Properties

Label 336.4.bc
Level 336336
Weight 44
Character orbit 336.bc
Rep. character χ336(17,)\chi_{336}(17,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 9292
Newform subspaces 66
Sturm bound 256256
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bc (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 6 6
Sturm bound: 256256
Trace bound: 33
Distinguishing TpT_p: 55, 1313

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 408 100 308
Cusp forms 360 92 268
Eisenstein series 48 8 40

Trace form

92q+3q314q7q950q15+276q1997q21868q25624q313q332q37302q39580q43663q45388q49+141q51+790q576q61+3566q99+O(q100) 92 q + 3 q^{3} - 14 q^{7} - q^{9} - 50 q^{15} + 276 q^{19} - 97 q^{21} - 868 q^{25} - 624 q^{31} - 3 q^{33} - 2 q^{37} - 302 q^{39} - 580 q^{43} - 663 q^{45} - 388 q^{49} + 141 q^{51} + 790 q^{57} - 6 q^{61}+ \cdots - 3566 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.4.bc.a 336.bc 21.g 22 19.82519.825 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 84.4.k.b 00 9-9 00 37-37 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(33ζ6)q3+(18ζ6)q7+q+(-3-3\zeta_{6})q^{3}+(-18-\zeta_{6})q^{7}+\cdots
336.4.bc.b 336.bc 21.g 22 19.82519.825 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 84.4.k.a 00 99 00 1717 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(3+3ζ6)q3+(1819ζ6)q7+33ζ6q9+q+(3+3\zeta_{6})q^{3}+(18-19\zeta_{6})q^{7}+3^{3}\zeta_{6}q^{9}+\cdots
336.4.bc.c 336.bc 21.g 1212 19.82519.825 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 84.4.k.c 00 00 00 4242 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(β3+β4)q3β11q5+(22β1+)q7+q+(-\beta _{3}+\beta _{4})q^{3}-\beta _{11}q^{5}+(2-2\beta _{1}+\cdots)q^{7}+\cdots
336.4.bc.d 336.bc 21.g 1212 19.82519.825 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 21.4.g.a 00 33 00 5656 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+β1q3+β4q5+(4+2β1+3β2+)q7+q+\beta _{1}q^{3}+\beta _{4}q^{5}+(4+2\beta _{1}+3\beta _{2}+\cdots)q^{7}+\cdots
336.4.bc.e 336.bc 21.g 1616 19.82519.825 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 42.4.f.a 00 00 00 80-80 SU(2)[C6]\mathrm{SU}(2)[C_{6}] qβ4q3β9q5+(6β12β2+)q7+q-\beta _{4}q^{3}-\beta _{9}q^{5}+(-6-\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots
336.4.bc.f 336.bc 21.g 4848 19.82519.825 None 168.4.u.a 00 00 00 12-12 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(21,[χ])S_{4}^{\mathrm{new}}(21, [\chi])5^{\oplus 5}\oplusS4new(42,[χ])S_{4}^{\mathrm{new}}(42, [\chi])4^{\oplus 4}\oplusS4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi])3^{\oplus 3}\oplusS4new(168,[χ])S_{4}^{\mathrm{new}}(168, [\chi])2^{\oplus 2}