Properties

Label 336.4.bc.f.17.23
Level $336$
Weight $4$
Character 336.17
Analytic conductor $19.825$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(17,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.23
Character \(\chi\) \(=\) 336.17
Dual form 336.4.bc.f.257.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.02065 - 1.33907i) q^{3} +(-2.40532 - 4.16613i) q^{5} +(3.40309 - 18.2049i) q^{7} +(23.4138 - 13.4460i) q^{9} +(29.6911 + 17.1421i) q^{11} +17.1571i q^{13} +(-17.6550 - 17.6958i) q^{15} +(50.4770 - 87.4288i) q^{17} +(-119.893 + 69.2205i) q^{19} +(-7.29198 - 95.9574i) q^{21} +(0.541507 - 0.312639i) q^{23} +(50.9289 - 88.2114i) q^{25} +(99.5470 - 98.8605i) q^{27} -222.968i q^{29} +(-247.848 - 143.095i) q^{31} +(172.023 + 46.3061i) q^{33} +(-84.0296 + 29.6109i) q^{35} +(9.19197 + 15.9210i) q^{37} +(22.9746 + 86.1397i) q^{39} +219.751 q^{41} +370.491 q^{43} +(-112.335 - 65.2029i) q^{45} +(143.066 + 247.797i) q^{47} +(-319.838 - 123.906i) q^{49} +(136.354 - 506.541i) q^{51} +(-29.3942 - 16.9708i) q^{53} -164.929i q^{55} +(-509.251 + 508.078i) q^{57} +(-127.350 + 220.577i) q^{59} +(-29.2617 + 16.8943i) q^{61} +(-165.104 - 472.004i) q^{63} +(71.4787 - 41.2683i) q^{65} +(-87.9473 + 152.329i) q^{67} +(2.30007 - 2.29477i) q^{69} -626.114i q^{71} +(189.125 + 109.191i) q^{73} +(137.574 - 511.076i) q^{75} +(413.113 - 482.187i) q^{77} +(263.456 + 456.319i) q^{79} +(367.409 - 629.644i) q^{81} +370.957 q^{83} -485.653 q^{85} +(-298.571 - 1119.44i) q^{87} +(412.449 + 714.383i) q^{89} +(312.343 + 58.3872i) q^{91} +(-1435.97 - 386.543i) q^{93} +(576.764 + 332.995i) q^{95} +1309.69i q^{97} +(925.674 + 2.13549i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{7} + 14 q^{9} + 88 q^{15} + 270 q^{19} + 50 q^{21} - 438 q^{25} - 216 q^{31} - 372 q^{33} + 66 q^{37} - 242 q^{39} - 900 q^{43} - 294 q^{45} + 60 q^{49} + 138 q^{51} + 1384 q^{57} + 108 q^{61}+ \cdots - 1988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.02065 1.33907i 0.966224 0.257705i
\(4\) 0 0
\(5\) −2.40532 4.16613i −0.215138 0.372630i 0.738177 0.674607i \(-0.235687\pi\)
−0.953315 + 0.301977i \(0.902354\pi\)
\(6\) 0 0
\(7\) 3.40309 18.2049i 0.183750 0.982973i
\(8\) 0 0
\(9\) 23.4138 13.4460i 0.867177 0.498001i
\(10\) 0 0
\(11\) 29.6911 + 17.1421i 0.813836 + 0.469868i 0.848286 0.529538i \(-0.177635\pi\)
−0.0344503 + 0.999406i \(0.510968\pi\)
\(12\) 0 0
\(13\) 17.1571i 0.366040i 0.983109 + 0.183020i \(0.0585873\pi\)
−0.983109 + 0.183020i \(0.941413\pi\)
\(14\) 0 0
\(15\) −17.6550 17.6958i −0.303900 0.304602i
\(16\) 0 0
\(17\) 50.4770 87.4288i 0.720146 1.24733i −0.240795 0.970576i \(-0.577408\pi\)
0.960941 0.276753i \(-0.0892584\pi\)
\(18\) 0 0
\(19\) −119.893 + 69.2205i −1.44766 + 0.835804i −0.998341 0.0575700i \(-0.981665\pi\)
−0.449314 + 0.893374i \(0.648331\pi\)
\(20\) 0 0
\(21\) −7.29198 95.9574i −0.0757734 0.997125i
\(22\) 0 0
\(23\) 0.541507 0.312639i 0.00490922 0.00283434i −0.497543 0.867439i \(-0.665764\pi\)
0.502453 + 0.864605i \(0.332431\pi\)
\(24\) 0 0
\(25\) 50.9289 88.2114i 0.407431 0.705691i
\(26\) 0 0
\(27\) 99.5470 98.8605i 0.709549 0.704656i
\(28\) 0 0
\(29\) 222.968i 1.42773i −0.700284 0.713864i \(-0.746943\pi\)
0.700284 0.713864i \(-0.253057\pi\)
\(30\) 0 0
\(31\) −247.848 143.095i −1.43596 0.829053i −0.438396 0.898782i \(-0.644453\pi\)
−0.997566 + 0.0697292i \(0.977786\pi\)
\(32\) 0 0
\(33\) 172.023 + 46.3061i 0.907435 + 0.244269i
\(34\) 0 0
\(35\) −84.0296 + 29.6109i −0.405817 + 0.143004i
\(36\) 0 0
\(37\) 9.19197 + 15.9210i 0.0408419 + 0.0707402i 0.885724 0.464213i \(-0.153663\pi\)
−0.844882 + 0.534953i \(0.820329\pi\)
\(38\) 0 0
\(39\) 22.9746 + 86.1397i 0.0943302 + 0.353677i
\(40\) 0 0
\(41\) 219.751 0.837056 0.418528 0.908204i \(-0.362546\pi\)
0.418528 + 0.908204i \(0.362546\pi\)
\(42\) 0 0
\(43\) 370.491 1.31394 0.656970 0.753917i \(-0.271838\pi\)
0.656970 + 0.753917i \(0.271838\pi\)
\(44\) 0 0
\(45\) −112.335 65.2029i −0.372133 0.215997i
\(46\) 0 0
\(47\) 143.066 + 247.797i 0.444006 + 0.769041i 0.997982 0.0634912i \(-0.0202235\pi\)
−0.553976 + 0.832532i \(0.686890\pi\)
\(48\) 0 0
\(49\) −319.838 123.906i −0.932472 0.361242i
\(50\) 0 0
\(51\) 136.354 506.541i 0.374379 1.39078i
\(52\) 0 0
\(53\) −29.3942 16.9708i −0.0761813 0.0439833i 0.461425 0.887179i \(-0.347338\pi\)
−0.537607 + 0.843196i \(0.680671\pi\)
\(54\) 0 0
\(55\) 164.929i 0.404347i
\(56\) 0 0
\(57\) −509.251 + 508.078i −1.18337 + 1.18064i
\(58\) 0 0
\(59\) −127.350 + 220.577i −0.281010 + 0.486723i −0.971634 0.236491i \(-0.924003\pi\)
0.690624 + 0.723214i \(0.257336\pi\)
\(60\) 0 0
\(61\) −29.2617 + 16.8943i −0.0614193 + 0.0354605i −0.530395 0.847751i \(-0.677956\pi\)
0.468976 + 0.883211i \(0.344623\pi\)
\(62\) 0 0
\(63\) −165.104 472.004i −0.330178 0.943919i
\(64\) 0 0
\(65\) 71.4787 41.2683i 0.136398 0.0787492i
\(66\) 0 0
\(67\) −87.9473 + 152.329i −0.160365 + 0.277761i −0.935000 0.354648i \(-0.884601\pi\)
0.774634 + 0.632409i \(0.217934\pi\)
\(68\) 0 0
\(69\) 2.30007 2.29477i 0.00401298 0.00400373i
\(70\) 0 0
\(71\) 626.114i 1.04656i −0.852160 0.523282i \(-0.824708\pi\)
0.852160 0.523282i \(-0.175292\pi\)
\(72\) 0 0
\(73\) 189.125 + 109.191i 0.303225 + 0.175067i 0.643891 0.765118i \(-0.277319\pi\)
−0.340666 + 0.940184i \(0.610653\pi\)
\(74\) 0 0
\(75\) 137.574 511.076i 0.211810 0.786853i
\(76\) 0 0
\(77\) 413.113 482.187i 0.611410 0.713641i
\(78\) 0 0
\(79\) 263.456 + 456.319i 0.375204 + 0.649873i 0.990358 0.138535i \(-0.0442393\pi\)
−0.615153 + 0.788407i \(0.710906\pi\)
\(80\) 0 0
\(81\) 367.409 629.644i 0.503990 0.863709i
\(82\) 0 0
\(83\) 370.957 0.490576 0.245288 0.969450i \(-0.421118\pi\)
0.245288 + 0.969450i \(0.421118\pi\)
\(84\) 0 0
\(85\) −485.653 −0.619723
\(86\) 0 0
\(87\) −298.571 1119.44i −0.367932 1.37951i
\(88\) 0 0
\(89\) 412.449 + 714.383i 0.491231 + 0.850837i 0.999949 0.0100964i \(-0.00321383\pi\)
−0.508718 + 0.860933i \(0.669880\pi\)
\(90\) 0 0
\(91\) 312.343 + 58.3872i 0.359807 + 0.0672598i
\(92\) 0 0
\(93\) −1435.97 386.543i −1.60111 0.430996i
\(94\) 0 0
\(95\) 576.764 + 332.995i 0.622892 + 0.359627i
\(96\) 0 0
\(97\) 1309.69i 1.37092i 0.728112 + 0.685458i \(0.240398\pi\)
−0.728112 + 0.685458i \(0.759602\pi\)
\(98\) 0 0
\(99\) 925.674 + 2.13549i 0.939734 + 0.00216793i
\(100\) 0 0
\(101\) 755.381 1308.36i 0.744190 1.28898i −0.206382 0.978472i \(-0.566169\pi\)
0.950572 0.310504i \(-0.100498\pi\)
\(102\) 0 0
\(103\) −173.735 + 100.306i −0.166200 + 0.0959555i −0.580793 0.814052i \(-0.697257\pi\)
0.414593 + 0.910007i \(0.363924\pi\)
\(104\) 0 0
\(105\) −382.232 + 261.188i −0.355257 + 0.242755i
\(106\) 0 0
\(107\) −1285.76 + 742.335i −1.16168 + 0.670694i −0.951705 0.307014i \(-0.900670\pi\)
−0.209971 + 0.977708i \(0.567337\pi\)
\(108\) 0 0
\(109\) 232.948 403.477i 0.204700 0.354552i −0.745337 0.666688i \(-0.767711\pi\)
0.950037 + 0.312137i \(0.101045\pi\)
\(110\) 0 0
\(111\) 67.4689 + 67.6247i 0.0576925 + 0.0578257i
\(112\) 0 0
\(113\) 454.340i 0.378237i 0.981954 + 0.189118i \(0.0605630\pi\)
−0.981954 + 0.189118i \(0.939437\pi\)
\(114\) 0 0
\(115\) −2.60499 1.50399i −0.00211232 0.00121955i
\(116\) 0 0
\(117\) 230.695 + 401.712i 0.182288 + 0.317421i
\(118\) 0 0
\(119\) −1419.86 1216.46i −1.09376 0.937080i
\(120\) 0 0
\(121\) −77.7935 134.742i −0.0584474 0.101234i
\(122\) 0 0
\(123\) 1103.29 294.262i 0.808783 0.215713i
\(124\) 0 0
\(125\) −1091.33 −0.780892
\(126\) 0 0
\(127\) −80.7459 −0.0564176 −0.0282088 0.999602i \(-0.508980\pi\)
−0.0282088 + 0.999602i \(0.508980\pi\)
\(128\) 0 0
\(129\) 1860.11 496.115i 1.26956 0.338608i
\(130\) 0 0
\(131\) 1105.17 + 1914.22i 0.737095 + 1.27669i 0.953798 + 0.300449i \(0.0971364\pi\)
−0.216703 + 0.976238i \(0.569530\pi\)
\(132\) 0 0
\(133\) 852.145 + 2418.21i 0.555567 + 1.57658i
\(134\) 0 0
\(135\) −651.308 176.935i −0.415227 0.112801i
\(136\) 0 0
\(137\) −1820.47 1051.05i −1.13528 0.655453i −0.190021 0.981780i \(-0.560856\pi\)
−0.945257 + 0.326327i \(0.894189\pi\)
\(138\) 0 0
\(139\) 3004.00i 1.83306i 0.399964 + 0.916531i \(0.369023\pi\)
−0.399964 + 0.916531i \(0.630977\pi\)
\(140\) 0 0
\(141\) 1050.10 + 1052.53i 0.627195 + 0.628643i
\(142\) 0 0
\(143\) −294.109 + 509.412i −0.171991 + 0.297896i
\(144\) 0 0
\(145\) −928.915 + 536.309i −0.532015 + 0.307159i
\(146\) 0 0
\(147\) −1771.71 193.802i −0.994070 0.108738i
\(148\) 0 0
\(149\) −1109.66 + 640.661i −0.610112 + 0.352248i −0.773009 0.634395i \(-0.781249\pi\)
0.162897 + 0.986643i \(0.447916\pi\)
\(150\) 0 0
\(151\) −1652.35 + 2861.96i −0.890507 + 1.54240i −0.0512388 + 0.998686i \(0.516317\pi\)
−0.839268 + 0.543717i \(0.817016\pi\)
\(152\) 0 0
\(153\) 6.28820 2725.75i 0.00332269 1.44029i
\(154\) 0 0
\(155\) 1376.76i 0.713444i
\(156\) 0 0
\(157\) 2268.13 + 1309.50i 1.15297 + 0.665667i 0.949609 0.313437i \(-0.101480\pi\)
0.203361 + 0.979104i \(0.434814\pi\)
\(158\) 0 0
\(159\) −170.303 45.8432i −0.0849429 0.0228654i
\(160\) 0 0
\(161\) −3.84877 10.9220i −0.00188401 0.00534643i
\(162\) 0 0
\(163\) 674.516 + 1168.30i 0.324124 + 0.561399i 0.981335 0.192308i \(-0.0615973\pi\)
−0.657211 + 0.753707i \(0.728264\pi\)
\(164\) 0 0
\(165\) −220.852 828.052i −0.104202 0.390689i
\(166\) 0 0
\(167\) −2768.59 −1.28287 −0.641437 0.767175i \(-0.721662\pi\)
−0.641437 + 0.767175i \(0.721662\pi\)
\(168\) 0 0
\(169\) 1902.63 0.866015
\(170\) 0 0
\(171\) −1876.42 + 3232.80i −0.839142 + 1.44572i
\(172\) 0 0
\(173\) 635.218 + 1100.23i 0.279160 + 0.483520i 0.971176 0.238362i \(-0.0766106\pi\)
−0.692016 + 0.721882i \(0.743277\pi\)
\(174\) 0 0
\(175\) −1432.57 1227.35i −0.618810 0.530164i
\(176\) 0 0
\(177\) −344.011 + 1277.97i −0.146087 + 0.542701i
\(178\) 0 0
\(179\) 1763.39 + 1018.09i 0.736323 + 0.425116i 0.820731 0.571315i \(-0.193566\pi\)
−0.0844077 + 0.996431i \(0.526900\pi\)
\(180\) 0 0
\(181\) 1402.45i 0.575931i 0.957641 + 0.287965i \(0.0929788\pi\)
−0.957641 + 0.287965i \(0.907021\pi\)
\(182\) 0 0
\(183\) −124.290 + 124.004i −0.0502065 + 0.0500908i
\(184\) 0 0
\(185\) 44.2192 76.5899i 0.0175733 0.0304378i
\(186\) 0 0
\(187\) 2997.43 1730.57i 1.17216 0.676747i
\(188\) 0 0
\(189\) −1460.98 2148.68i −0.562278 0.826948i
\(190\) 0 0
\(191\) 3511.17 2027.17i 1.33015 0.767964i 0.344831 0.938665i \(-0.387936\pi\)
0.985323 + 0.170701i \(0.0546031\pi\)
\(192\) 0 0
\(193\) 872.281 1510.83i 0.325327 0.563483i −0.656251 0.754542i \(-0.727859\pi\)
0.981579 + 0.191059i \(0.0611922\pi\)
\(194\) 0 0
\(195\) 303.608 302.908i 0.111497 0.111240i
\(196\) 0 0
\(197\) 5061.13i 1.83041i 0.402989 + 0.915205i \(0.367971\pi\)
−0.402989 + 0.915205i \(0.632029\pi\)
\(198\) 0 0
\(199\) −1274.50 735.834i −0.454005 0.262120i 0.255515 0.966805i \(-0.417755\pi\)
−0.709520 + 0.704685i \(0.751088\pi\)
\(200\) 0 0
\(201\) −237.572 + 882.559i −0.0833685 + 0.309706i
\(202\) 0 0
\(203\) −4059.11 758.781i −1.40342 0.262345i
\(204\) 0 0
\(205\) −528.570 915.511i −0.180083 0.311912i
\(206\) 0 0
\(207\) 8.47496 14.6012i 0.00284565 0.00490266i
\(208\) 0 0
\(209\) −4746.35 −1.57087
\(210\) 0 0
\(211\) 5010.62 1.63481 0.817406 0.576063i \(-0.195412\pi\)
0.817406 + 0.576063i \(0.195412\pi\)
\(212\) 0 0
\(213\) −838.412 3143.49i −0.269704 1.01121i
\(214\) 0 0
\(215\) −891.150 1543.52i −0.282679 0.489614i
\(216\) 0 0
\(217\) −3448.48 + 4025.09i −1.07879 + 1.25917i
\(218\) 0 0
\(219\) 1095.74 + 294.959i 0.338098 + 0.0910113i
\(220\) 0 0
\(221\) 1500.02 + 866.039i 0.456572 + 0.263602i
\(222\) 0 0
\(223\) 4398.14i 1.32072i 0.750948 + 0.660361i \(0.229597\pi\)
−0.750948 + 0.660361i \(0.770403\pi\)
\(224\) 0 0
\(225\) 6.34449 2750.15i 0.00187985 0.814860i
\(226\) 0 0
\(227\) 2060.25 3568.45i 0.602393 1.04338i −0.390064 0.920788i \(-0.627547\pi\)
0.992458 0.122588i \(-0.0391195\pi\)
\(228\) 0 0
\(229\) −453.529 + 261.845i −0.130874 + 0.0755600i −0.564007 0.825770i \(-0.690741\pi\)
0.433134 + 0.901330i \(0.357408\pi\)
\(230\) 0 0
\(231\) 1428.41 2974.08i 0.406850 0.847100i
\(232\) 0 0
\(233\) 4090.17 2361.46i 1.15003 0.663968i 0.201133 0.979564i \(-0.435538\pi\)
0.948894 + 0.315596i \(0.102204\pi\)
\(234\) 0 0
\(235\) 688.237 1192.06i 0.191045 0.330900i
\(236\) 0 0
\(237\) 1933.76 + 1938.23i 0.530006 + 0.531230i
\(238\) 0 0
\(239\) 7159.06i 1.93758i −0.247886 0.968789i \(-0.579736\pi\)
0.247886 0.968789i \(-0.420264\pi\)
\(240\) 0 0
\(241\) −2440.67 1409.12i −0.652355 0.376637i 0.137003 0.990571i \(-0.456253\pi\)
−0.789358 + 0.613933i \(0.789586\pi\)
\(242\) 0 0
\(243\) 1001.49 3653.21i 0.264386 0.964417i
\(244\) 0 0
\(245\) 253.103 + 1630.52i 0.0660006 + 0.425184i
\(246\) 0 0
\(247\) −1187.62 2057.02i −0.305938 0.529900i
\(248\) 0 0
\(249\) 1862.44 496.738i 0.474006 0.126424i
\(250\) 0 0
\(251\) 2431.43 0.611437 0.305719 0.952122i \(-0.401103\pi\)
0.305719 + 0.952122i \(0.401103\pi\)
\(252\) 0 0
\(253\) 21.4372 0.00532706
\(254\) 0 0
\(255\) −2438.29 + 650.325i −0.598791 + 0.159706i
\(256\) 0 0
\(257\) −665.134 1152.05i −0.161439 0.279621i 0.773946 0.633252i \(-0.218280\pi\)
−0.935385 + 0.353631i \(0.884947\pi\)
\(258\) 0 0
\(259\) 321.121 113.158i 0.0770404 0.0271480i
\(260\) 0 0
\(261\) −2998.03 5220.52i −0.711010 1.23809i
\(262\) 0 0
\(263\) 3964.07 + 2288.66i 0.929411 + 0.536596i 0.886625 0.462489i \(-0.153043\pi\)
0.0427856 + 0.999084i \(0.486377\pi\)
\(264\) 0 0
\(265\) 163.280i 0.0378499i
\(266\) 0 0
\(267\) 3027.37 + 3034.37i 0.693903 + 0.695506i
\(268\) 0 0
\(269\) 519.041 899.006i 0.117645 0.203767i −0.801189 0.598411i \(-0.795799\pi\)
0.918834 + 0.394644i \(0.129132\pi\)
\(270\) 0 0
\(271\) −3895.37 + 2249.00i −0.873163 + 0.504121i −0.868398 0.495868i \(-0.834850\pi\)
−0.00476491 + 0.999989i \(0.501517\pi\)
\(272\) 0 0
\(273\) 1646.35 125.109i 0.364988 0.0277361i
\(274\) 0 0
\(275\) 3024.27 1746.06i 0.663164 0.382878i
\(276\) 0 0
\(277\) −315.706 + 546.820i −0.0684800 + 0.118611i −0.898232 0.439521i \(-0.855148\pi\)
0.829752 + 0.558132i \(0.188482\pi\)
\(278\) 0 0
\(279\) −7727.11 17.8261i −1.65810 0.00382517i
\(280\) 0 0
\(281\) 5539.62i 1.17604i 0.808848 + 0.588018i \(0.200092\pi\)
−0.808848 + 0.588018i \(0.799908\pi\)
\(282\) 0 0
\(283\) −3676.15 2122.43i −0.772171 0.445813i 0.0614774 0.998108i \(-0.480419\pi\)
−0.833649 + 0.552295i \(0.813752\pi\)
\(284\) 0 0
\(285\) 3341.63 + 899.520i 0.694530 + 0.186958i
\(286\) 0 0
\(287\) 747.832 4000.54i 0.153809 0.822803i
\(288\) 0 0
\(289\) −2639.36 4571.51i −0.537220 0.930492i
\(290\) 0 0
\(291\) 1753.77 + 6575.49i 0.353292 + 1.32461i
\(292\) 0 0
\(293\) −1973.35 −0.393462 −0.196731 0.980458i \(-0.563033\pi\)
−0.196731 + 0.980458i \(0.563033\pi\)
\(294\) 0 0
\(295\) 1225.27 0.241824
\(296\) 0 0
\(297\) 4650.34 1228.82i 0.908552 0.240079i
\(298\) 0 0
\(299\) 5.36397 + 9.29068i 0.00103748 + 0.00179697i
\(300\) 0 0
\(301\) 1260.82 6744.77i 0.241436 1.29157i
\(302\) 0 0
\(303\) 2040.51 7580.32i 0.386879 1.43722i
\(304\) 0 0
\(305\) 140.768 + 81.2722i 0.0264273 + 0.0152578i
\(306\) 0 0
\(307\) 2596.86i 0.482771i −0.970429 0.241385i \(-0.922398\pi\)
0.970429 0.241385i \(-0.0776018\pi\)
\(308\) 0 0
\(309\) −737.943 + 736.242i −0.135858 + 0.135545i
\(310\) 0 0
\(311\) −162.730 + 281.857i −0.0296706 + 0.0513910i −0.880479 0.474084i \(-0.842779\pi\)
0.850809 + 0.525475i \(0.176113\pi\)
\(312\) 0 0
\(313\) 554.704 320.259i 0.100172 0.0578342i −0.449077 0.893493i \(-0.648247\pi\)
0.549249 + 0.835659i \(0.314914\pi\)
\(314\) 0 0
\(315\) −1569.30 + 1823.17i −0.280699 + 0.326107i
\(316\) 0 0
\(317\) 6616.35 3819.95i 1.17228 0.676814i 0.218060 0.975935i \(-0.430027\pi\)
0.954215 + 0.299122i \(0.0966937\pi\)
\(318\) 0 0
\(319\) 3822.15 6620.16i 0.670845 1.16194i
\(320\) 0 0
\(321\) −5461.32 + 5448.73i −0.949598 + 0.947410i
\(322\) 0 0
\(323\) 13976.2i 2.40760i
\(324\) 0 0
\(325\) 1513.45 + 873.791i 0.258311 + 0.149136i
\(326\) 0 0
\(327\) 629.263 2337.65i 0.106417 0.395328i
\(328\) 0 0
\(329\) 4997.99 1761.22i 0.837533 0.295135i
\(330\) 0 0
\(331\) −2458.08 4257.53i −0.408183 0.706993i 0.586503 0.809947i \(-0.300504\pi\)
−0.994686 + 0.102953i \(0.967171\pi\)
\(332\) 0 0
\(333\) 429.292 + 249.174i 0.0706458 + 0.0410050i
\(334\) 0 0
\(335\) 846.165 0.138003
\(336\) 0 0
\(337\) −5086.79 −0.822240 −0.411120 0.911581i \(-0.634862\pi\)
−0.411120 + 0.911581i \(0.634862\pi\)
\(338\) 0 0
\(339\) 608.395 + 2281.08i 0.0974734 + 0.365461i
\(340\) 0 0
\(341\) −4905.91 8497.29i −0.779091 1.34943i
\(342\) 0 0
\(343\) −3344.14 + 5400.96i −0.526433 + 0.850217i
\(344\) 0 0
\(345\) −15.0927 4.06274i −0.00235526 0.000634002i
\(346\) 0 0
\(347\) −5183.76 2992.84i −0.801956 0.463009i 0.0421990 0.999109i \(-0.486564\pi\)
−0.844154 + 0.536100i \(0.819897\pi\)
\(348\) 0 0
\(349\) 4392.81i 0.673759i 0.941548 + 0.336879i \(0.109371\pi\)
−0.941548 + 0.336879i \(0.890629\pi\)
\(350\) 0 0
\(351\) 1696.16 + 1707.94i 0.257932 + 0.259723i
\(352\) 0 0
\(353\) −4415.94 + 7648.63i −0.665826 + 1.15324i 0.313234 + 0.949676i \(0.398587\pi\)
−0.979061 + 0.203569i \(0.934746\pi\)
\(354\) 0 0
\(355\) −2608.47 + 1506.00i −0.389981 + 0.225156i
\(356\) 0 0
\(357\) −8757.52 4206.12i −1.29831 0.623561i
\(358\) 0 0
\(359\) −5040.82 + 2910.32i −0.741070 + 0.427857i −0.822458 0.568825i \(-0.807398\pi\)
0.0813881 + 0.996682i \(0.474065\pi\)
\(360\) 0 0
\(361\) 6153.46 10658.1i 0.897137 1.55389i
\(362\) 0 0
\(363\) −571.003 572.322i −0.0825617 0.0827524i
\(364\) 0 0
\(365\) 1050.56i 0.150654i
\(366\) 0 0
\(367\) −6166.91 3560.47i −0.877140 0.506417i −0.00742533 0.999972i \(-0.502364\pi\)
−0.869714 + 0.493556i \(0.835697\pi\)
\(368\) 0 0
\(369\) 5145.19 2954.77i 0.725875 0.416854i
\(370\) 0 0
\(371\) −408.983 + 477.366i −0.0572327 + 0.0668022i
\(372\) 0 0
\(373\) 3073.51 + 5323.47i 0.426649 + 0.738978i 0.996573 0.0827194i \(-0.0263605\pi\)
−0.569924 + 0.821698i \(0.693027\pi\)
\(374\) 0 0
\(375\) −5479.18 + 1461.37i −0.754517 + 0.201240i
\(376\) 0 0
\(377\) 3825.48 0.522606
\(378\) 0 0
\(379\) 17.4452 0.00236438 0.00118219 0.999999i \(-0.499624\pi\)
0.00118219 + 0.999999i \(0.499624\pi\)
\(380\) 0 0
\(381\) −405.397 + 108.125i −0.0545121 + 0.0145391i
\(382\) 0 0
\(383\) 5669.44 + 9819.75i 0.756383 + 1.31009i 0.944684 + 0.327982i \(0.106369\pi\)
−0.188301 + 0.982111i \(0.560298\pi\)
\(384\) 0 0
\(385\) −3002.52 561.270i −0.397462 0.0742986i
\(386\) 0 0
\(387\) 8674.60 4981.64i 1.13942 0.654343i
\(388\) 0 0
\(389\) −8129.57 4693.61i −1.05960 0.611762i −0.134281 0.990943i \(-0.542872\pi\)
−0.925322 + 0.379181i \(0.876206\pi\)
\(390\) 0 0
\(391\) 63.1244i 0.00816454i
\(392\) 0 0
\(393\) 8111.96 + 8130.70i 1.04121 + 1.04361i
\(394\) 0 0
\(395\) 1267.39 2195.19i 0.161441 0.279625i
\(396\) 0 0
\(397\) 3253.52 1878.42i 0.411308 0.237469i −0.280044 0.959987i \(-0.590349\pi\)
0.691352 + 0.722518i \(0.257016\pi\)
\(398\) 0 0
\(399\) 7516.48 + 10999.9i 0.943095 + 1.38016i
\(400\) 0 0
\(401\) 13062.8 7541.80i 1.62674 0.939201i 0.641688 0.766966i \(-0.278234\pi\)
0.985056 0.172235i \(-0.0550989\pi\)
\(402\) 0 0
\(403\) 2455.09 4252.35i 0.303466 0.525619i
\(404\) 0 0
\(405\) −3506.92 16.1807i −0.430272 0.00198525i
\(406\) 0 0
\(407\) 630.280i 0.0767613i
\(408\) 0 0
\(409\) −6394.77 3692.02i −0.773108 0.446354i 0.0608743 0.998145i \(-0.480611\pi\)
−0.833982 + 0.551791i \(0.813944\pi\)
\(410\) 0 0
\(411\) −10547.4 2839.20i −1.26585 0.340748i
\(412\) 0 0
\(413\) 3582.20 + 3069.04i 0.426800 + 0.365660i
\(414\) 0 0
\(415\) −892.269 1545.45i −0.105542 0.182803i
\(416\) 0 0
\(417\) 4022.57 + 15082.0i 0.472389 + 1.77115i
\(418\) 0 0
\(419\) −8290.31 −0.966606 −0.483303 0.875453i \(-0.660563\pi\)
−0.483303 + 0.875453i \(0.660563\pi\)
\(420\) 0 0
\(421\) 16466.8 1.90628 0.953140 0.302530i \(-0.0978314\pi\)
0.953140 + 0.302530i \(0.0978314\pi\)
\(422\) 0 0
\(423\) 6681.60 + 3878.20i 0.768015 + 0.445779i
\(424\) 0 0
\(425\) −5141.48 8905.30i −0.586820 1.01640i
\(426\) 0 0
\(427\) 207.978 + 590.200i 0.0235709 + 0.0668894i
\(428\) 0 0
\(429\) −794.479 + 2951.41i −0.0894121 + 0.332157i
\(430\) 0 0
\(431\) −1705.81 984.849i −0.190640 0.110066i 0.401642 0.915797i \(-0.368440\pi\)
−0.592282 + 0.805731i \(0.701773\pi\)
\(432\) 0 0
\(433\) 7664.99i 0.850706i 0.905027 + 0.425353i \(0.139850\pi\)
−0.905027 + 0.425353i \(0.860150\pi\)
\(434\) 0 0
\(435\) −3945.59 + 3936.50i −0.434889 + 0.433887i
\(436\) 0 0
\(437\) −43.2821 + 74.9668i −0.00473790 + 0.00820628i
\(438\) 0 0
\(439\) 6629.12 3827.33i 0.720708 0.416101i −0.0943054 0.995543i \(-0.530063\pi\)
0.815013 + 0.579442i \(0.196730\pi\)
\(440\) 0 0
\(441\) −9154.65 + 1399.44i −0.988517 + 0.151111i
\(442\) 0 0
\(443\) 2595.85 1498.71i 0.278403 0.160736i −0.354297 0.935133i \(-0.615280\pi\)
0.632700 + 0.774397i \(0.281947\pi\)
\(444\) 0 0
\(445\) 1984.14 3436.64i 0.211365 0.366095i
\(446\) 0 0
\(447\) −4713.31 + 4702.45i −0.498729 + 0.497579i
\(448\) 0 0
\(449\) 1889.58i 0.198608i −0.995057 0.0993039i \(-0.968338\pi\)
0.995057 0.0993039i \(-0.0316616\pi\)
\(450\) 0 0
\(451\) 6524.63 + 3767.00i 0.681226 + 0.393306i
\(452\) 0 0
\(453\) −4463.51 + 16581.5i −0.462945 + 1.71979i
\(454\) 0 0
\(455\) −508.036 1441.70i −0.0523453 0.148545i
\(456\) 0 0
\(457\) −4738.58 8207.46i −0.485036 0.840107i 0.514816 0.857300i \(-0.327860\pi\)
−0.999852 + 0.0171938i \(0.994527\pi\)
\(458\) 0 0
\(459\) −3618.41 13693.5i −0.367958 1.39250i
\(460\) 0 0
\(461\) −18908.7 −1.91034 −0.955171 0.296054i \(-0.904329\pi\)
−0.955171 + 0.296054i \(0.904329\pi\)
\(462\) 0 0
\(463\) 12725.2 1.27730 0.638649 0.769499i \(-0.279494\pi\)
0.638649 + 0.769499i \(0.279494\pi\)
\(464\) 0 0
\(465\) 1843.58 + 6912.21i 0.183858 + 0.689346i
\(466\) 0 0
\(467\) −3585.52 6210.31i −0.355285 0.615372i 0.631881 0.775065i \(-0.282283\pi\)
−0.987167 + 0.159693i \(0.948950\pi\)
\(468\) 0 0
\(469\) 2473.85 + 2119.46i 0.243564 + 0.208673i
\(470\) 0 0
\(471\) 13141.0 + 3537.37i 1.28557 + 0.346058i
\(472\) 0 0
\(473\) 11000.3 + 6351.02i 1.06933 + 0.617379i
\(474\) 0 0
\(475\) 14101.3i 1.36213i
\(476\) 0 0
\(477\) −916.419 2.11414i −0.0879663 0.000202935i
\(478\) 0 0
\(479\) 1113.31 1928.31i 0.106197 0.183939i −0.808029 0.589142i \(-0.799466\pi\)
0.914227 + 0.405203i \(0.132799\pi\)
\(480\) 0 0
\(481\) −273.157 + 157.707i −0.0258938 + 0.0149498i
\(482\) 0 0
\(483\) −33.9487 49.6818i −0.00319818 0.00468033i
\(484\) 0 0
\(485\) 5456.34 3150.22i 0.510845 0.294936i
\(486\) 0 0
\(487\) 7511.82 13010.8i 0.698959 1.21063i −0.269869 0.962897i \(-0.586980\pi\)
0.968828 0.247735i \(-0.0796862\pi\)
\(488\) 0 0
\(489\) 4950.94 + 4962.37i 0.457851 + 0.458908i
\(490\) 0 0
\(491\) 8830.77i 0.811664i 0.913948 + 0.405832i \(0.133018\pi\)
−0.913948 + 0.405832i \(0.866982\pi\)
\(492\) 0 0
\(493\) −19493.8 11254.8i −1.78085 1.02817i
\(494\) 0 0
\(495\) −2217.64 3861.62i −0.201365 0.350640i
\(496\) 0 0
\(497\) −11398.3 2130.72i −1.02874 0.192306i
\(498\) 0 0
\(499\) −4290.57 7431.48i −0.384914 0.666691i 0.606843 0.794822i \(-0.292436\pi\)
−0.991757 + 0.128131i \(0.959102\pi\)
\(500\) 0 0
\(501\) −13900.1 + 3707.35i −1.23954 + 0.330603i
\(502\) 0 0
\(503\) −13816.4 −1.22474 −0.612369 0.790572i \(-0.709783\pi\)
−0.612369 + 0.790572i \(0.709783\pi\)
\(504\) 0 0
\(505\) −7267.73 −0.640415
\(506\) 0 0
\(507\) 9552.45 2547.77i 0.836764 0.223176i
\(508\) 0 0
\(509\) 4853.13 + 8405.87i 0.422616 + 0.731992i 0.996194 0.0871587i \(-0.0277787\pi\)
−0.573579 + 0.819150i \(0.694445\pi\)
\(510\) 0 0
\(511\) 2631.43 3071.41i 0.227803 0.265893i
\(512\) 0 0
\(513\) −5091.87 + 18743.4i −0.438229 + 1.61314i
\(514\) 0 0
\(515\) 835.774 + 482.534i 0.0715118 + 0.0412874i
\(516\) 0 0
\(517\) 9809.82i 0.834498i
\(518\) 0 0
\(519\) 4662.49 + 4673.26i 0.394336 + 0.395247i
\(520\) 0 0
\(521\) −9930.86 + 17200.7i −0.835084 + 1.44641i 0.0588781 + 0.998265i \(0.481248\pi\)
−0.893962 + 0.448143i \(0.852086\pi\)
\(522\) 0 0
\(523\) −3046.39 + 1758.83i −0.254702 + 0.147052i −0.621915 0.783084i \(-0.713645\pi\)
0.367213 + 0.930137i \(0.380312\pi\)
\(524\) 0 0
\(525\) −8835.91 4243.77i −0.734535 0.352787i
\(526\) 0 0
\(527\) −25021.3 + 14446.0i −2.06820 + 1.19408i
\(528\) 0 0
\(529\) −6083.30 + 10536.6i −0.499984 + 0.865998i
\(530\) 0 0
\(531\) −15.8647 + 6876.88i −0.00129655 + 0.562018i
\(532\) 0 0
\(533\) 3770.28i 0.306396i
\(534\) 0 0
\(535\) 6185.34 + 3571.11i 0.499842 + 0.288584i
\(536\) 0 0
\(537\) 10216.7 + 2750.18i 0.821008 + 0.221004i
\(538\) 0 0
\(539\) −7372.31 9161.61i −0.589143 0.732131i
\(540\) 0 0
\(541\) 1477.08 + 2558.37i 0.117383 + 0.203314i 0.918730 0.394886i \(-0.129216\pi\)
−0.801347 + 0.598200i \(0.795883\pi\)
\(542\) 0 0
\(543\) 1877.99 + 7041.21i 0.148420 + 0.556478i
\(544\) 0 0
\(545\) −2241.25 −0.176156
\(546\) 0 0
\(547\) −19117.2 −1.49432 −0.747159 0.664645i \(-0.768583\pi\)
−0.747159 + 0.664645i \(0.768583\pi\)
\(548\) 0 0
\(549\) −457.967 + 789.012i −0.0356021 + 0.0613374i
\(550\) 0 0
\(551\) 15434.0 + 26732.4i 1.19330 + 2.06686i
\(552\) 0 0
\(553\) 9203.82 3243.30i 0.707751 0.249402i
\(554\) 0 0
\(555\) 119.449 443.744i 0.00913576 0.0339385i
\(556\) 0 0
\(557\) 21330.1 + 12315.0i 1.62260 + 0.936806i 0.986222 + 0.165426i \(0.0528999\pi\)
0.636374 + 0.771381i \(0.280433\pi\)
\(558\) 0 0
\(559\) 6356.55i 0.480955i
\(560\) 0 0
\(561\) 12731.7 12702.4i 0.958169 0.955961i
\(562\) 0 0
\(563\) 8786.67 15219.0i 0.657751 1.13926i −0.323445 0.946247i \(-0.604841\pi\)
0.981197 0.193011i \(-0.0618254\pi\)
\(564\) 0 0
\(565\) 1892.84 1092.83i 0.140942 0.0813732i
\(566\) 0 0
\(567\) −10212.3 8831.39i −0.756395 0.654115i
\(568\) 0 0
\(569\) −1590.17 + 918.088i −0.117159 + 0.0676419i −0.557434 0.830221i \(-0.688214\pi\)
0.440275 + 0.897863i \(0.354881\pi\)
\(570\) 0 0
\(571\) 707.209 1224.92i 0.0518315 0.0897748i −0.838946 0.544215i \(-0.816827\pi\)
0.890777 + 0.454441i \(0.150161\pi\)
\(572\) 0 0
\(573\) 14913.8 14879.4i 1.08732 1.08481i
\(574\) 0 0
\(575\) 63.6894i 0.00461919i
\(576\) 0 0
\(577\) −10844.9 6261.33i −0.782463 0.451755i 0.0548397 0.998495i \(-0.482535\pi\)
−0.837302 + 0.546740i \(0.815869\pi\)
\(578\) 0 0
\(579\) 2356.30 8753.41i 0.169127 0.628289i
\(580\) 0 0
\(581\) 1262.40 6753.23i 0.0901432 0.482223i
\(582\) 0 0
\(583\) −581.831 1007.76i −0.0413327 0.0715904i
\(584\) 0 0
\(585\) 1118.69 1927.35i 0.0790636 0.136216i
\(586\) 0 0
\(587\) 18045.5 1.26885 0.634426 0.772983i \(-0.281236\pi\)
0.634426 + 0.772983i \(0.281236\pi\)
\(588\) 0 0
\(589\) 39620.5 2.77170
\(590\) 0 0
\(591\) 6777.22 + 25410.2i 0.471705 + 1.76859i
\(592\) 0 0
\(593\) −9283.24 16079.0i −0.642861 1.11347i −0.984791 0.173743i \(-0.944414\pi\)
0.341930 0.939726i \(-0.388920\pi\)
\(594\) 0 0
\(595\) −1652.72 + 8841.28i −0.113874 + 0.609171i
\(596\) 0 0
\(597\) −7384.16 1987.71i −0.506220 0.136267i
\(598\) 0 0
\(599\) 4258.02 + 2458.37i 0.290447 + 0.167690i 0.638143 0.769917i \(-0.279703\pi\)
−0.347696 + 0.937607i \(0.613036\pi\)
\(600\) 0 0
\(601\) 16157.9i 1.09666i −0.836262 0.548330i \(-0.815264\pi\)
0.836262 0.548330i \(-0.184736\pi\)
\(602\) 0 0
\(603\) −10.9561 + 4749.14i −0.000739910 + 0.320730i
\(604\) 0 0
\(605\) −374.236 + 648.196i −0.0251485 + 0.0435585i
\(606\) 0 0
\(607\) 9043.22 5221.10i 0.604700 0.349124i −0.166188 0.986094i \(-0.553146\pi\)
0.770888 + 0.636970i \(0.219813\pi\)
\(608\) 0 0
\(609\) −21395.4 + 1625.88i −1.42362 + 0.108184i
\(610\) 0 0
\(611\) −4251.48 + 2454.59i −0.281500 + 0.162524i
\(612\) 0 0
\(613\) −5235.58 + 9068.30i −0.344965 + 0.597496i −0.985347 0.170560i \(-0.945442\pi\)
0.640383 + 0.768056i \(0.278776\pi\)
\(614\) 0 0
\(615\) −3879.70 3888.66i −0.254381 0.254969i
\(616\) 0 0
\(617\) 7308.93i 0.476899i −0.971155 0.238449i \(-0.923361\pi\)
0.971155 0.238449i \(-0.0766391\pi\)
\(618\) 0 0
\(619\) −14616.4 8438.76i −0.949082 0.547953i −0.0562861 0.998415i \(-0.517926\pi\)
−0.892796 + 0.450462i \(0.851259\pi\)
\(620\) 0 0
\(621\) 22.9977 84.6559i 0.00148610 0.00547041i
\(622\) 0 0
\(623\) 14408.9 5077.49i 0.926613 0.326526i
\(624\) 0 0
\(625\) −3741.11 6479.80i −0.239431 0.414707i
\(626\) 0 0
\(627\) −23829.8 + 6355.71i −1.51781 + 0.404821i
\(628\) 0 0
\(629\) 1855.93 0.117648
\(630\) 0 0
\(631\) −27123.5 −1.71120 −0.855601 0.517635i \(-0.826812\pi\)
−0.855601 + 0.517635i \(0.826812\pi\)
\(632\) 0 0
\(633\) 25156.5 6709.58i 1.57959 0.421299i
\(634\) 0 0
\(635\) 194.220 + 336.398i 0.0121376 + 0.0210229i
\(636\) 0 0
\(637\) 2125.87 5487.49i 0.132229 0.341322i
\(638\) 0 0
\(639\) −8418.74 14659.7i −0.521190 0.907555i
\(640\) 0 0
\(641\) −3189.14 1841.25i −0.196511 0.113455i 0.398516 0.917161i \(-0.369525\pi\)
−0.595027 + 0.803706i \(0.702859\pi\)
\(642\) 0 0
\(643\) 14488.3i 0.888588i −0.895881 0.444294i \(-0.853454\pi\)
0.895881 0.444294i \(-0.146546\pi\)
\(644\) 0 0
\(645\) −6541.03 6556.14i −0.399307 0.400229i
\(646\) 0 0
\(647\) 6085.96 10541.2i 0.369805 0.640520i −0.619730 0.784815i \(-0.712758\pi\)
0.989535 + 0.144295i \(0.0460913\pi\)
\(648\) 0 0
\(649\) −7562.32 + 4366.11i −0.457391 + 0.264075i
\(650\) 0 0
\(651\) −11923.7 + 24826.3i −0.717862 + 1.49465i
\(652\) 0 0
\(653\) 7276.24 4200.94i 0.436051 0.251754i −0.265870 0.964009i \(-0.585659\pi\)
0.701921 + 0.712255i \(0.252326\pi\)
\(654\) 0 0
\(655\) 5316.59 9208.60i 0.317155 0.549328i
\(656\) 0 0
\(657\) 5896.32 + 13.6026i 0.350133 + 0.000807742i
\(658\) 0 0
\(659\) 9814.94i 0.580175i −0.957000 0.290088i \(-0.906316\pi\)
0.957000 0.290088i \(-0.0936845\pi\)
\(660\) 0 0
\(661\) −1870.41 1079.88i −0.110061 0.0635438i 0.443959 0.896047i \(-0.353574\pi\)
−0.554020 + 0.832503i \(0.686907\pi\)
\(662\) 0 0
\(663\) 8690.77 + 2339.43i 0.509082 + 0.137038i
\(664\) 0 0
\(665\) 8024.92 9366.73i 0.467960 0.546205i
\(666\) 0 0
\(667\) −69.7085 120.739i −0.00404666 0.00700903i
\(668\) 0 0
\(669\) 5889.42 + 22081.5i 0.340356 + 1.27611i
\(670\) 0 0
\(671\) −1158.42 −0.0666470
\(672\) 0 0
\(673\) −14794.4 −0.847372 −0.423686 0.905809i \(-0.639264\pi\)
−0.423686 + 0.905809i \(0.639264\pi\)
\(674\) 0 0
\(675\) −3650.80 13816.0i −0.208177 0.787822i
\(676\) 0 0
\(677\) −5190.37 8989.98i −0.294656 0.510359i 0.680249 0.732981i \(-0.261872\pi\)
−0.974905 + 0.222622i \(0.928538\pi\)
\(678\) 0 0
\(679\) 23842.8 + 4457.00i 1.34757 + 0.251906i
\(680\) 0 0
\(681\) 5565.35 20674.7i 0.313164 1.16337i
\(682\) 0 0
\(683\) 3799.53 + 2193.66i 0.212862 + 0.122896i 0.602641 0.798013i \(-0.294115\pi\)
−0.389779 + 0.920909i \(0.627448\pi\)
\(684\) 0 0
\(685\) 10112.4i 0.564052i
\(686\) 0 0
\(687\) −1926.38 + 1921.94i −0.106981 + 0.106735i
\(688\) 0 0
\(689\) 291.169 504.319i 0.0160996 0.0278854i
\(690\) 0 0
\(691\) −15808.1 + 9126.79i −0.870285 + 0.502459i −0.867443 0.497537i \(-0.834238\pi\)
−0.00284192 + 0.999996i \(0.500905\pi\)
\(692\) 0 0
\(693\) 3189.03 16844.5i 0.174807 0.923335i
\(694\) 0 0
\(695\) 12515.0 7225.57i 0.683054 0.394362i
\(696\) 0 0
\(697\) 11092.4 19212.5i 0.602802 1.04408i
\(698\) 0 0
\(699\) 17373.1 17333.1i 0.940075 0.937909i
\(700\) 0 0
\(701\) 8709.47i 0.469261i 0.972085 + 0.234631i \(0.0753880\pi\)
−0.972085 + 0.234631i \(0.924612\pi\)
\(702\) 0 0
\(703\) −2204.11 1272.55i −0.118250 0.0682716i
\(704\) 0 0
\(705\) 1859.14 6906.52i 0.0993180 0.368957i
\(706\) 0 0
\(707\) −21247.9 18204.1i −1.13028 0.968368i
\(708\) 0 0
\(709\) 9585.59 + 16602.7i 0.507749 + 0.879448i 0.999960 + 0.00897144i \(0.00285574\pi\)
−0.492210 + 0.870476i \(0.663811\pi\)
\(710\) 0 0
\(711\) 12304.2 + 7141.72i 0.649005 + 0.376702i
\(712\) 0 0
\(713\) −178.948 −0.00939926
\(714\) 0 0
\(715\) 2829.71 0.148007
\(716\) 0 0
\(717\) −9586.51 35943.1i −0.499323 1.87213i
\(718\) 0 0
\(719\) 1665.92 + 2885.46i 0.0864094 + 0.149666i 0.905991 0.423297i \(-0.139127\pi\)
−0.819582 + 0.572963i \(0.805794\pi\)
\(720\) 0 0
\(721\) 1234.82 + 3504.17i 0.0637825 + 0.181002i
\(722\) 0 0
\(723\) −14140.7 3806.47i −0.727382 0.195801i
\(724\) 0 0
\(725\) −19668.3 11355.5i −1.00754 0.581701i
\(726\) 0 0
\(727\) 690.120i 0.0352065i −0.999845 0.0176033i \(-0.994396\pi\)
0.999845 0.0176033i \(-0.00560358\pi\)
\(728\) 0 0
\(729\) 136.222 19682.5i 0.00692081 0.999976i
\(730\) 0 0
\(731\) 18701.3 32391.6i 0.946228 1.63892i
\(732\) 0 0
\(733\) 15627.7 9022.68i 0.787482 0.454653i −0.0515936 0.998668i \(-0.516430\pi\)
0.839075 + 0.544015i \(0.183097\pi\)
\(734\) 0 0
\(735\) 3454.13 + 7847.34i 0.173343 + 0.393815i
\(736\) 0 0
\(737\) −5222.50 + 3015.21i −0.261022 + 0.150701i
\(738\) 0 0
\(739\) 9638.45 16694.3i 0.479778 0.831001i −0.519953 0.854195i \(-0.674050\pi\)
0.999731 + 0.0231946i \(0.00738372\pi\)
\(740\) 0 0
\(741\) −8717.14 8737.27i −0.432162 0.433160i
\(742\) 0 0
\(743\) 843.042i 0.0416261i −0.999783 0.0208131i \(-0.993375\pi\)
0.999783 0.0208131i \(-0.00662549\pi\)
\(744\) 0 0
\(745\) 5338.16 + 3081.99i 0.262517 + 0.151564i
\(746\) 0 0
\(747\) 8685.49 4987.89i 0.425416 0.244307i
\(748\) 0 0
\(749\) 9138.58 + 25933.4i 0.445816 + 1.26514i
\(750\) 0 0
\(751\) 11343.3 + 19647.2i 0.551162 + 0.954640i 0.998191 + 0.0601209i \(0.0191486\pi\)
−0.447029 + 0.894519i \(0.647518\pi\)
\(752\) 0 0
\(753\) 12207.4 3255.87i 0.590785 0.157570i
\(754\) 0 0
\(755\) 15897.7 0.766328
\(756\) 0 0
\(757\) −37545.5 −1.80266 −0.901330 0.433133i \(-0.857408\pi\)
−0.901330 + 0.433133i \(0.857408\pi\)
\(758\) 0 0
\(759\) 107.629 28.7060i 0.00514713 0.00137281i
\(760\) 0 0
\(761\) 17635.9 + 30546.3i 0.840080 + 1.45506i 0.889826 + 0.456300i \(0.150826\pi\)
−0.0497457 + 0.998762i \(0.515841\pi\)
\(762\) 0 0
\(763\) −6552.53 5613.87i −0.310901 0.266364i
\(764\) 0 0
\(765\) −11371.0 + 6530.10i −0.537410 + 0.308623i
\(766\) 0 0
\(767\) −3784.45 2184.96i −0.178160 0.102861i
\(768\) 0 0
\(769\) 3431.91i 0.160934i −0.996757 0.0804668i \(-0.974359\pi\)
0.996757 0.0804668i \(-0.0256411\pi\)
\(770\) 0 0
\(771\) −4882.07 4893.35i −0.228046 0.228573i
\(772\) 0 0
\(773\) 1780.10 3083.22i 0.0828275 0.143461i −0.821636 0.570013i \(-0.806938\pi\)
0.904463 + 0.426551i \(0.140272\pi\)
\(774\) 0 0
\(775\) −25245.2 + 14575.3i −1.17011 + 0.675564i
\(776\) 0 0
\(777\) 1460.71 998.133i 0.0674421 0.0460847i
\(778\) 0 0
\(779\) −26346.7 + 15211.3i −1.21177 + 0.699615i
\(780\) 0 0
\(781\) 10732.9 18590.0i 0.491747 0.851731i
\(782\) 0 0
\(783\) −22042.7 22195.8i −1.00606 1.01304i
\(784\) 0 0
\(785\) 12599.1i 0.572842i
\(786\) 0 0
\(787\) −1990.24 1149.07i −0.0901453 0.0520454i 0.454250 0.890874i \(-0.349907\pi\)
−0.544395 + 0.838829i \(0.683241\pi\)
\(788\) 0 0
\(789\) 22966.9 + 6182.36i 1.03630 + 0.278958i
\(790\) 0 0
\(791\) 8271.23 + 1546.16i 0.371796 + 0.0695009i
\(792\) 0 0
\(793\) −289.856 502.046i −0.0129800 0.0224819i
\(794\) 0 0
\(795\) 218.644 + 819.773i 0.00975411 + 0.0365715i
\(796\) 0 0
\(797\) 29634.9 1.31709 0.658546 0.752541i \(-0.271172\pi\)
0.658546 + 0.752541i \(0.271172\pi\)
\(798\) 0 0
\(799\) 28886.1 1.27900
\(800\) 0 0
\(801\) 19262.6 + 11180.6i 0.849701 + 0.493192i
\(802\) 0 0
\(803\) 3743.55 + 6484.01i 0.164517 + 0.284951i
\(804\) 0 0
\(805\) −36.2451 + 42.3054i −0.00158692 + 0.00185226i
\(806\) 0 0
\(807\) 1402.09 5208.63i 0.0611597 0.227202i
\(808\) 0 0
\(809\) 16234.4 + 9372.91i 0.705525 + 0.407335i 0.809402 0.587255i \(-0.199791\pi\)
−0.103877 + 0.994590i \(0.533125\pi\)
\(810\) 0 0
\(811\) 17950.4i 0.777218i 0.921403 + 0.388609i \(0.127044\pi\)
−0.921403 + 0.388609i \(0.872956\pi\)
\(812\) 0 0
\(813\) −16545.7 + 16507.6i −0.713756 + 0.712112i
\(814\) 0 0
\(815\) 3244.85 5620.24i 0.139463 0.241557i
\(816\) 0 0
\(817\) −44419.5 + 25645.6i −1.90213 + 1.09820i
\(818\) 0 0
\(819\) 8098.21 2832.71i 0.345512 0.120858i
\(820\) 0 0
\(821\) −31560.6 + 18221.5i −1.34162 + 0.774586i −0.987045 0.160441i \(-0.948708\pi\)
−0.354576 + 0.935027i \(0.615375\pi\)
\(822\) 0 0
\(823\) −2827.83 + 4897.94i −0.119771 + 0.207450i −0.919677 0.392676i \(-0.871549\pi\)
0.799906 + 0.600126i \(0.204883\pi\)
\(824\) 0 0
\(825\) 12845.7 12816.1i 0.542095 0.540846i
\(826\) 0 0
\(827\) 37188.1i 1.56367i −0.623483 0.781837i \(-0.714283\pi\)
0.623483 0.781837i \(-0.285717\pi\)
\(828\) 0 0
\(829\) 12258.2 + 7077.29i 0.513565 + 0.296507i 0.734298 0.678827i \(-0.237511\pi\)
−0.220733 + 0.975334i \(0.570845\pi\)
\(830\) 0 0
\(831\) −852.819 + 3168.14i −0.0356004 + 0.132252i
\(832\) 0 0
\(833\) −26977.4 + 21708.6i −1.12210 + 0.902952i
\(834\) 0 0
\(835\) 6659.34 + 11534.3i 0.275995 + 0.478038i
\(836\) 0 0
\(837\) −38819.0 + 10257.7i −1.60308 + 0.423605i
\(838\) 0 0
\(839\) 30349.4 1.24884 0.624421 0.781088i \(-0.285335\pi\)
0.624421 + 0.781088i \(0.285335\pi\)
\(840\) 0 0
\(841\) −25325.8 −1.03841
\(842\) 0 0
\(843\) 7417.96 + 27812.5i 0.303070 + 1.13631i
\(844\) 0 0
\(845\) −4576.44 7926.63i −0.186313 0.322703i
\(846\) 0 0
\(847\) −2717.71 + 957.683i −0.110250 + 0.0388505i
\(848\) 0 0
\(849\) −21298.7 5733.32i −0.860978 0.231763i
\(850\) 0 0
\(851\) 9.95502 + 5.74753i 0.000401003 + 0.000231519i
\(852\) 0 0
\(853\) 44235.1i 1.77559i 0.460235 + 0.887797i \(0.347765\pi\)
−0.460235 + 0.887797i \(0.652235\pi\)
\(854\) 0 0
\(855\) 17981.7 + 41.4830i 0.719252 + 0.00165928i
\(856\) 0 0
\(857\) −10452.8 + 18104.8i −0.416642 + 0.721645i −0.995599 0.0937129i \(-0.970126\pi\)
0.578957 + 0.815358i \(0.303460\pi\)
\(858\) 0 0
\(859\) 977.718 564.486i 0.0388351 0.0224214i −0.480457 0.877018i \(-0.659529\pi\)
0.519292 + 0.854597i \(0.326196\pi\)
\(860\) 0 0
\(861\) −1602.42 21086.7i −0.0634266 0.834649i
\(862\) 0 0
\(863\) −17175.9 + 9916.54i −0.677493 + 0.391151i −0.798910 0.601451i \(-0.794589\pi\)
0.121417 + 0.992602i \(0.461256\pi\)
\(864\) 0 0
\(865\) 3055.80 5292.80i 0.120116 0.208047i
\(866\) 0 0
\(867\) −19372.9 19417.6i −0.758867 0.760619i
\(868\) 0 0
\(869\) 18064.8i 0.705186i
\(870\) 0 0
\(871\) −2613.53 1508.92i −0.101672 0.0587001i
\(872\) 0 0
\(873\) 17610.1 + 30664.8i 0.682717 + 1.18883i
\(874\) 0 0
\(875\) −3713.90 + 19867.6i −0.143489 + 0.767596i
\(876\) 0 0
\(877\) 7722.35 + 13375.5i 0.297338 + 0.515004i 0.975526 0.219884i \(-0.0705680\pi\)
−0.678188 + 0.734888i \(0.737235\pi\)
\(878\) 0 0
\(879\) −9907.49 + 2642.46i −0.380172 + 0.101397i
\(880\) 0 0
\(881\) −9043.98 −0.345856 −0.172928 0.984934i \(-0.555323\pi\)
−0.172928 + 0.984934i \(0.555323\pi\)
\(882\) 0 0
\(883\) 15055.4 0.573787 0.286894 0.957962i \(-0.407377\pi\)
0.286894 + 0.957962i \(0.407377\pi\)
\(884\) 0 0
\(885\) 6151.64 1640.72i 0.233656 0.0623191i
\(886\) 0 0
\(887\) −14220.9 24631.3i −0.538322 0.932401i −0.998995 0.0448306i \(-0.985725\pi\)
0.460673 0.887570i \(-0.347608\pi\)
\(888\) 0 0
\(889\) −274.786 + 1469.97i −0.0103667 + 0.0554570i
\(890\) 0 0
\(891\) 21702.2 12396.6i 0.815995 0.466108i
\(892\) 0 0
\(893\) −34305.3 19806.2i −1.28554 0.742204i
\(894\) 0 0
\(895\) 9795.35i 0.365835i
\(896\) 0 0
\(897\) 39.3715 + 39.4624i 0.00146553 + 0.00146891i
\(898\) 0 0
\(899\) −31905.6 + 55262.2i −1.18366 + 2.05016i
\(900\) 0 0
\(901\) −2967.47 + 1713.27i −0.109723 + 0.0633488i
\(902\) 0 0
\(903\) −2701.62 35551.4i −0.0995617 1.31016i
\(904\) 0 0
\(905\) 5842.80 3373.34i 0.214609 0.123905i
\(906\) 0 0
\(907\) −14570.3 + 25236.4i −0.533404 + 0.923883i 0.465834 + 0.884872i \(0.345754\pi\)
−0.999239 + 0.0390115i \(0.987579\pi\)
\(908\) 0 0
\(909\) 94.1020 40790.5i 0.00343363 1.48838i
\(910\) 0 0
\(911\) 14257.6i 0.518525i −0.965807 0.259263i \(-0.916520\pi\)
0.965807 0.259263i \(-0.0834795\pi\)
\(912\) 0 0
\(913\) 11014.1 + 6358.99i 0.399248 + 0.230506i
\(914\) 0 0
\(915\) 815.573 + 219.541i 0.0294667 + 0.00793202i
\(916\) 0 0
\(917\) 38609.2 13605.3i 1.39039 0.489954i
\(918\) 0 0
\(919\) 10769.5 + 18653.3i 0.386563 + 0.669548i 0.991985 0.126358i \(-0.0403287\pi\)
−0.605421 + 0.795905i \(0.706995\pi\)
\(920\) 0 0
\(921\) −3477.38 13037.9i −0.124412 0.466465i
\(922\) 0 0
\(923\) 10742.3 0.383084
\(924\) 0 0
\(925\) 1872.55 0.0665610
\(926\) 0 0
\(927\) −2719.07 + 4684.57i −0.0963386 + 0.165978i
\(928\) 0 0
\(929\) −9507.93 16468.2i −0.335786 0.581598i 0.647849 0.761768i \(-0.275669\pi\)
−0.983636 + 0.180170i \(0.942335\pi\)
\(930\) 0 0
\(931\) 46923.3 7283.82i 1.65183 0.256410i
\(932\) 0 0
\(933\) −439.583 + 1633.01i −0.0154248 + 0.0573015i
\(934\) 0 0
\(935\) −14419.6 8325.14i −0.504353 0.291188i
\(936\) 0 0
\(937\) 13655.6i 0.476105i 0.971252 + 0.238052i \(0.0765090\pi\)
−0.971252 + 0.238052i \(0.923491\pi\)
\(938\) 0 0
\(939\) 2356.12 2350.69i 0.0818841 0.0816954i
\(940\) 0 0
\(941\) 13850.3 23989.4i 0.479815 0.831065i −0.519917 0.854217i \(-0.674037\pi\)
0.999732 + 0.0231524i \(0.00737030\pi\)
\(942\) 0 0
\(943\) 118.996 68.7026i 0.00410929 0.00237250i
\(944\) 0 0
\(945\) −5437.56 + 11254.9i −0.187179 + 0.387430i
\(946\) 0 0
\(947\) 15651.0 9036.10i 0.537052 0.310067i −0.206831 0.978377i \(-0.566315\pi\)
0.743883 + 0.668309i \(0.232982\pi\)
\(948\) 0 0
\(949\) −1873.40 + 3244.83i −0.0640814 + 0.110992i
\(950\) 0 0
\(951\) 28103.2 28038.4i 0.958262 0.956054i
\(952\) 0 0
\(953\) 13088.1i 0.444874i −0.974947 0.222437i \(-0.928599\pi\)
0.974947 0.222437i \(-0.0714012\pi\)
\(954\) 0 0
\(955\) −16891.0 9752.00i −0.572334 0.330437i
\(956\) 0 0
\(957\) 10324.8 38355.6i 0.348749 1.29557i
\(958\) 0 0
\(959\) −25329.5 + 29564.7i −0.852900 + 0.995509i
\(960\) 0 0
\(961\) 26056.9 + 45131.9i 0.874657 + 1.51495i
\(962\) 0 0
\(963\) −20123.1 + 34669.3i −0.673372 + 1.16013i
\(964\) 0 0
\(965\) −8392.45 −0.279961
\(966\) 0 0
\(967\) −37827.6 −1.25796 −0.628982 0.777420i \(-0.716528\pi\)
−0.628982 + 0.777420i \(0.716528\pi\)
\(968\) 0 0
\(969\) 18715.1 + 70169.5i 0.620451 + 2.32628i
\(970\) 0 0
\(971\) −386.167 668.861i −0.0127628 0.0221059i 0.859573 0.511012i \(-0.170729\pi\)
−0.872336 + 0.488906i \(0.837396\pi\)
\(972\) 0 0
\(973\) 54687.5 + 10222.9i 1.80185 + 0.336825i
\(974\) 0 0
\(975\) 8768.57 + 2360.38i 0.288020 + 0.0775308i
\(976\) 0 0
\(977\) 3885.24 + 2243.15i 0.127226 + 0.0734540i 0.562262 0.826959i \(-0.309931\pi\)
−0.435036 + 0.900413i \(0.643264\pi\)
\(978\) 0 0
\(979\) 28281.1i 0.923255i
\(980\) 0 0
\(981\) 29.0196 12579.1i 0.000944469 0.409400i
\(982\) 0 0
\(983\) −19328.8 + 33478.4i −0.627153 + 1.08626i 0.360967 + 0.932579i \(0.382447\pi\)
−0.988120 + 0.153683i \(0.950887\pi\)
\(984\) 0 0
\(985\) 21085.4 12173.6i 0.682066 0.393791i
\(986\) 0 0
\(987\) 22734.7 15535.2i 0.733186 0.501003i
\(988\) 0 0
\(989\) 200.624 115.830i 0.00645041 0.00372415i
\(990\) 0 0
\(991\) −20930.9 + 36253.4i −0.670932 + 1.16209i 0.306709 + 0.951803i \(0.400772\pi\)
−0.977640 + 0.210284i \(0.932561\pi\)
\(992\) 0 0
\(993\) −18042.3 18084.0i −0.576591 0.577923i
\(994\) 0 0
\(995\) 7079.66i 0.225568i
\(996\) 0 0
\(997\) −20276.7 11706.8i −0.644103 0.371873i 0.142090 0.989854i \(-0.454618\pi\)
−0.786193 + 0.617981i \(0.787951\pi\)
\(998\) 0 0
\(999\) 2488.99 + 676.162i 0.0788268 + 0.0214142i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bc.f.17.23 48
3.2 odd 2 inner 336.4.bc.f.17.14 48
4.3 odd 2 168.4.u.a.17.2 48
7.5 odd 6 inner 336.4.bc.f.257.14 48
12.11 even 2 168.4.u.a.17.11 yes 48
21.5 even 6 inner 336.4.bc.f.257.23 48
28.19 even 6 168.4.u.a.89.11 yes 48
84.47 odd 6 168.4.u.a.89.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.u.a.17.2 48 4.3 odd 2
168.4.u.a.17.11 yes 48 12.11 even 2
168.4.u.a.89.2 yes 48 84.47 odd 6
168.4.u.a.89.11 yes 48 28.19 even 6
336.4.bc.f.17.14 48 3.2 odd 2 inner
336.4.bc.f.17.23 48 1.1 even 1 trivial
336.4.bc.f.257.14 48 7.5 odd 6 inner
336.4.bc.f.257.23 48 21.5 even 6 inner