + 0.107765i
\(723\) 0 0
\(724\) −489.213 −0.675709
\(725\) 1240.52i 1.71106i
\(726\) 0 0
\(727\) −21.8124 + 37.7802i −0.0300033 + 0.0519673i −0.880637 0.473791i \(-0.842885\pi\)
0.850634 + 0.525759i \(0.176218\pi\)
\(728\) −123.006 145.279i −0.168965 0.199560i
\(729\) 0 0
\(730\) −9.97303 17.2738i −0.0136617 0.0236627i
\(731\) 1.44885 0.836496i 0.00198202 0.00114432i
\(732\) 0 0
\(733\) −559.033 + 968.274i −0.762665 + 1.32097i 0.178808 + 0.983884i \(0.442776\pi\)
−0.941472 + 0.337090i \(0.890557\pi\)
\(734\) −153.492 + 88.6189i −0.209118 + 0.120734i
\(735\) 0 0
\(736\) 77.6705 134.529i 0.105531 0.182784i
\(737\) −1.11210 + 0.642070i −0.00150895 + 0.000871194i
\(738\) 0 0
\(739\) 414.623 718.148i 0.561060 0.971784i −0.436345 0.899780i \(-0.643727\pi\)
0.997404 0.0720041i \(-0.0229395\pi\)
\(740\) 52.1293i 0.0704450i
\(741\) 0 0
\(742\) 520.360 + 186.785i 0.701294 + 0.251732i
\(743\) 1010.16 583.214i 1.35957 0.784945i 0.370000 0.929032i \(-0.379358\pi\)
0.989565 + 0.144086i \(0.0460242\pi\)
\(744\) 0 0
\(745\) 72.3316 + 125.282i 0.0970893 + 0.168164i
\(746\) −324.343 187.260i −0.434776 0.251018i
\(747\) 0 0
\(748\) −5.12049 −0.00684557
\(749\) −344.086 406.391i −0.459394 0.542578i
\(750\) 0 0
\(751\) −608.863 + 1054.58i −0.810737 + 1.40424i 0.101612 + 0.994824i \(0.467600\pi\)
−0.912349 + 0.409413i \(0.865733\pi\)
\(752\) 220.700i 0.293484i
\(753\) 0 0
\(754\) 769.084 1.02000
\(755\) 374.377i 0.495864i
\(756\) 0 0
\(757\) 212.121 0.280213 0.140106 0.990136i \(-0.455256\pi\)
0.140106 + 0.990136i \(0.455256\pi\)
\(758\) 269.794i 0.355928i
\(759\) 0 0
\(760\) 107.525 0.141481
\(761\) 884.489 + 510.660i 1.16227 + 0.671038i 0.951848 0.306572i \(-0.0991819\pi\)
0.210425 + 0.977610i \(0.432515\pi\)
\(762\) 0 0
\(763\) −1048.92 376.514i −1.37473 0.493465i
\(764\) 293.882i 0.384662i
\(765\) 0 0
\(766\) −423.880 + 734.182i −0.553369 + 0.958463i
\(767\) −103.437 + 59.7193i −0.134859 + 0.0778609i
\(768\) 0 0
\(769\) −19.1405 33.1524i −0.0248902 0.0431110i 0.853312 0.521401i \(-0.174590\pi\)
−0.878202 + 0.478290i \(0.841257\pi\)
\(770\) 77.0242 13.9341i 0.100031 0.0180962i
\(771\) 0 0
\(772\) 507.564 0.657466
\(773\) −329.696 190.350i −0.426515 0.246249i 0.271346 0.962482i \(-0.412531\pi\)
−0.697861 + 0.716233i \(0.745865\pi\)
\(774\) 0 0
\(775\) 438.522 + 759.543i 0.565835 + 0.980056i
\(776\) 186.317 + 107.570i 0.240100 + 0.138622i
\(777\) 0 0
\(778\) 71.3824 + 123.638i 0.0917512 + 0.158918i
\(779\) −608.684 351.424i −0.781365 0.451121i
\(780\) 0 0
\(781\) −20.1472 34.8960i −0.0257967 0.0446811i
\(782\) −19.0752 + 11.0131i −0.0243929 + 0.0140832i
\(783\) 0 0
\(784\) −183.578 + 68.6675i −0.234155 + 0.0875862i
\(785\) 245.432 + 141.700i 0.312653 + 0.180510i
\(786\) 0 0
\(787\) 855.666 1.08725 0.543625 0.839328i \(-0.317051\pi\)
0.543625 + 0.839328i \(0.317051\pi\)
\(788\) 636.258i 0.807434i
\(789\) 0 0
\(790\) 120.951 209.493i 0.153102 0.265180i
\(791\) 461.705 + 545.306i 0.583697 + 0.689389i
\(792\) 0 0
\(793\) −382.313 662.186i −0.482110 0.835039i
\(794\) −378.530 + 218.544i −0.476738 + 0.275245i
\(795\) 0 0
\(796\) −247.034 + 427.876i −0.310344 + 0.537532i
\(797\) 27.2948 15.7587i 0.0342469 0.0197725i −0.482779 0.875742i \(-0.660372\pi\)
0.517026 + 0.855970i \(0.327039\pi\)
\(798\) 0 0
\(799\) 15.6468 27.1010i 0.0195829 0.0339187i
\(800\) −107.444 + 62.0326i −0.134305 + 0.0775408i
\(801\) 0 0
\(802\) 426.403 738.551i 0.531674 0.920886i
\(803\) 36.3472i 0.0452643i
\(804\) 0 0
\(805\) 256.967 217.571i 0.319214 0.270275i
\(806\) 470.894 271.871i 0.584236 0.337309i
\(807\) 0 0
\(808\) 275.655 + 477.448i 0.341157 + 0.590901i
\(809\) −366.440 211.564i −0.452955 0.261514i 0.256123 0.966644i \(-0.417555\pi\)
−0.709077 + 0.705131i \(0.750888\pi\)
\(810\) 0 0
\(811\) 695.569 0.857668 0.428834 0.903383i \(-0.358925\pi\)
0.428834 + 0.903383i \(0.358925\pi\)
\(812\) 267.532 745.311i 0.329473 0.917871i
\(813\) 0 0
\(814\) 47.4970 82.2672i 0.0583501 0.101065i
\(815\) 94.1393i 0.115508i
\(816\) 0 0
\(817\) 64.0188 0.0783583
\(818\) 621.448i 0.759717i
\(819\) 0 0
\(820\) −113.450 −0.138353
\(821\) 91.3532i 0.111271i −0.998451 0.0556353i \(-0.982282\pi\)
0.998451 0.0556353i \(-0.0177184\pi\)
\(822\) 0 0
\(823\) −657.997 −0.799511 −0.399755 0.916622i \(-0.630905\pi\)
−0.399755 + 0.916622i \(0.630905\pi\)
\(824\) 285.428 + 164.792i 0.346393 + 0.199990i
\(825\) 0 0
\(826\) 21.8920 + 121.014i 0.0265036 + 0.146505i
\(827\) 1364.30i 1.64969i −0.565355 0.824847i \(-0.691261\pi\)
0.565355 0.824847i \(-0.308739\pi\)
\(828\) 0 0
\(829\) −388.984 + 673.740i −0.469221 + 0.812715i −0.999381 0.0351831i \(-0.988799\pi\)
0.530160 + 0.847898i \(0.322132\pi\)
\(830\) 48.4901 27.9958i 0.0584218 0.0337298i
\(831\) 0 0
\(832\) 38.4584 + 66.6119i 0.0462240 + 0.0800624i
\(833\) 27.4108 + 4.58287i 0.0329062 + 0.00550165i
\(834\) 0 0
\(835\) 83.1298 0.0995566
\(836\) −169.690 97.9704i −0.202978 0.117189i
\(837\) 0 0
\(838\) −40.4595 70.0778i −0.0482810 0.0836251i
\(839\) 1355.78 + 782.761i 1.61595 + 0.932969i 0.987953 + 0.154752i \(0.0494580\pi\)
0.627996 + 0.778216i \(0.283875\pi\)
\(840\) 0 0
\(841\) 1179.15 + 2042.35i 1.40208 + 2.42847i
\(842\) −401.012 231.525i −0.476262 0.274970i
\(843\) 0 0
\(844\) 215.053 + 372.483i 0.254802 + 0.441331i
\(845\) 116.136 67.0514i 0.137440 0.0793508i
\(846\) 0 0
\(847\) 662.946 + 237.967i 0.782699 + 0.280953i
\(848\) −193.464 111.696i −0.228141 0.131717i
\(849\) 0 0
\(850\) 17.5915 0.0206959
\(851\) 408.624i 0.480170i
\(852\) 0 0
\(853\) −484.334 + 838.891i −0.567801 + 0.983460i 0.428982 + 0.903313i \(0.358872\pi\)
−0.996783 + 0.0801471i \(0.974461\pi\)
\(854\) −774.709 + 140.149i −0.907153 + 0.164109i
\(855\) 0 0
\(856\) 107.580 + 186.334i 0.125677 + 0.217680i
\(857\) −1149.35 + 663.578i −1.34113 + 0.774304i −0.986974 0.160881i \(-0.948566\pi\)
−0.354160 + 0.935185i \(0.615233\pi\)
\(858\) 0 0
\(859\) −181.100 + 313.675i −0.210827 + 0.365163i −0.951974 0.306180i \(-0.900949\pi\)
0.741147 + 0.671343i \(0.234282\pi\)
\(860\) 8.94912 5.16678i 0.0104060 0.00600788i
\(861\) 0 0
\(862\) −73.8198 + 127.860i −0.0856378 + 0.148329i
\(863\) −938.041 + 541.578i −1.08695 + 0.627553i −0.932764 0.360488i \(-0.882610\pi\)
−0.154190 + 0.988041i \(0.549277\pi\)
\(864\) 0 0
\(865\) −80.4956 + 139.422i −0.0930584 + 0.161182i
\(866\) 602.969i 0.696269i
\(867\) 0 0
\(868\) −99.6628 550.912i −0.114819 0.634691i
\(869\) −381.753 + 220.405i −0.439302 + 0.253631i
\(870\) 0 0
\(871\) −1.36756 2.36868i −0.00157010 0.00271949i
\(872\) 389.975 + 225.152i 0.447220 + 0.258202i
\(873\) 0 0
\(874\) −842.854 −0.964364
\(875\) −566.255 + 102.438i −0.647148 + 0.117072i
\(876\) 0 0
\(877\) 570.778 988.617i 0.650830 1.12727i −0.332091 0.943247i \(-0.607754\pi\)
0.982922 0.184024i \(-0.0589125\pi\)
\(878\) 402.494i 0.458421i
\(879\) 0 0
\(880\) −31.6277 −0.0359405
\(881\) 536.022i 0.608424i 0.952604 + 0.304212i \(0.0983931\pi\)
−0.952604 + 0.304212i \(0.901607\pi\)
\(882\) 0 0
\(883\) −413.964 −0.468816 −0.234408 0.972138i \(-0.575315\pi\)
−0.234408 + 0.972138i \(0.575315\pi\)
\(884\) 10.9062i 0.0123374i
\(885\) 0 0
\(886\) −651.837 −0.735708
\(887\) −99.9924 57.7307i −0.112731 0.0650853i 0.442574 0.896732i \(-0.354065\pi\)
−0.555305 + 0.831647i \(0.687399\pi\)
\(888\) 0 0
\(889\) 276.387 + 1527.80i 0.310896 + 1.71856i
\(890\) 134.810i 0.151472i
\(891\) 0 0
\(892\) 81.8923 141.842i 0.0918076 0.159015i
\(893\) 1037.05 598.740i 1.16131 0.670482i
\(894\) 0 0
\(895\) −144.739 250.695i −0.161719 0.280106i
\(896\) 77.9310 14.0981i 0.0869766 0.0157345i
\(897\) 0 0
\(898\) 260.858 0.290487
\(899\) 1958.87 + 1130.95i 2.17894 + 1.25801i
\(900\) 0 0
\(901\) 15.8377 + 27.4317i 0.0175779 + 0.0304458i
\(902\) 179.039 + 103.368i 0.198491 + 0.114599i
\(903\) 0 0
\(904\) −144.354 250.028i −0.159683 0.276579i
\(905\) 371.054 + 214.228i 0.410005 + 0.236716i
\(906\) 0 0
\(907\) 91.2855 + 158.111i 0.100646 + 0.174323i 0.911951 0.410300i \(-0.134576\pi\)
−0.811305 + 0.584623i \(0.801243\pi\)
\(908\) −40.8968 + 23.6118i −0.0450406 + 0.0260042i
\(909\) 0 0
\(910\) 29.6784 + 164.055i 0.0326137 + 0.180281i
\(911\) 781.868 + 451.411i 0.858252 + 0.495512i 0.863427 0.504475i \(-0.168314\pi\)
−0.00517457 + 0.999987i \(0.501647\pi\)
\(912\) 0 0
\(913\) −102.032 −0.111755
\(914\) 223.575i 0.244612i
\(915\) 0 0
\(916\) 38.2246 66.2070i 0.0417299 0.0722783i
\(917\) 5.72338 15.9446i 0.00624142 0.0173878i
\(918\) 0 0
\(919\) −590.898 1023.47i −0.642979 1.11367i −0.984764 0.173895i \(-0.944365\pi\)
0.341785 0.939778i \(-0.388969\pi\)
\(920\) −117.822 + 68.0244i −0.128067 + 0.0739396i
\(921\) 0 0
\(922\) 245.860 425.841i 0.266659 0.461867i
\(923\) 74.3255 42.9119i 0.0805260 0.0464917i
\(924\) 0 0
\(925\) −163.177 + 282.630i −0.176407 + 0.305546i
\(926\) 417.967 241.313i 0.451368 0.260598i
\(927\) 0 0
\(928\) −159.982 + 277.098i −0.172395 + 0.298597i
\(929\) 877.848i 0.944939i −0.881347 0.472469i \(-0.843363\pi\)
0.881347 0.472469i \(-0.156637\pi\)
\(930\) 0 0
\(931\) 820.694 + 676.326i 0.881518 + 0.726451i
\(932\) 237.967 137.390i 0.255330 0.147415i
\(933\) 0 0
\(934\) −181.827 314.934i −0.194676 0.337188i
\(935\) 3.88375 + 2.24228i 0.00415374 + 0.00239816i
\(936\) 0 0
\(937\) −618.122 −0.659682 −0.329841 0.944037i \(-0.606995\pi\)
−0.329841 + 0.944037i \(0.606995\pi\)
\(938\) −2.77118 + 0.501321i −0.00295435 + 0.000534457i
\(939\) 0 0
\(940\) 96.6453 167.395i 0.102814 0.178079i
\(941\) 959.816i 1.02000i 0.860176 + 0.509998i \(0.170354\pi\)
−0.860176 + 0.509998i \(0.829646\pi\)
\(942\) 0 0
\(943\) 889.294 0.943048
\(944\) 49.6905i 0.0526383i
\(945\) 0 0
\(946\) −18.8306 −0.0199055
\(947\) 746.630i 0.788416i −0.919021 0.394208i \(-0.871019\pi\)
0.919021 0.394208i \(-0.128981\pi\)
\(948\) 0 0
\(949\) −77.4166 −0.0815771
\(950\) 582.971 + 336.579i 0.613654 + 0.354293i
\(951\) 0 0
\(952\) −10.5691 3.79382i −0.0111020 0.00398511i
\(953\) 1477.27i 1.55013i 0.631881 + 0.775065i \(0.282283\pi\)
−0.631881 + 0.775065i \(0.717717\pi\)
\(954\) 0 0
\(955\) −128.692 + 222.901i −0.134756 + 0.233404i
\(956\) 696.077 401.880i 0.728114 0.420377i
\(957\) 0 0
\(958\) 140.671 + 243.650i 0.146839 + 0.254332i
\(959\) −1071.24 1265.22i −1.11704 1.31931i
\(960\) 0 0
\(961\) 638.166 0.664064
\(962\) 175.222 + 101.165i 0.182144 + 0.105161i
\(963\) 0 0
\(964\) 439.498 + 761.232i 0.455910 + 0.789660i
\(965\) −384.973 222.264i −0.398936 0.230326i
\(966\) 0 0
\(967\) 81.0172 + 140.326i 0.0837820 + 0.145115i 0.904872 0.425685i \(-0.139967\pi\)
−0.821090 + 0.570799i \(0.806633\pi\)
\(968\) −246.475 142.303i −0.254623 0.147007i
\(969\) 0 0
\(970\) −94.2109 163.178i −0.0971247 0.168225i
\(971\) 1063.88 614.232i 1.09565 0.632577i 0.160579 0.987023i \(-0.448664\pi\)
0.935076 + 0.354446i \(0.115331\pi\)
\(972\) 0 0
\(973\) 1199.08 1015.24i 1.23235 1.04342i
\(974\) 567.464 + 327.625i 0.582612 + 0.336371i
\(975\) 0 0
\(976\) 318.111 0.325933
\(977\) 1042.27i 1.06681i −0.845860 0.533405i \(-0.820912\pi\)
0.845860 0.533405i \(-0.179088\pi\)
\(978\) 0 0
\(979\) 122.831 212.749i 0.125465 0.217312i
\(980\) 169.308 + 28.3070i 0.172764 + 0.0288847i
\(981\) 0 0
\(982\) −673.198 1166.01i −0.685538 1.18739i
\(983\) −679.154 + 392.110i −0.690899 + 0.398891i −0.803949 0.594698i \(-0.797271\pi\)
0.113050 + 0.993589i \(0.463938\pi\)
\(984\) 0 0
\(985\) −278.620 + 482.584i −0.282863 + 0.489933i
\(986\) 39.2904 22.6843i 0.0398482 0.0230064i
\(987\) 0 0
\(988\) 208.669 361.425i 0.211203 0.365815i
\(989\) −70.1492 + 40.5006i −0.0709294 + 0.0409511i
\(990\) 0 0
\(991\) −81.5488 + 141.247i −0.0822894 + 0.142529i −0.904233 0.427040i \(-0.859557\pi\)
0.821944 + 0.569569i \(0.192890\pi\)
\(992\) 226.215i 0.228039i
\(993\) 0 0
\(994\) −15.7307 86.9554i −0.0158256 0.0874803i
\(995\) 374.737 216.354i 0.376620 0.217442i
\(996\) 0 0
\(997\) 113.216 + 196.096i 0.113557 + 0.196686i 0.917202 0.398423i \(-0.130442\pi\)
−0.803645 + 0.595109i \(0.797109\pi\)
\(998\) 18.6159 + 10.7479i 0.0186532 + 0.0107694i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.r.a.305.5 32
3.2 odd 2 126.3.r.a.11.9 yes 32
7.2 even 3 378.3.i.a.359.4 32
9.4 even 3 126.3.i.a.95.12 yes 32
9.5 odd 6 378.3.i.a.179.5 32
21.2 odd 6 126.3.i.a.65.12 32
63.23 odd 6 inner 378.3.r.a.233.13 32
63.58 even 3 126.3.r.a.23.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.12 32 21.2 odd 6
126.3.i.a.95.12 yes 32 9.4 even 3
126.3.r.a.11.9 yes 32 3.2 odd 2
126.3.r.a.23.1 yes 32 63.58 even 3
378.3.i.a.179.5 32 9.5 odd 6
378.3.i.a.359.4 32 7.2 even 3
378.3.r.a.233.13 32 63.23 odd 6 inner
378.3.r.a.305.5 32 1.1 even 1 trivial