gp: [N,k,chi] = [336,4,Mod(17,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.17");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [48,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 48 + 1719 T 5 46 + 1690641 T 5 44 + 1132587728 T 5 42 + 572282844510 T 5 40 + ⋯ + 19 ⋯ 16 T_{5}^{48} + 1719 T_{5}^{46} + 1690641 T_{5}^{44} + 1132587728 T_{5}^{42} + 572282844510 T_{5}^{40} + \cdots + 19\!\cdots\!16 T 5 4 8 + 1 7 1 9 T 5 4 6 + 1 6 9 0 6 4 1 T 5 4 4 + 1 1 3 2 5 8 7 7 2 8 T 5 4 2 + 5 7 2 2 8 2 8 4 4 5 1 0 T 5 4 0 + ⋯ + 1 9 ⋯ 1 6
T5^48 + 1719*T5^46 + 1690641*T5^44 + 1132587728*T5^42 + 572282844510*T5^40 + 226442605756098*T5^38 + 72238249800180398*T5^36 + 18797737470498141192*T5^34 + 4029920768129097713463*T5^32 + 712455228165025196764001*T5^30 + 103966839722736959853362895*T5^28 + 12439356023065853409889329288*T5^26 + 1212880901919692449827800991070*T5^24 + 94876826342067626153546462575074*T5^22 + 5885994927108887847752378854388046*T5^20 + 282397564208519908937138598717123568*T5^18 + 10478159830152079472384715616984215657*T5^16 + 290119978884612693133720242244156418775*T5^14 + 5940037636311385940576335365663087916169*T5^12 + 81018546692326059463714541881623179634048*T5^10 + 704008465153785415414301340917434798632960*T5^8 + 1655228075939403326041681975377396129439744*T5^6 + 2975299746147961418698751213220225370030080*T5^4 + 810609805075993705564805442977784643190784*T5^2 + 193663546944588761028507484241951683772416
T 13 24 + 27165 T 13 22 + 309247695 T 13 20 + 1920428280007 T 13 18 + ⋯ + 13 ⋯ 64 T_{13}^{24} + 27165 T_{13}^{22} + 309247695 T_{13}^{20} + 1920428280007 T_{13}^{18} + \cdots + 13\!\cdots\!64 T 1 3 2 4 + 2 7 1 6 5 T 1 3 2 2 + 3 0 9 2 4 7 6 9 5 T 1 3 2 0 + 1 9 2 0 4 2 8 2 8 0 0 0 7 T 1 3 1 8 + ⋯ + 1 3 ⋯ 6 4
T13^24 + 27165*T13^22 + 309247695*T13^20 + 1920428280007*T13^18 + 7094435841003132*T13^16 + 15970388380769961168*T13^14 + 21678105215865114133568*T13^12 + 17222393041759569905504256*T13^10 + 7817867758178158337771667456*T13^8 + 1953512426959511638062888648704*T13^6 + 246454401663863447065105784635392*T13^4 + 12618317071117283026475474390876160*T13^2 + 137777953286248718812158641846616064