Properties

Label 126.3.r.a.11.9
Level $126$
Weight $3$
Character 126.11
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(11,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.9
Character \(\chi\) \(=\) 126.11
Dual form 126.3.r.a.23.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(-2.92348 + 0.673248i) q^{3} -2.00000 q^{4} +(-1.51694 - 0.875808i) q^{5} +(-0.952117 - 4.13443i) q^{6} +(-1.24611 - 6.88819i) q^{7} -2.82843i q^{8} +(8.09347 - 3.93646i) q^{9} +(1.23858 - 2.14528i) q^{10} +(3.90930 - 2.25703i) q^{11} +(5.84696 - 1.34650i) q^{12} +(-4.80730 - 8.32649i) q^{13} +(9.74138 - 1.76226i) q^{14} +(5.02439 + 1.53913i) q^{15} +4.00000 q^{16} +(0.491183 + 0.283585i) q^{17} +(5.56699 + 11.4459i) q^{18} +(-10.8517 - 18.7956i) q^{19} +(3.03389 + 1.75162i) q^{20} +(8.28044 + 19.2986i) q^{21} +(3.19193 + 5.52858i) q^{22} +(-23.7816 - 13.7303i) q^{23} +(1.90423 + 8.26885i) q^{24} +(-10.9659 - 18.9935i) q^{25} +(11.7754 - 6.79855i) q^{26} +(-21.0109 + 16.9571i) q^{27} +(2.49222 + 13.7764i) q^{28} +(48.9844 + 28.2812i) q^{29} +(-2.17666 + 7.10556i) q^{30} -39.9896 q^{31} +5.65685i q^{32} +(-9.90921 + 9.23032i) q^{33} +(-0.401050 + 0.694638i) q^{34} +(-4.14246 + 11.5404i) q^{35} +(-16.1869 + 7.87291i) q^{36} +(-7.44017 - 12.8868i) q^{37} +(26.5810 - 15.3466i) q^{38} +(19.6598 + 21.1058i) q^{39} +(-2.47716 + 4.29057i) q^{40} +(-28.0456 + 16.1921i) q^{41} +(-27.2923 + 11.7103i) q^{42} +(-1.47486 + 2.55453i) q^{43} +(-7.81860 + 4.51407i) q^{44} +(-15.7249 - 1.11695i) q^{45} +(19.4176 - 33.6323i) q^{46} -55.1749i q^{47} +(-11.6939 + 2.69299i) q^{48} +(-45.8944 + 17.1669i) q^{49} +(26.8609 - 15.5082i) q^{50} +(-1.62689 - 0.498366i) q^{51} +(9.61460 + 16.6530i) q^{52} +(48.3659 + 27.9241i) q^{53} +(-23.9809 - 29.7139i) q^{54} -7.90692 q^{55} +(-19.4828 + 3.52453i) q^{56} +(44.3788 + 47.6428i) q^{57} +(-39.9956 + 69.2744i) q^{58} +12.4226i q^{59} +(-10.0488 - 3.07826i) q^{60} +79.5276 q^{61} -56.5538i q^{62} +(-37.2004 - 50.8442i) q^{63} -8.00000 q^{64} +16.8411i q^{65} +(-13.0537 - 14.0137i) q^{66} +0.284475 q^{67} +(-0.982367 - 0.567170i) q^{68} +(78.7691 + 24.1294i) q^{69} +(-16.3205 - 5.85832i) q^{70} -8.92640i q^{71} +(-11.1340 - 22.8918i) q^{72} +(4.02599 - 6.97323i) q^{73} +(18.2246 - 10.5220i) q^{74} +(44.8460 + 48.1444i) q^{75} +(21.7033 + 37.5913i) q^{76} +(-20.4183 - 24.1155i) q^{77} +(-29.8481 + 27.8032i) q^{78} +97.6526 q^{79} +(-6.06778 - 3.50323i) q^{80} +(50.0086 - 63.7192i) q^{81} +(-22.8992 - 39.6625i) q^{82} +(-19.5749 - 11.3016i) q^{83} +(-16.5609 - 38.5971i) q^{84} +(-0.496732 - 0.860365i) q^{85} +(-3.61265 - 2.08577i) q^{86} +(-162.245 - 49.7008i) q^{87} +(-6.38386 - 11.0572i) q^{88} +(47.1301 - 27.2106i) q^{89} +(1.57960 - 22.2384i) q^{90} +(-51.3640 + 43.4893i) q^{91} +(47.5633 + 27.4607i) q^{92} +(116.909 - 26.9229i) q^{93} +78.0291 q^{94} +38.0159i q^{95} +(-3.80847 - 16.5377i) q^{96} +(38.0319 - 65.8731i) q^{97} +(-24.2776 - 64.9045i) q^{98} +(22.7551 - 33.6560i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{4} + 8 q^{6} + 2 q^{7} - 20 q^{9} - 36 q^{11} + 10 q^{13} + 36 q^{14} + 10 q^{15} + 128 q^{16} - 54 q^{17} + 28 q^{19} + 28 q^{21} - 126 q^{23} - 16 q^{24} + 80 q^{25} - 72 q^{26} - 126 q^{27}+ \cdots + 394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −2.92348 + 0.673248i −0.974493 + 0.224416i
\(4\) −2.00000 −0.500000
\(5\) −1.51694 0.875808i −0.303389 0.175162i 0.340575 0.940217i \(-0.389378\pi\)
−0.643964 + 0.765056i \(0.722711\pi\)
\(6\) −0.952117 4.13443i −0.158686 0.689071i
\(7\) −1.24611 6.88819i −0.178016 0.984028i
\(8\) 2.82843i 0.353553i
\(9\) 8.09347 3.93646i 0.899275 0.437384i
\(10\) 1.23858 2.14528i 0.123858 0.214528i
\(11\) 3.90930 2.25703i 0.355391 0.205185i −0.311666 0.950192i \(-0.600887\pi\)
0.667057 + 0.745007i \(0.267554\pi\)
\(12\) 5.84696 1.34650i 0.487247 0.112208i
\(13\) −4.80730 8.32649i −0.369792 0.640499i 0.619741 0.784807i \(-0.287238\pi\)
−0.989533 + 0.144308i \(0.953904\pi\)
\(14\) 9.74138 1.76226i 0.695813 0.125876i
\(15\) 5.02439 + 1.53913i 0.334959 + 0.102609i
\(16\) 4.00000 0.250000
\(17\) 0.491183 + 0.283585i 0.0288931 + 0.0166815i 0.514377 0.857564i \(-0.328023\pi\)
−0.485484 + 0.874246i \(0.661357\pi\)
\(18\) 5.56699 + 11.4459i 0.309277 + 0.635883i
\(19\) −10.8517 18.7956i −0.571140 0.989244i −0.996449 0.0841959i \(-0.973168\pi\)
0.425309 0.905048i \(-0.360165\pi\)
\(20\) 3.03389 + 1.75162i 0.151694 + 0.0875808i
\(21\) 8.28044 + 19.2986i 0.394307 + 0.918979i
\(22\) 3.19193 + 5.52858i 0.145088 + 0.251299i
\(23\) −23.7816 13.7303i −1.03398 0.596971i −0.115861 0.993265i \(-0.536963\pi\)
−0.918123 + 0.396294i \(0.870296\pi\)
\(24\) 1.90423 + 8.26885i 0.0793431 + 0.344535i
\(25\) −10.9659 18.9935i −0.438637 0.759741i
\(26\) 11.7754 6.79855i 0.452901 0.261483i
\(27\) −21.0109 + 16.9571i −0.778181 + 0.628040i
\(28\) 2.49222 + 13.7764i 0.0890078 + 0.492014i
\(29\) 48.9844 + 28.2812i 1.68912 + 0.975213i 0.955193 + 0.295982i \(0.0956469\pi\)
0.733925 + 0.679231i \(0.237686\pi\)
\(30\) −2.17666 + 7.10556i −0.0725552 + 0.236852i
\(31\) −39.9896 −1.28999 −0.644993 0.764188i \(-0.723140\pi\)
−0.644993 + 0.764188i \(0.723140\pi\)
\(32\) 5.65685i 0.176777i
\(33\) −9.90921 + 9.23032i −0.300279 + 0.279707i
\(34\) −0.401050 + 0.694638i −0.0117956 + 0.0204305i
\(35\) −4.14246 + 11.5404i −0.118356 + 0.329724i
\(36\) −16.1869 + 7.87291i −0.449637 + 0.218692i
\(37\) −7.44017 12.8868i −0.201086 0.348291i 0.747793 0.663932i \(-0.231114\pi\)
−0.948879 + 0.315641i \(0.897780\pi\)
\(38\) 26.5810 15.3466i 0.699501 0.403857i
\(39\) 19.6598 + 21.1058i 0.504098 + 0.541175i
\(40\) −2.47716 + 4.29057i −0.0619290 + 0.107264i
\(41\) −28.0456 + 16.1921i −0.684040 + 0.394930i −0.801375 0.598162i \(-0.795898\pi\)
0.117336 + 0.993092i \(0.462565\pi\)
\(42\) −27.2923 + 11.7103i −0.649816 + 0.278817i
\(43\) −1.47486 + 2.55453i −0.0342991 + 0.0594077i −0.882665 0.470002i \(-0.844253\pi\)
0.848366 + 0.529410i \(0.177587\pi\)
\(44\) −7.81860 + 4.51407i −0.177695 + 0.102592i
\(45\) −15.7249 1.11695i −0.349443 0.0248210i
\(46\) 19.4176 33.6323i 0.422122 0.731137i
\(47\) 55.1749i 1.17393i −0.809611 0.586967i \(-0.800322\pi\)
0.809611 0.586967i \(-0.199678\pi\)
\(48\) −11.6939 + 2.69299i −0.243623 + 0.0561040i
\(49\) −45.8944 + 17.1669i −0.936621 + 0.350345i
\(50\) 26.8609 15.5082i 0.537218 0.310163i
\(51\) −1.62689 0.498366i −0.0318998 0.00977189i
\(52\) 9.61460 + 16.6530i 0.184896 + 0.320249i
\(53\) 48.3659 + 27.9241i 0.912565 + 0.526870i 0.881256 0.472640i \(-0.156699\pi\)
0.0313093 + 0.999510i \(0.490032\pi\)
\(54\) −23.9809 29.7139i −0.444091 0.550257i
\(55\) −7.90692 −0.143762
\(56\) −19.4828 + 3.52453i −0.347906 + 0.0629380i
\(57\) 44.3788 + 47.6428i 0.778575 + 0.835839i
\(58\) −39.9956 + 69.2744i −0.689580 + 1.19439i
\(59\) 12.4226i 0.210553i 0.994443 + 0.105277i \(0.0335728\pi\)
−0.994443 + 0.105277i \(0.966427\pi\)
\(60\) −10.0488 3.07826i −0.167480 0.0513043i
\(61\) 79.5276 1.30373 0.651866 0.758334i \(-0.273986\pi\)
0.651866 + 0.758334i \(0.273986\pi\)
\(62\) 56.5538i 0.912158i
\(63\) −37.2004 50.8442i −0.590483 0.807050i
\(64\) −8.00000 −0.125000
\(65\) 16.8411i 0.259094i
\(66\) −13.0537 14.0137i −0.197783 0.212329i
\(67\) 0.284475 0.00424590 0.00212295 0.999998i \(-0.499324\pi\)
0.00212295 + 0.999998i \(0.499324\pi\)
\(68\) −0.982367 0.567170i −0.0144466 0.00834073i
\(69\) 78.7691 + 24.1294i 1.14158 + 0.349702i
\(70\) −16.3205 5.85832i −0.233150 0.0836903i
\(71\) 8.92640i 0.125724i −0.998022 0.0628619i \(-0.979977\pi\)
0.998022 0.0628619i \(-0.0200228\pi\)
\(72\) −11.1340 22.8918i −0.154639 0.317942i
\(73\) 4.02599 6.97323i 0.0551506 0.0955237i −0.837132 0.547001i \(-0.815769\pi\)
0.892283 + 0.451477i \(0.149103\pi\)
\(74\) 18.2246 10.5220i 0.246279 0.142189i
\(75\) 44.8460 + 48.1444i 0.597947 + 0.641926i
\(76\) 21.7033 + 37.5913i 0.285570 + 0.494622i
\(77\) −20.4183 24.1155i −0.265173 0.313188i
\(78\) −29.8481 + 27.8032i −0.382668 + 0.356451i
\(79\) 97.6526 1.23611 0.618055 0.786135i \(-0.287921\pi\)
0.618055 + 0.786135i \(0.287921\pi\)
\(80\) −6.06778 3.50323i −0.0758472 0.0437904i
\(81\) 50.0086 63.7192i 0.617391 0.786657i
\(82\) −22.8992 39.6625i −0.279258 0.483689i
\(83\) −19.5749 11.3016i −0.235842 0.136163i 0.377422 0.926041i \(-0.376811\pi\)
−0.613264 + 0.789878i \(0.710144\pi\)
\(84\) −16.5609 38.5971i −0.197153 0.459489i
\(85\) −0.496732 0.860365i −0.00584390 0.0101219i
\(86\) −3.61265 2.08577i −0.0420076 0.0242531i
\(87\) −162.245 49.7008i −1.86489 0.571273i
\(88\) −6.38386 11.0572i −0.0725438 0.125650i
\(89\) 47.1301 27.2106i 0.529552 0.305737i −0.211282 0.977425i \(-0.567764\pi\)
0.740834 + 0.671688i \(0.234430\pi\)
\(90\) 1.57960 22.2384i 0.0175511 0.247093i
\(91\) −51.3640 + 43.4893i −0.564440 + 0.477905i
\(92\) 47.5633 + 27.4607i 0.516992 + 0.298486i
\(93\) 116.909 26.9229i 1.25708 0.289494i
\(94\) 78.0291 0.830097
\(95\) 38.0159i 0.400167i
\(96\) −3.80847 16.5377i −0.0396715 0.172268i
\(97\) 38.0319 65.8731i 0.392081 0.679104i −0.600643 0.799517i \(-0.705089\pi\)
0.992724 + 0.120413i \(0.0384220\pi\)
\(98\) −24.2776 64.9045i −0.247731 0.662291i
\(99\) 22.7551 33.6560i 0.229849 0.339960i
\(100\) 21.9318 + 37.9871i 0.219318 + 0.379871i
\(101\) −168.803 + 97.4586i −1.67132 + 0.964937i −0.704419 + 0.709785i \(0.748792\pi\)
−0.966901 + 0.255152i \(0.917874\pi\)
\(102\) 0.704797 2.30077i 0.00690977 0.0225565i
\(103\) 58.2628 100.914i 0.565658 0.979748i −0.431330 0.902194i \(-0.641956\pi\)
0.996988 0.0775540i \(-0.0247110\pi\)
\(104\) −23.5509 + 13.5971i −0.226451 + 0.130741i
\(105\) 4.34087 36.5269i 0.0413416 0.347875i
\(106\) −39.4906 + 68.3998i −0.372553 + 0.645281i
\(107\) −65.8789 + 38.0352i −0.615691 + 0.355469i −0.775189 0.631729i \(-0.782346\pi\)
0.159498 + 0.987198i \(0.449012\pi\)
\(108\) 42.0218 33.9141i 0.389091 0.314020i
\(109\) 79.6034 137.877i 0.730307 1.26493i −0.226446 0.974024i \(-0.572711\pi\)
0.956752 0.290904i \(-0.0939561\pi\)
\(110\) 11.1821i 0.101655i
\(111\) 30.4272 + 32.6651i 0.274119 + 0.294280i
\(112\) −4.98444 27.5528i −0.0445039 0.246007i
\(113\) 88.3982 51.0367i 0.782285 0.451652i −0.0549546 0.998489i \(-0.517501\pi\)
0.837239 + 0.546837i \(0.184168\pi\)
\(114\) −67.3771 + 62.7611i −0.591027 + 0.550536i
\(115\) 24.0503 + 41.6563i 0.209133 + 0.362229i
\(116\) −97.9689 56.5623i −0.844559 0.487606i
\(117\) −71.6846 48.4665i −0.612689 0.414243i
\(118\) −17.5683 −0.148883
\(119\) 1.34132 3.73674i 0.0112716 0.0314012i
\(120\) 4.35331 14.2111i 0.0362776 0.118426i
\(121\) −50.3116 + 87.1422i −0.415798 + 0.720184i
\(122\) 112.469i 0.921878i
\(123\) 71.0895 66.2191i 0.577963 0.538367i
\(124\) 79.9791 0.644993
\(125\) 82.2066i 0.657652i
\(126\) 71.9045 52.6093i 0.570671 0.417534i
\(127\) −221.800 −1.74646 −0.873228 0.487313i \(-0.837977\pi\)
−0.873228 + 0.487313i \(0.837977\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 2.59189 8.46107i 0.0200922 0.0655897i
\(130\) −23.8169 −0.183207
\(131\) −2.09587 1.21005i −0.0159990 0.00923703i 0.491979 0.870607i \(-0.336274\pi\)
−0.507978 + 0.861370i \(0.669607\pi\)
\(132\) 19.8184 18.4606i 0.150140 0.139853i
\(133\) −115.946 + 98.1698i −0.871772 + 0.738119i
\(134\) 0.402309i 0.00300230i
\(135\) 46.7235 7.32141i 0.346100 0.0542326i
\(136\) 0.802099 1.38928i 0.00589779 0.0102153i
\(137\) −205.101 + 118.415i −1.49709 + 0.864344i −0.999994 0.00335292i \(-0.998933\pi\)
−0.497093 + 0.867697i \(0.665599\pi\)
\(138\) −34.1241 + 111.396i −0.247276 + 0.807219i
\(139\) 112.225 + 194.379i 0.807373 + 1.39841i 0.914677 + 0.404185i \(0.132445\pi\)
−0.107304 + 0.994226i \(0.534222\pi\)
\(140\) 8.28491 23.0807i 0.0591780 0.164862i
\(141\) 37.1464 + 161.303i 0.263450 + 1.14399i
\(142\) 12.6238 0.0889002
\(143\) −37.5863 21.7005i −0.262841 0.151752i
\(144\) 32.3739 15.7458i 0.224819 0.109346i
\(145\) −49.5378 85.8019i −0.341640 0.591737i
\(146\) 9.86163 + 5.69362i 0.0675454 + 0.0389974i
\(147\) 122.614 81.0854i 0.834108 0.551601i
\(148\) 14.8803 + 25.7735i 0.100543 + 0.174145i
\(149\) −71.5236 41.2942i −0.480024 0.277142i 0.240402 0.970673i \(-0.422721\pi\)
−0.720427 + 0.693531i \(0.756054\pi\)
\(150\) −68.0865 + 63.4218i −0.453910 + 0.422812i
\(151\) 106.866 + 185.098i 0.707724 + 1.22581i 0.965700 + 0.259662i \(0.0836111\pi\)
−0.257976 + 0.966151i \(0.583056\pi\)
\(152\) −53.1621 + 30.6932i −0.349751 + 0.201929i
\(153\) 5.09170 + 0.361665i 0.0332791 + 0.00236382i
\(154\) 34.1045 28.8758i 0.221458 0.187505i
\(155\) 60.6619 + 35.0232i 0.391367 + 0.225956i
\(156\) −39.3197 42.2116i −0.252049 0.270587i
\(157\) 161.794 1.03054 0.515268 0.857029i \(-0.327693\pi\)
0.515268 + 0.857029i \(0.327693\pi\)
\(158\) 138.102i 0.874061i
\(159\) −160.197 49.0732i −1.00753 0.308637i
\(160\) 4.95432 8.58113i 0.0309645 0.0536321i
\(161\) −64.9427 + 180.922i −0.403371 + 1.12374i
\(162\) 90.1126 + 70.7229i 0.556250 + 0.436561i
\(163\) −26.8721 46.5439i −0.164860 0.285545i 0.771746 0.635931i \(-0.219384\pi\)
−0.936605 + 0.350386i \(0.886050\pi\)
\(164\) 56.0912 32.3843i 0.342020 0.197465i
\(165\) 23.1157 5.32332i 0.140095 0.0322625i
\(166\) 15.9828 27.6831i 0.0962821 0.166765i
\(167\) −41.1006 + 23.7295i −0.246112 + 0.142093i −0.617982 0.786192i \(-0.712050\pi\)
0.371871 + 0.928284i \(0.378716\pi\)
\(168\) 54.5846 23.4206i 0.324908 0.139408i
\(169\) 38.2798 66.3025i 0.226507 0.392322i
\(170\) 1.21674 0.702485i 0.00715729 0.00413226i
\(171\) −161.816 109.405i −0.946292 0.639795i
\(172\) 2.94972 5.10906i 0.0171495 0.0297039i
\(173\) 91.9101i 0.531272i −0.964073 0.265636i \(-0.914418\pi\)
0.964073 0.265636i \(-0.0855819\pi\)
\(174\) 70.2875 229.449i 0.403951 1.31867i
\(175\) −117.166 + 99.2034i −0.669522 + 0.566877i
\(176\) 15.6372 9.02814i 0.0888477 0.0512962i
\(177\) −8.36351 36.3173i −0.0472515 0.205183i
\(178\) 38.4816 + 66.6521i 0.216189 + 0.374450i
\(179\) 143.122 + 82.6317i 0.799566 + 0.461629i 0.843319 0.537413i \(-0.180598\pi\)
−0.0437536 + 0.999042i \(0.513932\pi\)
\(180\) 31.4498 + 2.23389i 0.174721 + 0.0124105i
\(181\) 244.607 1.35142 0.675709 0.737169i \(-0.263838\pi\)
0.675709 + 0.737169i \(0.263838\pi\)
\(182\) −61.5032 72.6397i −0.337930 0.399119i
\(183\) −232.497 + 53.5418i −1.27048 + 0.292578i
\(184\) −38.8352 + 67.2646i −0.211061 + 0.365569i
\(185\) 26.0647i 0.140890i
\(186\) 38.0747 + 165.334i 0.204703 + 0.888892i
\(187\) 2.56024 0.0136911
\(188\) 110.350i 0.586967i
\(189\) 142.985 + 123.597i 0.756537 + 0.653951i
\(190\) −53.7626 −0.282961
\(191\) 146.941i 0.769324i −0.923057 0.384662i \(-0.874318\pi\)
0.923057 0.384662i \(-0.125682\pi\)
\(192\) 23.3878 5.38599i 0.121812 0.0280520i
\(193\) −253.782 −1.31493 −0.657466 0.753484i \(-0.728372\pi\)
−0.657466 + 0.753484i \(0.728372\pi\)
\(194\) 93.1586 + 53.7852i 0.480199 + 0.277243i
\(195\) −11.3382 49.2346i −0.0581448 0.252485i
\(196\) 91.7888 34.3338i 0.468310 0.175172i
\(197\) 318.129i 1.61487i −0.589958 0.807434i \(-0.700856\pi\)
0.589958 0.807434i \(-0.299144\pi\)
\(198\) 47.5968 + 32.1806i 0.240388 + 0.162528i
\(199\) 123.517 213.938i 0.620689 1.07506i −0.368669 0.929561i \(-0.620186\pi\)
0.989358 0.145504i \(-0.0464803\pi\)
\(200\) −53.7218 + 31.0163i −0.268609 + 0.155082i
\(201\) −0.831658 + 0.191522i −0.00413760 + 0.000952848i
\(202\) −137.827 238.724i −0.682313 1.18180i
\(203\) 133.766 372.656i 0.658947 1.83574i
\(204\) 3.25378 + 0.996733i 0.0159499 + 0.00488595i
\(205\) 56.7248 0.276707
\(206\) 142.714 + 82.3960i 0.692786 + 0.399980i
\(207\) −246.525 17.5107i −1.19094 0.0845930i
\(208\) −19.2292 33.3059i −0.0924481 0.160125i
\(209\) −84.8448 48.9852i −0.405956 0.234379i
\(210\) 51.6568 + 6.13891i 0.245985 + 0.0292329i
\(211\) −107.527 186.242i −0.509605 0.882661i −0.999938 0.0111265i \(-0.996458\pi\)
0.490333 0.871535i \(-0.336875\pi\)
\(212\) −96.7319 55.8482i −0.456282 0.263435i
\(213\) 6.00968 + 26.0961i 0.0282145 + 0.122517i
\(214\) −53.7899 93.1669i −0.251355 0.435359i
\(215\) 4.47456 2.58339i 0.0208119 0.0120158i
\(216\) 47.9618 + 59.4278i 0.222045 + 0.275129i
\(217\) 49.8314 + 275.456i 0.229638 + 1.26938i
\(218\) 194.988 + 112.576i 0.894439 + 0.516405i
\(219\) −7.07520 + 23.0966i −0.0323069 + 0.105464i
\(220\) 15.8138 0.0718811
\(221\) 5.45311i 0.0246747i
\(222\) −46.1954 + 43.0305i −0.208088 + 0.193831i
\(223\) −40.9462 + 70.9208i −0.183615 + 0.318031i −0.943109 0.332484i \(-0.892113\pi\)
0.759494 + 0.650514i \(0.225447\pi\)
\(224\) 38.9655 7.04906i 0.173953 0.0314690i
\(225\) −163.520 110.557i −0.726754 0.491364i
\(226\) 72.1768 + 125.014i 0.319366 + 0.553159i
\(227\) −20.4484 + 11.8059i −0.0900811 + 0.0520084i −0.544364 0.838849i \(-0.683229\pi\)
0.454283 + 0.890858i \(0.349896\pi\)
\(228\) −88.7575 95.2856i −0.389287 0.417919i
\(229\) −19.1123 + 33.1035i −0.0834598 + 0.144557i −0.904734 0.425977i \(-0.859930\pi\)
0.821274 + 0.570534i \(0.193264\pi\)
\(230\) −58.9109 + 34.0122i −0.256134 + 0.147879i
\(231\) 75.9282 + 56.7546i 0.328694 + 0.245691i
\(232\) 79.9912 138.549i 0.344790 0.597193i
\(233\) 118.984 68.6952i 0.510659 0.294829i −0.222445 0.974945i \(-0.571404\pi\)
0.733105 + 0.680116i \(0.238071\pi\)
\(234\) 68.5419 101.377i 0.292914 0.433236i
\(235\) −48.3226 + 83.6973i −0.205628 + 0.356159i
\(236\) 24.8453i 0.105277i
\(237\) −285.486 + 65.7445i −1.20458 + 0.277403i
\(238\) 5.28455 + 1.89691i 0.0222040 + 0.00797022i
\(239\) 348.038 200.940i 1.45623 0.840753i 0.457404 0.889259i \(-0.348779\pi\)
0.998823 + 0.0485057i \(0.0154459\pi\)
\(240\) 20.0976 + 6.15651i 0.0837399 + 0.0256521i
\(241\) −219.749 380.616i −0.911821 1.57932i −0.811490 0.584366i \(-0.801343\pi\)
−0.100330 0.994954i \(-0.531990\pi\)
\(242\) −123.238 71.1513i −0.509247 0.294014i
\(243\) −103.300 + 219.950i −0.425105 + 0.905144i
\(244\) −159.055 −0.651866
\(245\) 84.6542 + 14.1535i 0.345527 + 0.0577694i
\(246\) 93.6479 + 100.536i 0.380683 + 0.408682i
\(247\) −104.334 + 180.713i −0.422407 + 0.731630i
\(248\) 113.108i 0.456079i
\(249\) 64.8355 + 19.8611i 0.260384 + 0.0797636i
\(250\) −116.258 −0.465031
\(251\) 114.101i 0.454587i −0.973826 0.227294i \(-0.927012\pi\)
0.973826 0.227294i \(-0.0729877\pi\)
\(252\) 74.4008 + 101.688i 0.295241 + 0.403525i
\(253\) −123.959 −0.489958
\(254\) 313.672i 1.23493i
\(255\) 2.03142 + 2.18084i 0.00796637 + 0.00855230i
\(256\) 16.0000 0.0625000
\(257\) 260.101 + 150.169i 1.01207 + 0.584317i 0.911796 0.410644i \(-0.134696\pi\)
0.100270 + 0.994960i \(0.468029\pi\)
\(258\) 11.9658 + 3.66549i 0.0463789 + 0.0142073i
\(259\) −79.4952 + 67.3077i −0.306931 + 0.259875i
\(260\) 33.6822i 0.129547i
\(261\) 507.782 + 36.0679i 1.94552 + 0.138191i
\(262\) 1.71127 2.96401i 0.00653157 0.0113130i
\(263\) 365.056 210.765i 1.38804 0.801388i 0.394949 0.918703i \(-0.370762\pi\)
0.993095 + 0.117315i \(0.0374288\pi\)
\(264\) 26.1073 + 28.0275i 0.0988913 + 0.106165i
\(265\) −48.9123 84.7185i −0.184575 0.319693i
\(266\) −138.833 163.972i −0.521929 0.616436i
\(267\) −119.465 + 111.280i −0.447433 + 0.416779i
\(268\) −0.568950 −0.00212295
\(269\) 445.841 + 257.406i 1.65740 + 0.956901i 0.973908 + 0.226943i \(0.0728730\pi\)
0.683492 + 0.729958i \(0.260460\pi\)
\(270\) 10.3540 + 66.0770i 0.0383483 + 0.244730i
\(271\) 241.395 + 418.109i 0.890758 + 1.54284i 0.838969 + 0.544179i \(0.183159\pi\)
0.0517888 + 0.998658i \(0.483508\pi\)
\(272\) 1.96473 + 1.13434i 0.00722329 + 0.00417037i
\(273\) 120.883 161.721i 0.442793 0.592384i
\(274\) −167.464 290.057i −0.611184 1.05860i
\(275\) −85.7381 49.5009i −0.311775 0.180003i
\(276\) −157.538 48.2588i −0.570790 0.174851i
\(277\) −74.7657 129.498i −0.269912 0.467501i 0.698927 0.715193i \(-0.253661\pi\)
−0.968839 + 0.247692i \(0.920328\pi\)
\(278\) −274.894 + 158.710i −0.988826 + 0.570899i
\(279\) −323.655 + 157.417i −1.16005 + 0.564219i
\(280\) 32.6411 + 11.7166i 0.116575 + 0.0418451i
\(281\) −17.1238 9.88641i −0.0609387 0.0351830i 0.469221 0.883081i \(-0.344535\pi\)
−0.530160 + 0.847898i \(0.677868\pi\)
\(282\) −228.117 + 52.5330i −0.808924 + 0.186287i
\(283\) 549.954 1.94330 0.971650 0.236425i \(-0.0759756\pi\)
0.971650 + 0.236425i \(0.0759756\pi\)
\(284\) 17.8528i 0.0628619i
\(285\) −25.5941 111.139i −0.0898040 0.389961i
\(286\) 30.6891 53.1551i 0.107305 0.185857i
\(287\) 146.483 + 173.006i 0.510392 + 0.602810i
\(288\) 22.2680 + 45.7836i 0.0773193 + 0.158971i
\(289\) −144.339 250.003i −0.499443 0.865061i
\(290\) 121.342 70.0570i 0.418421 0.241576i
\(291\) −66.8364 + 218.184i −0.229678 + 0.749772i
\(292\) −8.05199 + 13.9465i −0.0275753 + 0.0477618i
\(293\) −113.883 + 65.7505i −0.388680 + 0.224404i −0.681588 0.731736i \(-0.738710\pi\)
0.292908 + 0.956141i \(0.405377\pi\)
\(294\) 114.672 + 173.402i 0.390041 + 0.589803i
\(295\) 10.8798 18.8444i 0.0368808 0.0638794i
\(296\) −36.4493 + 21.0440i −0.123139 + 0.0710946i
\(297\) −43.8652 + 113.713i −0.147694 + 0.382871i
\(298\) 58.3988 101.150i 0.195969 0.339429i
\(299\) 264.023i 0.883021i
\(300\) −89.6920 96.2889i −0.298973 0.320963i
\(301\) 19.4339 + 6.97589i 0.0645646 + 0.0231757i
\(302\) −261.768 + 151.132i −0.866781 + 0.500436i
\(303\) 427.879 398.565i 1.41214 1.31540i
\(304\) −43.4067 75.1826i −0.142785 0.247311i
\(305\) −120.639 69.6509i −0.395538 0.228364i
\(306\) −0.511472 + 7.20075i −0.00167148 + 0.0235319i
\(307\) 252.488 0.822437 0.411218 0.911537i \(-0.365103\pi\)
0.411218 + 0.911537i \(0.365103\pi\)
\(308\) 40.8366 + 48.2310i 0.132586 + 0.156594i
\(309\) −102.390 + 334.246i −0.331359 + 1.08170i
\(310\) −49.5303 + 85.7889i −0.159775 + 0.276738i
\(311\) 206.921i 0.665341i −0.943043 0.332671i \(-0.892050\pi\)
0.943043 0.332671i \(-0.107950\pi\)
\(312\) 59.6962 55.6064i 0.191334 0.178226i
\(313\) −339.941 −1.08607 −0.543037 0.839709i \(-0.682726\pi\)
−0.543037 + 0.839709i \(0.682726\pi\)
\(314\) 228.811i 0.728698i
\(315\) 11.9012 + 109.708i 0.0377817 + 0.348280i
\(316\) −195.305 −0.618055
\(317\) 274.716i 0.866611i 0.901247 + 0.433306i \(0.142653\pi\)
−0.901247 + 0.433306i \(0.857347\pi\)
\(318\) 69.4000 226.552i 0.218239 0.712429i
\(319\) 255.326 0.800396
\(320\) 12.1356 + 7.00646i 0.0379236 + 0.0218952i
\(321\) 166.989 155.548i 0.520214 0.484573i
\(322\) −255.862 91.8428i −0.794604 0.285226i
\(323\) 12.3095i 0.0381098i
\(324\) −100.017 + 127.438i −0.308695 + 0.393328i
\(325\) −105.433 + 182.615i −0.324409 + 0.561893i
\(326\) 65.8230 38.0029i 0.201911 0.116573i
\(327\) −139.893 + 456.674i −0.427809 + 1.39656i
\(328\) 45.7983 + 79.3250i 0.139629 + 0.241844i
\(329\) −380.056 + 68.7540i −1.15518 + 0.208979i
\(330\) 7.52831 + 32.6906i 0.0228130 + 0.0990623i
\(331\) −197.017 −0.595217 −0.297609 0.954688i \(-0.596189\pi\)
−0.297609 + 0.954688i \(0.596189\pi\)
\(332\) 39.1498 + 22.6031i 0.117921 + 0.0680817i
\(333\) −110.945 75.0107i −0.333168 0.225257i
\(334\) −33.5585 58.1251i −0.100475 0.174027i
\(335\) −0.431533 0.249146i −0.00128816 0.000743718i
\(336\) 33.1218 + 77.1942i 0.0985767 + 0.229745i
\(337\) −162.571 281.581i −0.482405 0.835551i 0.517391 0.855749i \(-0.326903\pi\)
−0.999796 + 0.0201987i \(0.993570\pi\)
\(338\) 93.7659 + 54.1358i 0.277414 + 0.160165i
\(339\) −224.070 + 208.719i −0.660973 + 0.615689i
\(340\) 0.993464 + 1.72073i 0.00292195 + 0.00506097i
\(341\) −156.331 + 90.2578i −0.458449 + 0.264686i
\(342\) 154.722 228.842i 0.452403 0.669129i
\(343\) 175.438 + 294.738i 0.511482 + 0.859294i
\(344\) 7.22531 + 4.17153i 0.0210038 + 0.0121266i
\(345\) −98.3555 105.590i −0.285088 0.306057i
\(346\) 129.980 0.375666
\(347\) 97.4654i 0.280880i −0.990089 0.140440i \(-0.955148\pi\)
0.990089 0.140440i \(-0.0448517\pi\)
\(348\) 324.491 + 99.4015i 0.932444 + 0.285637i
\(349\) −106.817 + 185.012i −0.306065 + 0.530121i −0.977498 0.210945i \(-0.932346\pi\)
0.671433 + 0.741066i \(0.265679\pi\)
\(350\) −140.295 165.698i −0.400842 0.473424i
\(351\) 242.198 + 93.4293i 0.690024 + 0.266180i
\(352\) 12.7677 + 22.1143i 0.0362719 + 0.0628248i
\(353\) −555.729 + 320.850i −1.57430 + 0.908924i −0.578670 + 0.815562i \(0.696428\pi\)
−0.995632 + 0.0933624i \(0.970238\pi\)
\(354\) 51.3604 11.8278i 0.145086 0.0334118i
\(355\) −7.81781 + 13.5408i −0.0220220 + 0.0381432i
\(356\) −94.2603 + 54.4212i −0.264776 + 0.152869i
\(357\) −1.40556 + 11.8273i −0.00393715 + 0.0331298i
\(358\) −116.859 + 202.405i −0.326421 + 0.565378i
\(359\) −263.839 + 152.328i −0.734928 + 0.424311i −0.820222 0.572045i \(-0.806150\pi\)
0.0852941 + 0.996356i \(0.472817\pi\)
\(360\) −3.15920 + 44.4768i −0.00877556 + 0.123547i
\(361\) −55.0174 + 95.2929i −0.152403 + 0.263969i
\(362\) 345.926i 0.955596i
\(363\) 88.4166 288.631i 0.243572 0.795126i
\(364\) 102.728 86.9786i 0.282220 0.238952i
\(365\) −12.2144 + 7.05200i −0.0334641 + 0.0193205i
\(366\) −75.7196 328.801i −0.206884 0.898364i
\(367\) −62.6630 108.536i −0.170744 0.295737i 0.767936 0.640526i \(-0.221284\pi\)
−0.938680 + 0.344789i \(0.887950\pi\)
\(368\) −95.1265 54.9213i −0.258496 0.149243i
\(369\) −163.247 + 241.451i −0.442403 + 0.654339i
\(370\) −36.8610 −0.0996243
\(371\) 132.077 367.950i 0.356003 0.991780i
\(372\) −233.817 + 53.8458i −0.628542 + 0.144747i
\(373\) 132.413 229.345i 0.354993 0.614867i −0.632123 0.774868i \(-0.717816\pi\)
0.987117 + 0.160001i \(0.0511498\pi\)
\(374\) 3.62073i 0.00968110i
\(375\) −55.3454 240.329i −0.147588 0.640878i
\(376\) −156.058 −0.415049
\(377\) 543.824i 1.44250i
\(378\) −174.792 + 202.212i −0.462413 + 0.534952i
\(379\) −190.773 −0.503359 −0.251679 0.967811i \(-0.580983\pi\)
−0.251679 + 0.967811i \(0.580983\pi\)
\(380\) 76.0318i 0.200084i
\(381\) 648.427 149.326i 1.70191 0.391933i
\(382\) 207.806 0.543994
\(383\) 519.145 + 299.729i 1.35547 + 0.782582i 0.989010 0.147852i \(-0.0472358\pi\)
0.366461 + 0.930433i \(0.380569\pi\)
\(384\) 7.61693 + 33.0754i 0.0198358 + 0.0861339i
\(385\) 9.85288 + 54.4644i 0.0255919 + 0.141466i
\(386\) 358.902i 0.929797i
\(387\) −1.88094 + 26.4808i −0.00486030 + 0.0684257i
\(388\) −76.0637 + 131.746i −0.196040 + 0.339552i
\(389\) 87.4253 50.4750i 0.224744 0.129756i −0.383401 0.923582i \(-0.625247\pi\)
0.608145 + 0.793826i \(0.291914\pi\)
\(390\) 69.6282 16.0347i 0.178534 0.0411146i
\(391\) −7.78743 13.4882i −0.0199167 0.0344967i
\(392\) 48.5553 + 129.809i 0.123866 + 0.331145i
\(393\) 6.94190 + 2.12652i 0.0176639 + 0.00541099i
\(394\) 449.902 1.14188
\(395\) −148.134 85.5250i −0.375022 0.216519i
\(396\) −45.5102 + 67.3121i −0.114925 + 0.169980i
\(397\) −154.534 267.661i −0.389255 0.674210i 0.603094 0.797670i \(-0.293934\pi\)
−0.992350 + 0.123460i \(0.960601\pi\)
\(398\) 302.554 + 174.680i 0.760185 + 0.438893i
\(399\) 272.872 365.058i 0.683890 0.914932i
\(400\) −43.8637 75.9741i −0.109659 0.189935i
\(401\) −522.234 301.512i −1.30233 0.751901i −0.321527 0.946900i \(-0.604196\pi\)
−0.980803 + 0.195000i \(0.937529\pi\)
\(402\) −0.270854 1.17614i −0.000673765 0.00292572i
\(403\) 192.242 + 332.973i 0.477027 + 0.826235i
\(404\) 337.607 194.917i 0.835660 0.482468i
\(405\) −131.666 + 52.8605i −0.325101 + 0.130520i
\(406\) 527.015 + 189.174i 1.29807 + 0.465946i
\(407\) −58.1717 33.5855i −0.142928 0.0825196i
\(408\) −1.40959 + 4.60153i −0.00345489 + 0.0112783i
\(409\) 439.430 1.07440 0.537201 0.843454i \(-0.319482\pi\)
0.537201 + 0.843454i \(0.319482\pi\)
\(410\) 80.2210i 0.195661i
\(411\) 519.886 484.268i 1.26493 1.17827i
\(412\) −116.526 + 201.828i −0.282829 + 0.489874i
\(413\) 85.5695 15.4800i 0.207190 0.0374817i
\(414\) 24.7639 348.639i 0.0598163 0.842123i
\(415\) 19.7960 + 34.2877i 0.0477012 + 0.0826209i
\(416\) 47.1017 27.1942i 0.113225 0.0653706i
\(417\) −458.952 492.708i −1.10061 1.18155i
\(418\) 69.2755 119.989i 0.165731 0.287054i
\(419\) −49.5525 + 28.6092i −0.118264 + 0.0682796i −0.557965 0.829864i \(-0.688418\pi\)
0.439701 + 0.898144i \(0.355084\pi\)
\(420\) −8.68173 + 73.0538i −0.0206708 + 0.173938i
\(421\) 163.713 283.558i 0.388866 0.673536i −0.603431 0.797415i \(-0.706200\pi\)
0.992297 + 0.123879i \(0.0395336\pi\)
\(422\) 263.385 152.066i 0.624136 0.360345i
\(423\) −217.194 446.557i −0.513460 1.05569i
\(424\) 78.9812 136.800i 0.186277 0.322640i
\(425\) 12.4391i 0.0292684i
\(426\) −36.9055 + 8.49897i −0.0866327 + 0.0199506i
\(427\) −99.1001 547.802i −0.232085 1.28291i
\(428\) 131.758 76.0704i 0.307845 0.177735i
\(429\) 124.493 + 38.1360i 0.290193 + 0.0888951i
\(430\) 3.65346 + 6.32798i 0.00849642 + 0.0147162i
\(431\) 90.4104 + 52.1985i 0.209769 + 0.121110i 0.601204 0.799096i \(-0.294688\pi\)
−0.391435 + 0.920206i \(0.628021\pi\)
\(432\) −84.0436 + 67.8283i −0.194545 + 0.157010i
\(433\) 426.363 0.984673 0.492337 0.870405i \(-0.336143\pi\)
0.492337 + 0.870405i \(0.336143\pi\)
\(434\) −389.553 + 70.4722i −0.897589 + 0.162378i
\(435\) 202.589 + 217.489i 0.465721 + 0.499975i
\(436\) −159.207 + 275.754i −0.365153 + 0.632464i
\(437\) 595.988i 1.36382i
\(438\) −32.6635 10.0058i −0.0745742 0.0228444i
\(439\) 284.606 0.648306 0.324153 0.946005i \(-0.394921\pi\)
0.324153 + 0.946005i \(0.394921\pi\)
\(440\) 22.3641i 0.0508276i
\(441\) −303.869 + 319.601i −0.689044 + 0.724719i
\(442\) 7.71186 0.0174476
\(443\) 460.919i 1.04045i 0.854030 + 0.520224i \(0.174152\pi\)
−0.854030 + 0.520224i \(0.825848\pi\)
\(444\) −60.8544 65.3302i −0.137059 0.147140i
\(445\) −95.3250 −0.214214
\(446\) −100.297 57.9066i −0.224882 0.129835i
\(447\) 236.899 + 72.5696i 0.529976 + 0.162348i
\(448\) 9.96888 + 55.1055i 0.0222520 + 0.123003i
\(449\) 184.454i 0.410811i −0.978677 0.205406i \(-0.934149\pi\)
0.978677 0.205406i \(-0.0658514\pi\)
\(450\) 156.351 231.252i 0.347446 0.513892i
\(451\) −73.0925 + 126.600i −0.162068 + 0.280709i
\(452\) −176.796 + 102.073i −0.391142 + 0.225826i
\(453\) −437.038 469.182i −0.964764 1.03572i
\(454\) −16.6961 28.9184i −0.0367755 0.0636970i
\(455\) 116.005 20.9858i 0.254955 0.0461227i
\(456\) 134.754 125.522i 0.295514 0.275268i
\(457\) −158.091 −0.345933 −0.172967 0.984928i \(-0.555335\pi\)
−0.172967 + 0.984928i \(0.555335\pi\)
\(458\) −46.8154 27.0289i −0.102217 0.0590150i
\(459\) −15.1290 + 2.37066i −0.0329607 + 0.00516483i
\(460\) −48.1005 83.3126i −0.104566 0.181114i
\(461\) −301.115 173.849i −0.653179 0.377113i 0.136494 0.990641i \(-0.456416\pi\)
−0.789673 + 0.613528i \(0.789750\pi\)
\(462\) −80.2631 + 107.379i −0.173730 + 0.232421i
\(463\) 170.634 + 295.547i 0.368541 + 0.638331i 0.989338 0.145640i \(-0.0465242\pi\)
−0.620797 + 0.783971i \(0.713191\pi\)
\(464\) 195.938 + 113.125i 0.422280 + 0.243803i
\(465\) −200.923 61.5491i −0.432093 0.132364i
\(466\) 97.1497 + 168.268i 0.208476 + 0.361091i
\(467\) −222.692 + 128.571i −0.476856 + 0.275313i −0.719105 0.694901i \(-0.755448\pi\)
0.242249 + 0.970214i \(0.422115\pi\)
\(468\) 143.369 + 96.9329i 0.306344 + 0.207122i
\(469\) −0.354487 1.95952i −0.000755836 0.00417808i
\(470\) −118.366 68.3385i −0.251842 0.145401i
\(471\) −473.002 + 108.928i −1.00425 + 0.231269i
\(472\) 35.1365 0.0744417
\(473\) 13.3152i 0.0281506i
\(474\) −92.9767 403.738i −0.196153 0.851767i
\(475\) −237.997 + 412.223i −0.501046 + 0.867838i
\(476\) −2.68264 + 7.47349i −0.00563580 + 0.0157006i
\(477\) 501.370 + 35.6125i 1.05109 + 0.0746593i
\(478\) 284.172 + 492.200i 0.594502 + 1.02971i
\(479\) 172.286 99.4696i 0.359680 0.207661i −0.309261 0.950977i \(-0.600082\pi\)
0.668940 + 0.743316i \(0.266748\pi\)
\(480\) −8.70662 + 28.4223i −0.0181388 + 0.0592130i
\(481\) −71.5343 + 123.901i −0.148720 + 0.257590i
\(482\) 538.272 310.772i 1.11675 0.644755i
\(483\) 68.0532 572.644i 0.140897 1.18560i
\(484\) 100.623 174.284i 0.207899 0.360092i
\(485\) −115.384 + 66.6172i −0.237906 + 0.137355i
\(486\) −311.056 146.089i −0.640034 0.300594i
\(487\) −231.666 + 401.257i −0.475700 + 0.823937i −0.999613 0.0278350i \(-0.991139\pi\)
0.523912 + 0.851772i \(0.324472\pi\)
\(488\) 224.938i 0.460939i
\(489\) 109.896 + 117.979i 0.224736 + 0.241265i
\(490\) −20.0161 + 119.719i −0.0408491 + 0.244325i
\(491\) −824.496 + 476.023i −1.67922 + 0.969497i −0.717056 + 0.697015i \(0.754511\pi\)
−0.962161 + 0.272482i \(0.912156\pi\)
\(492\) −142.179 + 132.438i −0.288982 + 0.269183i
\(493\) 16.0402 + 27.7825i 0.0325360 + 0.0563539i
\(494\) −255.566 147.551i −0.517340 0.298687i
\(495\) −63.9944 + 31.1252i −0.129282 + 0.0628792i
\(496\) −159.958 −0.322497
\(497\) −61.4867 + 11.1233i −0.123716 + 0.0223808i
\(498\) −28.0879 + 91.6913i −0.0564014 + 0.184119i
\(499\) −7.59991 + 13.1634i −0.0152303 + 0.0263796i −0.873540 0.486752i \(-0.838181\pi\)
0.858310 + 0.513132i \(0.171515\pi\)
\(500\) 164.413i 0.328826i
\(501\) 104.181 97.0435i 0.207946 0.193700i
\(502\) 161.364 0.321442
\(503\) 247.471i 0.491989i −0.969271 0.245995i \(-0.920885\pi\)
0.969271 0.245995i \(-0.0791146\pi\)
\(504\) −143.809 + 105.219i −0.285335 + 0.208767i
\(505\) 341.420 0.676080
\(506\) 175.305i 0.346453i
\(507\) −67.2721 + 219.606i −0.132687 + 0.433148i
\(508\) 443.600 0.873228
\(509\) −173.870 100.384i −0.341591 0.197217i 0.319385 0.947625i \(-0.396524\pi\)
−0.660975 + 0.750408i \(0.729857\pi\)
\(510\) −3.08417 + 2.87287i −0.00604739 + 0.00563307i
\(511\) −53.0498 19.0424i −0.103816 0.0372650i
\(512\) 22.6274i 0.0441942i
\(513\) 546.722 + 210.901i 1.06574 + 0.411113i
\(514\) −212.372 + 367.838i −0.413174 + 0.715639i
\(515\) −176.763 + 102.054i −0.343228 + 0.198163i
\(516\) −5.18378 + 16.9221i −0.0100461 + 0.0327948i
\(517\) −124.532 215.695i −0.240874 0.417206i
\(518\) −95.1874 112.423i −0.183760 0.217033i
\(519\) 61.8783 + 268.697i 0.119226 + 0.517721i
\(520\) 47.6338 0.0916034
\(521\) −248.569 143.512i −0.477101 0.275454i 0.242107 0.970250i \(-0.422162\pi\)
−0.719207 + 0.694795i \(0.755495\pi\)
\(522\) −51.0077 + 718.112i −0.0977159 + 1.37569i
\(523\) −280.624 486.054i −0.536565 0.929358i −0.999086 0.0427498i \(-0.986388\pi\)
0.462520 0.886609i \(-0.346945\pi\)
\(524\) 4.19174 + 2.42010i 0.00799951 + 0.00461852i
\(525\) 275.745 368.901i 0.525229 0.702669i
\(526\) 298.067 + 516.267i 0.566667 + 0.981495i
\(527\) −19.6422 11.3404i −0.0372718 0.0215189i
\(528\) −39.6369 + 36.9213i −0.0750698 + 0.0699267i
\(529\) 112.544 + 194.932i 0.212749 + 0.368492i
\(530\) 119.810 69.1724i 0.226057 0.130514i
\(531\) 48.9011 + 100.542i 0.0920925 + 0.189345i
\(532\) 231.891 196.340i 0.435886 0.369059i
\(533\) 269.647 + 155.681i 0.505905 + 0.292084i
\(534\) −157.374 168.948i −0.294707 0.316383i
\(535\) 133.246 0.249058
\(536\) 0.804617i 0.00150115i
\(537\) −474.047 145.215i −0.882768 0.270419i
\(538\) −364.027 + 630.514i −0.676631 + 1.17196i
\(539\) −140.669 + 170.696i −0.260981 + 0.316690i
\(540\) −93.4470 + 14.6428i −0.173050 + 0.0271163i
\(541\) −58.2830 100.949i −0.107732 0.186597i 0.807119 0.590389i \(-0.201026\pi\)
−0.914851 + 0.403791i \(0.867692\pi\)
\(542\) −591.295 + 341.385i −1.09095 + 0.629861i
\(543\) −715.102 + 164.681i −1.31695 + 0.303280i
\(544\) −1.60420 + 2.77855i −0.00294889 + 0.00510763i
\(545\) −241.508 + 139.435i −0.443134 + 0.255843i
\(546\) 228.708 + 170.954i 0.418879 + 0.313102i
\(547\) 22.9108 39.6827i 0.0418845 0.0725461i −0.844323 0.535834i \(-0.819997\pi\)
0.886208 + 0.463288i \(0.153331\pi\)
\(548\) 410.202 236.830i 0.748544 0.432172i
\(549\) 643.655 313.057i 1.17241 0.570231i
\(550\) 70.0049 121.252i 0.127282 0.220458i
\(551\) 1227.59i 2.22793i
\(552\) 68.2483 222.793i 0.123638 0.403610i
\(553\) −121.686 672.650i −0.220047 1.21637i
\(554\) 183.138 105.735i 0.330573 0.190857i
\(555\) −17.5480 76.1995i −0.0316180 0.137296i
\(556\) −224.450 388.758i −0.403686 0.699205i
\(557\) 772.053 + 445.745i 1.38609 + 0.800260i 0.992872 0.119185i \(-0.0380280\pi\)
0.393219 + 0.919445i \(0.371361\pi\)
\(558\) −222.621 457.717i −0.398963 0.820281i
\(559\) 28.3604 0.0507341
\(560\) −16.5698 + 46.1614i −0.0295890 + 0.0824311i
\(561\) −7.48482 + 1.72368i −0.0133419 + 0.00307251i
\(562\) 13.9815 24.2167i 0.0248781 0.0430901i
\(563\) 335.625i 0.596137i −0.954544 0.298069i \(-0.903658\pi\)
0.954544 0.298069i \(-0.0963424\pi\)
\(564\) −74.2928 322.606i −0.131725 0.571996i
\(565\) −178.793 −0.316449
\(566\) 777.752i 1.37412i
\(567\) −501.226 265.068i −0.883997 0.467492i
\(568\) −25.2477 −0.0444501
\(569\) 945.483i 1.66166i 0.556529 + 0.830828i \(0.312133\pi\)
−0.556529 + 0.830828i \(0.687867\pi\)
\(570\) 157.174 36.1956i 0.275744 0.0635010i
\(571\) −516.310 −0.904221 −0.452111 0.891962i \(-0.649329\pi\)
−0.452111 + 0.891962i \(0.649329\pi\)
\(572\) 75.1727 + 43.4010i 0.131421 + 0.0758758i
\(573\) 98.9277 + 429.579i 0.172649 + 0.749701i
\(574\) −244.668 + 207.158i −0.426251 + 0.360902i
\(575\) 602.263i 1.04741i
\(576\) −64.7478 + 31.4916i −0.112409 + 0.0546730i
\(577\) −222.167 + 384.804i −0.385038 + 0.666905i −0.991774 0.127998i \(-0.959145\pi\)
0.606737 + 0.794903i \(0.292478\pi\)
\(578\) 353.557 204.126i 0.611691 0.353160i
\(579\) 741.926 170.858i 1.28139 0.295092i
\(580\) 99.0755 + 171.604i 0.170820 + 0.295869i
\(581\) −53.4549 + 148.919i −0.0920050 + 0.256314i
\(582\) −308.558 94.5210i −0.530169 0.162407i
\(583\) 252.103 0.432423
\(584\) −19.7233 11.3872i −0.0337727 0.0194987i
\(585\) 66.2942 + 136.303i 0.113323 + 0.232996i
\(586\) −92.9853 161.055i −0.158678 0.274838i
\(587\) 333.063 + 192.294i 0.567398 + 0.327588i 0.756110 0.654445i \(-0.227098\pi\)
−0.188711 + 0.982033i \(0.560431\pi\)
\(588\) −245.228 + 162.171i −0.417054 + 0.275801i
\(589\) 433.954 + 751.630i 0.736763 + 1.27611i
\(590\) 26.6501 + 15.3864i 0.0451696 + 0.0260787i
\(591\) 214.180 + 930.044i 0.362402 + 1.57368i
\(592\) −29.7607 51.5470i −0.0502714 0.0870727i
\(593\) −234.426 + 135.346i −0.395321 + 0.228239i −0.684463 0.729047i \(-0.739963\pi\)
0.289142 + 0.957286i \(0.406630\pi\)
\(594\) −160.814 62.0348i −0.270730 0.104436i
\(595\) −5.30738 + 4.49369i −0.00891996 + 0.00755243i
\(596\) 143.047 + 82.5884i 0.240012 + 0.138571i
\(597\) −217.066 + 708.601i −0.363595 + 1.18694i
\(598\) −373.385 −0.624390
\(599\) 290.145i 0.484383i 0.970228 + 0.242191i \(0.0778662\pi\)
−0.970228 + 0.242191i \(0.922134\pi\)
\(600\) 136.173 126.844i 0.226955 0.211406i
\(601\) 332.538 575.974i 0.553309 0.958359i −0.444724 0.895667i \(-0.646698\pi\)
0.998033 0.0626911i \(-0.0199683\pi\)
\(602\) −9.86540 + 27.4838i −0.0163877 + 0.0456541i
\(603\) 2.30239 1.11982i 0.00381823 0.00185709i
\(604\) −213.733 370.196i −0.353862 0.612907i
\(605\) 152.640 88.1266i 0.252297 0.145664i
\(606\) 563.656 + 605.113i 0.930125 + 0.998536i
\(607\) 137.803 238.683i 0.227024 0.393217i −0.729901 0.683553i \(-0.760434\pi\)
0.956925 + 0.290336i \(0.0937672\pi\)
\(608\) 106.324 61.3863i 0.174875 0.100964i
\(609\) −140.173 + 1179.51i −0.230169 + 1.93680i
\(610\) 98.5013 170.609i 0.161478 0.279687i
\(611\) −459.413 + 265.242i −0.751904 + 0.434112i
\(612\) −10.1834 0.723330i −0.0166395 0.00118191i
\(613\) 31.3289 54.2633i 0.0511075 0.0885209i −0.839340 0.543607i \(-0.817058\pi\)
0.890447 + 0.455086i \(0.150392\pi\)
\(614\) 357.072i 0.581551i
\(615\) −165.834 + 38.1899i −0.269649 + 0.0620974i
\(616\) −68.2089 + 57.7517i −0.110729 + 0.0937527i
\(617\) 446.057 257.531i 0.722945 0.417392i −0.0928908 0.995676i \(-0.529611\pi\)
0.815836 + 0.578284i \(0.196277\pi\)
\(618\) −472.695 144.801i −0.764878 0.234306i
\(619\) −539.269 934.042i −0.871194 1.50895i −0.860762 0.509007i \(-0.830013\pi\)
−0.0104316 0.999946i \(-0.503321\pi\)
\(620\) −121.324 70.0464i −0.195684 0.112978i
\(621\) 732.500 114.780i 1.17955 0.184831i
\(622\) 292.631 0.470467
\(623\) −246.161 290.734i −0.395122 0.466668i
\(624\) 78.6393 + 84.4232i 0.126025 + 0.135294i
\(625\) −202.151 + 350.136i −0.323441 + 0.560217i
\(626\) 480.749i 0.767970i
\(627\) 281.021 + 86.0856i 0.448200 + 0.137298i
\(628\) −323.588 −0.515268
\(629\) 8.43968i 0.0134176i
\(630\) −155.151 + 16.8309i −0.246271 + 0.0267157i
\(631\) 65.5284 0.103848 0.0519242 0.998651i \(-0.483465\pi\)
0.0519242 + 0.998651i \(0.483465\pi\)
\(632\) 276.203i 0.437031i
\(633\) 439.739 + 472.081i 0.694690 + 0.745784i
\(634\) −388.507 −0.612787
\(635\) 336.458 + 194.254i 0.529855 + 0.305912i
\(636\) 320.393 + 98.1465i 0.503763 + 0.154318i
\(637\) 363.568 + 299.613i 0.570750 + 0.470350i
\(638\) 361.086i 0.565966i
\(639\) −35.1384 72.2456i −0.0549896 0.113060i
\(640\) −9.90864 + 17.1623i −0.0154822 + 0.0268160i
\(641\) 685.053 395.516i 1.06873 0.617029i 0.140893 0.990025i \(-0.455003\pi\)
0.927833 + 0.372996i \(0.121669\pi\)
\(642\) 219.978 + 236.158i 0.342645 + 0.367847i
\(643\) −414.293 717.577i −0.644313 1.11598i −0.984460 0.175610i \(-0.943810\pi\)
0.340147 0.940372i \(-0.389523\pi\)
\(644\) 129.885 361.844i 0.201685 0.561870i
\(645\) −11.3420 + 10.5650i −0.0175845 + 0.0163798i
\(646\) 17.4082 0.0269477
\(647\) 54.8043 + 31.6413i 0.0847053 + 0.0489046i 0.541754 0.840537i \(-0.317760\pi\)
−0.457049 + 0.889441i \(0.651094\pi\)
\(648\) −180.225 141.446i −0.278125 0.218281i
\(649\) 28.0383 + 48.5638i 0.0432023 + 0.0748286i
\(650\) −258.257 149.105i −0.397318 0.229392i
\(651\) −331.131 771.741i −0.508650 1.18547i
\(652\) 53.7443 + 93.0878i 0.0824298 + 0.142773i
\(653\) 564.419 + 325.867i 0.864347 + 0.499031i 0.865466 0.500968i \(-0.167023\pi\)
−0.00111857 + 0.999999i \(0.500356\pi\)
\(654\) −645.835 197.839i −0.987515 0.302506i
\(655\) 2.11955 + 3.67116i 0.00323595 + 0.00560482i
\(656\) −112.182 + 64.7686i −0.171010 + 0.0987326i
\(657\) 5.13448 72.2858i 0.00781504 0.110024i
\(658\) −97.2328 537.480i −0.147770 0.816839i
\(659\) −58.2921 33.6550i −0.0884554 0.0510698i 0.455120 0.890430i \(-0.349596\pi\)
−0.543575 + 0.839360i \(0.682930\pi\)
\(660\) −46.2314 + 10.6466i −0.0700476 + 0.0161313i
\(661\) −486.564 −0.736102 −0.368051 0.929806i \(-0.619975\pi\)
−0.368051 + 0.929806i \(0.619975\pi\)
\(662\) 278.624i 0.420882i
\(663\) 3.67130 + 15.9421i 0.00553740 + 0.0240453i
\(664\) −31.9656 + 55.3661i −0.0481410 + 0.0833827i
\(665\) 261.861 47.3720i 0.393776 0.0712361i
\(666\) 106.081 156.900i 0.159281 0.235585i
\(667\) −776.620 1345.15i −1.16435 2.01671i
\(668\) 82.2012 47.4589i 0.123056 0.0710463i
\(669\) 71.9580 234.903i 0.107561 0.351125i
\(670\) 0.352345 0.610280i 0.000525888 0.000910865i
\(671\) 310.897 179.497i 0.463334 0.267506i
\(672\) −109.169 + 46.8412i −0.162454 + 0.0697042i
\(673\) 135.979 235.523i 0.202050 0.349960i −0.747139 0.664668i \(-0.768573\pi\)
0.949189 + 0.314707i \(0.101906\pi\)
\(674\) 398.215 229.910i 0.590824 0.341112i
\(675\) 552.478 + 213.121i 0.818487 + 0.315735i
\(676\) −76.5595 + 132.605i −0.113254 + 0.196161i
\(677\) 593.459i 0.876601i −0.898829 0.438300i \(-0.855581\pi\)
0.898829 0.438300i \(-0.144419\pi\)
\(678\) −295.173 316.883i −0.435358 0.467379i
\(679\) −501.139 179.886i −0.738054 0.264927i
\(680\) −2.43348 + 1.40497i −0.00357865 + 0.00206613i
\(681\) 51.8322 48.2812i 0.0761120 0.0708975i
\(682\) −127.644 221.086i −0.187161 0.324173i
\(683\) −763.359 440.725i −1.11766 0.645279i −0.176854 0.984237i \(-0.556592\pi\)
−0.940801 + 0.338958i \(0.889925\pi\)
\(684\) 323.632 + 218.810i 0.473146 + 0.319897i
\(685\) 414.836 0.605600
\(686\) −416.822 + 248.107i −0.607613 + 0.361672i
\(687\) 33.5876 109.645i 0.0488902 0.159599i
\(688\) −5.89944 + 10.2181i −0.00857477 + 0.0148519i
\(689\) 536.958i 0.779329i
\(690\) 149.326 139.096i 0.216415 0.201588i
\(691\) 876.408 1.26832 0.634159 0.773203i \(-0.281346\pi\)
0.634159 + 0.773203i \(0.281346\pi\)
\(692\) 183.820i 0.265636i
\(693\) −260.185 114.802i −0.375447 0.165660i
\(694\) 137.837 0.198612
\(695\) 393.150i 0.565683i
\(696\) −140.575 + 458.899i −0.201976 + 0.659337i
\(697\) −18.3674 −0.0263521
\(698\) −261.647 151.062i −0.374852 0.216421i
\(699\) −301.597 + 280.935i −0.431470 + 0.401909i
\(700\) 234.333 198.407i 0.334761 0.283438i
\(701\) 286.681i 0.408961i −0.978871 0.204480i \(-0.934450\pi\)
0.978871 0.204480i \(-0.0655504\pi\)
\(702\) −132.129 + 342.520i −0.188218 + 0.487921i
\(703\) −161.477 + 279.686i −0.229696 + 0.397846i
\(704\) −31.2744 + 18.0563i −0.0444238 + 0.0256481i
\(705\) 84.9213 277.220i 0.120456 0.393221i
\(706\) −453.751 785.919i −0.642706 1.11320i
\(707\) 881.661 + 1041.31i 1.24705 + 1.47285i
\(708\) 16.7270 + 72.6346i 0.0236257 + 0.102591i
\(709\) 657.204 0.926945 0.463473 0.886111i \(-0.346603\pi\)
0.463473 + 0.886111i \(0.346603\pi\)
\(710\) −19.1496 11.0561i −0.0269713 0.0155719i
\(711\) 790.349 384.405i 1.11160 0.540654i
\(712\) −76.9632 133.304i −0.108094 0.187225i
\(713\) 951.017 + 549.070i 1.33383 + 0.770084i
\(714\) −16.7264 1.98777i −0.0234263 0.00278399i
\(715\) 38.0109 + 65.8368i 0.0531621 + 0.0920795i
\(716\) −286.244 165.263i −0.399783 0.230815i
\(717\) −882.201 + 821.760i −1.23041 + 1.14611i
\(718\) −215.424 373.125i −0.300033 0.519673i
\(719\) 404.412 233.488i 0.562465 0.324739i −0.191669 0.981460i \(-0.561390\pi\)
0.754134 + 0.656720i \(0.228057\pi\)
\(720\) −62.8997 4.46779i −0.0873607 0.00620526i
\(721\) −767.717 275.575i −1.06480 0.382212i
\(722\) −134.765 77.8064i −0.186655 0.107765i
\(723\) 898.680 + 964.778i 1.24299 + 1.33441i
\(724\) −489.213 −0.675709
\(725\) 1240.52i 1.71106i
\(726\) 408.186 + 125.040i 0.562239 + 0.172231i
\(727\) −21.8124 + 37.7802i −0.0300033 + 0.0519673i −0.880637 0.473791i \(-0.842885\pi\)
0.850634 + 0.525759i \(0.176218\pi\)
\(728\) 123.006 + 145.279i 0.168965 + 0.199560i
\(729\) 153.916 712.566i 0.211133 0.977457i
\(730\) −9.97303 17.2738i −0.0136617 0.0236627i
\(731\) −1.44885 + 0.836496i −0.00198202 + 0.00114432i
\(732\) 464.995 107.084i 0.635239 0.146289i
\(733\) −559.033 + 968.274i −0.762665 + 1.32097i 0.178808 + 0.983884i \(0.442776\pi\)
−0.941472 + 0.337090i \(0.890557\pi\)
\(734\) 153.492 88.6189i 0.209118 0.120734i
\(735\) −257.014 + 15.6158i −0.349678 + 0.0212460i
\(736\) 77.6705 134.529i 0.105531 0.182784i
\(737\) 1.11210 0.642070i 0.00150895 0.000871194i
\(738\) −341.463 230.866i −0.462687 0.312826i
\(739\) 414.623 718.148i 0.561060 0.971784i −0.436345 0.899780i \(-0.643727\pi\)
0.997404 0.0720041i \(-0.0229395\pi\)
\(740\) 52.1293i 0.0704450i
\(741\) 183.355 598.552i 0.247443 0.807763i
\(742\) 520.360 + 186.785i 0.701294 + 0.251732i
\(743\) −1010.16 + 583.214i −1.35957 + 0.784945i −0.989565 0.144086i \(-0.953976\pi\)
−0.370000 + 0.929032i \(0.620642\pi\)
\(744\) −76.1495 330.668i −0.102351 0.444446i
\(745\) 72.3316 + 125.282i 0.0970893 + 0.168164i
\(746\) 324.343 + 187.260i 0.434776 + 0.251018i
\(747\) −202.917 14.4133i −0.271642 0.0192948i
\(748\) −5.12049 −0.00684557
\(749\) 344.086 + 406.391i 0.459394 + 0.542578i
\(750\) 339.877 78.2702i 0.453169 0.104360i
\(751\) −608.863 + 1054.58i −0.810737 + 1.40424i 0.101612 + 0.994824i \(0.467600\pi\)
−0.912349 + 0.409413i \(0.865733\pi\)
\(752\) 220.700i 0.293484i
\(753\) 76.8185 + 333.573i 0.102017 + 0.442992i
\(754\) 769.084 1.02000
\(755\) 374.377i 0.495864i
\(756\) −285.971 247.194i −0.378268 0.326976i
\(757\) 212.121 0.280213 0.140106 0.990136i \(-0.455256\pi\)
0.140106 + 0.990136i \(0.455256\pi\)
\(758\) 269.794i 0.355928i
\(759\) 362.393 83.4554i 0.477461 0.109954i
\(760\) 107.525 0.141481
\(761\) −884.489 510.660i −1.16227 0.671038i −0.210425 0.977610i \(-0.567485\pi\)
−0.951848 + 0.306572i \(0.900818\pi\)
\(762\) 211.179 + 917.015i 0.277138 + 1.20343i
\(763\) −1048.92 376.514i −1.37473 0.493465i
\(764\) 293.882i 0.384662i
\(765\) −7.40707 5.00798i −0.00968245 0.00654637i
\(766\) −423.880 + 734.182i −0.553369 + 0.958463i
\(767\) 103.437 59.7193i 0.134859 0.0778609i
\(768\) −46.7757 + 10.7720i −0.0609058 + 0.0140260i
\(769\) −19.1405 33.1524i −0.0248902 0.0431110i 0.853312 0.521401i \(-0.174590\pi\)
−0.878202 + 0.478290i \(0.841257\pi\)
\(770\) −77.0242 + 13.9341i −0.100031 + 0.0180962i
\(771\) −861.501 263.905i −1.11738 0.342289i
\(772\) 507.564 0.657466
\(773\) 329.696 + 190.350i 0.426515 + 0.246249i 0.697861 0.716233i \(-0.254135\pi\)
−0.271346 + 0.962482i \(0.587469\pi\)
\(774\) −37.4494 2.66005i −0.0483843 0.00343675i
\(775\) 438.522 + 759.543i 0.565835 + 0.980056i
\(776\) −186.317 107.570i −0.240100 0.138622i
\(777\) 187.088 250.293i 0.240782 0.322127i
\(778\) 71.3824 + 123.638i 0.0917512 + 0.158918i
\(779\) 608.684 + 351.424i 0.781365 + 0.451121i
\(780\) 22.6765 + 98.4691i 0.0290724 + 0.126242i
\(781\) −20.1472 34.8960i −0.0257967 0.0446811i
\(782\) 19.0752 11.0131i 0.0243929 0.0140832i
\(783\) −1508.77 + 236.419i −1.92691 + 0.301940i
\(784\) −183.578 + 68.6675i −0.234155 + 0.0875862i
\(785\) −245.432 141.700i −0.312653 0.180510i
\(786\) −3.00735 + 9.81733i −0.00382615 + 0.0124902i
\(787\) 855.666 1.08725 0.543625 0.839328i \(-0.317051\pi\)
0.543625 + 0.839328i \(0.317051\pi\)
\(788\) 636.258i 0.807434i
\(789\) −925.336 + 861.940i −1.17280 + 1.09245i
\(790\) 120.951 209.493i 0.153102 0.265180i
\(791\) −461.705 545.306i −0.583697 0.689389i
\(792\) −95.1936 64.3611i −0.120194 0.0812640i
\(793\) −382.313 662.186i −0.482110 0.835039i
\(794\) 378.530 218.544i 0.476738 0.275245i
\(795\) 200.031 + 214.743i 0.251611 + 0.270117i
\(796\) −247.034 + 427.876i −0.310344 + 0.537532i
\(797\) −27.2948 + 15.7587i −0.0342469 + 0.0197725i −0.517026 0.855970i \(-0.672961\pi\)
0.482779 + 0.875742i \(0.339628\pi\)
\(798\) 516.270 + 385.900i 0.646954 + 0.483583i
\(799\) 15.6468 27.1010i 0.0195829 0.0339187i
\(800\) 107.444 62.0326i 0.134305 0.0775408i
\(801\) 274.333 405.754i 0.342488 0.506559i
\(802\) 426.403 738.551i 0.531674 0.920886i
\(803\) 36.3472i 0.0452643i
\(804\) 1.66332 0.383045i 0.00206880 0.000476424i
\(805\) 256.967 217.571i 0.319214 0.270275i
\(806\) −470.894 + 271.871i −0.584236 + 0.337309i
\(807\) −1476.70 452.361i −1.82987 0.560546i
\(808\) 275.655 + 477.448i 0.341157 + 0.590901i
\(809\) 366.440 + 211.564i 0.452955 + 0.261514i 0.709077 0.705131i \(-0.249112\pi\)
−0.256123 + 0.966644i \(0.582445\pi\)
\(810\) −74.7560 186.204i −0.0922914 0.229881i
\(811\) 695.569 0.857668 0.428834 0.903383i \(-0.358925\pi\)
0.428834 + 0.903383i \(0.358925\pi\)
\(812\) −267.532 + 745.311i −0.329473 + 0.917871i
\(813\) −987.206 1059.81i −1.21427 1.30358i
\(814\) 47.4970 82.2672i 0.0583501 0.101065i
\(815\) 94.1393i 0.115508i
\(816\) −6.50755 1.99347i −0.00797494 0.00244297i
\(817\) 64.0188 0.0783583
\(818\) 621.448i 0.759717i
\(819\) −244.520 + 554.172i −0.298559 + 0.676644i
\(820\) −113.450 −0.138353
\(821\) 91.3532i 0.111271i 0.998451 + 0.0556353i \(0.0177184\pi\)
−0.998451 + 0.0556353i \(0.982282\pi\)
\(822\) 684.859 + 735.230i 0.833161 + 0.894440i
\(823\) −657.997 −0.799511 −0.399755 0.916622i \(-0.630905\pi\)
−0.399755 + 0.916622i \(0.630905\pi\)
\(824\) −285.428 164.792i −0.346393 0.199990i
\(825\) 283.980 + 86.9920i 0.344218 + 0.105445i
\(826\) 21.8920 + 121.014i 0.0265036 + 0.146505i
\(827\) 1364.30i 1.64969i 0.565355 + 0.824847i \(0.308739\pi\)
−0.565355 + 0.824847i \(0.691261\pi\)
\(828\) 493.050 + 35.0215i 0.595471 + 0.0422965i
\(829\) −388.984 + 673.740i −0.469221 + 0.812715i −0.999381 0.0351831i \(-0.988799\pi\)
0.530160 + 0.847898i \(0.322132\pi\)
\(830\) −48.4901 + 27.9958i −0.0584218 + 0.0337298i
\(831\) 305.760 + 328.249i 0.367942 + 0.395004i
\(832\) 38.4584 + 66.6119i 0.0462240 + 0.0800624i
\(833\) −27.4108 4.58287i −0.0329062 0.00550165i
\(834\) 696.795 649.057i 0.835485 0.778246i
\(835\) 83.1298 0.0995566
\(836\) 169.690 + 97.9704i 0.202978 + 0.117189i
\(837\) 840.217 678.106i 1.00384 0.810162i
\(838\) −40.4595 70.0778i −0.0482810 0.0836251i
\(839\) −1355.78 782.761i −1.61595 0.932969i −0.987953 0.154752i \(-0.950542\pi\)
−0.627996 0.778216i \(-0.716125\pi\)
\(840\) −103.314 12.2778i −0.122992 0.0146165i
\(841\) 1179.15 + 2042.35i 1.40208 + 2.42847i
\(842\) 401.012 + 231.525i 0.476262 + 0.274970i
\(843\) 56.7170 + 17.3742i 0.0672800 + 0.0206099i
\(844\) 215.053 + 372.483i 0.254802 + 0.441331i
\(845\) −116.136 + 67.0514i −0.137440 + 0.0793508i
\(846\) 631.527 307.158i 0.746486 0.363071i
\(847\) 662.946 + 237.967i 0.782699 + 0.280953i
\(848\) 193.464 + 111.696i 0.228141 + 0.131717i
\(849\) −1607.78 + 370.255i −1.89373 + 0.436108i
\(850\) 17.5915 0.0206959
\(851\) 408.624i 0.480170i
\(852\) −12.0194 52.1923i −0.0141072 0.0612586i
\(853\) −484.334 + 838.891i −0.567801 + 0.983460i 0.428982 + 0.903313i \(0.358872\pi\)
−0.996783 + 0.0801471i \(0.974461\pi\)
\(854\) 774.709 140.149i 0.907153 0.164109i
\(855\) 149.648 + 307.681i 0.175027 + 0.359861i
\(856\) 107.580 + 186.334i 0.125677 + 0.217680i
\(857\) 1149.35 663.578i 1.34113 0.774304i 0.354160 0.935185i \(-0.384767\pi\)
0.986974 + 0.160881i \(0.0514336\pi\)
\(858\) −53.9324 + 176.059i −0.0628583 + 0.205197i
\(859\) −181.100 + 313.675i −0.210827 + 0.365163i −0.951974 0.306180i \(-0.900949\pi\)
0.741147 + 0.671343i \(0.234282\pi\)
\(860\) −8.94912 + 5.16678i −0.0104060 + 0.00600788i
\(861\) −544.715 407.162i −0.632654 0.472894i
\(862\) −73.8198 + 127.860i −0.0856378 + 0.148329i
\(863\) 938.041 541.578i 1.08695 0.627553i 0.154190 0.988041i \(-0.450723\pi\)
0.932764 + 0.360488i \(0.117390\pi\)
\(864\) −95.9237 118.856i −0.111023 0.137564i
\(865\) −80.4956 + 139.422i −0.0930584 + 0.161182i
\(866\) 602.969i 0.696269i
\(867\) 590.287 + 633.702i 0.680838 + 0.730914i
\(868\) −99.6628 550.912i −0.114819 0.634691i
\(869\) 381.753 220.405i 0.439302 0.253631i
\(870\) −307.576 + 286.504i −0.353535 + 0.329314i
\(871\) −1.36756 2.36868i −0.00157010 0.00271949i
\(872\) −389.975 225.152i −0.447220 0.258202i
\(873\) 48.5033 682.853i 0.0555593 0.782191i
\(874\) −842.854 −0.964364
\(875\) 566.255 102.438i 0.647148 0.117072i
\(876\) 14.1504 46.1932i 0.0161534 0.0527319i
\(877\) 570.778 988.617i 0.650830 1.12727i −0.332091 0.943247i \(-0.607754\pi\)
0.982922 0.184024i \(-0.0589125\pi\)
\(878\) 402.494i 0.458421i
\(879\) 288.669 268.892i 0.328406 0.305907i
\(880\) −31.6277 −0.0359405
\(881\) 536.022i 0.608424i −0.952604 0.304212i \(-0.901607\pi\)
0.952604 0.304212i \(-0.0983931\pi\)
\(882\) −451.984 429.735i −0.512454 0.487228i
\(883\) −413.964 −0.468816 −0.234408 0.972138i \(-0.575315\pi\)
−0.234408 + 0.972138i \(0.575315\pi\)
\(884\) 10.9062i 0.0123374i
\(885\) −19.1200 + 62.4162i −0.0216045 + 0.0705267i
\(886\) −651.837 −0.735708
\(887\) 99.9924 + 57.7307i 0.112731 + 0.0650853i 0.555305 0.831647i \(-0.312601\pi\)
−0.442574 + 0.896732i \(0.645935\pi\)
\(888\) 92.3909 86.0611i 0.104044 0.0969156i
\(889\) 276.387 + 1527.80i 0.310896 + 1.71856i
\(890\) 134.810i 0.151472i
\(891\) 51.6823 361.969i 0.0580048 0.406250i
\(892\) 81.8923 141.842i 0.0918076 0.159015i
\(893\) −1037.05 + 598.740i −1.16131 + 0.670482i
\(894\) −102.629 + 335.026i −0.114797 + 0.374749i
\(895\) −144.739 250.695i −0.161719 0.280106i
\(896\) −77.9310 + 14.0981i −0.0869766 + 0.0157345i
\(897\) −177.753 771.867i −0.198164 0.860498i
\(898\) 260.858 0.290487
\(899\) −1958.87 1130.95i −2.17894 1.25801i
\(900\) 327.039 + 221.114i 0.363377 + 0.245682i
\(901\) 15.8377 + 27.4317i 0.0175779 + 0.0304458i
\(902\) −179.039 103.368i −0.198491 0.114599i
\(903\) −61.5113 7.31002i −0.0681188 0.00809526i
\(904\) −144.354 250.028i −0.159683 0.276579i
\(905\) −371.054 214.228i −0.410005 0.236716i
\(906\) 663.524 618.065i 0.732366 0.682191i
\(907\) 91.2855 + 158.111i 0.100646 + 0.174323i 0.911951 0.410300i \(-0.134576\pi\)
−0.811305 + 0.584623i \(0.801243\pi\)
\(908\) 40.8968 23.6118i 0.0450406 0.0260042i
\(909\) −982.563 + 1453.27i −1.08093 + 1.59875i
\(910\) 29.6784 + 164.055i 0.0326137 + 0.180281i
\(911\) −781.868 451.411i −0.858252 0.495512i 0.00517457 0.999987i \(-0.498353\pi\)
−0.863427 + 0.504475i \(0.831686\pi\)
\(912\) 177.515 + 190.571i 0.194644 + 0.208960i
\(913\) −102.032 −0.111755
\(914\) 223.575i 0.244612i
\(915\) 399.578 + 122.403i 0.436697 + 0.133774i
\(916\) 38.2246 66.2070i 0.0417299 0.0722783i
\(917\) −5.72338 + 15.9446i −0.00624142 + 0.0173878i
\(918\) −3.35261 21.3956i −0.00365209 0.0233068i
\(919\) −590.898 1023.47i −0.642979 1.11367i −0.984764 0.173895i \(-0.944365\pi\)
0.341785 0.939778i \(-0.388969\pi\)
\(920\) 117.822 68.0244i 0.128067 0.0739396i
\(921\) −738.144 + 169.987i −0.801459 + 0.184568i
\(922\) 245.860 425.841i 0.266659 0.461867i
\(923\) −74.3255 + 42.9119i −0.0805260 + 0.0464917i
\(924\) −151.856 113.509i −0.164347 0.122845i
\(925\) −163.177 + 282.630i −0.176407 + 0.305546i
\(926\) −417.967 + 241.313i −0.451368 + 0.260598i
\(927\) 74.3044 1046.09i 0.0801558 1.12847i
\(928\) −159.982 + 277.098i −0.172395 + 0.298597i
\(929\) 877.848i 0.944939i 0.881347 + 0.472469i \(0.156637\pi\)
−0.881347 + 0.472469i \(0.843363\pi\)
\(930\) 87.0435 284.148i 0.0935952 0.305536i
\(931\) 820.694 + 676.326i 0.881518 + 0.726451i
\(932\) −237.967 + 137.390i −0.255330 + 0.147415i
\(933\) 139.309 + 604.930i 0.149313 + 0.648371i
\(934\) −181.827 314.934i −0.194676 0.337188i
\(935\) −3.88375 2.24228i −0.00415374 0.00239816i
\(936\) −137.084 + 202.755i −0.146457 + 0.216618i
\(937\) −618.122 −0.659682 −0.329841 0.944037i \(-0.606995\pi\)
−0.329841 + 0.944037i \(0.606995\pi\)
\(938\) 2.77118 0.501321i 0.00295435 0.000534457i
\(939\) 993.811 228.865i 1.05837 0.243732i
\(940\) 96.6453 167.395i 0.102814 0.178079i
\(941\) 959.816i 1.02000i −0.860176 0.509998i \(-0.829646\pi\)
0.860176 0.509998i \(-0.170354\pi\)
\(942\) −154.047 668.925i −0.163532 0.710112i
\(943\) 889.294 0.943048
\(944\) 49.6905i 0.0526383i
\(945\) −108.654 312.717i −0.114978 0.330918i
\(946\) −18.8306 −0.0199055
\(947\) 746.630i 0.788416i 0.919021 + 0.394208i \(0.128981\pi\)
−0.919021 + 0.394208i \(0.871019\pi\)
\(948\) 570.971 131.489i 0.602290 0.138701i
\(949\) −77.4166 −0.0815771
\(950\) −582.971 336.579i −0.613654 0.354293i
\(951\) −184.952 803.126i −0.194481 0.844507i
\(952\) −10.5691 3.79382i −0.0111020 0.00398511i
\(953\) 1477.27i 1.55013i −0.631881 0.775065i \(-0.717717\pi\)
0.631881 0.775065i \(-0.282283\pi\)
\(954\) −50.3637 + 709.045i −0.0527921 + 0.743234i
\(955\) −128.692 + 222.901i −0.134756 + 0.233404i
\(956\) −696.077 + 401.880i −0.728114 + 0.420377i
\(957\) −746.442 + 171.898i −0.779981 + 0.179622i
\(958\) 140.671 + 243.650i 0.146839 + 0.254332i
\(959\) 1071.24 + 1265.22i 1.11704 + 1.31931i
\(960\) −40.1951 12.3130i −0.0418699 0.0128261i
\(961\) 638.166 0.664064
\(962\) −175.222 101.165i −0.182144 0.105161i
\(963\) −383.465 + 567.167i −0.398199 + 0.588958i
\(964\) 439.498 + 761.232i 0.455910 + 0.789660i
\(965\) 384.973 + 222.264i 0.398936 + 0.230326i
\(966\) 809.842 + 96.2418i 0.838345 + 0.0996292i
\(967\) 81.0172 + 140.326i 0.0837820 + 0.145115i 0.904872 0.425685i \(-0.139967\pi\)
−0.821090 + 0.570799i \(0.806633\pi\)
\(968\) 246.475 + 142.303i 0.254623 + 0.147007i
\(969\) 8.28733 + 35.9865i 0.00855246 + 0.0371378i
\(970\) −94.2109 163.178i −0.0971247 0.168225i
\(971\) −1063.88 + 614.232i −1.09565 + 0.632577i −0.935076 0.354446i \(-0.884669\pi\)
−0.160579 + 0.987023i \(0.551336\pi\)
\(972\) 206.601 439.900i 0.212552 0.452572i
\(973\) 1199.08 1015.24i 1.23235 1.04342i
\(974\) −567.464 327.625i −0.582612 0.336371i
\(975\) 185.286 604.854i 0.190037 0.620363i
\(976\) 318.111 0.325933
\(977\) 1042.27i 1.06681i 0.845860 + 0.533405i \(0.179088\pi\)
−0.845860 + 0.533405i \(0.820912\pi\)
\(978\) −166.847 + 155.416i −0.170600 + 0.158912i
\(979\) 122.831 212.749i 0.125465 0.217312i
\(980\) −169.308 28.3070i −0.172764 0.0288847i
\(981\) 101.521 1429.26i 0.103487 1.45694i
\(982\) −673.198 1166.01i −0.685538 1.18739i
\(983\) 679.154 392.110i 0.690899 0.398891i −0.113050 0.993589i \(-0.536062\pi\)
0.803949 + 0.594698i \(0.202729\pi\)
\(984\) −187.296 201.071i −0.190341 0.204341i
\(985\) −278.620 + 482.584i −0.282863 + 0.489933i
\(986\) −39.2904 + 22.6843i −0.0398482 + 0.0230064i
\(987\) 1064.80 456.873i 1.07882 0.462890i
\(988\) 208.669 361.425i 0.211203 0.365815i
\(989\) 70.1492 40.5006i 0.0709294 0.0409511i
\(990\) −44.0177 90.5018i −0.0444623 0.0914159i
\(991\) −81.5488 + 141.247i −0.0822894 + 0.142529i −0.904233 0.427040i \(-0.859557\pi\)
0.821944 + 0.569569i \(0.192890\pi\)
\(992\) 226.215i 0.228039i
\(993\) 575.975 132.641i 0.580035 0.133576i
\(994\) −15.7307 86.9554i −0.0158256 0.0874803i
\(995\) −374.737 + 216.354i −0.376620 + 0.217442i
\(996\) −129.671 39.7223i −0.130192 0.0398818i
\(997\) 113.216 + 196.096i 0.113557 + 0.196686i 0.917202 0.398423i \(-0.130442\pi\)
−0.803645 + 0.595109i \(0.797109\pi\)
\(998\) −18.6159 10.7479i −0.0186532 0.0107694i
\(999\) 374.846 + 144.599i 0.375222 + 0.144744i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.r.a.11.9 yes 32
3.2 odd 2 378.3.r.a.305.5 32
7.2 even 3 126.3.i.a.65.12 32
9.4 even 3 378.3.i.a.179.5 32
9.5 odd 6 126.3.i.a.95.12 yes 32
21.2 odd 6 378.3.i.a.359.4 32
63.23 odd 6 inner 126.3.r.a.23.1 yes 32
63.58 even 3 378.3.r.a.233.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.i.a.65.12 32 7.2 even 3
126.3.i.a.95.12 yes 32 9.5 odd 6
126.3.r.a.11.9 yes 32 1.1 even 1 trivial
126.3.r.a.23.1 yes 32 63.23 odd 6 inner
378.3.i.a.179.5 32 9.4 even 3
378.3.i.a.359.4 32 21.2 odd 6
378.3.r.a.233.13 32 63.58 even 3
378.3.r.a.305.5 32 3.2 odd 2