Properties

Label 126.3.i.a.95.12
Level $126$
Weight $3$
Character 126.95
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(65,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.12
Character \(\chi\) \(=\) 126.95
Dual form 126.3.i.a.65.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(0.878690 + 2.86843i) q^{3} +(1.00000 + 1.73205i) q^{4} -1.75162i q^{5} +(-0.952117 + 4.13443i) q^{6} +(6.58841 + 2.36493i) q^{7} +2.82843i q^{8} +(-7.45581 + 5.04093i) q^{9} +(1.23858 - 2.14528i) q^{10} -4.51407i q^{11} +(-4.08958 + 4.39037i) q^{12} +(-4.80730 + 8.32649i) q^{13} +(6.39685 + 7.55515i) q^{14} +(5.02439 - 1.53913i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(-0.491183 - 0.283585i) q^{17} +(-12.6959 + 0.901796i) q^{18} +(-10.8517 - 18.7956i) q^{19} +(3.03389 - 1.75162i) q^{20} +(-0.994487 + 20.9764i) q^{21} +(3.19193 - 5.52858i) q^{22} -27.4607i q^{23} +(-8.11315 + 2.48531i) q^{24} +21.9318 q^{25} +(-11.7754 + 6.79855i) q^{26} +(-21.0109 - 16.9571i) q^{27} +(2.49222 + 13.7764i) q^{28} +(48.9844 - 28.2812i) q^{29} +(7.24193 + 1.66774i) q^{30} +(19.9948 + 34.6320i) q^{31} +(-4.89898 + 2.82843i) q^{32} +(12.9483 - 3.96647i) q^{33} +(-0.401050 - 0.694638i) q^{34} +(4.14246 - 11.5404i) q^{35} +(-16.1869 - 7.87291i) q^{36} +(-7.44017 - 12.8868i) q^{37} -30.6932i q^{38} +(-28.1081 - 6.47301i) q^{39} +4.95432 q^{40} +(-28.0456 - 16.1921i) q^{41} +(-16.0506 + 24.9876i) q^{42} +(-1.47486 - 2.55453i) q^{43} +(7.81860 - 4.51407i) q^{44} +(8.82977 + 13.0597i) q^{45} +(19.4176 - 33.6323i) q^{46} +(-47.7829 - 27.5875i) q^{47} +(-11.6939 - 2.69299i) q^{48} +(37.8142 + 31.1623i) q^{49} +(26.8609 + 15.5082i) q^{50} +(0.381846 - 1.65811i) q^{51} -19.2292 q^{52} +(-48.3659 - 27.9241i) q^{53} +(-13.7425 - 35.6250i) q^{54} -7.90692 q^{55} +(-6.68904 + 18.6348i) q^{56} +(44.3788 - 47.6428i) q^{57} +79.9912 q^{58} +(-10.7583 + 6.21132i) q^{59} +(7.69024 + 7.16337i) q^{60} +(-39.7638 + 68.8730i) q^{61} +56.5538i q^{62} +(-61.0433 + 15.5792i) q^{63} -8.00000 q^{64} +(14.5848 + 8.42054i) q^{65} +(18.6631 + 4.29792i) q^{66} +(-0.142238 - 0.246363i) q^{67} -1.13434i q^{68} +(78.7691 - 24.1294i) q^{69} +(13.2337 - 11.2048i) q^{70} +8.92640i q^{71} +(-14.2579 - 21.0882i) q^{72} +(4.02599 - 6.97323i) q^{73} -21.0440i q^{74} +(19.2713 + 62.9100i) q^{75} +(21.7033 - 37.5913i) q^{76} +(10.6755 - 29.7405i) q^{77} +(-29.8481 - 27.8032i) q^{78} +(-48.8263 + 84.5697i) q^{79} +(6.06778 + 3.50323i) q^{80} +(30.1781 - 75.1683i) q^{81} +(-22.8992 - 39.6625i) q^{82} +(-19.5749 + 11.3016i) q^{83} +(-37.3267 + 19.2539i) q^{84} +(-0.496732 + 0.860365i) q^{85} -4.17153i q^{86} +(124.165 + 115.658i) q^{87} +12.7677 q^{88} +(-47.1301 + 27.2106i) q^{89} +(1.57960 + 22.2384i) q^{90} +(-51.3640 + 43.4893i) q^{91} +(47.5633 - 27.4607i) q^{92} +(-81.7703 + 87.7845i) q^{93} +(-39.0146 - 67.5752i) q^{94} +(-32.9227 + 19.0080i) q^{95} +(-12.4178 - 11.5671i) q^{96} +(38.0319 + 65.8731i) q^{97} +(24.2776 + 64.9045i) q^{98} +(22.7551 + 33.6560i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 8 q^{6} + 2 q^{7} + 4 q^{9} + 10 q^{13} + 36 q^{14} + 10 q^{15} - 64 q^{16} + 54 q^{17} + 24 q^{18} + 28 q^{19} + 16 q^{21} + 8 q^{24} - 160 q^{25} + 72 q^{26} - 126 q^{27} - 4 q^{28}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.612372 + 0.353553i
\(3\) 0.878690 + 2.86843i 0.292897 + 0.956144i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) 1.75162i 0.350323i −0.984540 0.175162i \(-0.943955\pi\)
0.984540 0.175162i \(-0.0560448\pi\)
\(6\) −0.952117 + 4.13443i −0.158686 + 0.689071i
\(7\) 6.58841 + 2.36493i 0.941201 + 0.337848i
\(8\) 2.82843i 0.353553i
\(9\) −7.45581 + 5.04093i −0.828423 + 0.560103i
\(10\) 1.23858 2.14528i 0.123858 0.214528i
\(11\) 4.51407i 0.410370i −0.978723 0.205185i \(-0.934220\pi\)
0.978723 0.205185i \(-0.0657796\pi\)
\(12\) −4.08958 + 4.39037i −0.340798 + 0.365864i
\(13\) −4.80730 + 8.32649i −0.369792 + 0.640499i −0.989533 0.144308i \(-0.953904\pi\)
0.619741 + 0.784807i \(0.287238\pi\)
\(14\) 6.39685 + 7.55515i 0.456918 + 0.539653i
\(15\) 5.02439 1.53913i 0.334959 0.102609i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −0.491183 0.283585i −0.0288931 0.0166815i 0.485484 0.874246i \(-0.338643\pi\)
−0.514377 + 0.857564i \(0.671977\pi\)
\(18\) −12.6959 + 0.901796i −0.705330 + 0.0500998i
\(19\) −10.8517 18.7956i −0.571140 0.989244i −0.996449 0.0841959i \(-0.973168\pi\)
0.425309 0.905048i \(-0.360165\pi\)
\(20\) 3.03389 1.75162i 0.151694 0.0875808i
\(21\) −0.994487 + 20.9764i −0.0473565 + 0.998878i
\(22\) 3.19193 5.52858i 0.145088 0.251299i
\(23\) 27.4607i 1.19394i −0.802263 0.596971i \(-0.796371\pi\)
0.802263 0.596971i \(-0.203629\pi\)
\(24\) −8.11315 + 2.48531i −0.338048 + 0.103555i
\(25\) 21.9318 0.877274
\(26\) −11.7754 + 6.79855i −0.452901 + 0.261483i
\(27\) −21.0109 16.9571i −0.778181 0.628040i
\(28\) 2.49222 + 13.7764i 0.0890078 + 0.492014i
\(29\) 48.9844 28.2812i 1.68912 0.975213i 0.733925 0.679231i \(-0.237686\pi\)
0.955193 0.295982i \(-0.0956469\pi\)
\(30\) 7.24193 + 1.66774i 0.241398 + 0.0555914i
\(31\) 19.9948 + 34.6320i 0.644993 + 1.11716i 0.984303 + 0.176486i \(0.0564731\pi\)
−0.339310 + 0.940675i \(0.610194\pi\)
\(32\) −4.89898 + 2.82843i −0.153093 + 0.0883883i
\(33\) 12.9483 3.96647i 0.392373 0.120196i
\(34\) −0.401050 0.694638i −0.0117956 0.0204305i
\(35\) 4.14246 11.5404i 0.118356 0.329724i
\(36\) −16.1869 7.87291i −0.449637 0.218692i
\(37\) −7.44017 12.8868i −0.201086 0.348291i 0.747793 0.663932i \(-0.231114\pi\)
−0.948879 + 0.315641i \(0.897780\pi\)
\(38\) 30.6932i 0.807715i
\(39\) −28.1081 6.47301i −0.720720 0.165975i
\(40\) 4.95432 0.123858
\(41\) −28.0456 16.1921i −0.684040 0.394930i 0.117336 0.993092i \(-0.462565\pi\)
−0.801375 + 0.598162i \(0.795898\pi\)
\(42\) −16.0506 + 24.9876i −0.382157 + 0.594942i
\(43\) −1.47486 2.55453i −0.0342991 0.0594077i 0.848366 0.529410i \(-0.177587\pi\)
−0.882665 + 0.470002i \(0.844253\pi\)
\(44\) 7.81860 4.51407i 0.177695 0.102592i
\(45\) 8.82977 + 13.0597i 0.196217 + 0.290216i
\(46\) 19.4176 33.6323i 0.422122 0.731137i
\(47\) −47.7829 27.5875i −1.01666 0.586967i −0.103523 0.994627i \(-0.533012\pi\)
−0.913134 + 0.407660i \(0.866345\pi\)
\(48\) −11.6939 2.69299i −0.243623 0.0561040i
\(49\) 37.8142 + 31.1623i 0.771718 + 0.635965i
\(50\) 26.8609 + 15.5082i 0.537218 + 0.310163i
\(51\) 0.381846 1.65811i 0.00748718 0.0325120i
\(52\) −19.2292 −0.369792
\(53\) −48.3659 27.9241i −0.912565 0.526870i −0.0313093 0.999510i \(-0.509968\pi\)
−0.881256 + 0.472640i \(0.843301\pi\)
\(54\) −13.7425 35.6250i −0.254491 0.659723i
\(55\) −7.90692 −0.143762
\(56\) −6.68904 + 18.6348i −0.119447 + 0.332765i
\(57\) 44.3788 47.6428i 0.778575 0.835839i
\(58\) 79.9912 1.37916
\(59\) −10.7583 + 6.21132i −0.182344 + 0.105277i −0.588394 0.808575i \(-0.700239\pi\)
0.406049 + 0.913851i \(0.366906\pi\)
\(60\) 7.69024 + 7.16337i 0.128171 + 0.119390i
\(61\) −39.7638 + 68.8730i −0.651866 + 1.12906i 0.330804 + 0.943700i \(0.392680\pi\)
−0.982670 + 0.185365i \(0.940653\pi\)
\(62\) 56.5538i 0.912158i
\(63\) −61.0433 + 15.5792i −0.968942 + 0.247288i
\(64\) −8.00000 −0.125000
\(65\) 14.5848 + 8.42054i 0.224382 + 0.129547i
\(66\) 18.6631 + 4.29792i 0.282774 + 0.0651200i
\(67\) −0.142238 0.246363i −0.00212295 0.00367706i 0.864962 0.501837i \(-0.167342\pi\)
−0.867085 + 0.498160i \(0.834009\pi\)
\(68\) 1.13434i 0.0166815i
\(69\) 78.7691 24.1294i 1.14158 0.349702i
\(70\) 13.2337 11.2048i 0.189053 0.160069i
\(71\) 8.92640i 0.125724i 0.998022 + 0.0628619i \(0.0200228\pi\)
−0.998022 + 0.0628619i \(0.979977\pi\)
\(72\) −14.2579 21.0882i −0.198026 0.292892i
\(73\) 4.02599 6.97323i 0.0551506 0.0955237i −0.837132 0.547001i \(-0.815769\pi\)
0.892283 + 0.451477i \(0.149103\pi\)
\(74\) 21.0440i 0.284378i
\(75\) 19.2713 + 62.9100i 0.256951 + 0.838800i
\(76\) 21.7033 37.5913i 0.285570 0.494622i
\(77\) 10.6755 29.7405i 0.138643 0.386241i
\(78\) −29.8481 27.8032i −0.382668 0.356451i
\(79\) −48.8263 + 84.5697i −0.618055 + 1.07050i 0.371786 + 0.928319i \(0.378746\pi\)
−0.989840 + 0.142184i \(0.954588\pi\)
\(80\) 6.06778 + 3.50323i 0.0758472 + 0.0437904i
\(81\) 30.1781 75.1683i 0.372569 0.928004i
\(82\) −22.8992 39.6625i −0.279258 0.483689i
\(83\) −19.5749 + 11.3016i −0.235842 + 0.136163i −0.613264 0.789878i \(-0.710144\pi\)
0.377422 + 0.926041i \(0.376811\pi\)
\(84\) −37.3267 + 19.2539i −0.444366 + 0.229214i
\(85\) −0.496732 + 0.860365i −0.00584390 + 0.0101219i
\(86\) 4.17153i 0.0485062i
\(87\) 124.165 + 115.658i 1.42718 + 1.32940i
\(88\) 12.7677 0.145088
\(89\) −47.1301 + 27.2106i −0.529552 + 0.305737i −0.740834 0.671688i \(-0.765570\pi\)
0.211282 + 0.977425i \(0.432236\pi\)
\(90\) 1.57960 + 22.2384i 0.0175511 + 0.247093i
\(91\) −51.3640 + 43.4893i −0.564440 + 0.477905i
\(92\) 47.5633 27.4607i 0.516992 0.298486i
\(93\) −81.7703 + 87.7845i −0.879250 + 0.943919i
\(94\) −39.0146 67.5752i −0.415049 0.718885i
\(95\) −32.9227 + 19.0080i −0.346555 + 0.200084i
\(96\) −12.4178 11.5671i −0.129352 0.120490i
\(97\) 38.0319 + 65.8731i 0.392081 + 0.679104i 0.992724 0.120413i \(-0.0384220\pi\)
−0.600643 + 0.799517i \(0.705089\pi\)
\(98\) 24.2776 + 64.9045i 0.247731 + 0.662291i
\(99\) 22.7551 + 33.6560i 0.229849 + 0.339960i
\(100\) 21.9318 + 37.9871i 0.219318 + 0.379871i
\(101\) 194.917i 1.92987i 0.262482 + 0.964937i \(0.415459\pi\)
−0.262482 + 0.964937i \(0.584541\pi\)
\(102\) 1.64012 1.76076i 0.0160797 0.0172623i
\(103\) −116.526 −1.13132 −0.565658 0.824640i \(-0.691378\pi\)
−0.565658 + 0.824640i \(0.691378\pi\)
\(104\) −23.5509 13.5971i −0.226451 0.130741i
\(105\) 36.7427 + 1.74196i 0.349930 + 0.0165901i
\(106\) −39.4906 68.3998i −0.372553 0.645281i
\(107\) 65.8789 38.0352i 0.615691 0.355469i −0.159498 0.987198i \(-0.550988\pi\)
0.775189 + 0.631729i \(0.217654\pi\)
\(108\) 8.35960 53.3490i 0.0774037 0.493972i
\(109\) 79.6034 137.877i 0.730307 1.26493i −0.226446 0.974024i \(-0.572711\pi\)
0.956752 0.290904i \(-0.0939561\pi\)
\(110\) −9.68395 5.59103i −0.0880359 0.0508276i
\(111\) 30.4272 32.6651i 0.274119 0.294280i
\(112\) −21.3692 + 18.0930i −0.190796 + 0.161545i
\(113\) 88.3982 + 51.0367i 0.782285 + 0.451652i 0.837239 0.546837i \(-0.184168\pi\)
−0.0549546 + 0.998489i \(0.517501\pi\)
\(114\) 88.0412 26.9698i 0.772291 0.236577i
\(115\) −48.1005 −0.418266
\(116\) 97.9689 + 56.5623i 0.844559 + 0.487606i
\(117\) −6.13091 86.3139i −0.0524009 0.737726i
\(118\) −17.5683 −0.148883
\(119\) −2.56546 3.02999i −0.0215585 0.0254621i
\(120\) 4.35331 + 14.2111i 0.0362776 + 0.118426i
\(121\) 100.623 0.831597
\(122\) −97.4011 + 56.2345i −0.798369 + 0.460939i
\(123\) 21.8027 94.6748i 0.177257 0.769714i
\(124\) −39.9896 + 69.2640i −0.322497 + 0.558580i
\(125\) 82.2066i 0.657652i
\(126\) −85.7787 24.0837i −0.680783 0.191140i
\(127\) −221.800 −1.74646 −0.873228 0.487313i \(-0.837977\pi\)
−0.873228 + 0.487313i \(0.837977\pi\)
\(128\) −9.79796 5.65685i −0.0765466 0.0441942i
\(129\) 6.03156 6.47518i 0.0467563 0.0501952i
\(130\) 11.9084 + 20.6260i 0.0916034 + 0.158662i
\(131\) 2.42010i 0.0184741i −0.999957 0.00923703i \(-0.997060\pi\)
0.999957 0.00923703i \(-0.00294028\pi\)
\(132\) 19.8184 + 18.4606i 0.150140 + 0.139853i
\(133\) −27.0447 149.497i −0.203344 1.12404i
\(134\) 0.402309i 0.00300230i
\(135\) −29.7023 + 36.8030i −0.220017 + 0.272615i
\(136\) 0.802099 1.38928i 0.00589779 0.0102153i
\(137\) 236.830i 1.72869i 0.502901 + 0.864344i \(0.332266\pi\)
−0.502901 + 0.864344i \(0.667734\pi\)
\(138\) 113.534 + 26.1458i 0.822711 + 0.189462i
\(139\) 112.225 194.379i 0.807373 1.39841i −0.107304 0.994226i \(-0.534222\pi\)
0.914677 0.404185i \(-0.132445\pi\)
\(140\) 24.1309 4.36541i 0.172364 0.0311815i
\(141\) 37.1464 161.303i 0.263450 1.14399i
\(142\) −6.31192 + 10.9326i −0.0444501 + 0.0769899i
\(143\) 37.5863 + 21.7005i 0.262841 + 0.151752i
\(144\) −2.55067 35.9095i −0.0177130 0.249372i
\(145\) −49.5378 85.8019i −0.341640 0.591737i
\(146\) 9.86163 5.69362i 0.0675454 0.0389974i
\(147\) −56.1600 + 135.849i −0.382041 + 0.924145i
\(148\) 14.8803 25.7735i 0.100543 0.174145i
\(149\) 82.5884i 0.554284i −0.960829 0.277142i \(-0.910613\pi\)
0.960829 0.277142i \(-0.0893873\pi\)
\(150\) −20.8817 + 90.6756i −0.139211 + 0.604504i
\(151\) −213.733 −1.41545 −0.707724 0.706489i \(-0.750278\pi\)
−0.707724 + 0.706489i \(0.750278\pi\)
\(152\) 53.1621 30.6932i 0.349751 0.201929i
\(153\) 5.09170 0.361665i 0.0332791 0.00236382i
\(154\) 34.1045 28.8758i 0.221458 0.187505i
\(155\) 60.6619 35.0232i 0.391367 0.225956i
\(156\) −16.8965 55.1576i −0.108311 0.353575i
\(157\) −80.8970 140.118i −0.515268 0.892470i −0.999843 0.0177201i \(-0.994359\pi\)
0.484575 0.874749i \(-0.338974\pi\)
\(158\) −119.600 + 69.0508i −0.756959 + 0.437031i
\(159\) 37.5997 163.271i 0.236476 1.02686i
\(160\) 4.95432 + 8.58113i 0.0309645 + 0.0536321i
\(161\) 64.9427 180.922i 0.403371 1.12374i
\(162\) 90.1126 70.7229i 0.556250 0.436561i
\(163\) −26.8721 46.5439i −0.164860 0.285545i 0.771746 0.635931i \(-0.219384\pi\)
−0.936605 + 0.350386i \(0.886050\pi\)
\(164\) 64.7686i 0.394930i
\(165\) −6.94773 22.6805i −0.0421074 0.137457i
\(166\) −31.9656 −0.192564
\(167\) −41.1006 23.7295i −0.246112 0.142093i 0.371871 0.928284i \(-0.378716\pi\)
−0.617982 + 0.786192i \(0.712050\pi\)
\(168\) −59.3303 2.81284i −0.353157 0.0167431i
\(169\) 38.2798 + 66.3025i 0.226507 + 0.392322i
\(170\) −1.21674 + 0.702485i −0.00715729 + 0.00413226i
\(171\) 175.655 + 85.4342i 1.02722 + 0.499615i
\(172\) 2.94972 5.10906i 0.0171495 0.0297039i
\(173\) −79.5964 45.9550i −0.460095 0.265636i 0.251989 0.967730i \(-0.418915\pi\)
−0.712084 + 0.702094i \(0.752249\pi\)
\(174\) 70.2875 + 229.449i 0.403951 + 1.31867i
\(175\) 144.496 + 51.8674i 0.825691 + 0.296385i
\(176\) 15.6372 + 9.02814i 0.0888477 + 0.0512962i
\(177\) −27.2700 25.4017i −0.154068 0.143512i
\(178\) −76.9632 −0.432378
\(179\) −143.122 82.6317i −0.799566 0.461629i 0.0437536 0.999042i \(-0.486068\pi\)
−0.843319 + 0.537413i \(0.819402\pi\)
\(180\) −13.7903 + 28.3533i −0.0766129 + 0.157518i
\(181\) 244.607 1.35142 0.675709 0.737169i \(-0.263838\pi\)
0.675709 + 0.737169i \(0.263838\pi\)
\(182\) −93.6594 + 16.9435i −0.514612 + 0.0930960i
\(183\) −232.497 53.5418i −1.27048 0.292578i
\(184\) 77.6705 0.422122
\(185\) −22.5727 + 13.0323i −0.122014 + 0.0704450i
\(186\) −162.221 + 49.6933i −0.872154 + 0.267168i
\(187\) −1.28012 + 2.21724i −0.00684557 + 0.0118569i
\(188\) 110.350i 0.586967i
\(189\) −98.3260 161.409i −0.520243 0.854018i
\(190\) −53.7626 −0.282961
\(191\) −127.255 73.4705i −0.666254 0.384662i 0.128402 0.991722i \(-0.459015\pi\)
−0.794656 + 0.607060i \(0.792349\pi\)
\(192\) −7.02952 22.9475i −0.0366121 0.119518i
\(193\) 126.891 + 219.782i 0.657466 + 1.13876i 0.981269 + 0.192640i \(0.0617050\pi\)
−0.323803 + 0.946124i \(0.604962\pi\)
\(194\) 107.570i 0.554486i
\(195\) −11.3382 + 49.2346i −0.0581448 + 0.252485i
\(196\) −16.1605 + 96.6584i −0.0824515 + 0.493155i
\(197\) 318.129i 1.61487i 0.589958 + 0.807434i \(0.299144\pi\)
−0.589958 + 0.807434i \(0.700856\pi\)
\(198\) 4.07077 + 57.3103i 0.0205595 + 0.289446i
\(199\) 123.517 213.938i 0.620689 1.07506i −0.368669 0.929561i \(-0.620186\pi\)
0.989358 0.145504i \(-0.0464803\pi\)
\(200\) 62.0326i 0.310163i
\(201\) 0.581692 0.624475i 0.00289399 0.00310684i
\(202\) −137.827 + 238.724i −0.682313 + 1.18180i
\(203\) 389.612 70.4829i 1.91927 0.347206i
\(204\) 3.25378 0.996733i 0.0159499 0.00488595i
\(205\) −28.3624 + 49.1252i −0.138353 + 0.239635i
\(206\) −142.714 82.3960i −0.692786 0.399980i
\(207\) 138.427 + 204.741i 0.668730 + 0.989089i
\(208\) −19.2292 33.3059i −0.0924481 0.160125i
\(209\) −84.8448 + 48.9852i −0.405956 + 0.234379i
\(210\) 43.7686 + 28.1144i 0.208422 + 0.133878i
\(211\) −107.527 + 186.242i −0.509605 + 0.882661i 0.490333 + 0.871535i \(0.336875\pi\)
−0.999938 + 0.0111265i \(0.996458\pi\)
\(212\) 111.696i 0.526870i
\(213\) −25.6048 + 7.84354i −0.120210 + 0.0368241i
\(214\) 107.580 0.502710
\(215\) −4.47456 + 2.58339i −0.0208119 + 0.0120158i
\(216\) 47.9618 59.4278i 0.222045 0.275129i
\(217\) 49.8314 + 275.456i 0.229638 + 1.26938i
\(218\) 194.988 112.576i 0.894439 0.516405i
\(219\) 23.5398 + 5.42099i 0.107488 + 0.0247534i
\(220\) −7.90692 13.6952i −0.0359405 0.0622508i
\(221\) 4.72253 2.72655i 0.0213689 0.0123374i
\(222\) 60.3633 18.4911i 0.271907 0.0832935i
\(223\) −40.9462 70.9208i −0.183615 0.318031i 0.759494 0.650514i \(-0.225447\pi\)
−0.943109 + 0.332484i \(0.892113\pi\)
\(224\) −38.9655 + 7.04906i −0.173953 + 0.0314690i
\(225\) −163.520 + 110.557i −0.726754 + 0.491364i
\(226\) 72.1768 + 125.014i 0.319366 + 0.553159i
\(227\) 23.6118i 0.104017i 0.998647 + 0.0520084i \(0.0165622\pi\)
−0.998647 + 0.0520084i \(0.983438\pi\)
\(228\) 126.899 + 29.2235i 0.556573 + 0.128173i
\(229\) 38.2246 0.166920 0.0834598 0.996511i \(-0.473403\pi\)
0.0834598 + 0.996511i \(0.473403\pi\)
\(230\) −58.9109 34.0122i −0.256134 0.147879i
\(231\) 94.6891 + 4.48919i 0.409910 + 0.0194337i
\(232\) 79.9912 + 138.549i 0.344790 + 0.597193i
\(233\) −118.984 + 68.6952i −0.510659 + 0.294829i −0.733105 0.680116i \(-0.761929\pi\)
0.222445 + 0.974945i \(0.428596\pi\)
\(234\) 53.5244 110.048i 0.228737 0.470289i
\(235\) −48.3226 + 83.6973i −0.205628 + 0.356159i
\(236\) −21.5166 12.4226i −0.0911721 0.0526383i
\(237\) −285.486 65.7445i −1.20458 0.277403i
\(238\) −0.999503 5.52501i −0.00419959 0.0232143i
\(239\) 348.038 + 200.940i 1.45623 + 0.840753i 0.998823 0.0485057i \(-0.0154459\pi\)
0.457404 + 0.889259i \(0.348779\pi\)
\(240\) −4.71709 + 20.4833i −0.0196545 + 0.0853469i
\(241\) 439.498 1.82364 0.911821 0.410588i \(-0.134677\pi\)
0.911821 + 0.410588i \(0.134677\pi\)
\(242\) 123.238 + 71.1513i 0.509247 + 0.294014i
\(243\) 242.133 + 20.5142i 0.996430 + 0.0844207i
\(244\) −159.055 −0.651866
\(245\) 54.5844 66.2359i 0.222793 0.270351i
\(246\) 93.6479 100.536i 0.380683 0.408682i
\(247\) 208.669 0.844813
\(248\) −97.9540 + 56.5538i −0.394976 + 0.228039i
\(249\) −49.6180 46.2186i −0.199269 0.185617i
\(250\) 58.1288 100.682i 0.232515 0.402728i
\(251\) 114.101i 0.454587i 0.973826 + 0.227294i \(0.0729877\pi\)
−0.973826 + 0.227294i \(0.927012\pi\)
\(252\) −88.0273 90.1510i −0.349315 0.357742i
\(253\) −123.959 −0.489958
\(254\) −271.648 156.836i −1.06948 0.617465i
\(255\) −2.90437 0.668848i −0.0113897 0.00262293i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 300.339i 1.16863i 0.811526 + 0.584317i \(0.198637\pi\)
−0.811526 + 0.584317i \(0.801363\pi\)
\(258\) 11.9658 3.66549i 0.0463789 0.0142073i
\(259\) −18.5425 102.499i −0.0715928 0.395748i
\(260\) 33.6822i 0.129547i
\(261\) −222.655 + 457.786i −0.853085 + 1.75397i
\(262\) 1.71127 2.96401i 0.00653157 0.0113130i
\(263\) 421.530i 1.60278i −0.598145 0.801388i \(-0.704096\pi\)
0.598145 0.801388i \(-0.295904\pi\)
\(264\) 11.2189 + 36.6233i 0.0424957 + 0.138725i
\(265\) −48.9123 + 84.7185i −0.184575 + 0.319693i
\(266\) 72.5873 202.219i 0.272885 0.760222i
\(267\) −119.465 111.280i −0.447433 0.416779i
\(268\) 0.284475 0.492725i 0.00106147 0.00183853i
\(269\) −445.841 257.406i −1.65740 0.956901i −0.973908 0.226943i \(-0.927127\pi\)
−0.683492 0.729958i \(-0.739540\pi\)
\(270\) −62.4014 + 24.0716i −0.231116 + 0.0891542i
\(271\) 241.395 + 418.109i 0.890758 + 1.54284i 0.838969 + 0.544179i \(0.183159\pi\)
0.0517888 + 0.998658i \(0.483508\pi\)
\(272\) 1.96473 1.13434i 0.00722329 0.00417037i
\(273\) −169.879 109.121i −0.622268 0.399709i
\(274\) −167.464 + 290.057i −0.611184 + 1.05860i
\(275\) 99.0019i 0.360007i
\(276\) 120.562 + 112.303i 0.436820 + 0.406893i
\(277\) 149.531 0.539824 0.269912 0.962885i \(-0.413005\pi\)
0.269912 + 0.962885i \(0.413005\pi\)
\(278\) 274.894 158.710i 0.988826 0.570899i
\(279\) −323.655 157.417i −1.16005 0.564219i
\(280\) 32.6411 + 11.7166i 0.116575 + 0.0418451i
\(281\) −17.1238 + 9.88641i −0.0609387 + 0.0351830i −0.530160 0.847898i \(-0.677868\pi\)
0.469221 + 0.883081i \(0.344535\pi\)
\(282\) 159.553 171.288i 0.565792 0.607405i
\(283\) −274.977 476.274i −0.971650 1.68295i −0.690575 0.723261i \(-0.742642\pi\)
−0.281075 0.959686i \(-0.590691\pi\)
\(284\) −15.4610 + 8.92640i −0.0544400 + 0.0314310i
\(285\) −83.4519 77.7346i −0.292814 0.272753i
\(286\) 30.6891 + 53.1551i 0.107305 + 0.185857i
\(287\) −146.483 173.006i −0.510392 0.602810i
\(288\) 22.2680 45.7836i 0.0773193 0.158971i
\(289\) −144.339 250.003i −0.499443 0.865061i
\(290\) 140.114i 0.483151i
\(291\) −155.534 + 166.974i −0.534482 + 0.573793i
\(292\) 16.1040 0.0551506
\(293\) −113.883 65.7505i −0.388680 0.224404i 0.292908 0.956141i \(-0.405377\pi\)
−0.681588 + 0.731736i \(0.738710\pi\)
\(294\) −164.842 + 126.670i −0.560686 + 0.430849i
\(295\) 10.8798 + 18.8444i 0.0368808 + 0.0638794i
\(296\) 36.4493 21.0440i 0.123139 0.0710946i
\(297\) −76.5454 + 94.8447i −0.257729 + 0.319342i
\(298\) 58.3988 101.150i 0.195969 0.339429i
\(299\) 228.651 + 132.012i 0.764719 + 0.441510i
\(300\) −89.6920 + 96.2889i −0.298973 + 0.320963i
\(301\) −3.67567 20.3182i −0.0122115 0.0675025i
\(302\) −261.768 151.132i −0.866781 0.500436i
\(303\) −559.107 + 171.272i −1.84524 + 0.565254i
\(304\) 86.8133 0.285570
\(305\) 120.639 + 69.6509i 0.395538 + 0.228364i
\(306\) 6.49177 + 3.15743i 0.0212149 + 0.0103184i
\(307\) 252.488 0.822437 0.411218 0.911537i \(-0.365103\pi\)
0.411218 + 0.911537i \(0.365103\pi\)
\(308\) 62.1876 11.2500i 0.201908 0.0365261i
\(309\) −102.390 334.246i −0.331359 1.08170i
\(310\) 99.0605 0.319550
\(311\) 179.199 103.461i 0.576202 0.332671i −0.183420 0.983035i \(-0.558717\pi\)
0.759623 + 0.650364i \(0.225384\pi\)
\(312\) 18.3084 79.5017i 0.0586809 0.254813i
\(313\) 169.971 294.398i 0.543037 0.940568i −0.455691 0.890138i \(-0.650608\pi\)
0.998728 0.0504294i \(-0.0160590\pi\)
\(314\) 228.811i 0.728698i
\(315\) 27.2887 + 106.924i 0.0866309 + 0.339443i
\(316\) −195.305 −0.618055
\(317\) 237.911 + 137.358i 0.750507 + 0.433306i 0.825877 0.563850i \(-0.190680\pi\)
−0.0753699 + 0.997156i \(0.524014\pi\)
\(318\) 161.500 173.378i 0.507862 0.545215i
\(319\) −127.663 221.119i −0.400198 0.693163i
\(320\) 14.0129i 0.0437904i
\(321\) 166.989 + 155.548i 0.520214 + 0.484573i
\(322\) 207.469 175.662i 0.644315 0.545534i
\(323\) 12.3095i 0.0381098i
\(324\) 160.374 22.8983i 0.494980 0.0706738i
\(325\) −105.433 + 182.615i −0.324409 + 0.561893i
\(326\) 76.0059i 0.233147i
\(327\) 465.438 + 107.186i 1.42336 + 0.327785i
\(328\) 45.7983 79.3250i 0.139629 0.241844i
\(329\) −249.571 294.761i −0.758573 0.895930i
\(330\) 7.52831 32.6906i 0.0228130 0.0990623i
\(331\) 98.5084 170.622i 0.297609 0.515473i −0.677980 0.735081i \(-0.737144\pi\)
0.975588 + 0.219607i \(0.0704776\pi\)
\(332\) −39.1498 22.6031i −0.117921 0.0680817i
\(333\) 120.434 + 58.5758i 0.361663 + 0.175903i
\(334\) −33.5585 58.1251i −0.100475 0.174027i
\(335\) −0.431533 + 0.249146i −0.00128816 + 0.000743718i
\(336\) −70.6755 45.3979i −0.210344 0.135113i
\(337\) −162.571 + 281.581i −0.482405 + 0.835551i −0.999796 0.0201987i \(-0.993570\pi\)
0.517391 + 0.855749i \(0.326903\pi\)
\(338\) 108.272i 0.320330i
\(339\) −68.7207 + 298.410i −0.202716 + 0.880264i
\(340\) −1.98693 −0.00584390
\(341\) 156.331 90.2578i 0.458449 0.264686i
\(342\) 154.722 + 228.842i 0.452403 + 0.669129i
\(343\) 175.438 + 294.738i 0.511482 + 0.859294i
\(344\) 7.22531 4.17153i 0.0210038 0.0121266i
\(345\) −42.2655 137.973i −0.122509 0.399922i
\(346\) −64.9902 112.566i −0.187833 0.325336i
\(347\) 84.4075 48.7327i 0.243249 0.140440i −0.373420 0.927662i \(-0.621815\pi\)
0.616669 + 0.787222i \(0.288482\pi\)
\(348\) −76.1610 + 330.718i −0.218853 + 0.950339i
\(349\) −106.817 185.012i −0.306065 0.530121i 0.671433 0.741066i \(-0.265679\pi\)
−0.977498 + 0.210945i \(0.932346\pi\)
\(350\) 140.295 + 165.698i 0.400842 + 0.473424i
\(351\) 242.198 93.4293i 0.690024 0.266180i
\(352\) 12.7677 + 22.1143i 0.0362719 + 0.0628248i
\(353\) 641.700i 1.81785i 0.416962 + 0.908924i \(0.363095\pi\)
−0.416962 + 0.908924i \(0.636905\pi\)
\(354\) −15.4370 50.3933i −0.0436075 0.142354i
\(355\) 15.6356 0.0440440
\(356\) −94.2603 54.4212i −0.264776 0.152869i
\(357\) 6.43708 10.0213i 0.0180310 0.0280707i
\(358\) −116.859 202.405i −0.326421 0.565378i
\(359\) 263.839 152.328i 0.734928 0.424311i −0.0852941 0.996356i \(-0.527183\pi\)
0.820222 + 0.572045i \(0.193850\pi\)
\(360\) −36.9384 + 24.9744i −0.102607 + 0.0693732i
\(361\) −55.0174 + 95.2929i −0.152403 + 0.263969i
\(362\) 299.581 + 172.963i 0.827571 + 0.477798i
\(363\) 88.4166 + 288.631i 0.243572 + 0.795126i
\(364\) −126.690 45.4758i −0.348049 0.124933i
\(365\) −12.2144 7.05200i −0.0334641 0.0193205i
\(366\) −246.890 229.976i −0.674564 0.628349i
\(367\) 125.326 0.341488 0.170744 0.985315i \(-0.445383\pi\)
0.170744 + 0.985315i \(0.445383\pi\)
\(368\) 95.1265 + 54.9213i 0.258496 + 0.149243i
\(369\) 290.726 20.6504i 0.787876 0.0559631i
\(370\) −36.8610 −0.0996243
\(371\) −252.616 298.357i −0.680905 0.804198i
\(372\) −233.817 53.8458i −0.628542 0.144747i
\(373\) −264.825 −0.709987 −0.354993 0.934869i \(-0.615517\pi\)
−0.354993 + 0.934869i \(0.615517\pi\)
\(374\) −3.13565 + 1.81037i −0.00838408 + 0.00484055i
\(375\) 235.804 72.2341i 0.628811 0.192624i
\(376\) 78.0291 135.150i 0.207524 0.359443i
\(377\) 543.824i 1.44250i
\(378\) −6.29053 267.212i −0.0166416 0.706911i
\(379\) −190.773 −0.503359 −0.251679 0.967811i \(-0.580983\pi\)
−0.251679 + 0.967811i \(0.580983\pi\)
\(380\) −65.8455 38.0159i −0.173278 0.100042i
\(381\) −194.893 636.218i −0.511531 1.66986i
\(382\) −103.903 179.965i −0.271997 0.471113i
\(383\) 599.457i 1.56516i 0.622548 + 0.782582i \(0.286098\pi\)
−0.622548 + 0.782582i \(0.713902\pi\)
\(384\) 7.61693 33.0754i 0.0198358 0.0861339i
\(385\) −52.0940 18.6993i −0.135309 0.0485697i
\(386\) 358.902i 0.929797i
\(387\) 23.8735 + 11.6114i 0.0616886 + 0.0300037i
\(388\) −76.0637 + 131.746i −0.196040 + 0.339552i
\(389\) 100.950i 0.259512i −0.991546 0.129756i \(-0.958581\pi\)
0.991546 0.129756i \(-0.0414193\pi\)
\(390\) −48.7005 + 52.2824i −0.124873 + 0.134058i
\(391\) −7.78743 + 13.4882i −0.0199167 + 0.0344967i
\(392\) −88.1403 + 106.955i −0.224848 + 0.272843i
\(393\) 6.94190 2.12652i 0.0176639 0.00541099i
\(394\) −224.951 + 389.627i −0.570942 + 0.988900i
\(395\) 148.134 + 85.5250i 0.375022 + 0.216519i
\(396\) −35.5389 + 73.0690i −0.0897446 + 0.184518i
\(397\) −154.534 267.661i −0.389255 0.674210i 0.603094 0.797670i \(-0.293934\pi\)
−0.992350 + 0.123460i \(0.960601\pi\)
\(398\) 302.554 174.680i 0.760185 0.438893i
\(399\) 405.057 208.937i 1.01518 0.523652i
\(400\) −43.8637 + 75.9741i −0.109659 + 0.189935i
\(401\) 603.024i 1.50380i −0.659276 0.751901i \(-0.729137\pi\)
0.659276 0.751901i \(-0.270863\pi\)
\(402\) 1.15400 0.353505i 0.00287063 0.000879365i
\(403\) −384.484 −0.954054
\(404\) −337.607 + 194.917i −0.835660 + 0.482468i
\(405\) −131.666 52.8605i −0.325101 0.130520i
\(406\) 527.015 + 189.174i 1.29807 + 0.465946i
\(407\) −58.1717 + 33.5855i −0.142928 + 0.0825196i
\(408\) 4.68984 + 1.08002i 0.0114947 + 0.00264712i
\(409\) −219.715 380.558i −0.537201 0.930459i −0.999053 0.0435023i \(-0.986148\pi\)
0.461853 0.886957i \(-0.347185\pi\)
\(410\) −69.4735 + 40.1105i −0.169447 + 0.0978305i
\(411\) −679.332 + 208.100i −1.65287 + 0.506327i
\(412\) −116.526 201.828i −0.282829 0.489874i
\(413\) −85.5695 + 15.4800i −0.207190 + 0.0374817i
\(414\) 24.7639 + 348.639i 0.0598163 + 0.842123i
\(415\) 19.7960 + 34.2877i 0.0477012 + 0.0826209i
\(416\) 54.3884i 0.130741i
\(417\) 656.174 + 151.110i 1.57356 + 0.362375i
\(418\) −138.551 −0.331462
\(419\) −49.5525 28.6092i −0.118264 0.0682796i 0.439701 0.898144i \(-0.355084\pi\)
−0.557965 + 0.829864i \(0.688418\pi\)
\(420\) 33.7255 + 65.3821i 0.0802988 + 0.155672i
\(421\) 163.713 + 283.558i 0.388866 + 0.673536i 0.992297 0.123879i \(-0.0395336\pi\)
−0.603431 + 0.797415i \(0.706200\pi\)
\(422\) −263.385 + 152.066i −0.624136 + 0.360345i
\(423\) 495.326 35.1832i 1.17098 0.0831754i
\(424\) 78.9812 136.800i 0.186277 0.322640i
\(425\) −10.7726 6.21954i −0.0253472 0.0146342i
\(426\) −36.9055 8.49897i −0.0866327 0.0199506i
\(427\) −424.860 + 359.724i −0.994989 + 0.842445i
\(428\) 131.758 + 76.0704i 0.307845 + 0.177735i
\(429\) −29.2196 + 126.882i −0.0681110 + 0.295762i
\(430\) −7.30692 −0.0169928
\(431\) −90.4104 52.1985i −0.209769 0.121110i 0.391435 0.920206i \(-0.371979\pi\)
−0.601204 + 0.799096i \(0.705312\pi\)
\(432\) 100.763 38.8698i 0.233247 0.0899763i
\(433\) 426.363 0.984673 0.492337 0.870405i \(-0.336143\pi\)
0.492337 + 0.870405i \(0.336143\pi\)
\(434\) −133.746 + 372.599i −0.308171 + 0.858524i
\(435\) 202.589 217.489i 0.465721 0.499975i
\(436\) 318.414 0.730307
\(437\) −516.141 + 297.994i −1.18110 + 0.681909i
\(438\) 24.9971 + 23.2845i 0.0570709 + 0.0531610i
\(439\) −142.303 + 246.476i −0.324153 + 0.561449i −0.981341 0.192278i \(-0.938413\pi\)
0.657188 + 0.753727i \(0.271746\pi\)
\(440\) 22.3641i 0.0508276i
\(441\) −439.022 41.7216i −0.995515 0.0946068i
\(442\) 7.71186 0.0174476
\(443\) 399.167 + 230.459i 0.901055 + 0.520224i 0.877542 0.479499i \(-0.159182\pi\)
0.0235125 + 0.999724i \(0.492515\pi\)
\(444\) 87.0048 + 20.0363i 0.195957 + 0.0451269i
\(445\) 47.6625 + 82.5539i 0.107107 + 0.185514i
\(446\) 115.813i 0.259671i
\(447\) 236.899 72.5696i 0.529976 0.162348i
\(448\) −52.7072 18.9195i −0.117650 0.0422310i
\(449\) 184.454i 0.410811i 0.978677 + 0.205406i \(0.0658514\pi\)
−0.978677 + 0.205406i \(0.934149\pi\)
\(450\) −278.445 + 19.7781i −0.618767 + 0.0439512i
\(451\) −73.0925 + 126.600i −0.162068 + 0.280709i
\(452\) 204.147i 0.451652i
\(453\) −187.805 613.077i −0.414580 1.35337i
\(454\) −16.6961 + 28.9184i −0.0367755 + 0.0636970i
\(455\) 76.1766 + 89.9700i 0.167421 + 0.197736i
\(456\) 134.754 + 125.522i 0.295514 + 0.275268i
\(457\) 79.0457 136.911i 0.172967 0.299587i −0.766489 0.642257i \(-0.777998\pi\)
0.939456 + 0.342670i \(0.111331\pi\)
\(458\) 46.8154 + 27.0289i 0.102217 + 0.0590150i
\(459\) 5.51144 + 14.2874i 0.0120075 + 0.0311272i
\(460\) −48.1005 83.3126i −0.104566 0.181114i
\(461\) −301.115 + 173.849i −0.653179 + 0.377113i −0.789673 0.613528i \(-0.789750\pi\)
0.136494 + 0.990641i \(0.456416\pi\)
\(462\) 112.796 + 72.4534i 0.244146 + 0.156826i
\(463\) 170.634 295.547i 0.368541 0.638331i −0.620797 0.783971i \(-0.713191\pi\)
0.989338 + 0.145640i \(0.0465242\pi\)
\(464\) 226.249i 0.487606i
\(465\) 153.765 + 143.230i 0.330677 + 0.308022i
\(466\) −194.299 −0.416951
\(467\) 222.692 128.571i 0.476856 0.275313i −0.242249 0.970214i \(-0.577885\pi\)
0.719105 + 0.694901i \(0.244552\pi\)
\(468\) 143.369 96.9329i 0.306344 0.207122i
\(469\) −0.354487 1.95952i −0.000755836 0.00417808i
\(470\) −118.366 + 68.3385i −0.251842 + 0.145401i
\(471\) 330.835 355.168i 0.702409 0.754071i
\(472\) −17.5683 30.4291i −0.0372209 0.0644684i
\(473\) −11.5313 + 6.65762i −0.0243791 + 0.0140753i
\(474\) −303.159 282.389i −0.639575 0.595757i
\(475\) −237.997 412.223i −0.501046 0.867838i
\(476\) 2.68264 7.47349i 0.00563580 0.0157006i
\(477\) 501.370 35.6125i 1.05109 0.0746593i
\(478\) 284.172 + 492.200i 0.594502 + 1.02971i
\(479\) 198.939i 0.415322i −0.978201 0.207661i \(-0.933415\pi\)
0.978201 0.207661i \(-0.0665851\pi\)
\(480\) −20.2611 + 21.7513i −0.0422106 + 0.0453152i
\(481\) 143.069 0.297440
\(482\) 538.272 + 310.772i 1.11675 + 0.644755i
\(483\) 576.027 + 27.3093i 1.19260 + 0.0565410i
\(484\) 100.623 + 174.284i 0.207899 + 0.360092i
\(485\) 115.384 66.6172i 0.237906 0.137355i
\(486\) 282.045 + 196.338i 0.580339 + 0.403988i
\(487\) −231.666 + 401.257i −0.475700 + 0.823937i −0.999613 0.0278350i \(-0.991139\pi\)
0.523912 + 0.851772i \(0.324472\pi\)
\(488\) −194.802 112.469i −0.399185 0.230469i
\(489\) 109.896 117.979i 0.224736 0.241265i
\(490\) 113.688 42.5251i 0.232016 0.0867859i
\(491\) −824.496 476.023i −1.67922 0.969497i −0.962161 0.272482i \(-0.912156\pi\)
−0.717056 0.697015i \(-0.754511\pi\)
\(492\) 185.784 56.9115i 0.377610 0.115674i
\(493\) −32.0805 −0.0650719
\(494\) 255.566 + 147.551i 0.517340 + 0.298687i
\(495\) 58.9524 39.8582i 0.119096 0.0805216i
\(496\) −159.958 −0.322497
\(497\) −21.1103 + 58.8107i −0.0424755 + 0.118331i
\(498\) −28.0879 91.6913i −0.0564014 0.184119i
\(499\) 15.1998 0.0304606 0.0152303 0.999884i \(-0.495152\pi\)
0.0152303 + 0.999884i \(0.495152\pi\)
\(500\) 142.386 82.2066i 0.284772 0.164413i
\(501\) 31.9516 138.745i 0.0637757 0.276937i
\(502\) −80.6818 + 139.745i −0.160721 + 0.278377i
\(503\) 247.471i 0.491989i 0.969271 + 0.245995i \(0.0791146\pi\)
−0.969271 + 0.245995i \(0.920885\pi\)
\(504\) −44.0645 172.657i −0.0874297 0.342573i
\(505\) 341.420 0.676080
\(506\) −151.819 87.6525i −0.300037 0.173226i
\(507\) −156.548 + 168.062i −0.308773 + 0.331484i
\(508\) −221.800 384.169i −0.436614 0.756237i
\(509\) 200.767i 0.394435i −0.980360 0.197217i \(-0.936810\pi\)
0.980360 0.197217i \(-0.0631905\pi\)
\(510\) −3.08417 2.87287i −0.00604739 0.00563307i
\(511\) 43.0161 36.4212i 0.0841802 0.0712744i
\(512\) 22.6274i 0.0441942i
\(513\) −90.7156 + 578.926i −0.176834 + 1.12851i
\(514\) −212.372 + 367.838i −0.413174 + 0.715639i
\(515\) 204.108i 0.396326i
\(516\) 17.2469 + 3.97179i 0.0334242 + 0.00769726i
\(517\) −124.532 + 215.695i −0.240874 + 0.417206i
\(518\) 49.7677 138.646i 0.0960766 0.267657i
\(519\) 61.8783 268.697i 0.119226 0.517721i
\(520\) −23.8169 + 41.2521i −0.0458017 + 0.0793309i
\(521\) 248.569 + 143.512i 0.477101 + 0.275454i 0.719207 0.694795i \(-0.244505\pi\)
−0.242107 + 0.970250i \(0.577838\pi\)
\(522\) −596.399 + 403.230i −1.14253 + 0.772471i
\(523\) −280.624 486.054i −0.536565 0.929358i −0.999086 0.0427498i \(-0.986388\pi\)
0.462520 0.886609i \(-0.346945\pi\)
\(524\) 4.19174 2.42010i 0.00799951 0.00461852i
\(525\) −21.8109 + 460.052i −0.0415447 + 0.876289i
\(526\) 298.067 516.267i 0.566667 0.981495i
\(527\) 22.6809i 0.0430377i
\(528\) −12.1564 + 52.7872i −0.0230234 + 0.0999757i
\(529\) −225.088 −0.425498
\(530\) −119.810 + 69.1724i −0.226057 + 0.130514i
\(531\) 48.9011 100.542i 0.0920925 0.189345i
\(532\) 231.891 196.340i 0.435886 0.369059i
\(533\) 269.647 155.681i 0.505905 0.292084i
\(534\) −67.6268 220.764i −0.126642 0.413415i
\(535\) −66.6231 115.395i −0.124529 0.215691i
\(536\) 0.696819 0.402309i 0.00130004 0.000750576i
\(537\) 111.263 483.144i 0.207194 0.899710i
\(538\) −364.027 630.514i −0.676631 1.17196i
\(539\) 140.669 170.696i 0.260981 0.316690i
\(540\) −93.4470 14.6428i −0.173050 0.0271163i
\(541\) −58.2830 100.949i −0.107732 0.186597i 0.807119 0.590389i \(-0.201026\pi\)
−0.914851 + 0.403791i \(0.867692\pi\)
\(542\) 682.769i 1.25972i
\(543\) 214.933 + 701.637i 0.395826 + 1.29215i
\(544\) 3.20840 0.00589779
\(545\) −241.508 139.435i −0.443134 0.255843i
\(546\) −130.899 253.768i −0.239741 0.464776i
\(547\) 22.9108 + 39.6827i 0.0418845 + 0.0725461i 0.886208 0.463288i \(-0.153331\pi\)
−0.844323 + 0.535834i \(0.819997\pi\)
\(548\) −410.202 + 236.830i −0.748544 + 0.432172i
\(549\) −50.7121 713.950i −0.0923718 1.30046i
\(550\) 70.0049 121.252i 0.127282 0.220458i
\(551\) −1063.13 613.796i −1.92945 1.11397i
\(552\) 68.2483 + 222.793i 0.123638 + 0.403610i
\(553\) −521.689 + 441.708i −0.943380 + 0.798749i
\(554\) 183.138 + 105.735i 0.330573 + 0.190857i
\(555\) −57.2167 53.2967i −0.103093 0.0960302i
\(556\) 448.899 0.807373
\(557\) −772.053 445.745i −1.38609 0.800260i −0.393219 0.919445i \(-0.628639\pi\)
−0.992872 + 0.119185i \(0.961972\pi\)
\(558\) −285.084 421.654i −0.510902 0.755653i
\(559\) 28.3604 0.0507341
\(560\) 31.6921 + 37.4306i 0.0565929 + 0.0668404i
\(561\) −7.48482 1.72368i −0.0133419 0.00307251i
\(562\) −27.9630 −0.0497562
\(563\) 290.660 167.813i 0.516270 0.298069i −0.219137 0.975694i \(-0.570324\pi\)
0.735407 + 0.677625i \(0.236991\pi\)
\(564\) 316.531 96.9633i 0.561225 0.171921i
\(565\) 89.3967 154.840i 0.158224 0.274052i
\(566\) 777.752i 1.37412i
\(567\) 376.594 423.870i 0.664187 0.747567i
\(568\) −25.2477 −0.0444501
\(569\) 818.812 + 472.741i 1.43904 + 0.830828i 0.997783 0.0665539i \(-0.0212004\pi\)
0.441254 + 0.897382i \(0.354534\pi\)
\(570\) −47.2407 154.214i −0.0828784 0.270552i
\(571\) 258.155 + 447.138i 0.452111 + 0.783079i 0.998517 0.0544416i \(-0.0173379\pi\)
−0.546406 + 0.837520i \(0.684005\pi\)
\(572\) 86.8019i 0.151752i
\(573\) 98.9277 429.579i 0.172649 0.749701i
\(574\) −57.0697 315.468i −0.0994246 0.549595i
\(575\) 602.263i 1.04741i
\(576\) 59.6465 40.3274i 0.103553 0.0700129i
\(577\) −222.167 + 384.804i −0.385038 + 0.666905i −0.991774 0.127998i \(-0.959145\pi\)
0.606737 + 0.794903i \(0.292478\pi\)
\(578\) 408.253i 0.706320i
\(579\) −518.931 + 557.098i −0.896253 + 0.962173i
\(580\) 99.0755 171.604i 0.170820 0.295869i
\(581\) −155.695 + 28.1660i −0.267977 + 0.0484784i
\(582\) −308.558 + 94.5210i −0.530169 + 0.162407i
\(583\) −126.051 + 218.327i −0.216211 + 0.374489i
\(584\) 19.7233 + 11.3872i 0.0337727 + 0.0194987i
\(585\) −151.189 + 10.7390i −0.258442 + 0.0183573i
\(586\) −92.9853 161.055i −0.158678 0.274838i
\(587\) 333.063 192.294i 0.567398 0.327588i −0.188711 0.982033i \(-0.560431\pi\)
0.756110 + 0.654445i \(0.227098\pi\)
\(588\) −291.458 + 38.5774i −0.495677 + 0.0656079i
\(589\) 433.954 751.630i 0.736763 1.27611i
\(590\) 30.7728i 0.0521573i
\(591\) −912.531 + 279.537i −1.54405 + 0.472989i
\(592\) 59.5214 0.100543
\(593\) 234.426 135.346i 0.395321 0.228239i −0.289142 0.957286i \(-0.593370\pi\)
0.684463 + 0.729047i \(0.260037\pi\)
\(594\) −160.814 + 62.0348i −0.270730 + 0.104436i
\(595\) −5.30738 + 4.49369i −0.00891996 + 0.00755243i
\(596\) 143.047 82.5884i 0.240012 0.138571i
\(597\) 722.199 + 166.315i 1.20971 + 0.278585i
\(598\) 186.693 + 323.361i 0.312195 + 0.540738i
\(599\) −251.273 + 145.073i −0.419488 + 0.242191i −0.694858 0.719147i \(-0.744533\pi\)
0.275370 + 0.961338i \(0.411200\pi\)
\(600\) −177.936 + 54.5074i −0.296561 + 0.0908457i
\(601\) 332.538 + 575.974i 0.553309 + 0.958359i 0.998033 + 0.0626911i \(0.0199683\pi\)
−0.444724 + 0.895667i \(0.646698\pi\)
\(602\) 9.86540 27.4838i 0.0163877 0.0456541i
\(603\) 2.30239 + 1.11982i 0.00381823 + 0.00185709i
\(604\) −213.733 370.196i −0.353862 0.612907i
\(605\) 176.253i 0.291328i
\(606\) −805.871 185.584i −1.32982 0.306244i
\(607\) −275.607 −0.454048 −0.227024 0.973889i \(-0.572900\pi\)
−0.227024 + 0.973889i \(0.572900\pi\)
\(608\) 106.324 + 61.3863i 0.174875 + 0.100964i
\(609\) 544.524 + 1055.64i 0.894128 + 1.73341i
\(610\) 98.5013 + 170.609i 0.161478 + 0.279687i
\(611\) 459.413 265.242i 0.751904 0.434112i
\(612\) 5.71812 + 8.45742i 0.00934334 + 0.0138193i
\(613\) 31.3289 54.2633i 0.0511075 0.0885209i −0.839340 0.543607i \(-0.817058\pi\)
0.890447 + 0.455086i \(0.150392\pi\)
\(614\) 309.233 + 178.536i 0.503638 + 0.290775i
\(615\) −165.834 38.1899i −0.269649 0.0620974i
\(616\) 84.1189 + 30.1948i 0.136557 + 0.0490176i
\(617\) 446.057 + 257.531i 0.722945 + 0.417392i 0.815836 0.578284i \(-0.196277\pi\)
−0.0928908 + 0.995676i \(0.529611\pi\)
\(618\) 110.946 481.766i 0.179524 0.779557i
\(619\) 1078.54 1.74239 0.871194 0.490939i \(-0.163346\pi\)
0.871194 + 0.490939i \(0.163346\pi\)
\(620\) 121.324 + 70.0464i 0.195684 + 0.112978i
\(621\) −465.652 + 576.973i −0.749843 + 0.929104i
\(622\) 292.631 0.470467
\(623\) −374.864 + 67.8148i −0.601708 + 0.108852i
\(624\) 78.6393 84.4232i 0.126025 0.135294i
\(625\) 404.302 0.646883
\(626\) 416.341 240.375i 0.665082 0.383985i
\(627\) −215.063 200.329i −0.343003 0.319504i
\(628\) 161.794 280.235i 0.257634 0.446235i
\(629\) 8.43968i 0.0134176i
\(630\) −42.1853 + 150.251i −0.0669608 + 0.238494i
\(631\) 65.5284 0.103848 0.0519242 0.998651i \(-0.483465\pi\)
0.0519242 + 0.998651i \(0.483465\pi\)
\(632\) −239.199 138.102i −0.378480 0.218515i
\(633\) −628.704 144.784i −0.993213 0.228727i
\(634\) 194.253 + 336.457i 0.306393 + 0.530689i
\(635\) 388.508i 0.611824i
\(636\) 320.393 98.1465i 0.503763 0.154318i
\(637\) −441.256 + 165.053i −0.692710 + 0.259109i
\(638\) 361.086i 0.565966i
\(639\) −44.9973 66.5535i −0.0704183 0.104153i
\(640\) −9.90864 + 17.1623i −0.0154822 + 0.0268160i
\(641\) 791.031i 1.23406i −0.786940 0.617029i \(-0.788336\pi\)
0.786940 0.617029i \(-0.211664\pi\)
\(642\) 94.5294 + 308.586i 0.147242 + 0.480663i
\(643\) −414.293 + 717.577i −0.644313 + 1.11598i 0.340147 + 0.940372i \(0.389523\pi\)
−0.984460 + 0.175610i \(0.943810\pi\)
\(644\) 378.309 68.4380i 0.587436 0.106270i
\(645\) −11.3420 10.5650i −0.0175845 0.0163798i
\(646\) −8.70411 + 15.0760i −0.0134739 + 0.0233374i
\(647\) −54.8043 31.6413i −0.0847053 0.0489046i 0.457049 0.889441i \(-0.348906\pi\)
−0.541754 + 0.840537i \(0.682240\pi\)
\(648\) 212.608 + 85.3566i 0.328099 + 0.131723i
\(649\) 28.0383 + 48.5638i 0.0432023 + 0.0748286i
\(650\) −258.257 + 149.105i −0.397318 + 0.229392i
\(651\) −746.340 + 384.978i −1.14645 + 0.591365i
\(652\) 53.7443 93.0878i 0.0824298 0.142773i
\(653\) 651.734i 0.998062i 0.866584 + 0.499031i \(0.166311\pi\)
−0.866584 + 0.499031i \(0.833689\pi\)
\(654\) 494.251 + 460.390i 0.755736 + 0.703959i
\(655\) −4.23909 −0.00647189
\(656\) 112.182 64.7686i 0.171010 0.0987326i
\(657\) 5.13448 + 72.2858i 0.00781504 + 0.110024i
\(658\) −97.2328 537.480i −0.147770 0.816839i
\(659\) −58.2921 + 33.6550i −0.0884554 + 0.0510698i −0.543575 0.839360i \(-0.682930\pi\)
0.455120 + 0.890430i \(0.349596\pi\)
\(660\) 32.3360 34.7143i 0.0489939 0.0525974i
\(661\) 243.282 + 421.376i 0.368051 + 0.637483i 0.989261 0.146161i \(-0.0466918\pi\)
−0.621210 + 0.783644i \(0.713358\pi\)
\(662\) 241.295 139.312i 0.364495 0.210441i
\(663\) 11.9706 + 11.1505i 0.0180552 + 0.0168182i
\(664\) −31.9656 55.3661i −0.0481410 0.0833827i
\(665\) −261.861 + 47.3720i −0.393776 + 0.0712361i
\(666\) 106.081 + 156.900i 0.159281 + 0.235585i
\(667\) −776.620 1345.15i −1.16435 2.01671i
\(668\) 94.9178i 0.142093i
\(669\) 167.453 179.769i 0.250303 0.268713i
\(670\) −0.704690 −0.00105178
\(671\) 310.897 + 179.497i 0.463334 + 0.267506i
\(672\) −54.4584 105.576i −0.0810392 0.157107i
\(673\) 135.979 + 235.523i 0.202050 + 0.349960i 0.949189 0.314707i \(-0.101906\pi\)
−0.747139 + 0.664668i \(0.768573\pi\)
\(674\) −398.215 + 229.910i −0.590824 + 0.341112i
\(675\) −460.808 371.900i −0.682678 0.550963i
\(676\) −76.5595 + 132.605i −0.113254 + 0.196161i
\(677\) −513.950 296.729i −0.759158 0.438300i 0.0698351 0.997559i \(-0.477753\pi\)
−0.828994 + 0.559258i \(0.811086\pi\)
\(678\) −295.173 + 316.883i −0.435358 + 0.467379i
\(679\) 94.7837 + 523.942i 0.139593 + 0.771637i
\(680\) −2.43348 1.40497i −0.00357865 0.00206613i
\(681\) −67.7288 + 20.7475i −0.0994550 + 0.0304662i
\(682\) 255.288 0.374322
\(683\) 763.359 + 440.725i 1.11766 + 0.645279i 0.940801 0.338958i \(-0.110075\pi\)
0.176854 + 0.984237i \(0.443408\pi\)
\(684\) 27.6790 + 389.678i 0.0404663 + 0.569705i
\(685\) 414.836 0.605600
\(686\) 6.45604 + 485.032i 0.00941113 + 0.707044i
\(687\) 33.5876 + 109.645i 0.0488902 + 0.159599i
\(688\) 11.7989 0.0171495
\(689\) 465.019 268.479i 0.674919 0.389665i
\(690\) 45.7973 198.868i 0.0663729 0.288215i
\(691\) −438.204 + 758.992i −0.634159 + 1.09840i 0.352533 + 0.935799i \(0.385320\pi\)
−0.986693 + 0.162597i \(0.948013\pi\)
\(692\) 183.820i 0.265636i
\(693\) 70.3255 + 275.554i 0.101480 + 0.397625i
\(694\) 137.837 0.198612
\(695\) −340.478 196.575i −0.489896 0.282841i
\(696\) −327.131 + 351.191i −0.470015 + 0.504585i
\(697\) 9.18370 + 15.9066i 0.0131760 + 0.0228216i
\(698\) 302.124i 0.432842i
\(699\) −301.597 280.935i −0.431470 0.401909i
\(700\) 54.6589 + 302.142i 0.0780842 + 0.431631i
\(701\) 286.681i 0.408961i 0.978871 + 0.204480i \(0.0655504\pi\)
−0.978871 + 0.204480i \(0.934450\pi\)
\(702\) 362.696 + 56.8331i 0.516661 + 0.0809589i
\(703\) −161.477 + 279.686i −0.229696 + 0.397846i
\(704\) 36.1126i 0.0512962i
\(705\) −282.541 65.0663i −0.400767 0.0922926i
\(706\) −453.751 + 785.919i −0.642706 + 1.11320i
\(707\) −460.967 + 1284.19i −0.652004 + 1.81640i
\(708\) 16.7270 72.6346i 0.0236257 0.102591i
\(709\) −328.602 + 569.156i −0.463473 + 0.802758i −0.999131 0.0416765i \(-0.986730\pi\)
0.535659 + 0.844435i \(0.320063\pi\)
\(710\) 19.1496 + 11.0561i 0.0269713 + 0.0155719i
\(711\) −62.2698 876.665i −0.0875806 1.23300i
\(712\) −76.9632 133.304i −0.108094 0.187225i
\(713\) 951.017 549.070i 1.33383 0.770084i
\(714\) 14.9699 7.72178i 0.0209662 0.0108148i
\(715\) 38.0109 65.8368i 0.0531621 0.0920795i
\(716\) 330.527i 0.461629i
\(717\) −270.565 + 1174.89i −0.377357 + 1.63862i
\(718\) 430.848 0.600066
\(719\) −404.412 + 233.488i −0.562465 + 0.324739i −0.754134 0.656720i \(-0.771943\pi\)
0.191669 + 0.981460i \(0.438610\pi\)
\(720\) −62.8997 + 4.46779i −0.0873607 + 0.00620526i
\(721\) −767.717 275.575i −1.06480 0.382212i
\(722\) −134.765 + 77.8064i −0.186655 + 0.107765i
\(723\) 386.182 + 1260.67i 0.534139 + 1.74366i
\(724\) 244.607 + 423.671i 0.337854 + 0.585181i
\(725\) 1074.32 620.258i 1.48182 0.855529i
\(726\) −95.8050 + 416.019i −0.131963 + 0.573029i
\(727\) −21.8124 37.7802i −0.0300033 0.0519673i 0.850634 0.525759i \(-0.176218\pi\)
−0.880637 + 0.473791i \(0.842885\pi\)
\(728\) −123.006 145.279i −0.168965 0.199560i
\(729\) 153.916 + 712.566i 0.211133 + 0.977457i
\(730\) −9.97303 17.2738i −0.0136617 0.0236627i
\(731\) 1.67299i 0.00228863i
\(732\) −139.760 456.239i −0.190929 0.623278i
\(733\) 1118.07 1.52533 0.762665 0.646794i \(-0.223891\pi\)
0.762665 + 0.646794i \(0.223891\pi\)
\(734\) 153.492 + 88.6189i 0.209118 + 0.120734i
\(735\) 237.956 + 98.3707i 0.323750 + 0.133838i
\(736\) 77.6705 + 134.529i 0.105531 + 0.182784i
\(737\) −1.11210 + 0.642070i −0.00150895 + 0.000871194i
\(738\) 370.667 + 180.283i 0.502259 + 0.244286i
\(739\) 414.623 718.148i 0.561060 0.971784i −0.436345 0.899780i \(-0.643727\pi\)
0.997404 0.0720041i \(-0.0229395\pi\)
\(740\) −45.1453 26.0647i −0.0610072 0.0352225i
\(741\) 183.355 + 598.552i 0.247443 + 0.807763i
\(742\) −98.4193 544.038i −0.132641 0.733205i
\(743\) −1010.16 583.214i −1.35957 0.784945i −0.370000 0.929032i \(-0.620642\pi\)
−0.989565 + 0.144086i \(0.953976\pi\)
\(744\) −248.292 231.281i −0.333726 0.310862i
\(745\) −144.663 −0.194179
\(746\) −324.343 187.260i −0.434776 0.251018i
\(747\) 88.9762 182.938i 0.119111 0.244897i
\(748\) −5.12049 −0.00684557
\(749\) 523.988 94.7921i 0.699583 0.126558i
\(750\) 339.877 + 78.2702i 0.453169 + 0.104360i
\(751\) 1217.73 1.62147 0.810737 0.585411i \(-0.199067\pi\)
0.810737 + 0.585411i \(0.199067\pi\)
\(752\) 191.132 110.350i 0.254164 0.146742i
\(753\) −327.292 + 100.260i −0.434651 + 0.133147i
\(754\) −384.542 + 666.046i −0.510002 + 0.883350i
\(755\) 374.377i 0.495864i
\(756\) 181.243 331.715i 0.239740 0.438776i
\(757\) 212.121 0.280213 0.140106 0.990136i \(-0.455256\pi\)
0.140106 + 0.990136i \(0.455256\pi\)
\(758\) −233.648 134.897i −0.308243 0.177964i
\(759\) −108.922 355.569i −0.143507 0.468470i
\(760\) −53.7626 93.1196i −0.0707403 0.122526i
\(761\) 1021.32i 1.34208i −0.741423 0.671038i \(-0.765849\pi\)
0.741423 0.671038i \(-0.234151\pi\)
\(762\) 211.179 917.015i 0.277138 1.20343i
\(763\) 850.530 720.134i 1.11472 0.943819i
\(764\) 293.882i 0.384662i
\(765\) −0.633498 8.91870i −0.000828102 0.0116584i
\(766\) −423.880 + 734.182i −0.553369 + 0.958463i
\(767\) 119.439i 0.155722i
\(768\) 32.7166 35.1229i 0.0425998 0.0457330i
\(769\) −19.1405 + 33.1524i −0.0248902 + 0.0431110i −0.878202 0.478290i \(-0.841257\pi\)
0.853312 + 0.521401i \(0.174590\pi\)
\(770\) −50.5794 59.7379i −0.0656875 0.0775817i
\(771\) −861.501 + 263.905i −1.11738 + 0.342289i
\(772\) −253.782 + 439.563i −0.328733 + 0.569382i
\(773\) −329.696 190.350i −0.426515 0.246249i 0.271346 0.962482i \(-0.412531\pi\)
−0.697861 + 0.716233i \(0.745865\pi\)
\(774\) 21.0284 + 31.1021i 0.0271685 + 0.0401837i
\(775\) 438.522 + 759.543i 0.565835 + 0.980056i
\(776\) −186.317 + 107.570i −0.240100 + 0.138622i
\(777\) 277.717 143.253i 0.357423 0.184366i
\(778\) 71.3824 123.638i 0.0917512 0.158918i
\(779\) 702.847i 0.902243i
\(780\) −96.6150 + 29.5962i −0.123865 + 0.0379438i
\(781\) 40.2944 0.0515933
\(782\) −19.0752 + 11.0131i −0.0243929 + 0.0140832i
\(783\) −1508.77 236.419i −1.92691 0.301940i
\(784\) −183.578 + 68.6675i −0.234155 + 0.0875862i
\(785\) −245.432 + 141.700i −0.312653 + 0.180510i
\(786\) 10.0057 + 2.30422i 0.0127299 + 0.00293158i
\(787\) −427.833 741.028i −0.543625 0.941586i −0.998692 0.0511290i \(-0.983718\pi\)
0.455067 0.890457i \(-0.349615\pi\)
\(788\) −551.015 + 318.129i −0.699258 + 0.403717i
\(789\) 1209.13 370.394i 1.53248 0.469448i
\(790\) 120.951 + 209.493i 0.153102 + 0.265180i
\(791\) 461.705 + 545.306i 0.583697 + 0.689389i
\(792\) −95.1936 + 64.3611i −0.120194 + 0.0812640i
\(793\) −382.313 662.186i −0.482110 0.835039i
\(794\) 437.089i 0.550490i
\(795\) −285.988 65.8602i −0.359734 0.0828430i
\(796\) 494.068 0.620689
\(797\) −27.2948 15.7587i −0.0342469 0.0197725i 0.482779 0.875742i \(-0.339628\pi\)
−0.517026 + 0.855970i \(0.672961\pi\)
\(798\) 643.833 + 30.5240i 0.806808 + 0.0382506i
\(799\) 15.6468 + 27.1010i 0.0195829 + 0.0339187i
\(800\) −107.444 + 62.0326i −0.134305 + 0.0775408i
\(801\) 214.227 440.457i 0.267449 0.549883i
\(802\) 426.403 738.551i 0.531674 0.920886i
\(803\) −31.4776 18.1736i −0.0392000 0.0226322i
\(804\) 1.66332 + 0.383045i 0.00206880 + 0.000476424i
\(805\) −316.906 113.755i −0.393672 0.141310i
\(806\) −470.894 271.871i −0.584236 0.337309i
\(807\) 346.597 1505.04i 0.429488 1.86499i
\(808\) −551.309 −0.682313
\(809\) −366.440 211.564i −0.452955 0.261514i 0.256123 0.966644i \(-0.417555\pi\)
−0.709077 + 0.705131i \(0.750888\pi\)
\(810\) −123.879 157.843i −0.152937 0.194867i
\(811\) 695.569 0.857668 0.428834 0.903383i \(-0.358925\pi\)
0.428834 + 0.903383i \(0.358925\pi\)
\(812\) 511.692 + 604.346i 0.630163 + 0.744268i
\(813\) −987.206 + 1059.81i −1.21427 + 1.30358i
\(814\) −94.9940 −0.116700
\(815\) −81.5270 + 47.0697i −0.100033 + 0.0577542i
\(816\) 4.98017 + 4.63897i 0.00610315 + 0.00568502i
\(817\) −32.0094 + 55.4419i −0.0391792 + 0.0678603i
\(818\) 621.448i 0.759717i
\(819\) 163.734 583.170i 0.199919 0.712052i
\(820\) −113.450 −0.138353
\(821\) 79.1142 + 45.6766i 0.0963632 + 0.0556353i 0.547407 0.836866i \(-0.315615\pi\)
−0.451044 + 0.892502i \(0.648948\pi\)
\(822\) −979.157 225.490i −1.19119 0.274319i
\(823\) 328.999 + 569.843i 0.399755 + 0.692397i 0.993696 0.112113i \(-0.0357617\pi\)
−0.593940 + 0.804509i \(0.702428\pi\)
\(824\) 329.584i 0.399980i
\(825\) 283.980 86.9920i 0.344218 0.105445i
\(826\) −115.747 41.5478i −0.140129 0.0503000i
\(827\) 1364.30i 1.64969i −0.565355 0.824847i \(-0.691261\pi\)
0.565355 0.824847i \(-0.308739\pi\)
\(828\) −216.195 + 444.504i −0.261106 + 0.536841i
\(829\) −388.984 + 673.740i −0.469221 + 0.812715i −0.999381 0.0351831i \(-0.988799\pi\)
0.530160 + 0.847898i \(0.322132\pi\)
\(830\) 55.9915i 0.0674597i
\(831\) 131.392 + 428.920i 0.158113 + 0.516150i
\(832\) 38.4584 66.6119i 0.0462240 0.0800624i
\(833\) −9.73654 26.0299i −0.0116885 0.0312484i
\(834\) 696.795 + 649.057i 0.835485 + 0.778246i
\(835\) −41.5649 + 71.9925i −0.0497783 + 0.0862186i
\(836\) −169.690 97.9704i −0.202978 0.117189i
\(837\) 167.148 1066.70i 0.199699 1.27443i
\(838\) −40.4595 70.0778i −0.0482810 0.0836251i
\(839\) −1355.78 + 782.761i −1.61595 + 0.932969i −0.627996 + 0.778216i \(0.716125\pi\)
−0.987953 + 0.154752i \(0.950542\pi\)
\(840\) −4.92701 + 103.924i −0.00586548 + 0.123719i
\(841\) 1179.15 2042.35i 1.40208 2.42847i
\(842\) 463.049i 0.549940i
\(843\) −43.4050 40.4313i −0.0514887 0.0479612i
\(844\) −430.106 −0.509605
\(845\) 116.136 67.0514i 0.137440 0.0793508i
\(846\) 631.527 + 307.158i 0.746486 + 0.363071i
\(847\) 662.946 + 237.967i 0.782699 + 0.280953i
\(848\) 193.464 111.696i 0.228141 0.131717i
\(849\) 1124.54 1207.25i 1.32455 1.42197i
\(850\) −8.79576 15.2347i −0.0103479 0.0179232i
\(851\) −353.879 + 204.312i −0.415839 + 0.240085i
\(852\) −39.1902 36.5052i −0.0459979 0.0428465i
\(853\) −484.334 838.891i −0.567801 0.983460i −0.996783 0.0801471i \(-0.974461\pi\)
0.428982 0.903313i \(-0.358872\pi\)
\(854\) −774.709 + 140.149i −0.907153 + 0.164109i
\(855\) 149.648 307.681i 0.175027 0.359861i
\(856\) 107.580 + 186.334i 0.125677 + 0.217680i
\(857\) 1327.16i 1.54861i −0.632814 0.774304i \(-0.718100\pi\)
0.632814 0.774304i \(-0.281900\pi\)
\(858\) −125.506 + 134.737i −0.146277 + 0.157036i
\(859\) 362.201 0.421654 0.210827 0.977523i \(-0.432384\pi\)
0.210827 + 0.977523i \(0.432384\pi\)
\(860\) −8.94912 5.16678i −0.0104060 0.00600788i
\(861\) 367.545 572.194i 0.426881 0.664570i
\(862\) −73.8198 127.860i −0.0856378 0.148329i
\(863\) −938.041 + 541.578i −1.08695 + 0.627553i −0.932764 0.360488i \(-0.882610\pi\)
−0.154190 + 0.988041i \(0.549277\pi\)
\(864\) 150.894 + 23.6445i 0.174646 + 0.0273663i
\(865\) −80.4956 + 139.422i −0.0930584 + 0.161182i
\(866\) 522.186 + 301.484i 0.602987 + 0.348134i
\(867\) 590.287 633.702i 0.680838 0.730914i
\(868\) −427.272 + 361.766i −0.492249 + 0.416782i
\(869\) 381.753 + 220.405i 0.439302 + 0.253631i
\(870\) 401.907 123.117i 0.461962 0.141513i
\(871\) 2.73511 0.00314020
\(872\) 389.975 + 225.152i 0.447220 + 0.258202i
\(873\) −615.620 299.421i −0.705177 0.342980i
\(874\) −842.854 −0.964364
\(875\) 194.413 541.610i 0.222186 0.618983i
\(876\) 14.1504 + 46.1932i 0.0161534 + 0.0527319i
\(877\) −1141.56 −1.30166 −0.650830 0.759223i \(-0.725579\pi\)
−0.650830 + 0.759223i \(0.725579\pi\)
\(878\) −348.570 + 201.247i −0.397004 + 0.229211i
\(879\) 88.5328 384.441i 0.100720 0.437361i
\(880\) 15.8138 27.3904i 0.0179703 0.0311254i
\(881\) 536.022i 0.608424i 0.952604 + 0.304212i \(0.0983931\pi\)
−0.952604 + 0.304212i \(0.901607\pi\)
\(882\) −508.188 361.534i −0.576177 0.409902i
\(883\) −413.964 −0.468816 −0.234408 0.972138i \(-0.575315\pi\)
−0.234408 + 0.972138i \(0.575315\pi\)
\(884\) 9.44506 + 5.45311i 0.0106845 + 0.00616868i
\(885\) −44.4940 + 47.7665i −0.0502757 + 0.0539734i
\(886\) 325.919 + 564.508i 0.367854 + 0.637142i
\(887\) 115.461i 0.130171i 0.997880 + 0.0650853i \(0.0207320\pi\)
−0.997880 + 0.0650853i \(0.979268\pi\)
\(888\) 92.3909 + 86.0611i 0.104044 + 0.0969156i
\(889\) −1461.31 524.542i −1.64377 0.590036i
\(890\) 134.810i 0.151472i
\(891\) −339.315 136.226i −0.380825 0.152891i
\(892\) 81.8923 141.842i 0.0918076 0.159015i
\(893\) 1197.48i 1.34096i
\(894\) 341.456 + 78.6338i 0.381941 + 0.0879572i
\(895\) −144.739 + 250.695i −0.161719 + 0.280106i
\(896\) −51.1748 60.4412i −0.0571148 0.0674567i
\(897\) −177.753 + 771.867i −0.198164 + 0.860498i
\(898\) −130.429 + 225.909i −0.145244 + 0.251570i
\(899\) 1958.87 + 1130.95i 2.17894 + 1.25801i
\(900\) −355.010 172.667i −0.394455 0.191853i
\(901\) 15.8377 + 27.4317i 0.0175779 + 0.0304458i
\(902\) −179.039 + 103.368i −0.198491 + 0.114599i
\(903\) 55.0517 28.3969i 0.0609654 0.0314472i
\(904\) −144.354 + 250.028i −0.159683 + 0.276579i
\(905\) 428.457i 0.473433i
\(906\) 203.498 883.661i 0.224612 0.975343i
\(907\) −182.571 −0.201291 −0.100646 0.994922i \(-0.532091\pi\)
−0.100646 + 0.994922i \(0.532091\pi\)
\(908\) −40.8968 + 23.6118i −0.0450406 + 0.0260042i
\(909\) −982.563 1453.27i −1.08093 1.59875i
\(910\) 29.6784 + 164.055i 0.0326137 + 0.180281i
\(911\) −781.868 + 451.411i −0.858252 + 0.495512i −0.863427 0.504475i \(-0.831686\pi\)
0.00517457 + 0.999987i \(0.498353\pi\)
\(912\) 76.2820 + 249.018i 0.0836426 + 0.273046i
\(913\) 51.0160 + 88.3624i 0.0558774 + 0.0967824i
\(914\) 193.622 111.788i 0.211840 0.122306i
\(915\) −93.7847 + 407.246i −0.102497 + 0.445078i
\(916\) 38.2246 + 66.2070i 0.0417299 + 0.0722783i
\(917\) 5.72338 15.9446i 0.00624142 0.0173878i
\(918\) −3.35261 + 21.3956i −0.00365209 + 0.0233068i
\(919\) −590.898 1023.47i −0.642979 1.11367i −0.984764 0.173895i \(-0.944365\pi\)
0.341785 0.939778i \(-0.388969\pi\)
\(920\) 136.049i 0.147879i
\(921\) 221.859 + 724.245i 0.240889 + 0.786368i
\(922\) −491.719 −0.533318
\(923\) −74.3255 42.9119i −0.0805260 0.0464917i
\(924\) 86.9136 + 168.496i 0.0940623 + 0.182354i
\(925\) −163.177 282.630i −0.176407 0.305546i
\(926\) 417.967 241.313i 0.451368 0.260598i
\(927\) 868.792 587.396i 0.937208 0.633653i
\(928\) −159.982 + 277.098i −0.172395 + 0.298597i
\(929\) 760.239 + 438.924i 0.818341 + 0.472469i 0.849844 0.527034i \(-0.176696\pi\)
−0.0315030 + 0.999504i \(0.510029\pi\)
\(930\) 87.0435 + 284.148i 0.0935952 + 0.305536i
\(931\) 175.368 1048.90i 0.188366 1.12664i
\(932\) −237.967 137.390i −0.255330 0.147415i
\(933\) 454.230 + 423.110i 0.486849 + 0.453494i
\(934\) 363.654 0.389351
\(935\) 3.88375 + 2.24228i 0.00415374 + 0.00239816i
\(936\) 244.133 17.3408i 0.260825 0.0185265i
\(937\) −618.122 −0.659682 −0.329841 0.944037i \(-0.606995\pi\)
−0.329841 + 0.944037i \(0.606995\pi\)
\(938\) 0.951433 2.65057i 0.00101432 0.00282577i
\(939\) 993.811 + 228.865i 1.05837 + 0.243732i
\(940\) −193.291 −0.205628
\(941\) 831.225 479.908i 0.883342 0.509998i 0.0115830 0.999933i \(-0.496313\pi\)
0.871759 + 0.489935i \(0.162980\pi\)
\(942\) 656.330 201.054i 0.696741 0.213433i
\(943\) −444.647 + 770.151i −0.471524 + 0.816704i
\(944\) 49.6905i 0.0526383i
\(945\) −282.727 + 172.229i −0.299182 + 0.182253i
\(946\) −18.8306 −0.0199055
\(947\) 646.600 + 373.315i 0.682788 + 0.394208i 0.800905 0.598792i \(-0.204352\pi\)
−0.118117 + 0.993000i \(0.537686\pi\)
\(948\) −171.613 560.220i −0.181026 0.590949i
\(949\) 38.7083 + 67.0448i 0.0407885 + 0.0706478i
\(950\) 673.157i 0.708587i
\(951\) −184.952 + 803.126i −0.194481 + 0.844507i
\(952\) 8.57010 7.25620i 0.00900221 0.00762206i
\(953\) 1477.27i 1.55013i 0.631881 + 0.775065i \(0.282283\pi\)
−0.631881 + 0.775065i \(0.717717\pi\)
\(954\) 639.233 + 310.906i 0.670055 + 0.325897i
\(955\) −128.692 + 222.901i −0.134756 + 0.233404i
\(956\) 803.760i 0.840753i
\(957\) 522.089 560.488i 0.545547 0.585672i
\(958\) 140.671 243.650i 0.146839 0.254332i
\(959\) −560.088 + 1560.33i −0.584033 + 1.62704i
\(960\) −40.1951 + 12.3130i −0.0418699 + 0.0128261i
\(961\) −319.083 + 552.668i −0.332032 + 0.575097i
\(962\) 175.222 + 101.165i 0.182144 + 0.105161i
\(963\) −299.448 + 615.674i −0.310953 + 0.639329i
\(964\) 439.498 + 761.232i 0.455910 + 0.789660i
\(965\) 384.973 222.264i 0.398936 0.230326i
\(966\) 686.176 + 440.760i 0.710327 + 0.456273i
\(967\) 81.0172 140.326i 0.0837820 0.145115i −0.821090 0.570799i \(-0.806633\pi\)
0.904872 + 0.425685i \(0.139967\pi\)
\(968\) 284.605i 0.294014i
\(969\) −35.3089 + 10.8162i −0.0364385 + 0.0111622i
\(970\) 188.422 0.194249
\(971\) 1063.88 614.232i 1.09565 0.632577i 0.160579 0.987023i \(-0.448664\pi\)
0.935076 + 0.354446i \(0.115331\pi\)
\(972\) 206.601 + 439.900i 0.212552 + 0.452572i
\(973\) 1199.08 1015.24i 1.23235 1.04342i
\(974\) −567.464 + 327.625i −0.582612 + 0.336371i
\(975\) −616.462 141.965i −0.632269 0.145605i
\(976\) −159.055 275.492i −0.162966 0.282266i
\(977\) −902.636 + 521.137i −0.923885 + 0.533405i −0.884872 0.465833i \(-0.845755\pi\)
−0.0390127 + 0.999239i \(0.512421\pi\)
\(978\) 218.018 66.7856i 0.222922 0.0682879i
\(979\) 122.831 + 212.749i 0.125465 + 0.217312i
\(980\) 169.308 + 28.3070i 0.172764 + 0.0288847i
\(981\) 101.521 + 1429.26i 0.103487 + 1.45694i
\(982\) −673.198 1166.01i −0.685538 1.18739i
\(983\) 784.219i 0.797782i −0.916998 0.398891i \(-0.869395\pi\)
0.916998 0.398891i \(-0.130605\pi\)
\(984\) 267.781 + 61.6673i 0.272135 + 0.0626700i
\(985\) 557.240 0.565726
\(986\) −39.2904 22.6843i −0.0398482 0.0230064i
\(987\) 626.206 974.880i 0.634454 0.987720i
\(988\) 208.669 + 361.425i 0.211203 + 0.365815i
\(989\) −70.1492 + 40.5006i −0.0709294 + 0.0409511i
\(990\) 100.386 7.13043i 0.101400 0.00720245i
\(991\) −81.5488 + 141.247i −0.0822894 + 0.142529i −0.904233 0.427040i \(-0.859557\pi\)
0.821944 + 0.569569i \(0.192890\pi\)
\(992\) −195.908 113.108i −0.197488 0.114020i
\(993\) 575.975 + 132.641i 0.580035 + 0.133576i
\(994\) −67.4402 + 57.1009i −0.0678473 + 0.0574455i
\(995\) −374.737 216.354i −0.376620 0.217442i
\(996\) 30.4350 132.160i 0.0305573 0.132690i
\(997\) −226.432 −0.227113 −0.113557 0.993532i \(-0.536224\pi\)
−0.113557 + 0.993532i \(0.536224\pi\)
\(998\) 18.6159 + 10.7479i 0.0186532 + 0.0107694i
\(999\) −62.1969 + 396.926i −0.0622592 + 0.397323i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.i.a.95.12 yes 32
3.2 odd 2 378.3.i.a.179.5 32
7.2 even 3 126.3.r.a.23.1 yes 32
9.2 odd 6 126.3.r.a.11.9 yes 32
9.7 even 3 378.3.r.a.305.5 32
21.2 odd 6 378.3.r.a.233.13 32
63.2 odd 6 inner 126.3.i.a.65.12 32
63.16 even 3 378.3.i.a.359.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.12 32 63.2 odd 6 inner
126.3.i.a.95.12 yes 32 1.1 even 1 trivial
126.3.r.a.11.9 yes 32 9.2 odd 6
126.3.r.a.23.1 yes 32 7.2 even 3
378.3.i.a.179.5 32 3.2 odd 2
378.3.i.a.359.4 32 63.16 even 3
378.3.r.a.233.13 32 21.2 odd 6
378.3.r.a.305.5 32 9.7 even 3