Properties

Label 2-336-21.17-c3-0-39
Degree $2$
Conductor $336$
Sign $0.201 + 0.979i$
Analytic cond. $19.8246$
Root an. cond. $4.45248$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (5.02 − 1.33i)3-s + (−2.40 − 4.16i)5-s + (3.40 − 18.2i)7-s + (23.4 − 13.4i)9-s + (29.6 + 17.1i)11-s + 17.1i·13-s + (−17.6 − 17.6i)15-s + (50.4 − 87.4i)17-s + (−119. + 69.2i)19-s + (−7.29 − 95.9i)21-s + (0.541 − 0.312i)23-s + (50.9 − 88.2i)25-s + (99.5 − 98.8i)27-s − 222. i·29-s + (−247. − 143. i)31-s + ⋯
L(s)  = 1  + (0.966 − 0.257i)3-s + (−0.215 − 0.372i)5-s + (0.183 − 0.982i)7-s + (0.867 − 0.498i)9-s + (0.813 + 0.469i)11-s + 0.366i·13-s + (−0.303 − 0.304i)15-s + (0.720 − 1.24i)17-s + (−1.44 + 0.835i)19-s + (−0.0757 − 0.997i)21-s + (0.00490 − 0.00283i)23-s + (0.407 − 0.705i)25-s + (0.709 − 0.704i)27-s − 1.42i·29-s + (−1.43 − 0.829i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.201 + 0.979i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.201 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $0.201 + 0.979i$
Analytic conductor: \(19.8246\)
Root analytic conductor: \(4.45248\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :3/2),\ 0.201 + 0.979i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.592429802\)
\(L(\frac12)\) \(\approx\) \(2.592429802\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-5.02 + 1.33i)T \)
7 \( 1 + (-3.40 + 18.2i)T \)
good5 \( 1 + (2.40 + 4.16i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (-29.6 - 17.1i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 - 17.1iT - 2.19e3T^{2} \)
17 \( 1 + (-50.4 + 87.4i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (119. - 69.2i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-0.541 + 0.312i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + 222. iT - 2.43e4T^{2} \)
31 \( 1 + (247. + 143. i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (-9.19 - 15.9i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 219.T + 6.89e4T^{2} \)
43 \( 1 - 370.T + 7.95e4T^{2} \)
47 \( 1 + (-143. - 247. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (29.3 + 16.9i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (127. - 220. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (29.2 - 16.8i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (87.9 - 152. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 626. iT - 3.57e5T^{2} \)
73 \( 1 + (-189. - 109. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (-263. - 456. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 - 370.T + 5.71e5T^{2} \)
89 \( 1 + (-412. - 714. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 - 1.30e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85473099644104979632379804037, −9.763645021738135680039782147828, −9.107193184101829353924378462934, −7.952131758295618771036018473042, −7.35397822492701329826077480556, −6.26901948108472902958162470187, −4.43702625895545798829941744082, −3.87615635587202735804468890507, −2.23659747776250860960897193629, −0.872151478894894805454036368396, 1.70905426043707125679485196415, 3.01330892910555722892458829775, 3.95716832355986239743307984772, 5.36053149817121316420410204896, 6.57852594411612772201376945333, 7.69559531299697294770073464164, 8.822735317890532142064372231544, 9.025833185295159834090969347835, 10.50941677665832451405735963457, 11.08267170149499296989209920536

Graph of the $Z$-function along the critical line