# Properties

 Label 21.4.g Level $21$ Weight $4$ Character orbit 21.g Rep. character $\chi_{21}(5,\cdot)$ Character field $\Q(\zeta_{6})$ Dimension $12$ Newform subspaces $1$ Sturm bound $10$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$21 = 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 21.g (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$21$$ Character field: $$\Q(\zeta_{6})$$ Newform subspaces: $$1$$ Sturm bound: $$10$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{4}(21, [\chi])$$.

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

## Trace form

 $$12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + O(q^{10})$$ $$12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + 30 q^{10} - 192 q^{12} + 6 q^{15} + 134 q^{16} + 66 q^{18} + 300 q^{19} + 357 q^{21} - 268 q^{22} + 414 q^{24} - 42 q^{25} - 602 q^{28} - 822 q^{30} - 930 q^{31} - 855 q^{33} + 852 q^{36} + 764 q^{37} - 426 q^{39} + 2298 q^{40} + 966 q^{42} - 1012 q^{43} + 2367 q^{45} + 608 q^{46} - 336 q^{49} - 1341 q^{51} - 3000 q^{52} - 4158 q^{54} + 270 q^{57} + 2870 q^{58} - 918 q^{60} + 2358 q^{61} + 1071 q^{63} - 548 q^{64} + 2934 q^{66} + 792 q^{67} - 4242 q^{70} - 2712 q^{72} - 2904 q^{73} - 2418 q^{75} + 4296 q^{78} + 1674 q^{79} + 837 q^{81} + 5040 q^{82} + 3864 q^{84} + 348 q^{85} + 1638 q^{87} - 554 q^{88} - 1218 q^{91} - 1479 q^{93} - 1356 q^{94} - 4410 q^{96} - 3354 q^{99} + O(q^{100})$$

## Decomposition of $$S_{4}^{\mathrm{new}}(21, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
21.4.g.a $12$ $1.239$ $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ None $$0$$ $$-3$$ $$0$$ $$-56$$ $$q+(\beta _{2}-\beta _{6})q^{2}+(\beta _{7}+\beta _{8})q^{3}+(-2\beta _{4}+\cdots)q^{4}+\cdots$$