Properties

Label 378.3.i.a.359.4
Level $378$
Weight $3$
Character 378.359
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(179,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.179"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 359.4
Character \(\chi\) \(=\) 378.359
Dual form 378.3.i.a.179.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} -1.75162i q^{5} +(6.58841 - 2.36493i) q^{7} +2.82843i q^{8} +(1.23858 + 2.14528i) q^{10} -4.51407i q^{11} +(-4.80730 - 8.32649i) q^{13} +(-6.39685 + 7.55515i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(0.491183 - 0.283585i) q^{17} +(-10.8517 + 18.7956i) q^{19} +(-3.03389 - 1.75162i) q^{20} +(3.19193 + 5.52858i) q^{22} -27.4607i q^{23} +21.9318 q^{25} +(11.7754 + 6.79855i) q^{26} +(2.49222 - 13.7764i) q^{28} +(-48.9844 - 28.2812i) q^{29} +(19.9948 - 34.6320i) q^{31} +(4.89898 + 2.82843i) q^{32} +(-0.401050 + 0.694638i) q^{34} +(-4.14246 - 11.5404i) q^{35} +(-7.44017 + 12.8868i) q^{37} -30.6932i q^{38} +4.95432 q^{40} +(28.0456 - 16.1921i) q^{41} +(-1.47486 + 2.55453i) q^{43} +(-7.81860 - 4.51407i) q^{44} +(19.4176 + 33.6323i) q^{46} +(47.7829 - 27.5875i) q^{47} +(37.8142 - 31.1623i) q^{49} +(-26.8609 + 15.5082i) q^{50} -19.2292 q^{52} +(48.3659 - 27.9241i) q^{53} -7.90692 q^{55} +(6.68904 + 18.6348i) q^{56} +79.9912 q^{58} +(10.7583 + 6.21132i) q^{59} +(-39.7638 - 68.8730i) q^{61} +56.5538i q^{62} -8.00000 q^{64} +(-14.5848 + 8.42054i) q^{65} +(-0.142238 + 0.246363i) q^{67} -1.13434i q^{68} +(13.2337 + 11.2048i) q^{70} +8.92640i q^{71} +(4.02599 + 6.97323i) q^{73} -21.0440i q^{74} +(21.7033 + 37.5913i) q^{76} +(-10.6755 - 29.7405i) q^{77} +(-48.8263 - 84.5697i) q^{79} +(-6.06778 + 3.50323i) q^{80} +(-22.8992 + 39.6625i) q^{82} +(19.5749 + 11.3016i) q^{83} +(-0.496732 - 0.860365i) q^{85} -4.17153i q^{86} +12.7677 q^{88} +(47.1301 + 27.2106i) q^{89} +(-51.3640 - 43.4893i) q^{91} +(-47.5633 - 27.4607i) q^{92} +(-39.0146 + 67.5752i) q^{94} +(32.9227 + 19.0080i) q^{95} +(38.0319 - 65.8731i) q^{97} +(-24.2776 + 64.9045i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} + 2 q^{7} + 10 q^{13} - 36 q^{14} - 64 q^{16} - 54 q^{17} + 28 q^{19} - 160 q^{25} - 72 q^{26} - 4 q^{28} - 36 q^{29} - 8 q^{31} - 90 q^{35} + 22 q^{37} - 72 q^{41} + 16 q^{43} + 72 q^{44}+ \cdots + 288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 1.75162i 0.350323i −0.984540 0.175162i \(-0.943955\pi\)
0.984540 0.175162i \(-0.0560448\pi\)
\(6\) 0 0
\(7\) 6.58841 2.36493i 0.941201 0.337848i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 1.23858 + 2.14528i 0.123858 + 0.214528i
\(11\) 4.51407i 0.410370i −0.978723 0.205185i \(-0.934220\pi\)
0.978723 0.205185i \(-0.0657796\pi\)
\(12\) 0 0
\(13\) −4.80730 8.32649i −0.369792 0.640499i 0.619741 0.784807i \(-0.287238\pi\)
−0.989533 + 0.144308i \(0.953904\pi\)
\(14\) −6.39685 + 7.55515i −0.456918 + 0.539653i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 0.491183 0.283585i 0.0288931 0.0166815i −0.485484 0.874246i \(-0.661357\pi\)
0.514377 + 0.857564i \(0.328023\pi\)
\(18\) 0 0
\(19\) −10.8517 + 18.7956i −0.571140 + 0.989244i 0.425309 + 0.905048i \(0.360165\pi\)
−0.996449 + 0.0841959i \(0.973168\pi\)
\(20\) −3.03389 1.75162i −0.151694 0.0875808i
\(21\) 0 0
\(22\) 3.19193 + 5.52858i 0.145088 + 0.251299i
\(23\) 27.4607i 1.19394i −0.802263 0.596971i \(-0.796371\pi\)
0.802263 0.596971i \(-0.203629\pi\)
\(24\) 0 0
\(25\) 21.9318 0.877274
\(26\) 11.7754 + 6.79855i 0.452901 + 0.261483i
\(27\) 0 0
\(28\) 2.49222 13.7764i 0.0890078 0.492014i
\(29\) −48.9844 28.2812i −1.68912 0.975213i −0.955193 0.295982i \(-0.904353\pi\)
−0.733925 0.679231i \(-0.762314\pi\)
\(30\) 0 0
\(31\) 19.9948 34.6320i 0.644993 1.11716i −0.339310 0.940675i \(-0.610194\pi\)
0.984303 0.176486i \(-0.0564731\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −0.401050 + 0.694638i −0.0117956 + 0.0204305i
\(35\) −4.14246 11.5404i −0.118356 0.329724i
\(36\) 0 0
\(37\) −7.44017 + 12.8868i −0.201086 + 0.348291i −0.948879 0.315641i \(-0.897780\pi\)
0.747793 + 0.663932i \(0.231114\pi\)
\(38\) 30.6932i 0.807715i
\(39\) 0 0
\(40\) 4.95432 0.123858
\(41\) 28.0456 16.1921i 0.684040 0.394930i −0.117336 0.993092i \(-0.537435\pi\)
0.801375 + 0.598162i \(0.204102\pi\)
\(42\) 0 0
\(43\) −1.47486 + 2.55453i −0.0342991 + 0.0594077i −0.882665 0.470002i \(-0.844253\pi\)
0.848366 + 0.529410i \(0.177587\pi\)
\(44\) −7.81860 4.51407i −0.177695 0.102592i
\(45\) 0 0
\(46\) 19.4176 + 33.6323i 0.422122 + 0.731137i
\(47\) 47.7829 27.5875i 1.01666 0.586967i 0.103523 0.994627i \(-0.466988\pi\)
0.913134 + 0.407660i \(0.133655\pi\)
\(48\) 0 0
\(49\) 37.8142 31.1623i 0.771718 0.635965i
\(50\) −26.8609 + 15.5082i −0.537218 + 0.310163i
\(51\) 0 0
\(52\) −19.2292 −0.369792
\(53\) 48.3659 27.9241i 0.912565 0.526870i 0.0313093 0.999510i \(-0.490032\pi\)
0.881256 + 0.472640i \(0.156699\pi\)
\(54\) 0 0
\(55\) −7.90692 −0.143762
\(56\) 6.68904 + 18.6348i 0.119447 + 0.332765i
\(57\) 0 0
\(58\) 79.9912 1.37916
\(59\) 10.7583 + 6.21132i 0.182344 + 0.105277i 0.588394 0.808575i \(-0.299761\pi\)
−0.406049 + 0.913851i \(0.633094\pi\)
\(60\) 0 0
\(61\) −39.7638 68.8730i −0.651866 1.12906i −0.982670 0.185365i \(-0.940653\pi\)
0.330804 0.943700i \(-0.392680\pi\)
\(62\) 56.5538i 0.912158i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −14.5848 + 8.42054i −0.224382 + 0.129547i
\(66\) 0 0
\(67\) −0.142238 + 0.246363i −0.00212295 + 0.00367706i −0.867085 0.498160i \(-0.834009\pi\)
0.864962 + 0.501837i \(0.167342\pi\)
\(68\) 1.13434i 0.0166815i
\(69\) 0 0
\(70\) 13.2337 + 11.2048i 0.189053 + 0.160069i
\(71\) 8.92640i 0.125724i 0.998022 + 0.0628619i \(0.0200228\pi\)
−0.998022 + 0.0628619i \(0.979977\pi\)
\(72\) 0 0
\(73\) 4.02599 + 6.97323i 0.0551506 + 0.0955237i 0.892283 0.451477i \(-0.149103\pi\)
−0.837132 + 0.547001i \(0.815769\pi\)
\(74\) 21.0440i 0.284378i
\(75\) 0 0
\(76\) 21.7033 + 37.5913i 0.285570 + 0.494622i
\(77\) −10.6755 29.7405i −0.138643 0.386241i
\(78\) 0 0
\(79\) −48.8263 84.5697i −0.618055 1.07050i −0.989840 0.142184i \(-0.954588\pi\)
0.371786 0.928319i \(-0.378746\pi\)
\(80\) −6.06778 + 3.50323i −0.0758472 + 0.0437904i
\(81\) 0 0
\(82\) −22.8992 + 39.6625i −0.279258 + 0.483689i
\(83\) 19.5749 + 11.3016i 0.235842 + 0.136163i 0.613264 0.789878i \(-0.289856\pi\)
−0.377422 + 0.926041i \(0.623189\pi\)
\(84\) 0 0
\(85\) −0.496732 0.860365i −0.00584390 0.0101219i
\(86\) 4.17153i 0.0485062i
\(87\) 0 0
\(88\) 12.7677 0.145088
\(89\) 47.1301 + 27.2106i 0.529552 + 0.305737i 0.740834 0.671688i \(-0.234430\pi\)
−0.211282 + 0.977425i \(0.567764\pi\)
\(90\) 0 0
\(91\) −51.3640 43.4893i −0.564440 0.477905i
\(92\) −47.5633 27.4607i −0.516992 0.298486i
\(93\) 0 0
\(94\) −39.0146 + 67.5752i −0.415049 + 0.718885i
\(95\) 32.9227 + 19.0080i 0.346555 + 0.200084i
\(96\) 0 0
\(97\) 38.0319 65.8731i 0.392081 0.679104i −0.600643 0.799517i \(-0.705089\pi\)
0.992724 + 0.120413i \(0.0384220\pi\)
\(98\) −24.2776 + 64.9045i −0.247731 + 0.662291i
\(99\) 0 0
\(100\) 21.9318 37.9871i 0.219318 0.379871i
\(101\) 194.917i 1.92987i 0.262482 + 0.964937i \(0.415459\pi\)
−0.262482 + 0.964937i \(0.584541\pi\)
\(102\) 0 0
\(103\) −116.526 −1.13132 −0.565658 0.824640i \(-0.691378\pi\)
−0.565658 + 0.824640i \(0.691378\pi\)
\(104\) 23.5509 13.5971i 0.226451 0.130741i
\(105\) 0 0
\(106\) −39.4906 + 68.3998i −0.372553 + 0.645281i
\(107\) −65.8789 38.0352i −0.615691 0.355469i 0.159498 0.987198i \(-0.449012\pi\)
−0.775189 + 0.631729i \(0.782346\pi\)
\(108\) 0 0
\(109\) 79.6034 + 137.877i 0.730307 + 1.26493i 0.956752 + 0.290904i \(0.0939561\pi\)
−0.226446 + 0.974024i \(0.572711\pi\)
\(110\) 9.68395 5.59103i 0.0880359 0.0508276i
\(111\) 0 0
\(112\) −21.3692 18.0930i −0.190796 0.161545i
\(113\) −88.3982 + 51.0367i −0.782285 + 0.451652i −0.837239 0.546837i \(-0.815832\pi\)
0.0549546 + 0.998489i \(0.482499\pi\)
\(114\) 0 0
\(115\) −48.1005 −0.418266
\(116\) −97.9689 + 56.5623i −0.844559 + 0.487606i
\(117\) 0 0
\(118\) −17.5683 −0.148883
\(119\) 2.56546 3.02999i 0.0215585 0.0254621i
\(120\) 0 0
\(121\) 100.623 0.831597
\(122\) 97.4011 + 56.2345i 0.798369 + 0.460939i
\(123\) 0 0
\(124\) −39.9896 69.2640i −0.322497 0.558580i
\(125\) 82.2066i 0.657652i
\(126\) 0 0
\(127\) −221.800 −1.74646 −0.873228 0.487313i \(-0.837977\pi\)
−0.873228 + 0.487313i \(0.837977\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 11.9084 20.6260i 0.0916034 0.158662i
\(131\) 2.42010i 0.0184741i −0.999957 0.00923703i \(-0.997060\pi\)
0.999957 0.00923703i \(-0.00294028\pi\)
\(132\) 0 0
\(133\) −27.0447 + 149.497i −0.203344 + 1.12404i
\(134\) 0.402309i 0.00300230i
\(135\) 0 0
\(136\) 0.802099 + 1.38928i 0.00589779 + 0.0102153i
\(137\) 236.830i 1.72869i 0.502901 + 0.864344i \(0.332266\pi\)
−0.502901 + 0.864344i \(0.667734\pi\)
\(138\) 0 0
\(139\) 112.225 + 194.379i 0.807373 + 1.39841i 0.914677 + 0.404185i \(0.132445\pi\)
−0.107304 + 0.994226i \(0.534222\pi\)
\(140\) −24.1309 4.36541i −0.172364 0.0311815i
\(141\) 0 0
\(142\) −6.31192 10.9326i −0.0444501 0.0769899i
\(143\) −37.5863 + 21.7005i −0.262841 + 0.151752i
\(144\) 0 0
\(145\) −49.5378 + 85.8019i −0.341640 + 0.591737i
\(146\) −9.86163 5.69362i −0.0675454 0.0389974i
\(147\) 0 0
\(148\) 14.8803 + 25.7735i 0.100543 + 0.174145i
\(149\) 82.5884i 0.554284i −0.960829 0.277142i \(-0.910613\pi\)
0.960829 0.277142i \(-0.0893873\pi\)
\(150\) 0 0
\(151\) −213.733 −1.41545 −0.707724 0.706489i \(-0.750278\pi\)
−0.707724 + 0.706489i \(0.750278\pi\)
\(152\) −53.1621 30.6932i −0.349751 0.201929i
\(153\) 0 0
\(154\) 34.1045 + 28.8758i 0.221458 + 0.187505i
\(155\) −60.6619 35.0232i −0.391367 0.225956i
\(156\) 0 0
\(157\) −80.8970 + 140.118i −0.515268 + 0.892470i 0.484575 + 0.874749i \(0.338974\pi\)
−0.999843 + 0.0177201i \(0.994359\pi\)
\(158\) 119.600 + 69.0508i 0.756959 + 0.437031i
\(159\) 0 0
\(160\) 4.95432 8.58113i 0.0309645 0.0536321i
\(161\) −64.9427 180.922i −0.403371 1.12374i
\(162\) 0 0
\(163\) −26.8721 + 46.5439i −0.164860 + 0.285545i −0.936605 0.350386i \(-0.886050\pi\)
0.771746 + 0.635931i \(0.219384\pi\)
\(164\) 64.7686i 0.394930i
\(165\) 0 0
\(166\) −31.9656 −0.192564
\(167\) 41.1006 23.7295i 0.246112 0.142093i −0.371871 0.928284i \(-0.621284\pi\)
0.617982 + 0.786192i \(0.287950\pi\)
\(168\) 0 0
\(169\) 38.2798 66.3025i 0.226507 0.392322i
\(170\) 1.21674 + 0.702485i 0.00715729 + 0.00413226i
\(171\) 0 0
\(172\) 2.94972 + 5.10906i 0.0171495 + 0.0297039i
\(173\) 79.5964 45.9550i 0.460095 0.265636i −0.251989 0.967730i \(-0.581085\pi\)
0.712084 + 0.702094i \(0.247751\pi\)
\(174\) 0 0
\(175\) 144.496 51.8674i 0.825691 0.296385i
\(176\) −15.6372 + 9.02814i −0.0888477 + 0.0512962i
\(177\) 0 0
\(178\) −76.9632 −0.432378
\(179\) 143.122 82.6317i 0.799566 0.461629i −0.0437536 0.999042i \(-0.513932\pi\)
0.843319 + 0.537413i \(0.180598\pi\)
\(180\) 0 0
\(181\) 244.607 1.35142 0.675709 0.737169i \(-0.263838\pi\)
0.675709 + 0.737169i \(0.263838\pi\)
\(182\) 93.6594 + 16.9435i 0.514612 + 0.0930960i
\(183\) 0 0
\(184\) 77.6705 0.422122
\(185\) 22.5727 + 13.0323i 0.122014 + 0.0704450i
\(186\) 0 0
\(187\) −1.28012 2.21724i −0.00684557 0.0118569i
\(188\) 110.350i 0.586967i
\(189\) 0 0
\(190\) −53.7626 −0.282961
\(191\) 127.255 73.4705i 0.666254 0.384662i −0.128402 0.991722i \(-0.540985\pi\)
0.794656 + 0.607060i \(0.207651\pi\)
\(192\) 0 0
\(193\) 126.891 219.782i 0.657466 1.13876i −0.323803 0.946124i \(-0.604962\pi\)
0.981269 0.192640i \(-0.0617050\pi\)
\(194\) 107.570i 0.554486i
\(195\) 0 0
\(196\) −16.1605 96.6584i −0.0824515 0.493155i
\(197\) 318.129i 1.61487i 0.589958 + 0.807434i \(0.299144\pi\)
−0.589958 + 0.807434i \(0.700856\pi\)
\(198\) 0 0
\(199\) 123.517 + 213.938i 0.620689 + 1.07506i 0.989358 + 0.145504i \(0.0464803\pi\)
−0.368669 + 0.929561i \(0.620186\pi\)
\(200\) 62.0326i 0.310163i
\(201\) 0 0
\(202\) −137.827 238.724i −0.682313 1.18180i
\(203\) −389.612 70.4829i −1.91927 0.347206i
\(204\) 0 0
\(205\) −28.3624 49.1252i −0.138353 0.239635i
\(206\) 142.714 82.3960i 0.692786 0.399980i
\(207\) 0 0
\(208\) −19.2292 + 33.3059i −0.0924481 + 0.160125i
\(209\) 84.8448 + 48.9852i 0.405956 + 0.234379i
\(210\) 0 0
\(211\) −107.527 186.242i −0.509605 0.882661i −0.999938 0.0111265i \(-0.996458\pi\)
0.490333 0.871535i \(-0.336875\pi\)
\(212\) 111.696i 0.526870i
\(213\) 0 0
\(214\) 107.580 0.502710
\(215\) 4.47456 + 2.58339i 0.0208119 + 0.0120158i
\(216\) 0 0
\(217\) 49.8314 275.456i 0.229638 1.26938i
\(218\) −194.988 112.576i −0.894439 0.516405i
\(219\) 0 0
\(220\) −7.90692 + 13.6952i −0.0359405 + 0.0622508i
\(221\) −4.72253 2.72655i −0.0213689 0.0123374i
\(222\) 0 0
\(223\) −40.9462 + 70.9208i −0.183615 + 0.318031i −0.943109 0.332484i \(-0.892113\pi\)
0.759494 + 0.650514i \(0.225447\pi\)
\(224\) 38.9655 + 7.04906i 0.173953 + 0.0314690i
\(225\) 0 0
\(226\) 72.1768 125.014i 0.319366 0.553159i
\(227\) 23.6118i 0.104017i 0.998647 + 0.0520084i \(0.0165622\pi\)
−0.998647 + 0.0520084i \(0.983438\pi\)
\(228\) 0 0
\(229\) 38.2246 0.166920 0.0834598 0.996511i \(-0.473403\pi\)
0.0834598 + 0.996511i \(0.473403\pi\)
\(230\) 58.9109 34.0122i 0.256134 0.147879i
\(231\) 0 0
\(232\) 79.9912 138.549i 0.344790 0.597193i
\(233\) 118.984 + 68.6952i 0.510659 + 0.294829i 0.733105 0.680116i \(-0.238071\pi\)
−0.222445 + 0.974945i \(0.571404\pi\)
\(234\) 0 0
\(235\) −48.3226 83.6973i −0.205628 0.356159i
\(236\) 21.5166 12.4226i 0.0911721 0.0526383i
\(237\) 0 0
\(238\) −0.999503 + 5.52501i −0.00419959 + 0.0232143i
\(239\) −348.038 + 200.940i −1.45623 + 0.840753i −0.998823 0.0485057i \(-0.984554\pi\)
−0.457404 + 0.889259i \(0.651221\pi\)
\(240\) 0 0
\(241\) 439.498 1.82364 0.911821 0.410588i \(-0.134677\pi\)
0.911821 + 0.410588i \(0.134677\pi\)
\(242\) −123.238 + 71.1513i −0.509247 + 0.294014i
\(243\) 0 0
\(244\) −159.055 −0.651866
\(245\) −54.5844 66.2359i −0.222793 0.270351i
\(246\) 0 0
\(247\) 208.669 0.844813
\(248\) 97.9540 + 56.5538i 0.394976 + 0.228039i
\(249\) 0 0
\(250\) 58.1288 + 100.682i 0.232515 + 0.402728i
\(251\) 114.101i 0.454587i 0.973826 + 0.227294i \(0.0729877\pi\)
−0.973826 + 0.227294i \(0.927012\pi\)
\(252\) 0 0
\(253\) −123.959 −0.489958
\(254\) 271.648 156.836i 1.06948 0.617465i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 300.339i 1.16863i 0.811526 + 0.584317i \(0.198637\pi\)
−0.811526 + 0.584317i \(0.801363\pi\)
\(258\) 0 0
\(259\) −18.5425 + 102.499i −0.0715928 + 0.395748i
\(260\) 33.6822i 0.129547i
\(261\) 0 0
\(262\) 1.71127 + 2.96401i 0.00653157 + 0.0113130i
\(263\) 421.530i 1.60278i −0.598145 0.801388i \(-0.704096\pi\)
0.598145 0.801388i \(-0.295904\pi\)
\(264\) 0 0
\(265\) −48.9123 84.7185i −0.184575 0.319693i
\(266\) −72.5873 202.219i −0.272885 0.760222i
\(267\) 0 0
\(268\) 0.284475 + 0.492725i 0.00106147 + 0.00183853i
\(269\) 445.841 257.406i 1.65740 0.956901i 0.683492 0.729958i \(-0.260460\pi\)
0.973908 0.226943i \(-0.0728730\pi\)
\(270\) 0 0
\(271\) 241.395 418.109i 0.890758 1.54284i 0.0517888 0.998658i \(-0.483508\pi\)
0.838969 0.544179i \(-0.183159\pi\)
\(272\) −1.96473 1.13434i −0.00722329 0.00417037i
\(273\) 0 0
\(274\) −167.464 290.057i −0.611184 1.05860i
\(275\) 99.0019i 0.360007i
\(276\) 0 0
\(277\) 149.531 0.539824 0.269912 0.962885i \(-0.413005\pi\)
0.269912 + 0.962885i \(0.413005\pi\)
\(278\) −274.894 158.710i −0.988826 0.570899i
\(279\) 0 0
\(280\) 32.6411 11.7166i 0.116575 0.0418451i
\(281\) 17.1238 + 9.88641i 0.0609387 + 0.0351830i 0.530160 0.847898i \(-0.322132\pi\)
−0.469221 + 0.883081i \(0.655465\pi\)
\(282\) 0 0
\(283\) −274.977 + 476.274i −0.971650 + 1.68295i −0.281075 + 0.959686i \(0.590691\pi\)
−0.690575 + 0.723261i \(0.742642\pi\)
\(284\) 15.4610 + 8.92640i 0.0544400 + 0.0314310i
\(285\) 0 0
\(286\) 30.6891 53.1551i 0.107305 0.185857i
\(287\) 146.483 173.006i 0.510392 0.602810i
\(288\) 0 0
\(289\) −144.339 + 250.003i −0.499443 + 0.865061i
\(290\) 140.114i 0.483151i
\(291\) 0 0
\(292\) 16.1040 0.0551506
\(293\) 113.883 65.7505i 0.388680 0.224404i −0.292908 0.956141i \(-0.594623\pi\)
0.681588 + 0.731736i \(0.261290\pi\)
\(294\) 0 0
\(295\) 10.8798 18.8444i 0.0368808 0.0638794i
\(296\) −36.4493 21.0440i −0.123139 0.0710946i
\(297\) 0 0
\(298\) 58.3988 + 101.150i 0.195969 + 0.339429i
\(299\) −228.651 + 132.012i −0.764719 + 0.441510i
\(300\) 0 0
\(301\) −3.67567 + 20.3182i −0.0122115 + 0.0675025i
\(302\) 261.768 151.132i 0.866781 0.500436i
\(303\) 0 0
\(304\) 86.8133 0.285570
\(305\) −120.639 + 69.6509i −0.395538 + 0.228364i
\(306\) 0 0
\(307\) 252.488 0.822437 0.411218 0.911537i \(-0.365103\pi\)
0.411218 + 0.911537i \(0.365103\pi\)
\(308\) −62.1876 11.2500i −0.201908 0.0365261i
\(309\) 0 0
\(310\) 99.0605 0.319550
\(311\) −179.199 103.461i −0.576202 0.332671i 0.183420 0.983035i \(-0.441283\pi\)
−0.759623 + 0.650364i \(0.774616\pi\)
\(312\) 0 0
\(313\) 169.971 + 294.398i 0.543037 + 0.940568i 0.998728 + 0.0504294i \(0.0160590\pi\)
−0.455691 + 0.890138i \(0.650608\pi\)
\(314\) 228.811i 0.728698i
\(315\) 0 0
\(316\) −195.305 −0.618055
\(317\) −237.911 + 137.358i −0.750507 + 0.433306i −0.825877 0.563850i \(-0.809320\pi\)
0.0753699 + 0.997156i \(0.475986\pi\)
\(318\) 0 0
\(319\) −127.663 + 221.119i −0.400198 + 0.693163i
\(320\) 14.0129i 0.0437904i
\(321\) 0 0
\(322\) 207.469 + 175.662i 0.644315 + 0.545534i
\(323\) 12.3095i 0.0381098i
\(324\) 0 0
\(325\) −105.433 182.615i −0.324409 0.561893i
\(326\) 76.0059i 0.233147i
\(327\) 0 0
\(328\) 45.7983 + 79.3250i 0.139629 + 0.241844i
\(329\) 249.571 294.761i 0.758573 0.895930i
\(330\) 0 0
\(331\) 98.5084 + 170.622i 0.297609 + 0.515473i 0.975588 0.219607i \(-0.0704776\pi\)
−0.677980 + 0.735081i \(0.737144\pi\)
\(332\) 39.1498 22.6031i 0.117921 0.0680817i
\(333\) 0 0
\(334\) −33.5585 + 58.1251i −0.100475 + 0.174027i
\(335\) 0.431533 + 0.249146i 0.00128816 + 0.000743718i
\(336\) 0 0
\(337\) −162.571 281.581i −0.482405 0.835551i 0.517391 0.855749i \(-0.326903\pi\)
−0.999796 + 0.0201987i \(0.993570\pi\)
\(338\) 108.272i 0.320330i
\(339\) 0 0
\(340\) −1.98693 −0.00584390
\(341\) −156.331 90.2578i −0.458449 0.264686i
\(342\) 0 0
\(343\) 175.438 294.738i 0.511482 0.859294i
\(344\) −7.22531 4.17153i −0.0210038 0.0121266i
\(345\) 0 0
\(346\) −64.9902 + 112.566i −0.187833 + 0.325336i
\(347\) −84.4075 48.7327i −0.243249 0.140440i 0.373420 0.927662i \(-0.378185\pi\)
−0.616669 + 0.787222i \(0.711518\pi\)
\(348\) 0 0
\(349\) −106.817 + 185.012i −0.306065 + 0.530121i −0.977498 0.210945i \(-0.932346\pi\)
0.671433 + 0.741066i \(0.265679\pi\)
\(350\) −140.295 + 165.698i −0.400842 + 0.473424i
\(351\) 0 0
\(352\) 12.7677 22.1143i 0.0362719 0.0628248i
\(353\) 641.700i 1.81785i 0.416962 + 0.908924i \(0.363095\pi\)
−0.416962 + 0.908924i \(0.636905\pi\)
\(354\) 0 0
\(355\) 15.6356 0.0440440
\(356\) 94.2603 54.4212i 0.264776 0.152869i
\(357\) 0 0
\(358\) −116.859 + 202.405i −0.326421 + 0.565378i
\(359\) −263.839 152.328i −0.734928 0.424311i 0.0852941 0.996356i \(-0.472817\pi\)
−0.820222 + 0.572045i \(0.806150\pi\)
\(360\) 0 0
\(361\) −55.0174 95.2929i −0.152403 0.263969i
\(362\) −299.581 + 172.963i −0.827571 + 0.477798i
\(363\) 0 0
\(364\) −126.690 + 45.4758i −0.348049 + 0.124933i
\(365\) 12.2144 7.05200i 0.0334641 0.0193205i
\(366\) 0 0
\(367\) 125.326 0.341488 0.170744 0.985315i \(-0.445383\pi\)
0.170744 + 0.985315i \(0.445383\pi\)
\(368\) −95.1265 + 54.9213i −0.258496 + 0.149243i
\(369\) 0 0
\(370\) −36.8610 −0.0996243
\(371\) 252.616 298.357i 0.680905 0.804198i
\(372\) 0 0
\(373\) −264.825 −0.709987 −0.354993 0.934869i \(-0.615517\pi\)
−0.354993 + 0.934869i \(0.615517\pi\)
\(374\) 3.13565 + 1.81037i 0.00838408 + 0.00484055i
\(375\) 0 0
\(376\) 78.0291 + 135.150i 0.207524 + 0.359443i
\(377\) 543.824i 1.44250i
\(378\) 0 0
\(379\) −190.773 −0.503359 −0.251679 0.967811i \(-0.580983\pi\)
−0.251679 + 0.967811i \(0.580983\pi\)
\(380\) 65.8455 38.0159i 0.173278 0.100042i
\(381\) 0 0
\(382\) −103.903 + 179.965i −0.271997 + 0.471113i
\(383\) 599.457i 1.56516i 0.622548 + 0.782582i \(0.286098\pi\)
−0.622548 + 0.782582i \(0.713902\pi\)
\(384\) 0 0
\(385\) −52.0940 + 18.6993i −0.135309 + 0.0485697i
\(386\) 358.902i 0.929797i
\(387\) 0 0
\(388\) −76.0637 131.746i −0.196040 0.339552i
\(389\) 100.950i 0.259512i −0.991546 0.129756i \(-0.958581\pi\)
0.991546 0.129756i \(-0.0414193\pi\)
\(390\) 0 0
\(391\) −7.78743 13.4882i −0.0199167 0.0344967i
\(392\) 88.1403 + 106.955i 0.224848 + 0.272843i
\(393\) 0 0
\(394\) −224.951 389.627i −0.570942 0.988900i
\(395\) −148.134 + 85.5250i −0.375022 + 0.216519i
\(396\) 0 0
\(397\) −154.534 + 267.661i −0.389255 + 0.674210i −0.992350 0.123460i \(-0.960601\pi\)
0.603094 + 0.797670i \(0.293934\pi\)
\(398\) −302.554 174.680i −0.760185 0.438893i
\(399\) 0 0
\(400\) −43.8637 75.9741i −0.109659 0.189935i
\(401\) 603.024i 1.50380i −0.659276 0.751901i \(-0.729137\pi\)
0.659276 0.751901i \(-0.270863\pi\)
\(402\) 0 0
\(403\) −384.484 −0.954054
\(404\) 337.607 + 194.917i 0.835660 + 0.482468i
\(405\) 0 0
\(406\) 527.015 189.174i 1.29807 0.465946i
\(407\) 58.1717 + 33.5855i 0.142928 + 0.0825196i
\(408\) 0 0
\(409\) −219.715 + 380.558i −0.537201 + 0.930459i 0.461853 + 0.886957i \(0.347185\pi\)
−0.999053 + 0.0435023i \(0.986148\pi\)
\(410\) 69.4735 + 40.1105i 0.169447 + 0.0978305i
\(411\) 0 0
\(412\) −116.526 + 201.828i −0.282829 + 0.489874i
\(413\) 85.5695 + 15.4800i 0.207190 + 0.0374817i
\(414\) 0 0
\(415\) 19.7960 34.2877i 0.0477012 0.0826209i
\(416\) 54.3884i 0.130741i
\(417\) 0 0
\(418\) −138.551 −0.331462
\(419\) 49.5525 28.6092i 0.118264 0.0682796i −0.439701 0.898144i \(-0.644916\pi\)
0.557965 + 0.829864i \(0.311582\pi\)
\(420\) 0 0
\(421\) 163.713 283.558i 0.388866 0.673536i −0.603431 0.797415i \(-0.706200\pi\)
0.992297 + 0.123879i \(0.0395336\pi\)
\(422\) 263.385 + 152.066i 0.624136 + 0.360345i
\(423\) 0 0
\(424\) 78.9812 + 136.800i 0.186277 + 0.322640i
\(425\) 10.7726 6.21954i 0.0253472 0.0146342i
\(426\) 0 0
\(427\) −424.860 359.724i −0.994989 0.842445i
\(428\) −131.758 + 76.0704i −0.307845 + 0.177735i
\(429\) 0 0
\(430\) −7.30692 −0.0169928
\(431\) 90.4104 52.1985i 0.209769 0.121110i −0.391435 0.920206i \(-0.628021\pi\)
0.601204 + 0.799096i \(0.294688\pi\)
\(432\) 0 0
\(433\) 426.363 0.984673 0.492337 0.870405i \(-0.336143\pi\)
0.492337 + 0.870405i \(0.336143\pi\)
\(434\) 133.746 + 372.599i 0.308171 + 0.858524i
\(435\) 0 0
\(436\) 318.414 0.730307
\(437\) 516.141 + 297.994i 1.18110 + 0.681909i
\(438\) 0 0
\(439\) −142.303 246.476i −0.324153 0.561449i 0.657188 0.753727i \(-0.271746\pi\)
−0.981341 + 0.192278i \(0.938413\pi\)
\(440\) 22.3641i 0.0508276i
\(441\) 0 0
\(442\) 7.71186 0.0174476
\(443\) −399.167 + 230.459i −0.901055 + 0.520224i −0.877542 0.479499i \(-0.840818\pi\)
−0.0235125 + 0.999724i \(0.507485\pi\)
\(444\) 0 0
\(445\) 47.6625 82.5539i 0.107107 0.185514i
\(446\) 115.813i 0.259671i
\(447\) 0 0
\(448\) −52.7072 + 18.9195i −0.117650 + 0.0422310i
\(449\) 184.454i 0.410811i 0.978677 + 0.205406i \(0.0658514\pi\)
−0.978677 + 0.205406i \(0.934149\pi\)
\(450\) 0 0
\(451\) −73.0925 126.600i −0.162068 0.280709i
\(452\) 204.147i 0.451652i
\(453\) 0 0
\(454\) −16.6961 28.9184i −0.0367755 0.0636970i
\(455\) −76.1766 + 89.9700i −0.167421 + 0.197736i
\(456\) 0 0
\(457\) 79.0457 + 136.911i 0.172967 + 0.299587i 0.939456 0.342670i \(-0.111331\pi\)
−0.766489 + 0.642257i \(0.777998\pi\)
\(458\) −46.8154 + 27.0289i −0.102217 + 0.0590150i
\(459\) 0 0
\(460\) −48.1005 + 83.3126i −0.104566 + 0.181114i
\(461\) 301.115 + 173.849i 0.653179 + 0.377113i 0.789673 0.613528i \(-0.210250\pi\)
−0.136494 + 0.990641i \(0.543584\pi\)
\(462\) 0 0
\(463\) 170.634 + 295.547i 0.368541 + 0.638331i 0.989338 0.145640i \(-0.0465242\pi\)
−0.620797 + 0.783971i \(0.713191\pi\)
\(464\) 226.249i 0.487606i
\(465\) 0 0
\(466\) −194.299 −0.416951
\(467\) −222.692 128.571i −0.476856 0.275313i 0.242249 0.970214i \(-0.422115\pi\)
−0.719105 + 0.694901i \(0.755448\pi\)
\(468\) 0 0
\(469\) −0.354487 + 1.95952i −0.000755836 + 0.00417808i
\(470\) 118.366 + 68.3385i 0.251842 + 0.145401i
\(471\) 0 0
\(472\) −17.5683 + 30.4291i −0.0372209 + 0.0644684i
\(473\) 11.5313 + 6.65762i 0.0243791 + 0.0140753i
\(474\) 0 0
\(475\) −237.997 + 412.223i −0.501046 + 0.867838i
\(476\) −2.68264 7.47349i −0.00563580 0.0157006i
\(477\) 0 0
\(478\) 284.172 492.200i 0.594502 1.02971i
\(479\) 198.939i 0.415322i −0.978201 0.207661i \(-0.933415\pi\)
0.978201 0.207661i \(-0.0665851\pi\)
\(480\) 0 0
\(481\) 143.069 0.297440
\(482\) −538.272 + 310.772i −1.11675 + 0.644755i
\(483\) 0 0
\(484\) 100.623 174.284i 0.207899 0.360092i
\(485\) −115.384 66.6172i −0.237906 0.137355i
\(486\) 0 0
\(487\) −231.666 401.257i −0.475700 0.823937i 0.523912 0.851772i \(-0.324472\pi\)
−0.999613 + 0.0278350i \(0.991139\pi\)
\(488\) 194.802 112.469i 0.399185 0.230469i
\(489\) 0 0
\(490\) 113.688 + 42.5251i 0.232016 + 0.0867859i
\(491\) 824.496 476.023i 1.67922 0.969497i 0.717056 0.697015i \(-0.245489\pi\)
0.962161 0.272482i \(-0.0878444\pi\)
\(492\) 0 0
\(493\) −32.0805 −0.0650719
\(494\) −255.566 + 147.551i −0.517340 + 0.298687i
\(495\) 0 0
\(496\) −159.958 −0.322497
\(497\) 21.1103 + 58.8107i 0.0424755 + 0.118331i
\(498\) 0 0
\(499\) 15.1998 0.0304606 0.0152303 0.999884i \(-0.495152\pi\)
0.0152303 + 0.999884i \(0.495152\pi\)
\(500\) −142.386 82.2066i −0.284772 0.164413i
\(501\) 0 0
\(502\) −80.6818 139.745i −0.160721 0.278377i
\(503\) 247.471i 0.491989i 0.969271 + 0.245995i \(0.0791146\pi\)
−0.969271 + 0.245995i \(0.920885\pi\)
\(504\) 0 0
\(505\) 341.420 0.676080
\(506\) 151.819 87.6525i 0.300037 0.173226i
\(507\) 0 0
\(508\) −221.800 + 384.169i −0.436614 + 0.756237i
\(509\) 200.767i 0.394435i −0.980360 0.197217i \(-0.936810\pi\)
0.980360 0.197217i \(-0.0631905\pi\)
\(510\) 0 0
\(511\) 43.0161 + 36.4212i 0.0841802 + 0.0712744i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −212.372 367.838i −0.413174 0.715639i
\(515\) 204.108i 0.396326i
\(516\) 0 0
\(517\) −124.532 215.695i −0.240874 0.417206i
\(518\) −49.7677 138.646i −0.0960766 0.267657i
\(519\) 0 0
\(520\) −23.8169 41.2521i −0.0458017 0.0793309i
\(521\) −248.569 + 143.512i −0.477101 + 0.275454i −0.719207 0.694795i \(-0.755495\pi\)
0.242107 + 0.970250i \(0.422162\pi\)
\(522\) 0 0
\(523\) −280.624 + 486.054i −0.536565 + 0.929358i 0.462520 + 0.886609i \(0.346945\pi\)
−0.999086 + 0.0427498i \(0.986388\pi\)
\(524\) −4.19174 2.42010i −0.00799951 0.00461852i
\(525\) 0 0
\(526\) 298.067 + 516.267i 0.566667 + 0.981495i
\(527\) 22.6809i 0.0430377i
\(528\) 0 0
\(529\) −225.088 −0.425498
\(530\) 119.810 + 69.1724i 0.226057 + 0.130514i
\(531\) 0 0
\(532\) 231.891 + 196.340i 0.435886 + 0.369059i
\(533\) −269.647 155.681i −0.505905 0.292084i
\(534\) 0 0
\(535\) −66.6231 + 115.395i −0.124529 + 0.215691i
\(536\) −0.696819 0.402309i −0.00130004 0.000750576i
\(537\) 0 0
\(538\) −364.027 + 630.514i −0.676631 + 1.17196i
\(539\) −140.669 170.696i −0.260981 0.316690i
\(540\) 0 0
\(541\) −58.2830 + 100.949i −0.107732 + 0.186597i −0.914851 0.403791i \(-0.867692\pi\)
0.807119 + 0.590389i \(0.201026\pi\)
\(542\) 682.769i 1.25972i
\(543\) 0 0
\(544\) 3.20840 0.00589779
\(545\) 241.508 139.435i 0.443134 0.255843i
\(546\) 0 0
\(547\) 22.9108 39.6827i 0.0418845 0.0725461i −0.844323 0.535834i \(-0.819997\pi\)
0.886208 + 0.463288i \(0.153331\pi\)
\(548\) 410.202 + 236.830i 0.748544 + 0.432172i
\(549\) 0 0
\(550\) 70.0049 + 121.252i 0.127282 + 0.220458i
\(551\) 1063.13 613.796i 1.92945 1.11397i
\(552\) 0 0
\(553\) −521.689 441.708i −0.943380 0.798749i
\(554\) −183.138 + 105.735i −0.330573 + 0.190857i
\(555\) 0 0
\(556\) 448.899 0.807373
\(557\) 772.053 445.745i 1.38609 0.800260i 0.393219 0.919445i \(-0.371361\pi\)
0.992872 + 0.119185i \(0.0380280\pi\)
\(558\) 0 0
\(559\) 28.3604 0.0507341
\(560\) −31.6921 + 37.4306i −0.0565929 + 0.0668404i
\(561\) 0 0
\(562\) −27.9630 −0.0497562
\(563\) −290.660 167.813i −0.516270 0.298069i 0.219137 0.975694i \(-0.429676\pi\)
−0.735407 + 0.677625i \(0.763009\pi\)
\(564\) 0 0
\(565\) 89.3967 + 154.840i 0.158224 + 0.274052i
\(566\) 777.752i 1.37412i
\(567\) 0 0
\(568\) −25.2477 −0.0444501
\(569\) −818.812 + 472.741i −1.43904 + 0.830828i −0.997783 0.0665539i \(-0.978800\pi\)
−0.441254 + 0.897382i \(0.645466\pi\)
\(570\) 0 0
\(571\) 258.155 447.138i 0.452111 0.783079i −0.546406 0.837520i \(-0.684005\pi\)
0.998517 + 0.0544416i \(0.0173379\pi\)
\(572\) 86.8019i 0.151752i
\(573\) 0 0
\(574\) −57.0697 + 315.468i −0.0994246 + 0.549595i
\(575\) 602.263i 1.04741i
\(576\) 0 0
\(577\) −222.167 384.804i −0.385038 0.666905i 0.606737 0.794903i \(-0.292478\pi\)
−0.991774 + 0.127998i \(0.959145\pi\)
\(578\) 408.253i 0.706320i
\(579\) 0 0
\(580\) 99.0755 + 171.604i 0.170820 + 0.295869i
\(581\) 155.695 + 28.1660i 0.267977 + 0.0484784i
\(582\) 0 0
\(583\) −126.051 218.327i −0.216211 0.374489i
\(584\) −19.7233 + 11.3872i −0.0337727 + 0.0194987i
\(585\) 0 0
\(586\) −92.9853 + 161.055i −0.158678 + 0.274838i
\(587\) −333.063 192.294i −0.567398 0.327588i 0.188711 0.982033i \(-0.439569\pi\)
−0.756110 + 0.654445i \(0.772902\pi\)
\(588\) 0 0
\(589\) 433.954 + 751.630i 0.736763 + 1.27611i
\(590\) 30.7728i 0.0521573i
\(591\) 0 0
\(592\) 59.5214 0.100543
\(593\) −234.426 135.346i −0.395321 0.228239i 0.289142 0.957286i \(-0.406630\pi\)
−0.684463 + 0.729047i \(0.739963\pi\)
\(594\) 0 0
\(595\) −5.30738 4.49369i −0.00891996 0.00755243i
\(596\) −143.047 82.5884i −0.240012 0.138571i
\(597\) 0 0
\(598\) 186.693 323.361i 0.312195 0.540738i
\(599\) 251.273 + 145.073i 0.419488 + 0.242191i 0.694858 0.719147i \(-0.255467\pi\)
−0.275370 + 0.961338i \(0.588800\pi\)
\(600\) 0 0
\(601\) 332.538 575.974i 0.553309 0.958359i −0.444724 0.895667i \(-0.646698\pi\)
0.998033 0.0626911i \(-0.0199683\pi\)
\(602\) −9.86540 27.4838i −0.0163877 0.0456541i
\(603\) 0 0
\(604\) −213.733 + 370.196i −0.353862 + 0.612907i
\(605\) 176.253i 0.291328i
\(606\) 0 0
\(607\) −275.607 −0.454048 −0.227024 0.973889i \(-0.572900\pi\)
−0.227024 + 0.973889i \(0.572900\pi\)
\(608\) −106.324 + 61.3863i −0.174875 + 0.100964i
\(609\) 0 0
\(610\) 98.5013 170.609i 0.161478 0.279687i
\(611\) −459.413 265.242i −0.751904 0.434112i
\(612\) 0 0
\(613\) 31.3289 + 54.2633i 0.0511075 + 0.0885209i 0.890447 0.455086i \(-0.150392\pi\)
−0.839340 + 0.543607i \(0.817058\pi\)
\(614\) −309.233 + 178.536i −0.503638 + 0.290775i
\(615\) 0 0
\(616\) 84.1189 30.1948i 0.136557 0.0490176i
\(617\) −446.057 + 257.531i −0.722945 + 0.417392i −0.815836 0.578284i \(-0.803723\pi\)
0.0928908 + 0.995676i \(0.470389\pi\)
\(618\) 0 0
\(619\) 1078.54 1.74239 0.871194 0.490939i \(-0.163346\pi\)
0.871194 + 0.490939i \(0.163346\pi\)
\(620\) −121.324 + 70.0464i −0.195684 + 0.112978i
\(621\) 0 0
\(622\) 292.631 0.470467
\(623\) 374.864 + 67.8148i 0.601708 + 0.108852i
\(624\) 0 0
\(625\) 404.302 0.646883
\(626\) −416.341 240.375i −0.665082 0.383985i
\(627\) 0 0
\(628\) 161.794 + 280.235i 0.257634 + 0.446235i
\(629\) 8.43968i 0.0134176i
\(630\) 0 0
\(631\) 65.5284 0.103848 0.0519242 0.998651i \(-0.483465\pi\)
0.0519242 + 0.998651i \(0.483465\pi\)
\(632\) 239.199 138.102i 0.378480 0.218515i
\(633\) 0 0
\(634\) 194.253 336.457i 0.306393 0.530689i
\(635\) 388.508i 0.611824i
\(636\) 0 0
\(637\) −441.256 165.053i −0.692710 0.259109i
\(638\) 361.086i 0.565966i
\(639\) 0 0
\(640\) −9.90864 17.1623i −0.0154822 0.0268160i
\(641\) 791.031i 1.23406i −0.786940 0.617029i \(-0.788336\pi\)
0.786940 0.617029i \(-0.211664\pi\)
\(642\) 0 0
\(643\) −414.293 717.577i −0.644313 1.11598i −0.984460 0.175610i \(-0.943810\pi\)
0.340147 0.940372i \(-0.389523\pi\)
\(644\) −378.309 68.4380i −0.587436 0.106270i
\(645\) 0 0
\(646\) −8.70411 15.0760i −0.0134739 0.0233374i
\(647\) 54.8043 31.6413i 0.0847053 0.0489046i −0.457049 0.889441i \(-0.651094\pi\)
0.541754 + 0.840537i \(0.317760\pi\)
\(648\) 0 0
\(649\) 28.0383 48.5638i 0.0432023 0.0748286i
\(650\) 258.257 + 149.105i 0.397318 + 0.229392i
\(651\) 0 0
\(652\) 53.7443 + 93.0878i 0.0824298 + 0.142773i
\(653\) 651.734i 0.998062i 0.866584 + 0.499031i \(0.166311\pi\)
−0.866584 + 0.499031i \(0.833689\pi\)
\(654\) 0 0
\(655\) −4.23909 −0.00647189
\(656\) −112.182 64.7686i −0.171010 0.0987326i
\(657\) 0 0
\(658\) −97.2328 + 537.480i −0.147770 + 0.816839i
\(659\) 58.2921 + 33.6550i 0.0884554 + 0.0510698i 0.543575 0.839360i \(-0.317070\pi\)
−0.455120 + 0.890430i \(0.650404\pi\)
\(660\) 0 0
\(661\) 243.282 421.376i 0.368051 0.637483i −0.621210 0.783644i \(-0.713358\pi\)
0.989261 + 0.146161i \(0.0466918\pi\)
\(662\) −241.295 139.312i −0.364495 0.210441i
\(663\) 0 0
\(664\) −31.9656 + 55.3661i −0.0481410 + 0.0833827i
\(665\) 261.861 + 47.3720i 0.393776 + 0.0712361i
\(666\) 0 0
\(667\) −776.620 + 1345.15i −1.16435 + 2.01671i
\(668\) 94.9178i 0.142093i
\(669\) 0 0
\(670\) −0.704690 −0.00105178
\(671\) −310.897 + 179.497i −0.463334 + 0.267506i
\(672\) 0 0
\(673\) 135.979 235.523i 0.202050 0.349960i −0.747139 0.664668i \(-0.768573\pi\)
0.949189 + 0.314707i \(0.101906\pi\)
\(674\) 398.215 + 229.910i 0.590824 + 0.341112i
\(675\) 0 0
\(676\) −76.5595 132.605i −0.113254 0.196161i
\(677\) 513.950 296.729i 0.759158 0.438300i −0.0698351 0.997559i \(-0.522247\pi\)
0.828994 + 0.559258i \(0.188914\pi\)
\(678\) 0 0
\(679\) 94.7837 523.942i 0.139593 0.771637i
\(680\) 2.43348 1.40497i 0.00357865 0.00206613i
\(681\) 0 0
\(682\) 255.288 0.374322
\(683\) −763.359 + 440.725i −1.11766 + 0.645279i −0.940801 0.338958i \(-0.889925\pi\)
−0.176854 + 0.984237i \(0.556592\pi\)
\(684\) 0 0
\(685\) 414.836 0.605600
\(686\) −6.45604 + 485.032i −0.00941113 + 0.707044i
\(687\) 0 0
\(688\) 11.7989 0.0171495
\(689\) −465.019 268.479i −0.674919 0.389665i
\(690\) 0 0
\(691\) −438.204 758.992i −0.634159 1.09840i −0.986693 0.162597i \(-0.948013\pi\)
0.352533 0.935799i \(-0.385320\pi\)
\(692\) 183.820i 0.265636i
\(693\) 0 0
\(694\) 137.837 0.198612
\(695\) 340.478 196.575i 0.489896 0.282841i
\(696\) 0 0
\(697\) 9.18370 15.9066i 0.0131760 0.0228216i
\(698\) 302.124i 0.432842i
\(699\) 0 0
\(700\) 54.6589 302.142i 0.0780842 0.431631i
\(701\) 286.681i 0.408961i 0.978871 + 0.204480i \(0.0655504\pi\)
−0.978871 + 0.204480i \(0.934450\pi\)
\(702\) 0 0
\(703\) −161.477 279.686i −0.229696 0.397846i
\(704\) 36.1126i 0.0512962i
\(705\) 0 0
\(706\) −453.751 785.919i −0.642706 1.11320i
\(707\) 460.967 + 1284.19i 0.652004 + 1.81640i
\(708\) 0 0
\(709\) −328.602 569.156i −0.463473 0.802758i 0.535659 0.844435i \(-0.320063\pi\)
−0.999131 + 0.0416765i \(0.986730\pi\)
\(710\) −19.1496 + 11.0561i −0.0269713 + 0.0155719i
\(711\) 0 0
\(712\) −76.9632 + 133.304i −0.108094 + 0.187225i
\(713\) −951.017 549.070i −1.33383 0.770084i
\(714\) 0 0
\(715\) 38.0109 + 65.8368i 0.0531621 + 0.0920795i
\(716\) 330.527i 0.461629i
\(717\) 0 0
\(718\) 430.848 0.600066
\(719\) 404.412 + 233.488i 0.562465 + 0.324739i 0.754134 0.656720i \(-0.228057\pi\)
−0.191669 + 0.981460i \(0.561390\pi\)
\(720\) 0 0
\(721\) −767.717 + 275.575i −1.06480 + 0.382212i
\(722\) 134.765 + 77.8064i 0.186655 + 0.107765i
\(723\) 0 0
\(724\) 244.607 423.671i 0.337854 0.585181i
\(725\) −1074.32 620.258i −1.48182 0.855529i
\(726\) 0 0
\(727\) −21.8124 + 37.7802i −0.0300033 + 0.0519673i −0.880637 0.473791i \(-0.842885\pi\)
0.850634 + 0.525759i \(0.176218\pi\)
\(728\) 123.006 145.279i 0.168965 0.199560i
\(729\) 0 0
\(730\) −9.97303 + 17.2738i −0.0136617 + 0.0236627i
\(731\) 1.67299i 0.00228863i
\(732\) 0 0
\(733\) 1118.07 1.52533 0.762665 0.646794i \(-0.223891\pi\)
0.762665 + 0.646794i \(0.223891\pi\)
\(734\) −153.492 + 88.6189i −0.209118 + 0.120734i
\(735\) 0 0
\(736\) 77.6705 134.529i 0.105531 0.182784i
\(737\) 1.11210 + 0.642070i 0.00150895 + 0.000871194i
\(738\) 0 0
\(739\) 414.623 + 718.148i 0.561060 + 0.971784i 0.997404 + 0.0720041i \(0.0229395\pi\)
−0.436345 + 0.899780i \(0.643727\pi\)
\(740\) 45.1453 26.0647i 0.0610072 0.0352225i
\(741\) 0 0
\(742\) −98.4193 + 544.038i −0.132641 + 0.733205i
\(743\) 1010.16 583.214i 1.35957 0.784945i 0.370000 0.929032i \(-0.379358\pi\)
0.989565 + 0.144086i \(0.0460242\pi\)
\(744\) 0 0
\(745\) −144.663 −0.194179
\(746\) 324.343 187.260i 0.434776 0.251018i
\(747\) 0 0
\(748\) −5.12049 −0.00684557
\(749\) −523.988 94.7921i −0.699583 0.126558i
\(750\) 0 0
\(751\) 1217.73 1.62147 0.810737 0.585411i \(-0.199067\pi\)
0.810737 + 0.585411i \(0.199067\pi\)
\(752\) −191.132 110.350i −0.254164 0.146742i
\(753\) 0 0
\(754\) −384.542 666.046i −0.510002 0.883350i
\(755\) 374.377i 0.495864i
\(756\) 0 0
\(757\) 212.121 0.280213 0.140106 0.990136i \(-0.455256\pi\)
0.140106 + 0.990136i \(0.455256\pi\)
\(758\) 233.648 134.897i 0.308243 0.177964i
\(759\) 0 0
\(760\) −53.7626 + 93.1196i −0.0707403 + 0.122526i
\(761\) 1021.32i 1.34208i −0.741423 0.671038i \(-0.765849\pi\)
0.741423 0.671038i \(-0.234151\pi\)
\(762\) 0 0
\(763\) 850.530 + 720.134i 1.11472 + 0.943819i
\(764\) 293.882i 0.384662i
\(765\) 0 0
\(766\) −423.880 734.182i −0.553369 0.958463i
\(767\) 119.439i 0.155722i
\(768\) 0 0
\(769\) −19.1405 33.1524i −0.0248902 0.0431110i 0.853312 0.521401i \(-0.174590\pi\)
−0.878202 + 0.478290i \(0.841257\pi\)
\(770\) 50.5794 59.7379i 0.0656875 0.0775817i
\(771\) 0 0
\(772\) −253.782 439.563i −0.328733 0.569382i
\(773\) 329.696 190.350i 0.426515 0.246249i −0.271346 0.962482i \(-0.587469\pi\)
0.697861 + 0.716233i \(0.254135\pi\)
\(774\) 0 0
\(775\) 438.522 759.543i 0.565835 0.980056i
\(776\) 186.317 + 107.570i 0.240100 + 0.138622i
\(777\) 0 0
\(778\) 71.3824 + 123.638i 0.0917512 + 0.158918i
\(779\) 702.847i 0.902243i
\(780\) 0 0
\(781\) 40.2944 0.0515933
\(782\) 19.0752 + 11.0131i 0.0243929 + 0.0140832i
\(783\) 0 0
\(784\) −183.578 68.6675i −0.234155 0.0875862i
\(785\) 245.432 + 141.700i 0.312653 + 0.180510i
\(786\) 0 0
\(787\) −427.833 + 741.028i −0.543625 + 0.941586i 0.455067 + 0.890457i \(0.349615\pi\)
−0.998692 + 0.0511290i \(0.983718\pi\)
\(788\) 551.015 + 318.129i 0.699258 + 0.403717i
\(789\) 0 0
\(790\) 120.951 209.493i 0.153102 0.265180i
\(791\) −461.705 + 545.306i −0.583697 + 0.689389i
\(792\) 0 0
\(793\) −382.313 + 662.186i −0.482110 + 0.835039i
\(794\) 437.089i 0.550490i
\(795\) 0 0
\(796\) 494.068 0.620689
\(797\) 27.2948 15.7587i 0.0342469 0.0197725i −0.482779 0.875742i \(-0.660372\pi\)
0.517026 + 0.855970i \(0.327039\pi\)
\(798\) 0 0
\(799\) 15.6468 27.1010i 0.0195829 0.0339187i
\(800\) 107.444 + 62.0326i 0.134305 + 0.0775408i
\(801\) 0 0
\(802\) 426.403 + 738.551i 0.531674 + 0.920886i
\(803\) 31.4776 18.1736i 0.0392000 0.0226322i
\(804\) 0 0
\(805\) −316.906 + 113.755i −0.393672 + 0.141310i
\(806\) 470.894 271.871i 0.584236 0.337309i
\(807\) 0 0
\(808\) −551.309 −0.682313
\(809\) 366.440 211.564i 0.452955 0.261514i −0.256123 0.966644i \(-0.582445\pi\)
0.709077 + 0.705131i \(0.249112\pi\)
\(810\) 0 0
\(811\) 695.569 0.857668 0.428834 0.903383i \(-0.358925\pi\)
0.428834 + 0.903383i \(0.358925\pi\)
\(812\) −511.692 + 604.346i −0.630163 + 0.744268i
\(813\) 0 0
\(814\) −94.9940 −0.116700
\(815\) 81.5270 + 47.0697i 0.100033 + 0.0577542i
\(816\) 0 0
\(817\) −32.0094 55.4419i −0.0391792 0.0678603i
\(818\) 621.448i 0.759717i
\(819\) 0 0
\(820\) −113.450 −0.138353
\(821\) −79.1142 + 45.6766i −0.0963632 + 0.0556353i −0.547407 0.836866i \(-0.684385\pi\)
0.451044 + 0.892502i \(0.351052\pi\)
\(822\) 0 0
\(823\) 328.999 569.843i 0.399755 0.692397i −0.593940 0.804509i \(-0.702428\pi\)
0.993696 + 0.112113i \(0.0357617\pi\)
\(824\) 329.584i 0.399980i
\(825\) 0 0
\(826\) −115.747 + 41.5478i −0.140129 + 0.0503000i
\(827\) 1364.30i 1.64969i −0.565355 0.824847i \(-0.691261\pi\)
0.565355 0.824847i \(-0.308739\pi\)
\(828\) 0 0
\(829\) −388.984 673.740i −0.469221 0.812715i 0.530160 0.847898i \(-0.322132\pi\)
−0.999381 + 0.0351831i \(0.988799\pi\)
\(830\) 55.9915i 0.0674597i
\(831\) 0 0
\(832\) 38.4584 + 66.6119i 0.0462240 + 0.0800624i
\(833\) 9.73654 26.0299i 0.0116885 0.0312484i
\(834\) 0 0
\(835\) −41.5649 71.9925i −0.0497783 0.0862186i
\(836\) 169.690 97.9704i 0.202978 0.117189i
\(837\) 0 0
\(838\) −40.4595 + 70.0778i −0.0482810 + 0.0836251i
\(839\) 1355.78 + 782.761i 1.61595 + 0.932969i 0.987953 + 0.154752i \(0.0494580\pi\)
0.627996 + 0.778216i \(0.283875\pi\)
\(840\) 0 0
\(841\) 1179.15 + 2042.35i 1.40208 + 2.42847i
\(842\) 463.049i 0.549940i
\(843\) 0 0
\(844\) −430.106 −0.509605
\(845\) −116.136 67.0514i −0.137440 0.0793508i
\(846\) 0 0
\(847\) 662.946 237.967i 0.782699 0.280953i
\(848\) −193.464 111.696i −0.228141 0.131717i
\(849\) 0 0
\(850\) −8.79576 + 15.2347i −0.0103479 + 0.0179232i
\(851\) 353.879 + 204.312i 0.415839 + 0.240085i
\(852\) 0 0
\(853\) −484.334 + 838.891i −0.567801 + 0.983460i 0.428982 + 0.903313i \(0.358872\pi\)
−0.996783 + 0.0801471i \(0.974461\pi\)
\(854\) 774.709 + 140.149i 0.907153 + 0.164109i
\(855\) 0 0
\(856\) 107.580 186.334i 0.125677 0.217680i
\(857\) 1327.16i 1.54861i −0.632814 0.774304i \(-0.718100\pi\)
0.632814 0.774304i \(-0.281900\pi\)
\(858\) 0 0
\(859\) 362.201 0.421654 0.210827 0.977523i \(-0.432384\pi\)
0.210827 + 0.977523i \(0.432384\pi\)
\(860\) 8.94912 5.16678i 0.0104060 0.00600788i
\(861\) 0 0
\(862\) −73.8198 + 127.860i −0.0856378 + 0.148329i
\(863\) 938.041 + 541.578i 1.08695 + 0.627553i 0.932764 0.360488i \(-0.117390\pi\)
0.154190 + 0.988041i \(0.450723\pi\)
\(864\) 0 0
\(865\) −80.4956 139.422i −0.0930584 0.161182i
\(866\) −522.186 + 301.484i −0.602987 + 0.348134i
\(867\) 0 0
\(868\) −427.272 361.766i −0.492249 0.416782i
\(869\) −381.753 + 220.405i −0.439302 + 0.253631i
\(870\) 0 0
\(871\) 2.73511 0.00314020
\(872\) −389.975 + 225.152i −0.447220 + 0.258202i
\(873\) 0 0
\(874\) −842.854 −0.964364
\(875\) −194.413 541.610i −0.222186 0.618983i
\(876\) 0 0
\(877\) −1141.56 −1.30166 −0.650830 0.759223i \(-0.725579\pi\)
−0.650830 + 0.759223i \(0.725579\pi\)
\(878\) 348.570 + 201.247i 0.397004 + 0.229211i
\(879\) 0 0
\(880\) 15.8138 + 27.3904i 0.0179703 + 0.0311254i
\(881\) 536.022i 0.608424i 0.952604 + 0.304212i \(0.0983931\pi\)
−0.952604 + 0.304212i \(0.901607\pi\)
\(882\) 0 0
\(883\) −413.964 −0.468816 −0.234408 0.972138i \(-0.575315\pi\)
−0.234408 + 0.972138i \(0.575315\pi\)
\(884\) −9.44506 + 5.45311i −0.0106845 + 0.00616868i
\(885\) 0 0
\(886\) 325.919 564.508i 0.367854 0.637142i
\(887\) 115.461i 0.130171i 0.997880 + 0.0650853i \(0.0207320\pi\)
−0.997880 + 0.0650853i \(0.979268\pi\)
\(888\) 0 0
\(889\) −1461.31 + 524.542i −1.64377 + 0.590036i
\(890\) 134.810i 0.151472i
\(891\) 0 0
\(892\) 81.8923 + 141.842i 0.0918076 + 0.159015i
\(893\) 1197.48i 1.34096i
\(894\) 0 0
\(895\) −144.739 250.695i −0.161719 0.280106i
\(896\) 51.1748 60.4412i 0.0571148 0.0674567i
\(897\) 0 0
\(898\) −130.429 225.909i −0.145244 0.251570i
\(899\) −1958.87 + 1130.95i −2.17894 + 1.25801i
\(900\) 0 0
\(901\) 15.8377 27.4317i 0.0175779 0.0304458i
\(902\) 179.039 + 103.368i 0.198491 + 0.114599i
\(903\) 0 0
\(904\) −144.354 250.028i −0.159683 0.276579i
\(905\) 428.457i 0.473433i
\(906\) 0 0
\(907\) −182.571 −0.201291 −0.100646 0.994922i \(-0.532091\pi\)
−0.100646 + 0.994922i \(0.532091\pi\)
\(908\) 40.8968 + 23.6118i 0.0450406 + 0.0260042i
\(909\) 0 0
\(910\) 29.6784 164.055i 0.0326137 0.180281i
\(911\) 781.868 + 451.411i 0.858252 + 0.495512i 0.863427 0.504475i \(-0.168314\pi\)
−0.00517457 + 0.999987i \(0.501647\pi\)
\(912\) 0 0
\(913\) 51.0160 88.3624i 0.0558774 0.0967824i
\(914\) −193.622 111.788i −0.211840 0.122306i
\(915\) 0 0
\(916\) 38.2246 66.2070i 0.0417299 0.0722783i
\(917\) −5.72338 15.9446i −0.00624142 0.0173878i
\(918\) 0 0
\(919\) −590.898 + 1023.47i −0.642979 + 1.11367i 0.341785 + 0.939778i \(0.388969\pi\)
−0.984764 + 0.173895i \(0.944365\pi\)
\(920\) 136.049i 0.147879i
\(921\) 0 0
\(922\) −491.719 −0.533318
\(923\) 74.3255 42.9119i 0.0805260 0.0464917i
\(924\) 0 0
\(925\) −163.177 + 282.630i −0.176407 + 0.305546i
\(926\) −417.967 241.313i −0.451368 0.260598i
\(927\) 0 0
\(928\) −159.982 277.098i −0.172395 0.298597i
\(929\) −760.239 + 438.924i −0.818341 + 0.472469i −0.849844 0.527034i \(-0.823304\pi\)
0.0315030 + 0.999504i \(0.489971\pi\)
\(930\) 0 0
\(931\) 175.368 + 1048.90i 0.188366 + 1.12664i
\(932\) 237.967 137.390i 0.255330 0.147415i
\(933\) 0 0
\(934\) 363.654 0.389351
\(935\) −3.88375 + 2.24228i −0.00415374 + 0.00239816i
\(936\) 0 0
\(937\) −618.122 −0.659682 −0.329841 0.944037i \(-0.606995\pi\)
−0.329841 + 0.944037i \(0.606995\pi\)
\(938\) −0.951433 2.65057i −0.00101432 0.00282577i
\(939\) 0 0
\(940\) −193.291 −0.205628
\(941\) −831.225 479.908i −0.883342 0.509998i −0.0115830 0.999933i \(-0.503687\pi\)
−0.871759 + 0.489935i \(0.837020\pi\)
\(942\) 0 0
\(943\) −444.647 770.151i −0.471524 0.816704i
\(944\) 49.6905i 0.0526383i
\(945\) 0 0
\(946\) −18.8306 −0.0199055
\(947\) −646.600 + 373.315i −0.682788 + 0.394208i −0.800905 0.598792i \(-0.795648\pi\)
0.118117 + 0.993000i \(0.462314\pi\)
\(948\) 0 0
\(949\) 38.7083 67.0448i 0.0407885 0.0706478i
\(950\) 673.157i 0.708587i
\(951\) 0 0
\(952\) 8.57010 + 7.25620i 0.00900221 + 0.00762206i
\(953\) 1477.27i 1.55013i 0.631881 + 0.775065i \(0.282283\pi\)
−0.631881 + 0.775065i \(0.717717\pi\)
\(954\) 0 0
\(955\) −128.692 222.901i −0.134756 0.233404i
\(956\) 803.760i 0.840753i
\(957\) 0 0
\(958\) 140.671 + 243.650i 0.146839 + 0.254332i
\(959\) 560.088 + 1560.33i 0.584033 + 1.62704i
\(960\) 0 0
\(961\) −319.083 552.668i −0.332032 0.575097i
\(962\) −175.222 + 101.165i −0.182144 + 0.105161i
\(963\) 0 0
\(964\) 439.498 761.232i 0.455910 0.789660i
\(965\) −384.973 222.264i −0.398936 0.230326i
\(966\) 0 0
\(967\) 81.0172 + 140.326i 0.0837820 + 0.145115i 0.904872 0.425685i \(-0.139967\pi\)
−0.821090 + 0.570799i \(0.806633\pi\)
\(968\) 284.605i 0.294014i
\(969\) 0 0
\(970\) 188.422 0.194249
\(971\) −1063.88 614.232i −1.09565 0.632577i −0.160579 0.987023i \(-0.551336\pi\)
−0.935076 + 0.354446i \(0.884669\pi\)
\(972\) 0 0
\(973\) 1199.08 + 1015.24i 1.23235 + 1.04342i
\(974\) 567.464 + 327.625i 0.582612 + 0.336371i
\(975\) 0 0
\(976\) −159.055 + 275.492i −0.162966 + 0.282266i
\(977\) 902.636 + 521.137i 0.923885 + 0.533405i 0.884872 0.465833i \(-0.154245\pi\)
0.0390127 + 0.999239i \(0.487579\pi\)
\(978\) 0 0
\(979\) 122.831 212.749i 0.125465 0.217312i
\(980\) −169.308 + 28.3070i −0.172764 + 0.0288847i
\(981\) 0 0
\(982\) −673.198 + 1166.01i −0.685538 + 1.18739i
\(983\) 784.219i 0.797782i −0.916998 0.398891i \(-0.869395\pi\)
0.916998 0.398891i \(-0.130605\pi\)
\(984\) 0 0
\(985\) 557.240 0.565726
\(986\) 39.2904 22.6843i 0.0398482 0.0230064i
\(987\) 0 0
\(988\) 208.669 361.425i 0.211203 0.365815i
\(989\) 70.1492 + 40.5006i 0.0709294 + 0.0409511i
\(990\) 0 0
\(991\) −81.5488 141.247i −0.0822894 0.142529i 0.821944 0.569569i \(-0.192890\pi\)
−0.904233 + 0.427040i \(0.859557\pi\)
\(992\) 195.908 113.108i 0.197488 0.114020i
\(993\) 0 0
\(994\) −67.4402 57.1009i −0.0678473 0.0574455i
\(995\) 374.737 216.354i 0.376620 0.217442i
\(996\) 0 0
\(997\) −226.432 −0.227113 −0.113557 0.993532i \(-0.536224\pi\)
−0.113557 + 0.993532i \(0.536224\pi\)
\(998\) −18.6159 + 10.7479i −0.0186532 + 0.0107694i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.i.a.359.4 32
3.2 odd 2 126.3.i.a.65.12 32
7.4 even 3 378.3.r.a.305.5 32
9.4 even 3 126.3.r.a.23.1 yes 32
9.5 odd 6 378.3.r.a.233.13 32
21.11 odd 6 126.3.r.a.11.9 yes 32
63.4 even 3 126.3.i.a.95.12 yes 32
63.32 odd 6 inner 378.3.i.a.179.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.12 32 3.2 odd 2
126.3.i.a.95.12 yes 32 63.4 even 3
126.3.r.a.11.9 yes 32 21.11 odd 6
126.3.r.a.23.1 yes 32 9.4 even 3
378.3.i.a.179.5 32 63.32 odd 6 inner
378.3.i.a.359.4 32 1.1 even 1 trivial
378.3.r.a.233.13 32 9.5 odd 6
378.3.r.a.305.5 32 7.4 even 3