Properties

Label 336.4.bc.f
Level 336336
Weight 44
Character orbit 336.bc
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 4848
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(17,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bc (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 4848
Relative dimension: 2424 over Q(ζ6)\Q(\zeta_{6})
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 48q12q7+14q9+88q15+270q19+50q21438q25216q31372q33+66q37242q39900q43294q45+60q49+138q51+1384q57+108q61+1988q99+O(q100) 48 q - 12 q^{7} + 14 q^{9} + 88 q^{15} + 270 q^{19} + 50 q^{21} - 438 q^{25} - 216 q^{31} - 372 q^{33} + 66 q^{37} - 242 q^{39} - 900 q^{43} - 294 q^{45} + 60 q^{49} + 138 q^{51} + 1384 q^{57} + 108 q^{61}+ \cdots - 1988 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
17.1 0 −5.18895 0.273513i 0 2.97936 + 5.16040i 0 17.8140 5.06584i 0 26.8504 + 2.83849i 0
17.2 0 −5.12717 0.843898i 0 −8.29692 14.3707i 0 −9.36640 15.9772i 0 25.5757 + 8.65361i 0
17.3 0 −4.99832 1.42013i 0 −6.11124 10.5850i 0 −4.39164 + 17.9920i 0 22.9665 + 14.1965i 0
17.4 0 −4.88874 + 1.76075i 0 6.04693 + 10.4736i 0 −15.9632 9.39028i 0 20.7995 17.2157i 0
17.5 0 −3.72903 3.61861i 0 6.11124 + 10.5850i 0 −4.39164 + 17.9920i 0 0.811307 + 26.9878i 0
17.6 0 −3.62731 + 3.72057i 0 0.263312 + 0.456070i 0 16.6747 + 8.05944i 0 −0.685212 26.9913i 0
17.7 0 −3.29442 4.01831i 0 8.29692 + 14.3707i 0 −9.36640 15.9772i 0 −5.29359 + 26.4760i 0
17.8 0 −3.24856 + 4.05547i 0 3.20701 + 5.55470i 0 −14.8103 + 11.1200i 0 −5.89369 26.3489i 0
17.9 0 −2.83134 4.35701i 0 −2.97936 5.16040i 0 17.8140 5.06584i 0 −10.9670 + 24.6724i 0
17.10 0 −2.36622 + 4.62612i 0 −9.22876 15.9847i 0 6.70316 17.2646i 0 −15.8020 21.8928i 0
17.11 0 −0.919514 5.11415i 0 −6.04693 10.4736i 0 −15.9632 9.39028i 0 −25.3090 + 9.40505i 0
17.12 0 0.328966 + 5.18573i 0 −7.91382 13.7071i 0 −13.3812 + 12.8040i 0 −26.7836 + 3.41186i 0
17.13 0 0.726622 + 5.14510i 0 9.08545 + 15.7365i 0 18.4348 1.77707i 0 −25.9440 + 7.47709i 0
17.14 0 1.35065 + 5.01754i 0 2.40532 + 4.16613i 0 3.40309 18.2049i 0 −23.3515 + 13.5539i 0
17.15 0 1.40845 5.00163i 0 −0.263312 0.456070i 0 16.6747 + 8.05944i 0 −23.0325 14.0891i 0
17.16 0 1.88786 4.84107i 0 −3.20701 5.55470i 0 −14.8103 + 11.1200i 0 −19.8720 18.2785i 0
17.17 0 2.82323 4.36227i 0 9.22876 + 15.9847i 0 6.70316 17.2646i 0 −11.0587 24.6314i 0
17.18 0 3.06041 + 4.19928i 0 0.746155 + 1.29238i 0 −15.9029 9.49205i 0 −8.26784 + 25.7030i 0
17.19 0 4.27838 + 2.94880i 0 −5.57507 9.65631i 0 7.78587 + 16.8042i 0 9.60915 + 25.2322i 0
17.20 0 4.65546 2.30797i 0 7.91382 + 13.7071i 0 −13.3812 + 12.8040i 0 16.3465 21.4893i 0
See all 48 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 17.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bc.f 48
3.b odd 2 1 inner 336.4.bc.f 48
4.b odd 2 1 168.4.u.a 48
7.d odd 6 1 inner 336.4.bc.f 48
12.b even 2 1 168.4.u.a 48
21.g even 6 1 inner 336.4.bc.f 48
28.f even 6 1 168.4.u.a 48
84.j odd 6 1 168.4.u.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.u.a 48 4.b odd 2 1
168.4.u.a 48 12.b even 2 1
168.4.u.a 48 28.f even 6 1
168.4.u.a 48 84.j odd 6 1
336.4.bc.f 48 1.a even 1 1 trivial
336.4.bc.f 48 3.b odd 2 1 inner
336.4.bc.f 48 7.d odd 6 1 inner
336.4.bc.f 48 21.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T548+1719T546+1690641T544+1132587728T542+572282844510T540++19 ⁣ ⁣16 T_{5}^{48} + 1719 T_{5}^{46} + 1690641 T_{5}^{44} + 1132587728 T_{5}^{42} + 572282844510 T_{5}^{40} + \cdots + 19\!\cdots\!16 Copy content Toggle raw display
T1324+27165T1322+309247695T1320+1920428280007T1318++13 ⁣ ⁣64 T_{13}^{24} + 27165 T_{13}^{22} + 309247695 T_{13}^{20} + 1920428280007 T_{13}^{18} + \cdots + 13\!\cdots\!64 Copy content Toggle raw display