Properties

Label 168.4.u.a.17.11
Level $168$
Weight $4$
Character 168.17
Analytic conductor $9.912$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(17,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.u (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.11
Character \(\chi\) \(=\) 168.17
Dual form 168.4.u.a.89.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35065 - 5.01754i) q^{3} +(2.40532 + 4.16613i) q^{5} +(-3.40309 + 18.2049i) q^{7} +(-23.3515 + 13.5539i) q^{9} +(29.6911 + 17.1421i) q^{11} +17.1571i q^{13} +(17.6550 - 17.6958i) q^{15} +(-50.4770 + 87.4288i) q^{17} +(119.893 - 69.2205i) q^{19} +(95.9403 - 7.51333i) q^{21} +(0.541507 - 0.312639i) q^{23} +(50.9289 - 88.2114i) q^{25} +(99.5470 + 98.8605i) q^{27} +222.968i q^{29} +(247.848 + 143.095i) q^{31} +(45.9092 - 172.129i) q^{33} +(-84.0296 + 29.6109i) q^{35} +(9.19197 + 15.9210i) q^{37} +(86.0864 - 23.1732i) q^{39} -219.751 q^{41} -370.491 q^{43} +(-112.635 - 64.6839i) q^{45} +(143.066 + 247.797i) q^{47} +(-319.838 - 123.906i) q^{49} +(506.855 + 135.185i) q^{51} +(29.3942 + 16.9708i) q^{53} +164.929i q^{55} +(-509.251 - 508.078i) q^{57} +(-127.350 + 220.577i) q^{59} +(-29.2617 + 16.8943i) q^{61} +(-167.280 - 471.237i) q^{63} +(-71.4787 + 41.2683i) q^{65} +(87.9473 - 152.329i) q^{67} +(-2.30007 - 2.29477i) q^{69} -626.114i q^{71} +(189.125 + 109.191i) q^{73} +(-511.392 - 136.395i) q^{75} +(-413.113 + 482.187i) q^{77} +(-263.456 - 456.319i) q^{79} +(361.583 - 633.008i) q^{81} +370.957 q^{83} -485.653 q^{85} +(1118.75 - 301.152i) q^{87} +(-412.449 - 714.383i) q^{89} +(-312.343 - 58.3872i) q^{91} +(383.230 - 1436.86i) q^{93} +(576.764 + 332.995i) q^{95} +1309.69i q^{97} +(-925.674 + 2.13549i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{7} + 14 q^{9} - 88 q^{15} - 270 q^{19} + 50 q^{21} - 438 q^{25} + 216 q^{31} - 372 q^{33} + 66 q^{37} + 242 q^{39} + 900 q^{43} - 294 q^{45} + 60 q^{49} - 138 q^{51} + 1384 q^{57} + 108 q^{61}+ \cdots + 1988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.35065 5.01754i −0.259933 0.965627i
\(4\) 0 0
\(5\) 2.40532 + 4.16613i 0.215138 + 0.372630i 0.953315 0.301977i \(-0.0976465\pi\)
−0.738177 + 0.674607i \(0.764313\pi\)
\(6\) 0 0
\(7\) −3.40309 + 18.2049i −0.183750 + 0.982973i
\(8\) 0 0
\(9\) −23.3515 + 13.5539i −0.864870 + 0.501997i
\(10\) 0 0
\(11\) 29.6911 + 17.1421i 0.813836 + 0.469868i 0.848286 0.529538i \(-0.177635\pi\)
−0.0344503 + 0.999406i \(0.510968\pi\)
\(12\) 0 0
\(13\) 17.1571i 0.366040i 0.983109 + 0.183020i \(0.0585873\pi\)
−0.983109 + 0.183020i \(0.941413\pi\)
\(14\) 0 0
\(15\) 17.6550 17.6958i 0.303900 0.304602i
\(16\) 0 0
\(17\) −50.4770 + 87.4288i −0.720146 + 1.24733i 0.240795 + 0.970576i \(0.422592\pi\)
−0.960941 + 0.276753i \(0.910742\pi\)
\(18\) 0 0
\(19\) 119.893 69.2205i 1.44766 0.835804i 0.449314 0.893374i \(-0.351669\pi\)
0.998341 + 0.0575700i \(0.0183352\pi\)
\(20\) 0 0
\(21\) 95.9403 7.51333i 0.996948 0.0780735i
\(22\) 0 0
\(23\) 0.541507 0.312639i 0.00490922 0.00283434i −0.497543 0.867439i \(-0.665764\pi\)
0.502453 + 0.864605i \(0.332431\pi\)
\(24\) 0 0
\(25\) 50.9289 88.2114i 0.407431 0.705691i
\(26\) 0 0
\(27\) 99.5470 + 98.8605i 0.709549 + 0.704656i
\(28\) 0 0
\(29\) 222.968i 1.42773i 0.700284 + 0.713864i \(0.253057\pi\)
−0.700284 + 0.713864i \(0.746943\pi\)
\(30\) 0 0
\(31\) 247.848 + 143.095i 1.43596 + 0.829053i 0.997566 0.0697292i \(-0.0222135\pi\)
0.438396 + 0.898782i \(0.355547\pi\)
\(32\) 0 0
\(33\) 45.9092 172.129i 0.242175 0.907996i
\(34\) 0 0
\(35\) −84.0296 + 29.6109i −0.405817 + 0.143004i
\(36\) 0 0
\(37\) 9.19197 + 15.9210i 0.0408419 + 0.0707402i 0.885724 0.464213i \(-0.153663\pi\)
−0.844882 + 0.534953i \(0.820329\pi\)
\(38\) 0 0
\(39\) 86.0864 23.1732i 0.353458 0.0951459i
\(40\) 0 0
\(41\) −219.751 −0.837056 −0.418528 0.908204i \(-0.637454\pi\)
−0.418528 + 0.908204i \(0.637454\pi\)
\(42\) 0 0
\(43\) −370.491 −1.31394 −0.656970 0.753917i \(-0.728162\pi\)
−0.656970 + 0.753917i \(0.728162\pi\)
\(44\) 0 0
\(45\) −112.635 64.6839i −0.373126 0.214278i
\(46\) 0 0
\(47\) 143.066 + 247.797i 0.444006 + 0.769041i 0.997982 0.0634912i \(-0.0202235\pi\)
−0.553976 + 0.832532i \(0.686890\pi\)
\(48\) 0 0
\(49\) −319.838 123.906i −0.932472 0.361242i
\(50\) 0 0
\(51\) 506.855 + 135.185i 1.39164 + 0.371170i
\(52\) 0 0
\(53\) 29.3942 + 16.9708i 0.0761813 + 0.0439833i 0.537607 0.843196i \(-0.319329\pi\)
−0.461425 + 0.887179i \(0.652662\pi\)
\(54\) 0 0
\(55\) 164.929i 0.404347i
\(56\) 0 0
\(57\) −509.251 508.078i −1.18337 1.18064i
\(58\) 0 0
\(59\) −127.350 + 220.577i −0.281010 + 0.486723i −0.971634 0.236491i \(-0.924003\pi\)
0.690624 + 0.723214i \(0.257336\pi\)
\(60\) 0 0
\(61\) −29.2617 + 16.8943i −0.0614193 + 0.0354605i −0.530395 0.847751i \(-0.677956\pi\)
0.468976 + 0.883211i \(0.344623\pi\)
\(62\) 0 0
\(63\) −167.280 471.237i −0.334529 0.942385i
\(64\) 0 0
\(65\) −71.4787 + 41.2683i −0.136398 + 0.0787492i
\(66\) 0 0
\(67\) 87.9473 152.329i 0.160365 0.277761i −0.774634 0.632409i \(-0.782066\pi\)
0.935000 + 0.354648i \(0.115399\pi\)
\(68\) 0 0
\(69\) −2.30007 2.29477i −0.00401298 0.00400373i
\(70\) 0 0
\(71\) 626.114i 1.04656i −0.852160 0.523282i \(-0.824708\pi\)
0.852160 0.523282i \(-0.175292\pi\)
\(72\) 0 0
\(73\) 189.125 + 109.191i 0.303225 + 0.175067i 0.643891 0.765118i \(-0.277319\pi\)
−0.340666 + 0.940184i \(0.610653\pi\)
\(74\) 0 0
\(75\) −511.392 136.395i −0.787339 0.209994i
\(76\) 0 0
\(77\) −413.113 + 482.187i −0.611410 + 0.713641i
\(78\) 0 0
\(79\) −263.456 456.319i −0.375204 0.649873i 0.615153 0.788407i \(-0.289094\pi\)
−0.990358 + 0.138535i \(0.955761\pi\)
\(80\) 0 0
\(81\) 361.583 633.008i 0.495999 0.868323i
\(82\) 0 0
\(83\) 370.957 0.490576 0.245288 0.969450i \(-0.421118\pi\)
0.245288 + 0.969450i \(0.421118\pi\)
\(84\) 0 0
\(85\) −485.653 −0.619723
\(86\) 0 0
\(87\) 1118.75 301.152i 1.37865 0.371114i
\(88\) 0 0
\(89\) −412.449 714.383i −0.491231 0.850837i 0.508718 0.860933i \(-0.330120\pi\)
−0.999949 + 0.0100964i \(0.996786\pi\)
\(90\) 0 0
\(91\) −312.343 58.3872i −0.359807 0.0672598i
\(92\) 0 0
\(93\) 383.230 1436.86i 0.427302 1.60210i
\(94\) 0 0
\(95\) 576.764 + 332.995i 0.622892 + 0.359627i
\(96\) 0 0
\(97\) 1309.69i 1.37092i 0.728112 + 0.685458i \(0.240398\pi\)
−0.728112 + 0.685458i \(0.759602\pi\)
\(98\) 0 0
\(99\) −925.674 + 2.13549i −0.939734 + 0.00216793i
\(100\) 0 0
\(101\) −755.381 + 1308.36i −0.744190 + 1.28898i 0.206382 + 0.978472i \(0.433831\pi\)
−0.950572 + 0.310504i \(0.899502\pi\)
\(102\) 0 0
\(103\) 173.735 100.306i 0.166200 0.0959555i −0.414593 0.910007i \(-0.636076\pi\)
0.580793 + 0.814052i \(0.302743\pi\)
\(104\) 0 0
\(105\) 262.069 + 381.628i 0.243574 + 0.354696i
\(106\) 0 0
\(107\) −1285.76 + 742.335i −1.16168 + 0.670694i −0.951705 0.307014i \(-0.900670\pi\)
−0.209971 + 0.977708i \(0.567337\pi\)
\(108\) 0 0
\(109\) 232.948 403.477i 0.204700 0.354552i −0.745337 0.666688i \(-0.767711\pi\)
0.950037 + 0.312137i \(0.101045\pi\)
\(110\) 0 0
\(111\) 67.4689 67.6247i 0.0576925 0.0578257i
\(112\) 0 0
\(113\) 454.340i 0.378237i −0.981954 0.189118i \(-0.939437\pi\)
0.981954 0.189118i \(-0.0605630\pi\)
\(114\) 0 0
\(115\) 2.60499 + 1.50399i 0.00211232 + 0.00121955i
\(116\) 0 0
\(117\) −232.546 400.643i −0.183751 0.316577i
\(118\) 0 0
\(119\) −1419.86 1216.46i −1.09376 0.937080i
\(120\) 0 0
\(121\) −77.7935 134.742i −0.0584474 0.101234i
\(122\) 0 0
\(123\) 296.807 + 1102.61i 0.217578 + 0.808283i
\(124\) 0 0
\(125\) 1091.33 0.780892
\(126\) 0 0
\(127\) 80.7459 0.0564176 0.0282088 0.999602i \(-0.491020\pi\)
0.0282088 + 0.999602i \(0.491020\pi\)
\(128\) 0 0
\(129\) 500.405 + 1858.96i 0.341536 + 1.26878i
\(130\) 0 0
\(131\) 1105.17 + 1914.22i 0.737095 + 1.27669i 0.953798 + 0.300449i \(0.0971364\pi\)
−0.216703 + 0.976238i \(0.569530\pi\)
\(132\) 0 0
\(133\) 852.145 + 2418.21i 0.555567 + 1.57658i
\(134\) 0 0
\(135\) −172.424 + 652.517i −0.109925 + 0.415998i
\(136\) 0 0
\(137\) 1820.47 + 1051.05i 1.13528 + 0.655453i 0.945257 0.326327i \(-0.105811\pi\)
0.190021 + 0.981780i \(0.439144\pi\)
\(138\) 0 0
\(139\) 3004.00i 1.83306i −0.399964 0.916531i \(-0.630977\pi\)
0.399964 0.916531i \(-0.369023\pi\)
\(140\) 0 0
\(141\) 1050.10 1052.53i 0.627195 0.628643i
\(142\) 0 0
\(143\) −294.109 + 509.412i −0.171991 + 0.297896i
\(144\) 0 0
\(145\) −928.915 + 536.309i −0.532015 + 0.307159i
\(146\) 0 0
\(147\) −189.714 + 1772.15i −0.106445 + 0.994319i
\(148\) 0 0
\(149\) 1109.66 640.661i 0.610112 0.352248i −0.162897 0.986643i \(-0.552084\pi\)
0.773009 + 0.634395i \(0.218751\pi\)
\(150\) 0 0
\(151\) 1652.35 2861.96i 0.890507 1.54240i 0.0512388 0.998686i \(-0.483683\pi\)
0.839268 0.543717i \(-0.182984\pi\)
\(152\) 0 0
\(153\) −6.28820 2725.75i −0.00332269 1.44029i
\(154\) 0 0
\(155\) 1376.76i 0.713444i
\(156\) 0 0
\(157\) 2268.13 + 1309.50i 1.15297 + 0.665667i 0.949609 0.313437i \(-0.101480\pi\)
0.203361 + 0.979104i \(0.434814\pi\)
\(158\) 0 0
\(159\) 45.4502 170.408i 0.0226694 0.0849954i
\(160\) 0 0
\(161\) 3.84877 + 10.9220i 0.00188401 + 0.00534643i
\(162\) 0 0
\(163\) −674.516 1168.30i −0.324124 0.561399i 0.657211 0.753707i \(-0.271736\pi\)
−0.981335 + 0.192308i \(0.938403\pi\)
\(164\) 0 0
\(165\) 827.540 222.762i 0.390448 0.105103i
\(166\) 0 0
\(167\) −2768.59 −1.28287 −0.641437 0.767175i \(-0.721662\pi\)
−0.641437 + 0.767175i \(0.721662\pi\)
\(168\) 0 0
\(169\) 1902.63 0.866015
\(170\) 0 0
\(171\) −1861.48 + 3241.43i −0.832462 + 1.44958i
\(172\) 0 0
\(173\) −635.218 1100.23i −0.279160 0.483520i 0.692016 0.721882i \(-0.256723\pi\)
−0.971176 + 0.238362i \(0.923389\pi\)
\(174\) 0 0
\(175\) 1432.57 + 1227.35i 0.618810 + 0.530164i
\(176\) 0 0
\(177\) 1278.76 + 341.062i 0.543036 + 0.144835i
\(178\) 0 0
\(179\) 1763.39 + 1018.09i 0.736323 + 0.425116i 0.820731 0.571315i \(-0.193566\pi\)
−0.0844077 + 0.996431i \(0.526900\pi\)
\(180\) 0 0
\(181\) 1402.45i 0.575931i 0.957641 + 0.287965i \(0.0929788\pi\)
−0.957641 + 0.287965i \(0.907021\pi\)
\(182\) 0 0
\(183\) 124.290 + 124.004i 0.0502065 + 0.0500908i
\(184\) 0 0
\(185\) −44.2192 + 76.5899i −0.0175733 + 0.0304378i
\(186\) 0 0
\(187\) −2997.43 + 1730.57i −1.17216 + 0.676747i
\(188\) 0 0
\(189\) −2138.51 + 1475.81i −0.823037 + 0.567988i
\(190\) 0 0
\(191\) 3511.17 2027.17i 1.33015 0.767964i 0.344831 0.938665i \(-0.387936\pi\)
0.985323 + 0.170701i \(0.0546031\pi\)
\(192\) 0 0
\(193\) 872.281 1510.83i 0.325327 0.563483i −0.656251 0.754542i \(-0.727859\pi\)
0.981579 + 0.191059i \(0.0611922\pi\)
\(194\) 0 0
\(195\) 303.608 + 302.908i 0.111497 + 0.111240i
\(196\) 0 0
\(197\) 5061.13i 1.83041i −0.402989 0.915205i \(-0.632029\pi\)
0.402989 0.915205i \(-0.367971\pi\)
\(198\) 0 0
\(199\) 1274.50 + 735.834i 0.454005 + 0.262120i 0.709520 0.704685i \(-0.248912\pi\)
−0.255515 + 0.966805i \(0.582245\pi\)
\(200\) 0 0
\(201\) −883.104 235.536i −0.309897 0.0826538i
\(202\) 0 0
\(203\) −4059.11 758.781i −1.40342 0.262345i
\(204\) 0 0
\(205\) −528.570 915.511i −0.180083 0.311912i
\(206\) 0 0
\(207\) −8.40750 + 14.6401i −0.00282300 + 0.00491574i
\(208\) 0 0
\(209\) 4746.35 1.57087
\(210\) 0 0
\(211\) −5010.62 −1.63481 −0.817406 0.576063i \(-0.804588\pi\)
−0.817406 + 0.576063i \(0.804588\pi\)
\(212\) 0 0
\(213\) −3141.55 + 845.661i −1.01059 + 0.272036i
\(214\) 0 0
\(215\) −891.150 1543.52i −0.282679 0.489614i
\(216\) 0 0
\(217\) −3448.48 + 4025.09i −1.07879 + 1.25917i
\(218\) 0 0
\(219\) 292.430 1096.42i 0.0902311 0.338307i
\(220\) 0 0
\(221\) −1500.02 866.039i −0.456572 0.263602i
\(222\) 0 0
\(223\) 4398.14i 1.32072i −0.750948 0.660361i \(-0.770403\pi\)
0.750948 0.660361i \(-0.229597\pi\)
\(224\) 0 0
\(225\) 6.34449 + 2750.15i 0.00187985 + 0.814860i
\(226\) 0 0
\(227\) 2060.25 3568.45i 0.602393 1.04338i −0.390064 0.920788i \(-0.627547\pi\)
0.992458 0.122588i \(-0.0391195\pi\)
\(228\) 0 0
\(229\) −453.529 + 261.845i −0.130874 + 0.0755600i −0.564007 0.825770i \(-0.690741\pi\)
0.433134 + 0.901330i \(0.357408\pi\)
\(230\) 0 0
\(231\) 2977.37 + 1421.54i 0.848036 + 0.404895i
\(232\) 0 0
\(233\) −4090.17 + 2361.46i −1.15003 + 0.663968i −0.948894 0.315596i \(-0.897796\pi\)
−0.201133 + 0.979564i \(0.564462\pi\)
\(234\) 0 0
\(235\) −688.237 + 1192.06i −0.191045 + 0.330900i
\(236\) 0 0
\(237\) −1933.76 + 1938.23i −0.530006 + 0.531230i
\(238\) 0 0
\(239\) 7159.06i 1.93758i −0.247886 0.968789i \(-0.579736\pi\)
0.247886 0.968789i \(-0.420264\pi\)
\(240\) 0 0
\(241\) −2440.67 1409.12i −0.652355 0.376637i 0.137003 0.990571i \(-0.456253\pi\)
−0.789358 + 0.613933i \(0.789586\pi\)
\(242\) 0 0
\(243\) −3664.52 959.287i −0.967402 0.253244i
\(244\) 0 0
\(245\) −253.103 1630.52i −0.0660006 0.425184i
\(246\) 0 0
\(247\) 1187.62 + 2057.02i 0.305938 + 0.529900i
\(248\) 0 0
\(249\) −501.033 1861.29i −0.127517 0.473713i
\(250\) 0 0
\(251\) 2431.43 0.611437 0.305719 0.952122i \(-0.401103\pi\)
0.305719 + 0.952122i \(0.401103\pi\)
\(252\) 0 0
\(253\) 21.4372 0.00532706
\(254\) 0 0
\(255\) 655.948 + 2436.79i 0.161087 + 0.598421i
\(256\) 0 0
\(257\) 665.134 + 1152.05i 0.161439 + 0.279621i 0.935385 0.353631i \(-0.115053\pi\)
−0.773946 + 0.633252i \(0.781720\pi\)
\(258\) 0 0
\(259\) −321.121 + 113.158i −0.0770404 + 0.0271480i
\(260\) 0 0
\(261\) −3022.09 5206.63i −0.716715 1.23480i
\(262\) 0 0
\(263\) 3964.07 + 2288.66i 0.929411 + 0.536596i 0.886625 0.462489i \(-0.153043\pi\)
0.0427856 + 0.999084i \(0.486377\pi\)
\(264\) 0 0
\(265\) 163.280i 0.0378499i
\(266\) 0 0
\(267\) −3027.37 + 3034.37i −0.693903 + 0.695506i
\(268\) 0 0
\(269\) −519.041 + 899.006i −0.117645 + 0.203767i −0.918834 0.394644i \(-0.870868\pi\)
0.801189 + 0.598411i \(0.204201\pi\)
\(270\) 0 0
\(271\) 3895.37 2249.00i 0.873163 0.504121i 0.00476491 0.999989i \(-0.498483\pi\)
0.868398 + 0.495868i \(0.165150\pi\)
\(272\) 0 0
\(273\) 128.907 + 1646.06i 0.0285780 + 0.364923i
\(274\) 0 0
\(275\) 3024.27 1746.06i 0.663164 0.382878i
\(276\) 0 0
\(277\) −315.706 + 546.820i −0.0684800 + 0.118611i −0.898232 0.439521i \(-0.855148\pi\)
0.829752 + 0.558132i \(0.188482\pi\)
\(278\) 0 0
\(279\) −7727.11 + 17.8261i −1.65810 + 0.00382517i
\(280\) 0 0
\(281\) 5539.62i 1.17604i −0.808848 0.588018i \(-0.799908\pi\)
0.808848 0.588018i \(-0.200092\pi\)
\(282\) 0 0
\(283\) 3676.15 + 2122.43i 0.772171 + 0.445813i 0.833649 0.552295i \(-0.186248\pi\)
−0.0614774 + 0.998108i \(0.519581\pi\)
\(284\) 0 0
\(285\) 891.809 3343.70i 0.185355 0.694960i
\(286\) 0 0
\(287\) 747.832 4000.54i 0.153809 0.822803i
\(288\) 0 0
\(289\) −2639.36 4571.51i −0.537220 0.930492i
\(290\) 0 0
\(291\) 6571.43 1768.94i 1.32379 0.356346i
\(292\) 0 0
\(293\) 1973.35 0.393462 0.196731 0.980458i \(-0.436967\pi\)
0.196731 + 0.980458i \(0.436967\pi\)
\(294\) 0 0
\(295\) −1225.27 −0.241824
\(296\) 0 0
\(297\) 1260.98 + 4641.72i 0.246361 + 0.906869i
\(298\) 0 0
\(299\) 5.36397 + 9.29068i 0.00103748 + 0.00179697i
\(300\) 0 0
\(301\) 1260.82 6744.77i 0.241436 1.29157i
\(302\) 0 0
\(303\) 7585.00 + 2023.02i 1.43811 + 0.383563i
\(304\) 0 0
\(305\) −140.768 81.2722i −0.0264273 0.0152578i
\(306\) 0 0
\(307\) 2596.86i 0.482771i 0.970429 + 0.241385i \(0.0776018\pi\)
−0.970429 + 0.241385i \(0.922398\pi\)
\(308\) 0 0
\(309\) −737.943 736.242i −0.135858 0.135545i
\(310\) 0 0
\(311\) −162.730 + 281.857i −0.0296706 + 0.0513910i −0.880479 0.474084i \(-0.842779\pi\)
0.850809 + 0.525475i \(0.176113\pi\)
\(312\) 0 0
\(313\) 554.704 320.259i 0.100172 0.0578342i −0.449077 0.893493i \(-0.648247\pi\)
0.549249 + 0.835659i \(0.314914\pi\)
\(314\) 0 0
\(315\) 1560.87 1830.39i 0.279191 0.327399i
\(316\) 0 0
\(317\) −6616.35 + 3819.95i −1.17228 + 0.676814i −0.954215 0.299122i \(-0.903306\pi\)
−0.218060 + 0.975935i \(0.569973\pi\)
\(318\) 0 0
\(319\) −3822.15 + 6620.16i −0.670845 + 1.16194i
\(320\) 0 0
\(321\) 5461.32 + 5448.73i 0.949598 + 0.947410i
\(322\) 0 0
\(323\) 13976.2i 2.40760i
\(324\) 0 0
\(325\) 1513.45 + 873.791i 0.258311 + 0.149136i
\(326\) 0 0
\(327\) −2339.10 623.868i −0.395573 0.105505i
\(328\) 0 0
\(329\) −4997.99 + 1761.22i −0.837533 + 0.295135i
\(330\) 0 0
\(331\) 2458.08 + 4257.53i 0.408183 + 0.706993i 0.994686 0.102953i \(-0.0328293\pi\)
−0.586503 + 0.809947i \(0.699496\pi\)
\(332\) 0 0
\(333\) −430.437 247.191i −0.0708343 0.0406786i
\(334\) 0 0
\(335\) 846.165 0.138003
\(336\) 0 0
\(337\) −5086.79 −0.822240 −0.411120 0.911581i \(-0.634862\pi\)
−0.411120 + 0.911581i \(0.634862\pi\)
\(338\) 0 0
\(339\) −2279.67 + 613.656i −0.365235 + 0.0983162i
\(340\) 0 0
\(341\) 4905.91 + 8497.29i 0.779091 + 1.34943i
\(342\) 0 0
\(343\) 3344.14 5400.96i 0.526433 0.850217i
\(344\) 0 0
\(345\) 4.02791 15.1020i 0.000628567 0.00235671i
\(346\) 0 0
\(347\) −5183.76 2992.84i −0.801956 0.463009i 0.0421990 0.999109i \(-0.486564\pi\)
−0.844154 + 0.536100i \(0.819897\pi\)
\(348\) 0 0
\(349\) 4392.81i 0.673759i 0.941548 + 0.336879i \(0.109371\pi\)
−0.941548 + 0.336879i \(0.890629\pi\)
\(350\) 0 0
\(351\) −1696.16 + 1707.94i −0.257932 + 0.259723i
\(352\) 0 0
\(353\) 4415.94 7648.63i 0.665826 1.15324i −0.313234 0.949676i \(-0.601413\pi\)
0.979061 0.203569i \(-0.0652541\pi\)
\(354\) 0 0
\(355\) 2608.47 1506.00i 0.389981 0.225156i
\(356\) 0 0
\(357\) −4185.90 + 8767.20i −0.620564 + 1.29975i
\(358\) 0 0
\(359\) −5040.82 + 2910.32i −0.741070 + 0.427857i −0.822458 0.568825i \(-0.807398\pi\)
0.0813881 + 0.996682i \(0.474065\pi\)
\(360\) 0 0
\(361\) 6153.46 10658.1i 0.897137 1.55389i
\(362\) 0 0
\(363\) −571.003 + 572.322i −0.0825617 + 0.0827524i
\(364\) 0 0
\(365\) 1050.56i 0.150654i
\(366\) 0 0
\(367\) 6166.91 + 3560.47i 0.877140 + 0.506417i 0.869714 0.493556i \(-0.164303\pi\)
0.00742533 + 0.999972i \(0.497636\pi\)
\(368\) 0 0
\(369\) 5131.50 2978.48i 0.723944 0.420199i
\(370\) 0 0
\(371\) −408.983 + 477.366i −0.0572327 + 0.0668022i
\(372\) 0 0
\(373\) 3073.51 + 5323.47i 0.426649 + 0.738978i 0.996573 0.0827194i \(-0.0263605\pi\)
−0.569924 + 0.821698i \(0.693027\pi\)
\(374\) 0 0
\(375\) −1474.01 5475.80i −0.202980 0.754050i
\(376\) 0 0
\(377\) −3825.48 −0.522606
\(378\) 0 0
\(379\) −17.4452 −0.00236438 −0.00118219 0.999999i \(-0.500376\pi\)
−0.00118219 + 0.999999i \(0.500376\pi\)
\(380\) 0 0
\(381\) −109.060 405.146i −0.0146648 0.0544784i
\(382\) 0 0
\(383\) 5669.44 + 9819.75i 0.756383 + 1.31009i 0.944684 + 0.327982i \(0.106369\pi\)
−0.188301 + 0.982111i \(0.560298\pi\)
\(384\) 0 0
\(385\) −3002.52 561.270i −0.397462 0.0742986i
\(386\) 0 0
\(387\) 8651.52 5021.61i 1.13639 0.659593i
\(388\) 0 0
\(389\) 8129.57 + 4693.61i 1.05960 + 0.611762i 0.925322 0.379181i \(-0.123794\pi\)
0.134281 + 0.990943i \(0.457128\pi\)
\(390\) 0 0
\(391\) 63.1244i 0.00816454i
\(392\) 0 0
\(393\) 8111.96 8130.70i 1.04121 1.04361i
\(394\) 0 0
\(395\) 1267.39 2195.19i 0.161441 0.279625i
\(396\) 0 0
\(397\) 3253.52 1878.42i 0.411308 0.237469i −0.280044 0.959987i \(-0.590349\pi\)
0.691352 + 0.722518i \(0.257016\pi\)
\(398\) 0 0
\(399\) 10982.5 7541.84i 1.37798 0.946276i
\(400\) 0 0
\(401\) −13062.8 + 7541.80i −1.62674 + 0.939201i −0.641688 + 0.766966i \(0.721766\pi\)
−0.985056 + 0.172235i \(0.944901\pi\)
\(402\) 0 0
\(403\) −2455.09 + 4252.35i −0.303466 + 0.525619i
\(404\) 0 0
\(405\) 3506.92 16.1807i 0.430272 0.00198525i
\(406\) 0 0
\(407\) 630.280i 0.0767613i
\(408\) 0 0
\(409\) −6394.77 3692.02i −0.773108 0.446354i 0.0608743 0.998145i \(-0.480611\pi\)
−0.833982 + 0.551791i \(0.813944\pi\)
\(410\) 0 0
\(411\) 2814.86 10553.9i 0.337827 1.26663i
\(412\) 0 0
\(413\) −3582.20 3069.04i −0.426800 0.365660i
\(414\) 0 0
\(415\) 892.269 + 1545.45i 0.105542 + 0.182803i
\(416\) 0 0
\(417\) −15072.7 + 4057.35i −1.77005 + 0.476473i
\(418\) 0 0
\(419\) −8290.31 −0.966606 −0.483303 0.875453i \(-0.660563\pi\)
−0.483303 + 0.875453i \(0.660563\pi\)
\(420\) 0 0
\(421\) 16466.8 1.90628 0.953140 0.302530i \(-0.0978314\pi\)
0.953140 + 0.302530i \(0.0978314\pi\)
\(422\) 0 0
\(423\) −6699.42 3847.33i −0.770064 0.442231i
\(424\) 0 0
\(425\) 5141.48 + 8905.30i 0.586820 + 1.01640i
\(426\) 0 0
\(427\) −207.978 590.200i −0.0235709 0.0668894i
\(428\) 0 0
\(429\) 2953.24 + 787.668i 0.332363 + 0.0886456i
\(430\) 0 0
\(431\) −1705.81 984.849i −0.190640 0.110066i 0.401642 0.915797i \(-0.368440\pi\)
−0.592282 + 0.805731i \(0.701773\pi\)
\(432\) 0 0
\(433\) 7664.99i 0.850706i 0.905027 + 0.425353i \(0.139850\pi\)
−0.905027 + 0.425353i \(0.860150\pi\)
\(434\) 0 0
\(435\) 3945.59 + 3936.50i 0.434889 + 0.433887i
\(436\) 0 0
\(437\) 43.2821 74.9668i 0.00473790 0.00820628i
\(438\) 0 0
\(439\) −6629.12 + 3827.33i −0.720708 + 0.416101i −0.815013 0.579442i \(-0.803270\pi\)
0.0943054 + 0.995543i \(0.469937\pi\)
\(440\) 0 0
\(441\) 9148.10 1441.66i 0.987809 0.155670i
\(442\) 0 0
\(443\) 2595.85 1498.71i 0.278403 0.160736i −0.354297 0.935133i \(-0.615280\pi\)
0.632700 + 0.774397i \(0.281947\pi\)
\(444\) 0 0
\(445\) 1984.14 3436.64i 0.211365 0.366095i
\(446\) 0 0
\(447\) −4713.31 4702.45i −0.498729 0.497579i
\(448\) 0 0
\(449\) 1889.58i 0.198608i 0.995057 + 0.0993039i \(0.0316616\pi\)
−0.995057 + 0.0993039i \(0.968338\pi\)
\(450\) 0 0
\(451\) −6524.63 3767.00i −0.681226 0.393306i
\(452\) 0 0
\(453\) −16591.8 4425.24i −1.72086 0.458976i
\(454\) 0 0
\(455\) −508.036 1441.70i −0.0523453 0.148545i
\(456\) 0 0
\(457\) −4738.58 8207.46i −0.485036 0.840107i 0.514816 0.857300i \(-0.327860\pi\)
−0.999852 + 0.0171938i \(0.994527\pi\)
\(458\) 0 0
\(459\) −13668.1 + 3713.09i −1.38992 + 0.377587i
\(460\) 0 0
\(461\) 18908.7 1.91034 0.955171 0.296054i \(-0.0956707\pi\)
0.955171 + 0.296054i \(0.0956707\pi\)
\(462\) 0 0
\(463\) −12725.2 −1.27730 −0.638649 0.769499i \(-0.720506\pi\)
−0.638649 + 0.769499i \(0.720506\pi\)
\(464\) 0 0
\(465\) 6907.94 1859.52i 0.688920 0.185448i
\(466\) 0 0
\(467\) −3585.52 6210.31i −0.355285 0.615372i 0.631881 0.775065i \(-0.282283\pi\)
−0.987167 + 0.159693i \(0.948950\pi\)
\(468\) 0 0
\(469\) 2473.85 + 2119.46i 0.243564 + 0.208673i
\(470\) 0 0
\(471\) 3507.04 13149.1i 0.343091 1.28637i
\(472\) 0 0
\(473\) −11000.3 6351.02i −1.06933 0.617379i
\(474\) 0 0
\(475\) 14101.3i 1.36213i
\(476\) 0 0
\(477\) −916.419 + 2.11414i −0.0879663 + 0.000202935i
\(478\) 0 0
\(479\) 1113.31 1928.31i 0.106197 0.183939i −0.808029 0.589142i \(-0.799466\pi\)
0.914227 + 0.405203i \(0.132799\pi\)
\(480\) 0 0
\(481\) −273.157 + 157.707i −0.0258938 + 0.0149498i
\(482\) 0 0
\(483\) 49.6034 34.0632i 0.00467294 0.00320896i
\(484\) 0 0
\(485\) −5456.34 + 3150.22i −0.510845 + 0.294936i
\(486\) 0 0
\(487\) −7511.82 + 13010.8i −0.698959 + 1.21063i 0.269869 + 0.962897i \(0.413020\pi\)
−0.968828 + 0.247735i \(0.920314\pi\)
\(488\) 0 0
\(489\) −4950.94 + 4962.37i −0.457851 + 0.458908i
\(490\) 0 0
\(491\) 8830.77i 0.811664i 0.913948 + 0.405832i \(0.133018\pi\)
−0.913948 + 0.405832i \(0.866982\pi\)
\(492\) 0 0
\(493\) −19493.8 11254.8i −1.78085 1.02817i
\(494\) 0 0
\(495\) −2235.44 3851.34i −0.202981 0.349707i
\(496\) 0 0
\(497\) 11398.3 + 2130.72i 1.02874 + 0.192306i
\(498\) 0 0
\(499\) 4290.57 + 7431.48i 0.384914 + 0.666691i 0.991757 0.128131i \(-0.0408977\pi\)
−0.606843 + 0.794822i \(0.707564\pi\)
\(500\) 0 0
\(501\) 3739.40 + 13891.5i 0.333462 + 1.23878i
\(502\) 0 0
\(503\) −13816.4 −1.22474 −0.612369 0.790572i \(-0.709783\pi\)
−0.612369 + 0.790572i \(0.709783\pi\)
\(504\) 0 0
\(505\) −7267.73 −0.640415
\(506\) 0 0
\(507\) −2569.80 9546.55i −0.225106 0.836247i
\(508\) 0 0
\(509\) −4853.13 8405.87i −0.422616 0.731992i 0.573579 0.819150i \(-0.305555\pi\)
−0.996194 + 0.0871587i \(0.972221\pi\)
\(510\) 0 0
\(511\) −2631.43 + 3071.41i −0.227803 + 0.265893i
\(512\) 0 0
\(513\) 18778.2 + 4962.02i 1.61614 + 0.427054i
\(514\) 0 0
\(515\) 835.774 + 482.534i 0.0715118 + 0.0412874i
\(516\) 0 0
\(517\) 9809.82i 0.834498i
\(518\) 0 0
\(519\) −4662.49 + 4673.26i −0.394336 + 0.395247i
\(520\) 0 0
\(521\) 9930.86 17200.7i 0.835084 1.44641i −0.0588781 0.998265i \(-0.518752\pi\)
0.893962 0.448143i \(-0.147914\pi\)
\(522\) 0 0
\(523\) 3046.39 1758.83i 0.254702 0.147052i −0.367213 0.930137i \(-0.619688\pi\)
0.621915 + 0.783084i \(0.286355\pi\)
\(524\) 0 0
\(525\) 4223.37 8845.68i 0.351092 0.735347i
\(526\) 0 0
\(527\) −25021.3 + 14446.0i −2.06820 + 1.19408i
\(528\) 0 0
\(529\) −6083.30 + 10536.6i −0.499984 + 0.865998i
\(530\) 0 0
\(531\) −15.8647 6876.88i −0.00129655 0.562018i
\(532\) 0 0
\(533\) 3770.28i 0.306396i
\(534\) 0 0
\(535\) −6185.34 3571.11i −0.499842 0.288584i
\(536\) 0 0
\(537\) 2726.60 10223.0i 0.219109 0.821515i
\(538\) 0 0
\(539\) −7372.31 9161.61i −0.589143 0.732131i
\(540\) 0 0
\(541\) 1477.08 + 2558.37i 0.117383 + 0.203314i 0.918730 0.394886i \(-0.129216\pi\)
−0.801347 + 0.598200i \(0.795883\pi\)
\(542\) 0 0
\(543\) 7036.86 1894.22i 0.556134 0.149703i
\(544\) 0 0
\(545\) 2241.25 0.176156
\(546\) 0 0
\(547\) 19117.2 1.49432 0.747159 0.664645i \(-0.231417\pi\)
0.747159 + 0.664645i \(0.231417\pi\)
\(548\) 0 0
\(549\) 454.321 791.117i 0.0353187 0.0615010i
\(550\) 0 0
\(551\) 15434.0 + 26732.4i 1.19330 + 2.06686i
\(552\) 0 0
\(553\) 9203.82 3243.30i 0.707751 0.249402i
\(554\) 0 0
\(555\) 444.018 + 118.425i 0.0339595 + 0.00905744i
\(556\) 0 0
\(557\) −21330.1 12315.0i −1.62260 0.936806i −0.986222 0.165426i \(-0.947100\pi\)
−0.636374 0.771381i \(-0.719567\pi\)
\(558\) 0 0
\(559\) 6356.55i 0.480955i
\(560\) 0 0
\(561\) 12731.7 + 12702.4i 0.958169 + 0.955961i
\(562\) 0 0
\(563\) 8786.67 15219.0i 0.657751 1.13926i −0.323445 0.946247i \(-0.604841\pi\)
0.981197 0.193011i \(-0.0618254\pi\)
\(564\) 0 0
\(565\) 1892.84 1092.83i 0.140942 0.0813732i
\(566\) 0 0
\(567\) 10293.3 + 8736.78i 0.762399 + 0.647108i
\(568\) 0 0
\(569\) 1590.17 918.088i 0.117159 0.0676419i −0.440275 0.897863i \(-0.645119\pi\)
0.557434 + 0.830221i \(0.311786\pi\)
\(570\) 0 0
\(571\) −707.209 + 1224.92i −0.0518315 + 0.0897748i −0.890777 0.454441i \(-0.849839\pi\)
0.838946 + 0.544215i \(0.183173\pi\)
\(572\) 0 0
\(573\) −14913.8 14879.4i −1.08732 1.08481i
\(574\) 0 0
\(575\) 63.6894i 0.00461919i
\(576\) 0 0
\(577\) −10844.9 6261.33i −0.782463 0.451755i 0.0548397 0.998495i \(-0.482535\pi\)
−0.837302 + 0.546740i \(0.815869\pi\)
\(578\) 0 0
\(579\) −8758.83 2336.10i −0.628678 0.167677i
\(580\) 0 0
\(581\) −1262.40 + 6753.23i −0.0901432 + 0.482223i
\(582\) 0 0
\(583\) 581.831 + 1007.76i 0.0413327 + 0.0715904i
\(584\) 0 0
\(585\) 1109.79 1932.49i 0.0784343 0.136579i
\(586\) 0 0
\(587\) 18045.5 1.26885 0.634426 0.772983i \(-0.281236\pi\)
0.634426 + 0.772983i \(0.281236\pi\)
\(588\) 0 0
\(589\) 39620.5 2.77170
\(590\) 0 0
\(591\) −25394.4 + 6835.83i −1.76749 + 0.475784i
\(592\) 0 0
\(593\) 9283.24 + 16079.0i 0.642861 + 1.11347i 0.984791 + 0.173743i \(0.0555862\pi\)
−0.341930 + 0.939726i \(0.611080\pi\)
\(594\) 0 0
\(595\) 1652.72 8841.28i 0.113874 0.609171i
\(596\) 0 0
\(597\) 1970.67 7388.73i 0.135099 0.506533i
\(598\) 0 0
\(599\) 4258.02 + 2458.37i 0.290447 + 0.167690i 0.638143 0.769917i \(-0.279703\pi\)
−0.347696 + 0.937607i \(0.613036\pi\)
\(600\) 0 0
\(601\) 16157.9i 1.09666i −0.836262 0.548330i \(-0.815264\pi\)
0.836262 0.548330i \(-0.184736\pi\)
\(602\) 0 0
\(603\) 10.9561 + 4749.14i 0.000739910 + 0.320730i
\(604\) 0 0
\(605\) 374.236 648.196i 0.0251485 0.0435585i
\(606\) 0 0
\(607\) −9043.22 + 5221.10i −0.604700 + 0.349124i −0.770888 0.636970i \(-0.780187\pi\)
0.166188 + 0.986094i \(0.446854\pi\)
\(608\) 0 0
\(609\) 1675.23 + 21391.6i 0.111468 + 1.42337i
\(610\) 0 0
\(611\) −4251.48 + 2454.59i −0.281500 + 0.162524i
\(612\) 0 0
\(613\) −5235.58 + 9068.30i −0.344965 + 0.597496i −0.985347 0.170560i \(-0.945442\pi\)
0.640383 + 0.768056i \(0.278776\pi\)
\(614\) 0 0
\(615\) −3879.70 + 3888.66i −0.254381 + 0.254969i
\(616\) 0 0
\(617\) 7308.93i 0.476899i 0.971155 + 0.238449i \(0.0766391\pi\)
−0.971155 + 0.238449i \(0.923361\pi\)
\(618\) 0 0
\(619\) 14616.4 + 8438.76i 0.949082 + 0.547953i 0.892796 0.450462i \(-0.148741\pi\)
0.0562861 + 0.998415i \(0.482074\pi\)
\(620\) 0 0
\(621\) 84.8130 + 22.4113i 0.00548056 + 0.00144820i
\(622\) 0 0
\(623\) 14408.9 5077.49i 0.926613 0.326526i
\(624\) 0 0
\(625\) −3741.11 6479.80i −0.239431 0.414707i
\(626\) 0 0
\(627\) −6410.67 23815.0i −0.408321 1.51688i
\(628\) 0 0
\(629\) −1855.93 −0.117648
\(630\) 0 0
\(631\) 27123.5 1.71120 0.855601 0.517635i \(-0.173188\pi\)
0.855601 + 0.517635i \(0.173188\pi\)
\(632\) 0 0
\(633\) 6767.60 + 25141.0i 0.424941 + 1.57862i
\(634\) 0 0
\(635\) 194.220 + 336.398i 0.0121376 + 0.0210229i
\(636\) 0 0
\(637\) 2125.87 5487.49i 0.132229 0.341322i
\(638\) 0 0
\(639\) 8486.29 + 14620.7i 0.525371 + 0.905141i
\(640\) 0 0
\(641\) 3189.14 + 1841.25i 0.196511 + 0.113455i 0.595027 0.803706i \(-0.297141\pi\)
−0.398516 + 0.917161i \(0.630475\pi\)
\(642\) 0 0
\(643\) 14488.3i 0.888588i 0.895881 + 0.444294i \(0.146546\pi\)
−0.895881 + 0.444294i \(0.853454\pi\)
\(644\) 0 0
\(645\) −6541.03 + 6556.14i −0.399307 + 0.400229i
\(646\) 0 0
\(647\) 6085.96 10541.2i 0.369805 0.640520i −0.619730 0.784815i \(-0.712758\pi\)
0.989535 + 0.144295i \(0.0460913\pi\)
\(648\) 0 0
\(649\) −7562.32 + 4366.11i −0.457391 + 0.264075i
\(650\) 0 0
\(651\) 24853.7 + 11866.4i 1.49631 + 0.714412i
\(652\) 0 0
\(653\) −7276.24 + 4200.94i −0.436051 + 0.251754i −0.701921 0.712255i \(-0.747674\pi\)
0.265870 + 0.964009i \(0.414341\pi\)
\(654\) 0 0
\(655\) −5316.59 + 9208.60i −0.317155 + 0.549328i
\(656\) 0 0
\(657\) −5896.32 + 13.6026i −0.350133 + 0.000807742i
\(658\) 0 0
\(659\) 9814.94i 0.580175i −0.957000 0.290088i \(-0.906316\pi\)
0.957000 0.290088i \(-0.0936845\pi\)
\(660\) 0 0
\(661\) −1870.41 1079.88i −0.110061 0.0635438i 0.443959 0.896047i \(-0.353574\pi\)
−0.554020 + 0.832503i \(0.686907\pi\)
\(662\) 0 0
\(663\) −2319.38 + 8696.15i −0.135863 + 0.509397i
\(664\) 0 0
\(665\) −8024.92 + 9366.73i −0.467960 + 0.546205i
\(666\) 0 0
\(667\) 69.7085 + 120.739i 0.00404666 + 0.00700903i
\(668\) 0 0
\(669\) −22067.8 + 5940.35i −1.27532 + 0.343299i
\(670\) 0 0
\(671\) −1158.42 −0.0666470
\(672\) 0 0
\(673\) −14794.4 −0.847372 −0.423686 0.905809i \(-0.639264\pi\)
−0.423686 + 0.905809i \(0.639264\pi\)
\(674\) 0 0
\(675\) 13790.4 3746.33i 0.786362 0.213624i
\(676\) 0 0
\(677\) 5190.37 + 8989.98i 0.294656 + 0.510359i 0.974905 0.222622i \(-0.0714616\pi\)
−0.680249 + 0.732981i \(0.738128\pi\)
\(678\) 0 0
\(679\) −23842.8 4457.00i −1.34757 0.251906i
\(680\) 0 0
\(681\) −20687.5 5517.64i −1.16409 0.310479i
\(682\) 0 0
\(683\) 3799.53 + 2193.66i 0.212862 + 0.122896i 0.602641 0.798013i \(-0.294115\pi\)
−0.389779 + 0.920909i \(0.627448\pi\)
\(684\) 0 0
\(685\) 10112.4i 0.564052i
\(686\) 0 0
\(687\) 1926.38 + 1921.94i 0.106981 + 0.106735i
\(688\) 0 0
\(689\) −291.169 + 504.319i −0.0160996 + 0.0278854i
\(690\) 0 0
\(691\) 15808.1 9126.79i 0.870285 0.502459i 0.00284192 0.999996i \(-0.499095\pi\)
0.867443 + 0.497537i \(0.165762\pi\)
\(692\) 0 0
\(693\) 3111.28 16859.1i 0.170545 0.924132i
\(694\) 0 0
\(695\) 12515.0 7225.57i 0.683054 0.394362i
\(696\) 0 0
\(697\) 11092.4 19212.5i 0.602802 1.04408i
\(698\) 0 0
\(699\) 17373.1 + 17333.1i 0.940075 + 0.937909i
\(700\) 0 0
\(701\) 8709.47i 0.469261i −0.972085 0.234631i \(-0.924612\pi\)
0.972085 0.234631i \(-0.0753880\pi\)
\(702\) 0 0
\(703\) 2204.11 + 1272.55i 0.118250 + 0.0682716i
\(704\) 0 0
\(705\) 6910.79 + 1843.20i 0.369185 + 0.0984666i
\(706\) 0 0
\(707\) −21247.9 18204.1i −1.13028 0.968368i
\(708\) 0 0
\(709\) 9585.59 + 16602.7i 0.507749 + 0.879448i 0.999960 + 0.00897144i \(0.00285574\pi\)
−0.492210 + 0.870476i \(0.663811\pi\)
\(710\) 0 0
\(711\) 12337.0 + 7084.87i 0.650736 + 0.373704i
\(712\) 0 0
\(713\) 178.948 0.00939926
\(714\) 0 0
\(715\) −2829.71 −0.148007
\(716\) 0 0
\(717\) −35920.9 + 9669.40i −1.87098 + 0.503641i
\(718\) 0 0
\(719\) 1665.92 + 2885.46i 0.0864094 + 0.149666i 0.905991 0.423297i \(-0.139127\pi\)
−0.819582 + 0.572963i \(0.805794\pi\)
\(720\) 0 0
\(721\) 1234.82 + 3504.17i 0.0637825 + 0.181002i
\(722\) 0 0
\(723\) −3773.84 + 14149.4i −0.194122 + 0.727832i
\(724\) 0 0
\(725\) 19668.3 + 11355.5i 1.00754 + 0.581701i
\(726\) 0 0
\(727\) 690.120i 0.0352065i 0.999845 + 0.0176033i \(0.00560358\pi\)
−0.999845 + 0.0176033i \(0.994396\pi\)
\(728\) 0 0
\(729\) 136.222 + 19682.5i 0.00692081 + 0.999976i
\(730\) 0 0
\(731\) 18701.3 32391.6i 0.946228 1.63892i
\(732\) 0 0
\(733\) 15627.7 9022.68i 0.787482 0.454653i −0.0515936 0.998668i \(-0.516430\pi\)
0.839075 + 0.544015i \(0.183097\pi\)
\(734\) 0 0
\(735\) −7839.36 + 3472.22i −0.393414 + 0.174251i
\(736\) 0 0
\(737\) 5222.50 3015.21i 0.261022 0.150701i
\(738\) 0 0
\(739\) −9638.45 + 16694.3i −0.479778 + 0.831001i −0.999731 0.0231946i \(-0.992616\pi\)
0.519953 + 0.854195i \(0.325950\pi\)
\(740\) 0 0
\(741\) 8717.14 8737.27i 0.432162 0.433160i
\(742\) 0 0
\(743\) 843.042i 0.0416261i −0.999783 0.0208131i \(-0.993375\pi\)
0.999783 0.0208131i \(-0.00662549\pi\)
\(744\) 0 0
\(745\) 5338.16 + 3081.99i 0.262517 + 0.151564i
\(746\) 0 0
\(747\) −8662.39 + 5027.91i −0.424284 + 0.246267i
\(748\) 0 0
\(749\) −9138.58 25933.4i −0.445816 1.26514i
\(750\) 0 0
\(751\) −11343.3 19647.2i −0.551162 0.954640i −0.998191 0.0601209i \(-0.980851\pi\)
0.447029 0.894519i \(-0.352482\pi\)
\(752\) 0 0
\(753\) −3284.02 12199.8i −0.158933 0.590420i
\(754\) 0 0
\(755\) 15897.7 0.766328
\(756\) 0 0
\(757\) −37545.5 −1.80266 −0.901330 0.433133i \(-0.857408\pi\)
−0.901330 + 0.433133i \(0.857408\pi\)
\(758\) 0 0
\(759\) −28.9542 107.562i −0.00138468 0.00514395i
\(760\) 0 0
\(761\) −17635.9 30546.3i −0.840080 1.45506i −0.889826 0.456300i \(-0.849174\pi\)
0.0497457 0.998762i \(-0.484159\pi\)
\(762\) 0 0
\(763\) 6552.53 + 5613.87i 0.310901 + 0.266364i
\(764\) 0 0
\(765\) 11340.7 6582.50i 0.535980 0.311099i
\(766\) 0 0
\(767\) −3784.45 2184.96i −0.178160 0.102861i
\(768\) 0 0
\(769\) 3431.91i 0.160934i −0.996757 0.0804668i \(-0.974359\pi\)
0.996757 0.0804668i \(-0.0256411\pi\)
\(770\) 0 0
\(771\) 4882.07 4893.35i 0.228046 0.228573i
\(772\) 0 0
\(773\) −1780.10 + 3083.22i −0.0828275 + 0.143461i −0.904463 0.426551i \(-0.859728\pi\)
0.821636 + 0.570013i \(0.193062\pi\)
\(774\) 0 0
\(775\) 25245.2 14575.3i 1.17011 0.675564i
\(776\) 0 0
\(777\) 1001.50 + 1458.40i 0.0462402 + 0.0673356i
\(778\) 0 0
\(779\) −26346.7 + 15211.3i −1.21177 + 0.699615i
\(780\) 0 0
\(781\) 10732.9 18590.0i 0.491747 0.851731i
\(782\) 0 0
\(783\) −22042.7 + 22195.8i −1.00606 + 1.01304i
\(784\) 0 0
\(785\) 12599.1i 0.572842i
\(786\) 0 0
\(787\) 1990.24 + 1149.07i 0.0901453 + 0.0520454i 0.544395 0.838829i \(-0.316759\pi\)
−0.454250 + 0.890874i \(0.650093\pi\)
\(788\) 0 0
\(789\) 6129.36 22981.1i 0.276566 1.03694i
\(790\) 0 0
\(791\) 8271.23 + 1546.16i 0.371796 + 0.0695009i
\(792\) 0 0
\(793\) −289.856 502.046i −0.0129800 0.0224819i
\(794\) 0 0
\(795\) 819.266 220.535i 0.0365489 0.00983845i
\(796\) 0 0
\(797\) −29634.9 −1.31709 −0.658546 0.752541i \(-0.728828\pi\)
−0.658546 + 0.752541i \(0.728828\pi\)
\(798\) 0 0
\(799\) −28886.1 −1.27900
\(800\) 0 0
\(801\) 19314.0 + 11091.6i 0.851968 + 0.489267i
\(802\) 0 0
\(803\) 3743.55 + 6484.01i 0.164517 + 0.284951i
\(804\) 0 0
\(805\) −36.2451 + 42.3054i −0.00158692 + 0.00185226i
\(806\) 0 0
\(807\) 5211.85 + 1390.07i 0.227343 + 0.0606354i
\(808\) 0 0
\(809\) −16234.4 9372.91i −0.705525 0.407335i 0.103877 0.994590i \(-0.466875\pi\)
−0.809402 + 0.587255i \(0.800209\pi\)
\(810\) 0 0
\(811\) 17950.4i 0.777218i −0.921403 0.388609i \(-0.872956\pi\)
0.921403 0.388609i \(-0.127044\pi\)
\(812\) 0 0
\(813\) −16545.7 16507.6i −0.713756 0.712112i
\(814\) 0 0
\(815\) 3244.85 5620.24i 0.139463 0.241557i
\(816\) 0 0
\(817\) −44419.5 + 25645.6i −1.90213 + 1.09820i
\(818\) 0 0
\(819\) 8085.05 2870.05i 0.344951 0.122451i
\(820\) 0 0
\(821\) 31560.6 18221.5i 1.34162 0.774586i 0.354576 0.935027i \(-0.384625\pi\)
0.987045 + 0.160441i \(0.0512918\pi\)
\(822\) 0 0
\(823\) 2827.83 4897.94i 0.119771 0.207450i −0.799906 0.600126i \(-0.795117\pi\)
0.919677 + 0.392676i \(0.128451\pi\)
\(824\) 0 0
\(825\) −12845.7 12816.1i −0.542095 0.540846i
\(826\) 0 0
\(827\) 37188.1i 1.56367i −0.623483 0.781837i \(-0.714283\pi\)
0.623483 0.781837i \(-0.285717\pi\)
\(828\) 0 0
\(829\) 12258.2 + 7077.29i 0.513565 + 0.296507i 0.734298 0.678827i \(-0.237511\pi\)
−0.220733 + 0.975334i \(0.570845\pi\)
\(830\) 0 0
\(831\) 3170.10 + 845.508i 0.132334 + 0.0352952i
\(832\) 0 0
\(833\) 26977.4 21708.6i 1.12210 0.902952i
\(834\) 0 0
\(835\) −6659.34 11534.3i −0.275995 0.478038i
\(836\) 0 0
\(837\) 10526.1 + 38747.1i 0.434689 + 1.60011i
\(838\) 0 0
\(839\) 30349.4 1.24884 0.624421 0.781088i \(-0.285335\pi\)
0.624421 + 0.781088i \(0.285335\pi\)
\(840\) 0 0
\(841\) −25325.8 −1.03841
\(842\) 0 0
\(843\) −27795.3 + 7482.10i −1.13561 + 0.305691i
\(844\) 0 0
\(845\) 4576.44 + 7926.63i 0.186313 + 0.322703i
\(846\) 0 0
\(847\) 2717.71 957.683i 0.110250 0.0388505i
\(848\) 0 0
\(849\) 5684.17 21311.9i 0.229776 0.861511i
\(850\) 0 0
\(851\) 9.95502 + 5.74753i 0.000401003 + 0.000231519i
\(852\) 0 0
\(853\) 44235.1i 1.77559i 0.460235 + 0.887797i \(0.347765\pi\)
−0.460235 + 0.887797i \(0.652235\pi\)
\(854\) 0 0
\(855\) −17981.7 + 41.4830i −0.719252 + 0.00165928i
\(856\) 0 0
\(857\) 10452.8 18104.8i 0.416642 0.721645i −0.578957 0.815358i \(-0.696540\pi\)
0.995599 + 0.0937129i \(0.0298736\pi\)
\(858\) 0 0
\(859\) −977.718 + 564.486i −0.0388351 + 0.0224214i −0.519292 0.854597i \(-0.673804\pi\)
0.480457 + 0.877018i \(0.340471\pi\)
\(860\) 0 0
\(861\) −21083.0 + 1651.06i −0.834501 + 0.0653519i
\(862\) 0 0
\(863\) −17175.9 + 9916.54i −0.677493 + 0.391151i −0.798910 0.601451i \(-0.794589\pi\)
0.121417 + 0.992602i \(0.461256\pi\)
\(864\) 0 0
\(865\) 3055.80 5292.80i 0.120116 0.208047i
\(866\) 0 0
\(867\) −19372.9 + 19417.6i −0.758867 + 0.760619i
\(868\) 0 0
\(869\) 18064.8i 0.705186i
\(870\) 0 0
\(871\) 2613.53 + 1508.92i 0.101672 + 0.0587001i
\(872\) 0 0
\(873\) −17751.4 30583.2i −0.688195 1.18566i
\(874\) 0 0
\(875\) −3713.90 + 19867.6i −0.143489 + 0.767596i
\(876\) 0 0
\(877\) 7722.35 + 13375.5i 0.297338 + 0.515004i 0.975526 0.219884i \(-0.0705680\pi\)
−0.678188 + 0.734888i \(0.737235\pi\)
\(878\) 0 0
\(879\) −2665.31 9901.37i −0.102274 0.379937i
\(880\) 0 0
\(881\) 9043.98 0.345856 0.172928 0.984934i \(-0.444677\pi\)
0.172928 + 0.984934i \(0.444677\pi\)
\(882\) 0 0
\(883\) −15055.4 −0.573787 −0.286894 0.957962i \(-0.592623\pi\)
−0.286894 + 0.957962i \(0.592623\pi\)
\(884\) 0 0
\(885\) 1654.91 + 6147.84i 0.0628579 + 0.233511i
\(886\) 0 0
\(887\) −14220.9 24631.3i −0.538322 0.932401i −0.998995 0.0448306i \(-0.985725\pi\)
0.460673 0.887570i \(-0.347608\pi\)
\(888\) 0 0
\(889\) −274.786 + 1469.97i −0.0103667 + 0.0554570i
\(890\) 0 0
\(891\) 21586.9 12596.4i 0.811659 0.473618i
\(892\) 0 0
\(893\) 34305.3 + 19806.2i 1.28554 + 0.742204i
\(894\) 0 0
\(895\) 9795.35i 0.365835i
\(896\) 0 0
\(897\) 39.3715 39.4624i 0.00146553 0.00146891i
\(898\) 0 0
\(899\) −31905.6 + 55262.2i −1.18366 + 2.05016i
\(900\) 0 0
\(901\) −2967.47 + 1713.27i −0.109723 + 0.0633488i
\(902\) 0 0
\(903\) −35545.1 + 2783.63i −1.30993 + 0.102584i
\(904\) 0 0
\(905\) −5842.80 + 3373.34i −0.214609 + 0.123905i
\(906\) 0 0
\(907\) 14570.3 25236.4i 0.533404 0.923883i −0.465834 0.884872i \(-0.654246\pi\)
0.999239 0.0390115i \(-0.0124209\pi\)
\(908\) 0 0
\(909\) −94.1020 40790.5i −0.00343363 1.48838i
\(910\) 0 0
\(911\) 14257.6i 0.518525i −0.965807 0.259263i \(-0.916520\pi\)
0.965807 0.259263i \(-0.0834795\pi\)
\(912\) 0 0
\(913\) 11014.1 + 6358.99i 0.399248 + 0.230506i
\(914\) 0 0
\(915\) −217.659 + 816.077i −0.00786402 + 0.0294849i
\(916\) 0 0
\(917\) −38609.2 + 13605.3i −1.39039 + 0.489954i
\(918\) 0 0
\(919\) −10769.5 18653.3i −0.386563 0.669548i 0.605421 0.795905i \(-0.293005\pi\)
−0.991985 + 0.126358i \(0.959671\pi\)
\(920\) 0 0
\(921\) 13029.9 3507.45i 0.466176 0.125488i
\(922\) 0 0
\(923\) 10742.3 0.383084
\(924\) 0 0
\(925\) 1872.55 0.0665610
\(926\) 0 0
\(927\) −2697.42 + 4697.07i −0.0955718 + 0.166421i
\(928\) 0 0
\(929\) 9507.93 + 16468.2i 0.335786 + 0.581598i 0.983636 0.180170i \(-0.0576648\pi\)
−0.647849 + 0.761768i \(0.724331\pi\)
\(930\) 0 0
\(931\) −46923.3 + 7283.82i −1.65183 + 0.256410i
\(932\) 0 0
\(933\) 1634.02 + 435.814i 0.0573369 + 0.0152925i
\(934\) 0 0
\(935\) −14419.6 8325.14i −0.504353 0.291188i
\(936\) 0 0
\(937\) 13655.6i 0.476105i 0.971252 + 0.238052i \(0.0765090\pi\)
−0.971252 + 0.238052i \(0.923491\pi\)
\(938\) 0 0
\(939\) −2356.12 2350.69i −0.0818841 0.0816954i
\(940\) 0 0
\(941\) −13850.3 + 23989.4i −0.479815 + 0.831065i −0.999732 0.0231524i \(-0.992630\pi\)
0.519917 + 0.854217i \(0.325963\pi\)
\(942\) 0 0
\(943\) −118.996 + 68.7026i −0.00410929 + 0.00237250i
\(944\) 0 0
\(945\) −11292.2 5359.53i −0.388716 0.184493i
\(946\) 0 0
\(947\) 15651.0 9036.10i 0.537052 0.310067i −0.206831 0.978377i \(-0.566315\pi\)
0.743883 + 0.668309i \(0.232982\pi\)
\(948\) 0 0
\(949\) −1873.40 + 3244.83i −0.0640814 + 0.110992i
\(950\) 0 0
\(951\) 28103.2 + 28038.4i 0.958262 + 0.956054i
\(952\) 0 0
\(953\) 13088.1i 0.444874i 0.974947 + 0.222437i \(0.0714012\pi\)
−0.974947 + 0.222437i \(0.928599\pi\)
\(954\) 0 0
\(955\) 16891.0 + 9752.00i 0.572334 + 0.330437i
\(956\) 0 0
\(957\) 38379.3 + 10236.3i 1.29637 + 0.345760i
\(958\) 0 0
\(959\) −25329.5 + 29564.7i −0.852900 + 0.995509i
\(960\) 0 0
\(961\) 26056.9 + 45131.9i 0.874657 + 1.51495i
\(962\) 0 0
\(963\) 19962.9 34761.7i 0.668012 1.16322i
\(964\) 0 0
\(965\) 8392.45 0.279961
\(966\) 0 0
\(967\) 37827.6 1.25796 0.628982 0.777420i \(-0.283472\pi\)
0.628982 + 0.777420i \(0.283472\pi\)
\(968\) 0 0
\(969\) 70126.1 18877.0i 2.32485 0.625816i
\(970\) 0 0
\(971\) −386.167 668.861i −0.0127628 0.0221059i 0.859573 0.511012i \(-0.170729\pi\)
−0.872336 + 0.488906i \(0.837396\pi\)
\(972\) 0 0
\(973\) 54687.5 + 10222.9i 1.80185 + 0.336825i
\(974\) 0 0
\(975\) 2340.14 8773.99i 0.0768661 0.288198i
\(976\) 0 0
\(977\) −3885.24 2243.15i −0.127226 0.0734540i 0.435036 0.900413i \(-0.356736\pi\)
−0.562262 + 0.826959i \(0.690069\pi\)
\(978\) 0 0
\(979\) 28281.1i 0.923255i
\(980\) 0 0
\(981\) 29.0196 + 12579.1i 0.000944469 + 0.409400i
\(982\) 0 0
\(983\) −19328.8 + 33478.4i −0.627153 + 1.08626i 0.360967 + 0.932579i \(0.382447\pi\)
−0.988120 + 0.153683i \(0.950887\pi\)
\(984\) 0 0
\(985\) 21085.4 12173.6i 0.682066 0.393791i
\(986\) 0 0
\(987\) 15587.6 + 22698.8i 0.502693 + 0.732029i
\(988\) 0 0
\(989\) −200.624 + 115.830i −0.00645041 + 0.00372415i
\(990\) 0 0
\(991\) 20930.9 36253.4i 0.670932 1.16209i −0.306709 0.951803i \(-0.599228\pi\)
0.977640 0.210284i \(-0.0674389\pi\)
\(992\) 0 0
\(993\) 18042.3 18084.0i 0.576591 0.577923i
\(994\) 0 0
\(995\) 7079.66i 0.225568i
\(996\) 0 0
\(997\) −20276.7 11706.8i −0.644103 0.371873i 0.142090 0.989854i \(-0.454618\pi\)
−0.786193 + 0.617981i \(0.787951\pi\)
\(998\) 0 0
\(999\) −658.920 + 2493.61i −0.0208682 + 0.0789732i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.u.a.17.11 yes 48
3.2 odd 2 inner 168.4.u.a.17.2 48
4.3 odd 2 336.4.bc.f.17.14 48
7.5 odd 6 inner 168.4.u.a.89.2 yes 48
12.11 even 2 336.4.bc.f.17.23 48
21.5 even 6 inner 168.4.u.a.89.11 yes 48
28.19 even 6 336.4.bc.f.257.23 48
84.47 odd 6 336.4.bc.f.257.14 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.u.a.17.2 48 3.2 odd 2 inner
168.4.u.a.17.11 yes 48 1.1 even 1 trivial
168.4.u.a.89.2 yes 48 7.5 odd 6 inner
168.4.u.a.89.11 yes 48 21.5 even 6 inner
336.4.bc.f.17.14 48 4.3 odd 2
336.4.bc.f.17.23 48 12.11 even 2
336.4.bc.f.257.14 48 84.47 odd 6
336.4.bc.f.257.23 48 28.19 even 6