L(s) = 1 | + (−4.99 − 1.42i)3-s + (−6.11 − 10.5i)5-s + (−4.39 + 17.9i)7-s + (22.9 + 14.1i)9-s + (47.3 + 27.3i)11-s − 27.0i·13-s + (15.5 + 61.5i)15-s + (20.3 − 35.1i)17-s + (48.4 − 27.9i)19-s + (47.5 − 83.6i)21-s + (−93.3 + 53.8i)23-s + (−12.1 + 21.1i)25-s + (−94.6 − 103. i)27-s + 38.2i·29-s + (−257. − 148. i)31-s + ⋯ |
L(s) = 1 | + (−0.961 − 0.273i)3-s + (−0.546 − 0.946i)5-s + (−0.237 + 0.971i)7-s + (0.850 + 0.525i)9-s + (1.29 + 0.749i)11-s − 0.576i·13-s + (0.267 + 1.06i)15-s + (0.289 − 0.501i)17-s + (0.585 − 0.338i)19-s + (0.493 − 0.869i)21-s + (−0.846 + 0.488i)23-s + (−0.0975 + 0.168i)25-s + (−0.674 − 0.738i)27-s + 0.244i·29-s + (−1.49 − 0.862i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.8194203934\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8194203934\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.99 + 1.42i)T \) |
| 7 | \( 1 + (4.39 - 17.9i)T \) |
good | 5 | \( 1 + (6.11 + 10.5i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-47.3 - 27.3i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 27.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-20.3 + 35.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-48.4 + 27.9i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (93.3 - 53.8i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 38.2iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (257. + 148. i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (142. + 246. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 28.3T + 6.89e4T^{2} \) |
| 43 | \( 1 + 212.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-125. - 216. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-294. - 170. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-451. + 781. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-499. + 288. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-184. + 319. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 1.18e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (407. + 235. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-20.0 - 34.7i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 855.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-322. - 557. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 748. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16212835590427692225115125604, −9.749601655455529897420487867884, −9.112017105100212459569449501718, −7.903220684693957206642591841833, −6.93213473651859401549260022945, −5.76120957573235474554177333757, −5.00673323374131072619575566003, −3.82864128205149921825897519898, −1.80623259439063768195365142713, −0.38852478062741005035470470920,
1.19824268117025255824208294698, 3.57204081662857263628323940862, 4.05928148716641793682905448622, 5.66515219411712006716337711710, 6.75447083937999299841601081664, 7.14750649834527461792980078561, 8.633597378495703627763283893983, 9.950809544104263582159972895112, 10.52230535011896542363869631006, 11.50975305135545525534380295628