Properties

Label 336.4.bc.a
Level $336$
Weight $4$
Character orbit 336.bc
Analytic conductor $19.825$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -3 - 3 \zeta_{6} ) q^{3} + ( -18 - \zeta_{6} ) q^{7} + 27 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( -3 - 3 \zeta_{6} ) q^{3} + ( -18 - \zeta_{6} ) q^{7} + 27 \zeta_{6} q^{9} + ( -17 + 34 \zeta_{6} ) q^{13} + ( -34 + 17 \zeta_{6} ) q^{19} + ( 51 + 60 \zeta_{6} ) q^{21} + ( 125 - 125 \zeta_{6} ) q^{25} + ( 81 - 162 \zeta_{6} ) q^{27} + ( 199 + 199 \zeta_{6} ) q^{31} -433 \zeta_{6} q^{37} + ( 153 - 153 \zeta_{6} ) q^{39} + 449 q^{43} + ( 323 + 37 \zeta_{6} ) q^{49} + 153 q^{57} + ( 1080 - 540 \zeta_{6} ) q^{61} + ( 27 - 513 \zeta_{6} ) q^{63} + ( 1007 - 1007 \zeta_{6} ) q^{67} + ( 487 + 487 \zeta_{6} ) q^{73} + ( -750 + 375 \zeta_{6} ) q^{75} + 503 \zeta_{6} q^{79} + ( -729 + 729 \zeta_{6} ) q^{81} + ( 340 - 629 \zeta_{6} ) q^{91} -1791 \zeta_{6} q^{93} + ( -792 + 1584 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 9q^{3} - 37q^{7} + 27q^{9} + O(q^{10}) \) \( 2q - 9q^{3} - 37q^{7} + 27q^{9} - 51q^{19} + 162q^{21} + 125q^{25} + 597q^{31} - 433q^{37} + 153q^{39} + 898q^{43} + 683q^{49} + 306q^{57} + 1620q^{61} - 459q^{63} + 1007q^{67} + 1461q^{73} - 1125q^{75} + 503q^{79} - 729q^{81} + 51q^{91} - 1791q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −4.50000 2.59808i 0 0 0 −18.5000 0.866025i 0 13.5000 + 23.3827i 0
257.1 0 −4.50000 + 2.59808i 0 0 0 −18.5000 + 0.866025i 0 13.5000 23.3827i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bc.a 2
3.b odd 2 1 CM 336.4.bc.a 2
4.b odd 2 1 84.4.k.b 2
7.d odd 6 1 inner 336.4.bc.a 2
12.b even 2 1 84.4.k.b 2
21.g even 6 1 inner 336.4.bc.a 2
28.d even 2 1 588.4.k.a 2
28.f even 6 1 84.4.k.b 2
28.f even 6 1 588.4.f.b 2
28.g odd 6 1 588.4.f.b 2
28.g odd 6 1 588.4.k.a 2
84.h odd 2 1 588.4.k.a 2
84.j odd 6 1 84.4.k.b 2
84.j odd 6 1 588.4.f.b 2
84.n even 6 1 588.4.f.b 2
84.n even 6 1 588.4.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.k.b 2 4.b odd 2 1
84.4.k.b 2 12.b even 2 1
84.4.k.b 2 28.f even 6 1
84.4.k.b 2 84.j odd 6 1
336.4.bc.a 2 1.a even 1 1 trivial
336.4.bc.a 2 3.b odd 2 1 CM
336.4.bc.a 2 7.d odd 6 1 inner
336.4.bc.a 2 21.g even 6 1 inner
588.4.f.b 2 28.f even 6 1
588.4.f.b 2 28.g odd 6 1
588.4.f.b 2 84.j odd 6 1
588.4.f.b 2 84.n even 6 1
588.4.k.a 2 28.d even 2 1
588.4.k.a 2 28.g odd 6 1
588.4.k.a 2 84.h odd 2 1
588.4.k.a 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(336, [\chi])\):

\( T_{5} \)
\( T_{13}^{2} + 867 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 27 + 9 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 343 + 37 T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 867 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( 867 + 51 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( 118803 - 597 T + T^{2} \)
$37$ \( 187489 + 433 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( ( -449 + T )^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( 874800 - 1620 T + T^{2} \)
$67$ \( 1014049 - 1007 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 711507 - 1461 T + T^{2} \)
$79$ \( 253009 - 503 T + T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 1881792 + T^{2} \)
show more
show less