L(s) = 1 | − 1.41i·2-s − 2.00·4-s + (1.51 + 0.875i)5-s + (−1.24 − 6.88i)7-s + 2.82i·8-s + (1.23 − 2.14i)10-s + (−3.90 + 2.25i)11-s + (−4.80 − 8.32i)13-s + (−9.74 + 1.76i)14-s + 4.00·16-s + (−0.491 − 0.283i)17-s + (−10.8 − 18.7i)19-s + (−3.03 − 1.75i)20-s + (3.19 + 5.52i)22-s + (23.7 + 13.7i)23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s + (0.303 + 0.175i)5-s + (−0.178 − 0.984i)7-s + 0.353i·8-s + (0.123 − 0.214i)10-s + (−0.355 + 0.205i)11-s + (−0.369 − 0.640i)13-s + (−0.695 + 0.125i)14-s + 0.250·16-s + (−0.0288 − 0.0166i)17-s + (−0.571 − 0.989i)19-s + (−0.151 − 0.0875i)20-s + (0.145 + 0.251i)22-s + (1.03 + 0.596i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 + 0.166i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.986 + 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0785250 - 0.935951i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0785250 - 0.935951i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 1.41iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.24 + 6.88i)T \) |
good | 5 | \( 1 + (-1.51 - 0.875i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (3.90 - 2.25i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (4.80 + 8.32i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (0.491 + 0.283i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (10.8 + 18.7i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-23.7 - 13.7i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (48.9 + 28.2i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + 39.9T + 961T^{2} \) |
| 37 | \( 1 + (7.44 + 12.8i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-28.0 + 16.1i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (1.47 - 2.55i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 - 55.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (48.3 + 27.9i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + 12.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 79.5T + 3.72e3T^{2} \) |
| 67 | \( 1 - 0.284T + 4.48e3T^{2} \) |
| 71 | \( 1 - 8.92iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-4.02 + 6.97i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 - 97.6T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-19.5 - 11.3i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (47.1 - 27.2i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-38.0 + 65.8i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83712666511435598201853698815, −9.888332903267634796076157428561, −9.210347161431726328838341732458, −7.85825693455815998371338656854, −7.06439505252872841987198688705, −5.70500948727693702979109294871, −4.55950724179440718568788163083, −3.43011480583168052526889297720, −2.14474175263741825671589005411, −0.39964825168287827630609192935,
1.97212194135216466522919231906, 3.57756974093021858833925796582, 5.06601843517448143322284204808, 5.75365730522564561778360277724, 6.79485191303553691647548744041, 7.82969509996113914701094877866, 8.940632016392456900527317615432, 9.359337767793743058373608315917, 10.58957019801351260050070530085, 11.63496926292545476032520613279