Defining parameters
Level: | \( N \) | = | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 16 \) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(23328\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(378))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8136 | 1964 | 6172 |
Cusp forms | 7416 | 1964 | 5452 |
Eisenstein series | 720 | 0 | 720 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(378))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(378))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(378)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 2}\)