Properties

Label 324.2.l.a.179.4
Level $324$
Weight $2$
Character 324.179
Analytic conductor $2.587$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,2,Mod(35,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.58715302549\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.4
Character \(\chi\) \(=\) 324.179
Dual form 324.2.l.a.143.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.960112 + 1.03836i) q^{2} +(-0.156370 - 1.99388i) q^{4} +(-2.23728 - 0.394492i) q^{5} +(0.842213 + 1.00371i) q^{7} +(2.22049 + 1.75198i) q^{8} +(2.55766 - 1.94434i) q^{10} +(0.469629 + 2.66340i) q^{11} +(-4.27030 + 1.55426i) q^{13} +(-1.85083 - 0.0891568i) q^{14} +(-3.95110 + 0.623564i) q^{16} +(-4.20783 - 2.42939i) q^{17} +(-5.44971 + 3.14639i) q^{19} +(-0.436727 + 4.52254i) q^{20} +(-3.21645 - 2.06952i) q^{22} +(1.94350 + 1.63079i) q^{23} +(0.151321 + 0.0550764i) q^{25} +(2.48609 - 5.92636i) q^{26} +(1.86958 - 1.83622i) q^{28} +(-1.68452 + 4.62818i) q^{29} +(1.87889 - 2.23918i) q^{31} +(3.14601 - 4.70134i) q^{32} +(6.56256 - 2.03674i) q^{34} +(-1.48831 - 2.57783i) q^{35} +(-3.86074 + 6.68701i) q^{37} +(1.96525 - 8.67963i) q^{38} +(-4.27671 - 4.79563i) q^{40} +(-1.35861 - 3.73275i) q^{41} +(8.37644 - 1.47699i) q^{43} +(5.23705 - 1.35286i) q^{44} +(-3.55932 + 0.452305i) q^{46} +(-9.17264 + 7.69676i) q^{47} +(0.917425 - 5.20298i) q^{49} +(-0.202474 + 0.104246i) q^{50} +(3.76675 + 8.27142i) q^{52} +3.84281i q^{53} -6.14402i q^{55} +(0.111646 + 3.70427i) q^{56} +(-3.18837 - 6.19270i) q^{58} +(1.99002 - 11.2860i) q^{59} +(0.0301227 - 0.0252759i) q^{61} +(0.521117 + 4.10082i) q^{62} +(1.86114 + 7.78050i) q^{64} +(10.1670 - 1.79271i) q^{65} +(4.08179 + 11.2146i) q^{67} +(-4.18593 + 8.76978i) q^{68} +(4.10565 + 0.929606i) q^{70} +(-1.22570 + 2.12297i) q^{71} +(3.09175 + 5.35507i) q^{73} +(-3.23675 - 10.4291i) q^{74} +(7.12569 + 10.3741i) q^{76} +(-2.27775 + 2.71452i) q^{77} +(2.06018 - 5.66029i) q^{79} +(9.08569 + 0.163591i) q^{80} +(5.18035 + 2.17314i) q^{82} +(8.97051 + 3.26500i) q^{83} +(8.45570 + 7.09518i) q^{85} +(-6.50867 + 10.1158i) q^{86} +(-3.62341 + 6.73682i) q^{88} +(5.99050 - 3.45862i) q^{89} +(-5.15653 - 2.97713i) q^{91} +(2.94769 - 4.13011i) q^{92} +(0.814780 - 16.9142i) q^{94} +(13.4337 - 4.88948i) q^{95} +(-1.52040 - 8.62260i) q^{97} +(4.52172 + 5.94806i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 9 q^{8} - 3 q^{10} - 12 q^{13} + 21 q^{14} - 6 q^{16} + 18 q^{17} + 27 q^{20} - 6 q^{22} - 12 q^{25} - 12 q^{28} + 24 q^{29} - 24 q^{32} - 12 q^{34} - 6 q^{37} - 18 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.960112 + 1.03836i −0.678902 + 0.734229i
\(3\) 0 0
\(4\) −0.156370 1.99388i −0.0781849 0.996939i
\(5\) −2.23728 0.394492i −1.00054 0.176422i −0.350696 0.936489i \(-0.614055\pi\)
−0.649845 + 0.760067i \(0.725166\pi\)
\(6\) 0 0
\(7\) 0.842213 + 1.00371i 0.318327 + 0.379367i 0.901352 0.433087i \(-0.142576\pi\)
−0.583025 + 0.812454i \(0.698131\pi\)
\(8\) 2.22049 + 1.75198i 0.785061 + 0.619418i
\(9\) 0 0
\(10\) 2.55766 1.94434i 0.808803 0.614853i
\(11\) 0.469629 + 2.66340i 0.141598 + 0.803044i 0.970036 + 0.242963i \(0.0781192\pi\)
−0.828437 + 0.560082i \(0.810770\pi\)
\(12\) 0 0
\(13\) −4.27030 + 1.55426i −1.18437 + 0.431075i −0.857743 0.514079i \(-0.828134\pi\)
−0.326625 + 0.945154i \(0.605912\pi\)
\(14\) −1.85083 0.0891568i −0.494655 0.0238282i
\(15\) 0 0
\(16\) −3.95110 + 0.623564i −0.987774 + 0.155891i
\(17\) −4.20783 2.42939i −1.02055 0.589214i −0.106286 0.994336i \(-0.533896\pi\)
−0.914263 + 0.405122i \(0.867229\pi\)
\(18\) 0 0
\(19\) −5.44971 + 3.14639i −1.25025 + 0.721832i −0.971159 0.238433i \(-0.923366\pi\)
−0.279090 + 0.960265i \(0.590033\pi\)
\(20\) −0.436727 + 4.52254i −0.0976551 + 1.01127i
\(21\) 0 0
\(22\) −3.21645 2.06952i −0.685750 0.441223i
\(23\) 1.94350 + 1.63079i 0.405248 + 0.340043i 0.822518 0.568739i \(-0.192569\pi\)
−0.417270 + 0.908782i \(0.637013\pi\)
\(24\) 0 0
\(25\) 0.151321 + 0.0550764i 0.0302642 + 0.0110153i
\(26\) 2.48609 5.92636i 0.487562 1.16226i
\(27\) 0 0
\(28\) 1.86958 1.83622i 0.353317 0.347013i
\(29\) −1.68452 + 4.62818i −0.312807 + 0.859431i 0.679280 + 0.733879i \(0.262292\pi\)
−0.992087 + 0.125552i \(0.959930\pi\)
\(30\) 0 0
\(31\) 1.87889 2.23918i 0.337459 0.402168i −0.570452 0.821331i \(-0.693232\pi\)
0.907911 + 0.419163i \(0.137676\pi\)
\(32\) 3.14601 4.70134i 0.556142 0.831087i
\(33\) 0 0
\(34\) 6.56256 2.03674i 1.12547 0.349298i
\(35\) −1.48831 2.57783i −0.251570 0.435732i
\(36\) 0 0
\(37\) −3.86074 + 6.68701i −0.634703 + 1.09934i 0.351876 + 0.936047i \(0.385544\pi\)
−0.986578 + 0.163290i \(0.947789\pi\)
\(38\) 1.96525 8.67963i 0.318806 1.40802i
\(39\) 0 0
\(40\) −4.27671 4.79563i −0.676207 0.758255i
\(41\) −1.35861 3.73275i −0.212179 0.582958i 0.787254 0.616629i \(-0.211502\pi\)
−0.999433 + 0.0336714i \(0.989280\pi\)
\(42\) 0 0
\(43\) 8.37644 1.47699i 1.27739 0.225239i 0.506521 0.862228i \(-0.330931\pi\)
0.770873 + 0.636988i \(0.219820\pi\)
\(44\) 5.23705 1.35286i 0.789515 0.203951i
\(45\) 0 0
\(46\) −3.55932 + 0.452305i −0.524793 + 0.0666887i
\(47\) −9.17264 + 7.69676i −1.33797 + 1.12269i −0.355824 + 0.934553i \(0.615800\pi\)
−0.982143 + 0.188135i \(0.939756\pi\)
\(48\) 0 0
\(49\) 0.917425 5.20298i 0.131061 0.743282i
\(50\) −0.202474 + 0.104246i −0.0286342 + 0.0147426i
\(51\) 0 0
\(52\) 3.76675 + 8.27142i 0.522355 + 1.14704i
\(53\) 3.84281i 0.527851i 0.964543 + 0.263925i \(0.0850173\pi\)
−0.964543 + 0.263925i \(0.914983\pi\)
\(54\) 0 0
\(55\) 6.14402i 0.828460i
\(56\) 0.111646 + 3.70427i 0.0149193 + 0.495004i
\(57\) 0 0
\(58\) −3.18837 6.19270i −0.418654 0.813142i
\(59\) 1.99002 11.2860i 0.259079 1.46931i −0.526303 0.850297i \(-0.676422\pi\)
0.785382 0.619011i \(-0.212466\pi\)
\(60\) 0 0
\(61\) 0.0301227 0.0252759i 0.00385681 0.00323625i −0.640857 0.767660i \(-0.721421\pi\)
0.644714 + 0.764424i \(0.276976\pi\)
\(62\) 0.521117 + 4.10082i 0.0661820 + 0.520805i
\(63\) 0 0
\(64\) 1.86114 + 7.78050i 0.232643 + 0.972562i
\(65\) 10.1670 1.79271i 1.26106 0.222359i
\(66\) 0 0
\(67\) 4.08179 + 11.2146i 0.498670 + 1.37008i 0.892561 + 0.450927i \(0.148907\pi\)
−0.393891 + 0.919157i \(0.628871\pi\)
\(68\) −4.18593 + 8.76978i −0.507619 + 1.06349i
\(69\) 0 0
\(70\) 4.10565 + 0.929606i 0.490719 + 0.111109i
\(71\) −1.22570 + 2.12297i −0.145463 + 0.251950i −0.929546 0.368707i \(-0.879801\pi\)
0.784082 + 0.620657i \(0.213134\pi\)
\(72\) 0 0
\(73\) 3.09175 + 5.35507i 0.361862 + 0.626764i 0.988267 0.152734i \(-0.0488077\pi\)
−0.626405 + 0.779498i \(0.715474\pi\)
\(74\) −3.23675 10.4291i −0.376265 1.21236i
\(75\) 0 0
\(76\) 7.12569 + 10.3741i 0.817372 + 1.18999i
\(77\) −2.27775 + 2.71452i −0.259574 + 0.309348i
\(78\) 0 0
\(79\) 2.06018 5.66029i 0.231788 0.636833i −0.768206 0.640203i \(-0.778850\pi\)
0.999994 + 0.00336970i \(0.00107261\pi\)
\(80\) 9.08569 + 0.163591i 1.01581 + 0.0182900i
\(81\) 0 0
\(82\) 5.18035 + 2.17314i 0.572074 + 0.239983i
\(83\) 8.97051 + 3.26500i 0.984641 + 0.358380i 0.783643 0.621211i \(-0.213359\pi\)
0.200998 + 0.979592i \(0.435581\pi\)
\(84\) 0 0
\(85\) 8.45570 + 7.09518i 0.917150 + 0.769580i
\(86\) −6.50867 + 10.1158i −0.701848 + 1.09082i
\(87\) 0 0
\(88\) −3.62341 + 6.73682i −0.386257 + 0.718148i
\(89\) 5.99050 3.45862i 0.634991 0.366613i −0.147691 0.989034i \(-0.547184\pi\)
0.782683 + 0.622421i \(0.213851\pi\)
\(90\) 0 0
\(91\) −5.15653 2.97713i −0.540552 0.312088i
\(92\) 2.94769 4.13011i 0.307318 0.430593i
\(93\) 0 0
\(94\) 0.814780 16.9142i 0.0840382 1.74457i
\(95\) 13.4337 4.88948i 1.37827 0.501650i
\(96\) 0 0
\(97\) −1.52040 8.62260i −0.154373 0.875493i −0.959357 0.282196i \(-0.908937\pi\)
0.804984 0.593297i \(-0.202174\pi\)
\(98\) 4.52172 + 5.94806i 0.456762 + 0.600844i
\(99\) 0 0
\(100\) 0.0861535 0.310328i 0.00861535 0.0310328i
\(101\) −1.41538 1.68678i −0.140835 0.167841i 0.691016 0.722839i \(-0.257163\pi\)
−0.831851 + 0.554998i \(0.812719\pi\)
\(102\) 0 0
\(103\) 1.93720 + 0.341580i 0.190878 + 0.0336569i 0.268270 0.963344i \(-0.413548\pi\)
−0.0773920 + 0.997001i \(0.524659\pi\)
\(104\) −12.2052 4.03025i −1.19682 0.395199i
\(105\) 0 0
\(106\) −3.99021 3.68953i −0.387563 0.358359i
\(107\) −4.06709 −0.393180 −0.196590 0.980486i \(-0.562987\pi\)
−0.196590 + 0.980486i \(0.562987\pi\)
\(108\) 0 0
\(109\) −1.81021 −0.173387 −0.0866934 0.996235i \(-0.527630\pi\)
−0.0866934 + 0.996235i \(0.527630\pi\)
\(110\) 6.37969 + 5.89895i 0.608279 + 0.562443i
\(111\) 0 0
\(112\) −3.95354 3.44058i −0.373575 0.325105i
\(113\) −3.45706 0.609573i −0.325213 0.0573438i 0.00865836 0.999963i \(-0.497244\pi\)
−0.333871 + 0.942619i \(0.608355\pi\)
\(114\) 0 0
\(115\) −3.70481 4.41522i −0.345475 0.411722i
\(116\) 9.49143 + 2.63502i 0.881257 + 0.244655i
\(117\) 0 0
\(118\) 9.80822 + 12.9021i 0.902920 + 1.18774i
\(119\) −1.10548 6.26951i −0.101340 0.574725i
\(120\) 0 0
\(121\) 3.46349 1.26061i 0.314862 0.114601i
\(122\) −0.00267571 + 0.0555458i −0.000242248 + 0.00502888i
\(123\) 0 0
\(124\) −4.75845 3.39614i −0.427321 0.304983i
\(125\) 9.52032 + 5.49656i 0.851523 + 0.491627i
\(126\) 0 0
\(127\) −9.71588 + 5.60947i −0.862145 + 0.497760i −0.864730 0.502237i \(-0.832511\pi\)
0.00258477 + 0.999997i \(0.499177\pi\)
\(128\) −9.86584 5.53762i −0.872025 0.489461i
\(129\) 0 0
\(130\) −7.89997 + 12.2782i −0.692873 + 1.07687i
\(131\) −3.93034 3.29795i −0.343396 0.288143i 0.454736 0.890626i \(-0.349734\pi\)
−0.798132 + 0.602483i \(0.794178\pi\)
\(132\) 0 0
\(133\) −7.74788 2.82000i −0.671827 0.244525i
\(134\) −15.5638 6.52894i −1.34450 0.564015i
\(135\) 0 0
\(136\) −5.08720 12.7665i −0.436224 1.09472i
\(137\) 0.618497 1.69931i 0.0528418 0.145182i −0.910464 0.413589i \(-0.864275\pi\)
0.963306 + 0.268407i \(0.0864973\pi\)
\(138\) 0 0
\(139\) −8.35679 + 9.95924i −0.708814 + 0.844732i −0.993493 0.113891i \(-0.963668\pi\)
0.284679 + 0.958623i \(0.408113\pi\)
\(140\) −4.90714 + 3.37060i −0.414729 + 0.284868i
\(141\) 0 0
\(142\) −1.02759 3.31100i −0.0862336 0.277853i
\(143\) −6.14507 10.6436i −0.513877 0.890061i
\(144\) 0 0
\(145\) 5.59452 9.68999i 0.464599 0.804710i
\(146\) −8.52891 1.93113i −0.705858 0.159821i
\(147\) 0 0
\(148\) 13.9368 + 6.65221i 1.14560 + 0.546808i
\(149\) 0.880225 + 2.41840i 0.0721108 + 0.198123i 0.970512 0.241053i \(-0.0774928\pi\)
−0.898401 + 0.439176i \(0.855271\pi\)
\(150\) 0 0
\(151\) −5.17039 + 0.911679i −0.420760 + 0.0741914i −0.380020 0.924978i \(-0.624083\pi\)
−0.0407405 + 0.999170i \(0.512972\pi\)
\(152\) −17.6134 2.56125i −1.42864 0.207744i
\(153\) 0 0
\(154\) −0.631743 4.97136i −0.0509073 0.400604i
\(155\) −5.08694 + 4.26845i −0.408593 + 0.342850i
\(156\) 0 0
\(157\) 3.62805 20.5757i 0.289550 1.64212i −0.399015 0.916945i \(-0.630648\pi\)
0.688565 0.725175i \(-0.258241\pi\)
\(158\) 3.89940 + 7.57372i 0.310220 + 0.602533i
\(159\) 0 0
\(160\) −8.89315 + 9.27712i −0.703065 + 0.733421i
\(161\) 3.32418i 0.261982i
\(162\) 0 0
\(163\) 3.28308i 0.257151i −0.991700 0.128575i \(-0.958960\pi\)
0.991700 0.128575i \(-0.0410404\pi\)
\(164\) −7.23021 + 3.29259i −0.564584 + 0.257108i
\(165\) 0 0
\(166\) −12.0029 + 6.17983i −0.931608 + 0.479647i
\(167\) −3.32534 + 18.8590i −0.257323 + 1.45935i 0.532717 + 0.846294i \(0.321171\pi\)
−0.790039 + 0.613056i \(0.789940\pi\)
\(168\) 0 0
\(169\) 5.86116 4.91809i 0.450858 0.378315i
\(170\) −15.4857 + 1.96787i −1.18770 + 0.150929i
\(171\) 0 0
\(172\) −4.25476 16.4706i −0.324423 1.25587i
\(173\) 8.60928 1.51805i 0.654551 0.115415i 0.163497 0.986544i \(-0.447723\pi\)
0.491055 + 0.871129i \(0.336612\pi\)
\(174\) 0 0
\(175\) 0.0721639 + 0.198269i 0.00545508 + 0.0149877i
\(176\) −3.51635 10.2305i −0.265055 0.771153i
\(177\) 0 0
\(178\) −2.16027 + 9.54093i −0.161919 + 0.715123i
\(179\) 3.03371 5.25454i 0.226750 0.392743i −0.730093 0.683348i \(-0.760523\pi\)
0.956843 + 0.290605i \(0.0938565\pi\)
\(180\) 0 0
\(181\) −8.01419 13.8810i −0.595690 1.03177i −0.993449 0.114276i \(-0.963545\pi\)
0.397759 0.917490i \(-0.369788\pi\)
\(182\) 8.04217 2.49595i 0.596125 0.185012i
\(183\) 0 0
\(184\) 1.45841 + 7.02612i 0.107515 + 0.517972i
\(185\) 11.2755 13.4377i 0.828993 0.987956i
\(186\) 0 0
\(187\) 4.49432 12.3480i 0.328657 0.902977i
\(188\) 16.7807 + 17.0856i 1.22386 + 1.24609i
\(189\) 0 0
\(190\) −7.82087 + 18.6435i −0.567385 + 1.35254i
\(191\) 10.9918 + 4.00067i 0.795335 + 0.289478i 0.707552 0.706661i \(-0.249799\pi\)
0.0877833 + 0.996140i \(0.472022\pi\)
\(192\) 0 0
\(193\) 13.4605 + 11.2947i 0.968907 + 0.813010i 0.982379 0.186900i \(-0.0598439\pi\)
−0.0134718 + 0.999909i \(0.504288\pi\)
\(194\) 10.4131 + 6.69995i 0.747616 + 0.481028i
\(195\) 0 0
\(196\) −10.5176 1.01565i −0.751254 0.0725461i
\(197\) −19.9607 + 11.5243i −1.42214 + 0.821074i −0.996482 0.0838089i \(-0.973291\pi\)
−0.425660 + 0.904883i \(0.639958\pi\)
\(198\) 0 0
\(199\) −2.70763 1.56325i −0.191939 0.110816i 0.400951 0.916099i \(-0.368680\pi\)
−0.592890 + 0.805284i \(0.702013\pi\)
\(200\) 0.239514 + 0.387408i 0.0169362 + 0.0273939i
\(201\) 0 0
\(202\) 3.11040 + 0.149832i 0.218847 + 0.0105421i
\(203\) −6.06408 + 2.20714i −0.425615 + 0.154911i
\(204\) 0 0
\(205\) 1.56705 + 8.88716i 0.109447 + 0.620706i
\(206\) −2.21461 + 1.68355i −0.154299 + 0.117298i
\(207\) 0 0
\(208\) 15.9032 8.80385i 1.10269 0.610437i
\(209\) −10.9394 13.0371i −0.756696 0.901795i
\(210\) 0 0
\(211\) −12.6580 2.23195i −0.871414 0.153654i −0.279978 0.960006i \(-0.590327\pi\)
−0.591435 + 0.806353i \(0.701438\pi\)
\(212\) 7.66210 0.600900i 0.526235 0.0412700i
\(213\) 0 0
\(214\) 3.90486 4.22309i 0.266931 0.288685i
\(215\) −19.3231 −1.31782
\(216\) 0 0
\(217\) 3.82992 0.259992
\(218\) 1.73801 1.87965i 0.117713 0.127306i
\(219\) 0 0
\(220\) −12.2504 + 0.960739i −0.825924 + 0.0647730i
\(221\) 21.7446 + 3.83416i 1.46270 + 0.257914i
\(222\) 0 0
\(223\) 6.64592 + 7.92030i 0.445044 + 0.530382i 0.941200 0.337851i \(-0.109700\pi\)
−0.496156 + 0.868233i \(0.665256\pi\)
\(224\) 7.36840 0.801844i 0.492322 0.0535754i
\(225\) 0 0
\(226\) 3.95212 3.00440i 0.262891 0.199850i
\(227\) 0.0166779 + 0.0945849i 0.00110695 + 0.00627782i 0.985356 0.170508i \(-0.0545410\pi\)
−0.984249 + 0.176786i \(0.943430\pi\)
\(228\) 0 0
\(229\) −25.2522 + 9.19106i −1.66871 + 0.607363i −0.991696 0.128603i \(-0.958951\pi\)
−0.677019 + 0.735966i \(0.736728\pi\)
\(230\) 8.14161 + 0.392192i 0.536842 + 0.0258604i
\(231\) 0 0
\(232\) −11.8489 + 7.32558i −0.777920 + 0.480948i
\(233\) −6.26494 3.61706i −0.410430 0.236962i 0.280545 0.959841i \(-0.409485\pi\)
−0.690974 + 0.722879i \(0.742818\pi\)
\(234\) 0 0
\(235\) 23.5581 13.6013i 1.53676 0.887248i
\(236\) −22.8140 2.20307i −1.48507 0.143408i
\(237\) 0 0
\(238\) 7.57138 + 4.87154i 0.490779 + 0.315775i
\(239\) 9.77252 + 8.20012i 0.632132 + 0.530421i 0.901591 0.432590i \(-0.142400\pi\)
−0.269459 + 0.963012i \(0.586845\pi\)
\(240\) 0 0
\(241\) 7.11615 + 2.59007i 0.458391 + 0.166841i 0.560886 0.827893i \(-0.310460\pi\)
−0.102495 + 0.994733i \(0.532683\pi\)
\(242\) −2.01638 + 4.80666i −0.129618 + 0.308984i
\(243\) 0 0
\(244\) −0.0551074 0.0561085i −0.00352789 0.00359198i
\(245\) −4.10507 + 11.2786i −0.262263 + 0.720562i
\(246\) 0 0
\(247\) 18.3816 21.9063i 1.16959 1.39387i
\(248\) 8.09505 1.68029i 0.514036 0.106698i
\(249\) 0 0
\(250\) −14.8480 + 4.60818i −0.939068 + 0.291447i
\(251\) 5.95007 + 10.3058i 0.375565 + 0.650498i 0.990411 0.138149i \(-0.0441153\pi\)
−0.614846 + 0.788647i \(0.710782\pi\)
\(252\) 0 0
\(253\) −3.43072 + 5.94217i −0.215687 + 0.373581i
\(254\) 3.50371 15.4743i 0.219842 0.970942i
\(255\) 0 0
\(256\) 15.2223 4.92753i 0.951396 0.307970i
\(257\) 1.86711 + 5.12985i 0.116467 + 0.319991i 0.984205 0.177031i \(-0.0566492\pi\)
−0.867738 + 0.497022i \(0.834427\pi\)
\(258\) 0 0
\(259\) −9.96339 + 1.75681i −0.619095 + 0.109163i
\(260\) −5.16426 19.9914i −0.320274 1.23981i
\(261\) 0 0
\(262\) 7.19802 0.914698i 0.444695 0.0565102i
\(263\) 15.6031 13.0925i 0.962128 0.807321i −0.0191703 0.999816i \(-0.506102\pi\)
0.981298 + 0.192495i \(0.0616580\pi\)
\(264\) 0 0
\(265\) 1.51596 8.59743i 0.0931247 0.528136i
\(266\) 10.3670 5.33755i 0.635642 0.327266i
\(267\) 0 0
\(268\) 21.7223 9.89221i 1.32690 0.604263i
\(269\) 9.12305i 0.556242i −0.960546 0.278121i \(-0.910288\pi\)
0.960546 0.278121i \(-0.0897116\pi\)
\(270\) 0 0
\(271\) 21.2629i 1.29163i 0.763495 + 0.645813i \(0.223482\pi\)
−0.763495 + 0.645813i \(0.776518\pi\)
\(272\) 18.1404 + 6.97491i 1.09992 + 0.422916i
\(273\) 0 0
\(274\) 1.17066 + 2.27374i 0.0707222 + 0.137362i
\(275\) −0.0756255 + 0.428894i −0.00456039 + 0.0258633i
\(276\) 0 0
\(277\) −19.5527 + 16.4067i −1.17481 + 0.985783i −0.174811 + 0.984602i \(0.555931\pi\)
−0.999999 + 0.00118043i \(0.999624\pi\)
\(278\) −2.31779 18.2393i −0.139012 1.09392i
\(279\) 0 0
\(280\) 1.21152 8.33152i 0.0724023 0.497903i
\(281\) −12.1392 + 2.14046i −0.724162 + 0.127689i −0.523566 0.851985i \(-0.675399\pi\)
−0.200595 + 0.979674i \(0.564288\pi\)
\(282\) 0 0
\(283\) 5.71416 + 15.6995i 0.339672 + 0.933240i 0.985488 + 0.169747i \(0.0542951\pi\)
−0.645816 + 0.763493i \(0.723483\pi\)
\(284\) 4.42460 + 2.11192i 0.262552 + 0.125319i
\(285\) 0 0
\(286\) 16.9518 + 3.83825i 1.00238 + 0.226960i
\(287\) 2.60236 4.50743i 0.153613 0.266065i
\(288\) 0 0
\(289\) 3.30388 + 5.72249i 0.194346 + 0.336617i
\(290\) 4.69030 + 15.1126i 0.275424 + 0.887441i
\(291\) 0 0
\(292\) 10.1939 7.00195i 0.596553 0.409758i
\(293\) −8.56800 + 10.2109i −0.500548 + 0.596530i −0.955867 0.293798i \(-0.905081\pi\)
0.455319 + 0.890328i \(0.349525\pi\)
\(294\) 0 0
\(295\) −8.90446 + 24.4648i −0.518437 + 1.42440i
\(296\) −20.2882 + 8.08448i −1.17923 + 0.469901i
\(297\) 0 0
\(298\) −3.35627 1.40794i −0.194424 0.0815601i
\(299\) −10.8340 3.94325i −0.626546 0.228044i
\(300\) 0 0
\(301\) 8.53722 + 7.16358i 0.492077 + 0.412902i
\(302\) 4.01750 6.24402i 0.231181 0.359303i
\(303\) 0 0
\(304\) 19.5703 15.8299i 1.12244 0.907909i
\(305\) −0.0773639 + 0.0446661i −0.00442984 + 0.00255757i
\(306\) 0 0
\(307\) 18.8505 + 10.8833i 1.07585 + 0.621144i 0.929775 0.368129i \(-0.120002\pi\)
0.146078 + 0.989273i \(0.453335\pi\)
\(308\) 5.76859 + 4.11709i 0.328696 + 0.234593i
\(309\) 0 0
\(310\) 0.451859 9.38025i 0.0256639 0.532763i
\(311\) −13.4052 + 4.87909i −0.760139 + 0.276668i −0.692866 0.721067i \(-0.743652\pi\)
−0.0672731 + 0.997735i \(0.521430\pi\)
\(312\) 0 0
\(313\) 3.69449 + 20.9525i 0.208825 + 1.18430i 0.891307 + 0.453401i \(0.149789\pi\)
−0.682482 + 0.730902i \(0.739099\pi\)
\(314\) 17.8816 + 23.5222i 1.00912 + 1.32743i
\(315\) 0 0
\(316\) −11.6081 3.22265i −0.653006 0.181288i
\(317\) 4.33285 + 5.16369i 0.243357 + 0.290022i 0.873873 0.486155i \(-0.161601\pi\)
−0.630516 + 0.776177i \(0.717156\pi\)
\(318\) 0 0
\(319\) −13.1178 2.31302i −0.734454 0.129504i
\(320\) −1.09455 18.1413i −0.0611870 1.01413i
\(321\) 0 0
\(322\) −3.45169 3.19159i −0.192355 0.177860i
\(323\) 30.5753 1.70125
\(324\) 0 0
\(325\) −0.731790 −0.0405924
\(326\) 3.40901 + 3.15213i 0.188808 + 0.174580i
\(327\) 0 0
\(328\) 3.52292 10.6688i 0.194521 0.589085i
\(329\) −15.4506 2.72437i −0.851822 0.150199i
\(330\) 0 0
\(331\) −15.5537 18.5362i −0.854910 1.01884i −0.999569 0.0293609i \(-0.990653\pi\)
0.144658 0.989482i \(-0.453792\pi\)
\(332\) 5.10729 18.3966i 0.280299 1.00965i
\(333\) 0 0
\(334\) −16.3896 21.5596i −0.896800 1.17969i
\(335\) −4.70801 26.7004i −0.257226 1.45880i
\(336\) 0 0
\(337\) −20.5343 + 7.47387i −1.11857 + 0.407127i −0.834131 0.551566i \(-0.814031\pi\)
−0.284442 + 0.958693i \(0.591808\pi\)
\(338\) −0.520630 + 10.8079i −0.0283185 + 0.587872i
\(339\) 0 0
\(340\) 12.8247 17.9691i 0.695517 0.974512i
\(341\) 6.84620 + 3.95266i 0.370743 + 0.214048i
\(342\) 0 0
\(343\) 13.9379 8.04707i 0.752577 0.434501i
\(344\) 21.1874 + 11.3957i 1.14235 + 0.614415i
\(345\) 0 0
\(346\) −6.68960 + 10.3970i −0.359635 + 0.558946i
\(347\) −9.92193 8.32549i −0.532637 0.446936i 0.336374 0.941729i \(-0.390799\pi\)
−0.869011 + 0.494793i \(0.835244\pi\)
\(348\) 0 0
\(349\) 3.63433 + 1.32279i 0.194541 + 0.0708071i 0.437453 0.899241i \(-0.355881\pi\)
−0.242912 + 0.970048i \(0.578103\pi\)
\(350\) −0.275159 0.115428i −0.0147079 0.00616990i
\(351\) 0 0
\(352\) 13.9990 + 6.17120i 0.746149 + 0.328926i
\(353\) 1.04065 2.85915i 0.0553880 0.152177i −0.908913 0.416986i \(-0.863086\pi\)
0.964301 + 0.264808i \(0.0853087\pi\)
\(354\) 0 0
\(355\) 3.57972 4.26614i 0.189992 0.226423i
\(356\) −7.83279 11.4035i −0.415137 0.604384i
\(357\) 0 0
\(358\) 2.54339 + 8.19503i 0.134422 + 0.433121i
\(359\) 8.27544 + 14.3335i 0.436761 + 0.756492i 0.997438 0.0715425i \(-0.0227922\pi\)
−0.560676 + 0.828035i \(0.689459\pi\)
\(360\) 0 0
\(361\) 10.2995 17.8393i 0.542082 0.938913i
\(362\) 22.1079 + 5.00571i 1.16197 + 0.263094i
\(363\) 0 0
\(364\) −5.12970 + 10.7470i −0.268869 + 0.563297i
\(365\) −4.80457 13.2005i −0.251483 0.690944i
\(366\) 0 0
\(367\) 2.17336 0.383223i 0.113449 0.0200041i −0.116636 0.993175i \(-0.537211\pi\)
0.230084 + 0.973171i \(0.426100\pi\)
\(368\) −8.69586 5.23151i −0.453303 0.272711i
\(369\) 0 0
\(370\) 3.12731 + 24.6097i 0.162581 + 1.27940i
\(371\) −3.85707 + 3.23647i −0.200249 + 0.168029i
\(372\) 0 0
\(373\) −1.82112 + 10.3281i −0.0942938 + 0.534767i 0.900668 + 0.434509i \(0.143078\pi\)
−0.994961 + 0.100258i \(0.968033\pi\)
\(374\) 8.50662 + 16.5222i 0.439867 + 0.854342i
\(375\) 0 0
\(376\) −33.8523 + 1.02030i −1.74580 + 0.0526181i
\(377\) 22.3819i 1.15273i
\(378\) 0 0
\(379\) 3.08694i 0.158565i 0.996852 + 0.0792826i \(0.0252630\pi\)
−0.996852 + 0.0792826i \(0.974737\pi\)
\(380\) −11.8497 26.0207i −0.607874 1.33483i
\(381\) 0 0
\(382\) −14.7074 + 7.57227i −0.752498 + 0.387431i
\(383\) 2.78976 15.8215i 0.142550 0.808442i −0.826752 0.562567i \(-0.809814\pi\)
0.969302 0.245875i \(-0.0790752\pi\)
\(384\) 0 0
\(385\) 6.16682 5.17458i 0.314290 0.263721i
\(386\) −24.6515 + 3.13262i −1.25473 + 0.159446i
\(387\) 0 0
\(388\) −16.9547 + 4.37980i −0.860743 + 0.222351i
\(389\) −17.3835 + 3.06519i −0.881381 + 0.155411i −0.595982 0.802998i \(-0.703237\pi\)
−0.285399 + 0.958409i \(0.592126\pi\)
\(390\) 0 0
\(391\) −4.21609 11.5836i −0.213217 0.585808i
\(392\) 11.1526 9.94584i 0.563293 0.502341i
\(393\) 0 0
\(394\) 7.19816 31.7910i 0.362638 1.60161i
\(395\) −6.84213 + 11.8509i −0.344265 + 0.596285i
\(396\) 0 0
\(397\) 6.73828 + 11.6710i 0.338185 + 0.585753i 0.984091 0.177663i \(-0.0568538\pi\)
−0.645907 + 0.763416i \(0.723520\pi\)
\(398\) 4.22284 1.31059i 0.211672 0.0656939i
\(399\) 0 0
\(400\) −0.632228 0.123254i −0.0316114 0.00616268i
\(401\) −4.34436 + 5.17741i −0.216947 + 0.258547i −0.863531 0.504295i \(-0.831752\pi\)
0.646584 + 0.762842i \(0.276197\pi\)
\(402\) 0 0
\(403\) −4.54317 + 12.4823i −0.226311 + 0.621785i
\(404\) −3.14191 + 3.08585i −0.156316 + 0.153527i
\(405\) 0 0
\(406\) 3.53039 8.41578i 0.175210 0.417668i
\(407\) −19.6233 7.14229i −0.972689 0.354030i
\(408\) 0 0
\(409\) 14.4348 + 12.1122i 0.713756 + 0.598912i 0.925650 0.378381i \(-0.123519\pi\)
−0.211895 + 0.977293i \(0.567963\pi\)
\(410\) −10.7326 6.90552i −0.530045 0.341039i
\(411\) 0 0
\(412\) 0.378150 3.91595i 0.0186301 0.192925i
\(413\) 13.0039 7.50779i 0.639879 0.369434i
\(414\) 0 0
\(415\) −18.7815 10.8435i −0.921947 0.532287i
\(416\) −6.12731 + 24.9659i −0.300416 + 1.22405i
\(417\) 0 0
\(418\) 24.0402 + 1.15805i 1.17585 + 0.0566420i
\(419\) −17.9428 + 6.53066i −0.876565 + 0.319043i −0.740823 0.671701i \(-0.765564\pi\)
−0.135742 + 0.990744i \(0.543342\pi\)
\(420\) 0 0
\(421\) −3.91452 22.2004i −0.190782 1.08198i −0.918298 0.395889i \(-0.870436\pi\)
0.727516 0.686091i \(-0.240675\pi\)
\(422\) 14.4707 11.0006i 0.704421 0.535502i
\(423\) 0 0
\(424\) −6.73252 + 8.53292i −0.326960 + 0.414395i
\(425\) −0.502931 0.599370i −0.0243957 0.0290737i
\(426\) 0 0
\(427\) 0.0507394 + 0.00894673i 0.00245545 + 0.000432962i
\(428\) 0.635970 + 8.10928i 0.0307408 + 0.391977i
\(429\) 0 0
\(430\) 18.5523 20.0642i 0.894672 0.967584i
\(431\) 10.8059 0.520500 0.260250 0.965541i \(-0.416195\pi\)
0.260250 + 0.965541i \(0.416195\pi\)
\(432\) 0 0
\(433\) −37.5914 −1.80653 −0.903264 0.429084i \(-0.858836\pi\)
−0.903264 + 0.429084i \(0.858836\pi\)
\(434\) −3.67715 + 3.97682i −0.176509 + 0.190893i
\(435\) 0 0
\(436\) 0.283062 + 3.60934i 0.0135562 + 0.172856i
\(437\) −15.7226 2.77232i −0.752114 0.132618i
\(438\) 0 0
\(439\) 20.5267 + 24.4627i 0.979685 + 1.16754i 0.985862 + 0.167562i \(0.0535893\pi\)
−0.00617703 + 0.999981i \(0.501966\pi\)
\(440\) 10.7642 13.6427i 0.513163 0.650392i
\(441\) 0 0
\(442\) −24.8585 + 18.8974i −1.18240 + 0.898859i
\(443\) 6.52594 + 37.0104i 0.310057 + 1.75842i 0.598691 + 0.800980i \(0.295688\pi\)
−0.288634 + 0.957439i \(0.593201\pi\)
\(444\) 0 0
\(445\) −14.7668 + 5.37468i −0.700013 + 0.254784i
\(446\) −14.6049 0.703538i −0.691563 0.0333135i
\(447\) 0 0
\(448\) −6.24189 + 8.42089i −0.294902 + 0.397850i
\(449\) 6.99926 + 4.04102i 0.330315 + 0.190708i 0.655981 0.754777i \(-0.272255\pi\)
−0.325666 + 0.945485i \(0.605588\pi\)
\(450\) 0 0
\(451\) 9.30376 5.37153i 0.438097 0.252935i
\(452\) −0.674834 + 6.98827i −0.0317415 + 0.328701i
\(453\) 0 0
\(454\) −0.114226 0.0734946i −0.00536087 0.00344927i
\(455\) 10.3621 + 8.69487i 0.485785 + 0.407622i
\(456\) 0 0
\(457\) 2.32495 + 0.846211i 0.108756 + 0.0395841i 0.395825 0.918326i \(-0.370459\pi\)
−0.287069 + 0.957910i \(0.592681\pi\)
\(458\) 14.7014 35.0453i 0.686950 1.63756i
\(459\) 0 0
\(460\) −8.22409 + 8.07735i −0.383450 + 0.376608i
\(461\) 3.09034 8.49063i 0.143931 0.395448i −0.846690 0.532087i \(-0.821408\pi\)
0.990621 + 0.136639i \(0.0436301\pi\)
\(462\) 0 0
\(463\) 0.896443 1.06834i 0.0416612 0.0496499i −0.744811 0.667275i \(-0.767461\pi\)
0.786473 + 0.617625i \(0.211905\pi\)
\(464\) 3.76973 19.3368i 0.175005 0.897688i
\(465\) 0 0
\(466\) 9.77085 3.03246i 0.452626 0.140476i
\(467\) 10.5492 + 18.2717i 0.488158 + 0.845515i 0.999907 0.0136203i \(-0.00433561\pi\)
−0.511749 + 0.859135i \(0.671002\pi\)
\(468\) 0 0
\(469\) −7.81850 + 13.5420i −0.361025 + 0.625313i
\(470\) −8.49542 + 37.5204i −0.391865 + 1.73069i
\(471\) 0 0
\(472\) 24.1916 21.5739i 1.11351 0.993019i
\(473\) 7.86763 + 21.6161i 0.361754 + 0.993911i
\(474\) 0 0
\(475\) −0.997948 + 0.175965i −0.0457890 + 0.00807383i
\(476\) −12.3278 + 3.18456i −0.565042 + 0.145964i
\(477\) 0 0
\(478\) −17.8974 + 2.27433i −0.818606 + 0.104025i
\(479\) 11.1877 9.38756i 0.511177 0.428928i −0.350366 0.936613i \(-0.613943\pi\)
0.861543 + 0.507684i \(0.169498\pi\)
\(480\) 0 0
\(481\) 6.09318 34.5561i 0.277825 1.57562i
\(482\) −9.52171 + 4.90235i −0.433702 + 0.223296i
\(483\) 0 0
\(484\) −3.05508 6.70865i −0.138867 0.304939i
\(485\) 19.8909i 0.903201i
\(486\) 0 0
\(487\) 0.282541i 0.0128032i 0.999980 + 0.00640158i \(0.00203770\pi\)
−0.999980 + 0.00640158i \(0.997962\pi\)
\(488\) 0.111170 0.00335064i 0.00503242 0.000151676i
\(489\) 0 0
\(490\) −7.76987 15.0912i −0.351007 0.681752i
\(491\) −2.69135 + 15.2634i −0.121459 + 0.688829i 0.861889 + 0.507097i \(0.169281\pi\)
−0.983348 + 0.181732i \(0.941830\pi\)
\(492\) 0 0
\(493\) 18.3318 15.3822i 0.825624 0.692781i
\(494\) 5.09819 + 40.1191i 0.229379 + 1.80505i
\(495\) 0 0
\(496\) −6.02742 + 10.0188i −0.270639 + 0.449858i
\(497\) −3.16314 + 0.557747i −0.141886 + 0.0250184i
\(498\) 0 0
\(499\) −13.9873 38.4299i −0.626159 1.72036i −0.691385 0.722487i \(-0.742999\pi\)
0.0652259 0.997871i \(-0.479223\pi\)
\(500\) 9.47078 19.8419i 0.423546 0.887355i
\(501\) 0 0
\(502\) −16.4139 3.71645i −0.732587 0.165873i
\(503\) −9.96192 + 17.2546i −0.444180 + 0.769343i −0.997995 0.0632975i \(-0.979838\pi\)
0.553815 + 0.832640i \(0.313172\pi\)
\(504\) 0 0
\(505\) 2.50117 + 4.33215i 0.111301 + 0.192778i
\(506\) −2.87623 9.26746i −0.127864 0.411989i
\(507\) 0 0
\(508\) 12.7039 + 18.4951i 0.563643 + 0.820589i
\(509\) −18.1997 + 21.6895i −0.806686 + 0.961371i −0.999804 0.0198048i \(-0.993696\pi\)
0.193118 + 0.981176i \(0.438140\pi\)
\(510\) 0 0
\(511\) −2.77103 + 7.61334i −0.122583 + 0.336794i
\(512\) −9.49862 + 20.5372i −0.419783 + 0.907624i
\(513\) 0 0
\(514\) −7.11925 2.98650i −0.314017 0.131729i
\(515\) −4.19929 1.52842i −0.185043 0.0673502i
\(516\) 0 0
\(517\) −24.8073 20.8158i −1.09102 0.915476i
\(518\) 7.74177 12.0323i 0.340154 0.528669i
\(519\) 0 0
\(520\) 25.7165 + 13.8316i 1.12774 + 0.606558i
\(521\) 18.4642 10.6603i 0.808931 0.467036i −0.0376537 0.999291i \(-0.511988\pi\)
0.846584 + 0.532255i \(0.178655\pi\)
\(522\) 0 0
\(523\) 17.0213 + 9.82725i 0.744289 + 0.429716i 0.823627 0.567132i \(-0.191947\pi\)
−0.0793376 + 0.996848i \(0.525281\pi\)
\(524\) −5.96112 + 8.35232i −0.260413 + 0.364873i
\(525\) 0 0
\(526\) −1.38598 + 28.7719i −0.0604315 + 1.25451i
\(527\) −13.3459 + 4.85751i −0.581356 + 0.211596i
\(528\) 0 0
\(529\) −2.87619 16.3117i −0.125052 0.709205i
\(530\) 7.47171 + 9.82861i 0.324551 + 0.426927i
\(531\) 0 0
\(532\) −4.41120 + 15.8893i −0.191250 + 0.688888i
\(533\) 11.6034 + 13.8283i 0.502597 + 0.598972i
\(534\) 0 0
\(535\) 9.09921 + 1.60444i 0.393393 + 0.0693658i
\(536\) −10.5842 + 32.0531i −0.457168 + 1.38449i
\(537\) 0 0
\(538\) 9.47298 + 8.75915i 0.408409 + 0.377634i
\(539\) 14.2884 0.615447
\(540\) 0 0
\(541\) 41.1619 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(542\) −22.0784 20.4147i −0.948350 0.876888i
\(543\) 0 0
\(544\) −24.6593 + 12.1395i −1.05726 + 0.520478i
\(545\) 4.04994 + 0.714115i 0.173481 + 0.0305893i
\(546\) 0 0
\(547\) −4.66923 5.56458i −0.199642 0.237924i 0.656930 0.753952i \(-0.271855\pi\)
−0.856572 + 0.516027i \(0.827410\pi\)
\(548\) −3.48492 0.967487i −0.148869 0.0413290i
\(549\) 0 0
\(550\) −0.372736 0.490312i −0.0158935 0.0209070i
\(551\) −5.38192 30.5224i −0.229277 1.30030i
\(552\) 0 0
\(553\) 7.41641 2.69935i 0.315378 0.114788i
\(554\) 1.73681 36.0550i 0.0737902 1.53183i
\(555\) 0 0
\(556\) 21.1643 + 15.1051i 0.897564 + 0.640599i
\(557\) −32.2123 18.5978i −1.36488 0.788012i −0.374609 0.927183i \(-0.622223\pi\)
−0.990268 + 0.139170i \(0.955556\pi\)
\(558\) 0 0
\(559\) −33.4743 + 19.3264i −1.41581 + 0.817419i
\(560\) 7.48789 + 9.25718i 0.316421 + 0.391187i
\(561\) 0 0
\(562\) 9.43239 14.6599i 0.397881 0.618389i
\(563\) −34.0010 28.5303i −1.43297 1.20241i −0.943929 0.330148i \(-0.892901\pi\)
−0.489044 0.872259i \(-0.662654\pi\)
\(564\) 0 0
\(565\) 7.49393 + 2.72757i 0.315272 + 0.114750i
\(566\) −21.7879 9.13997i −0.915816 0.384181i
\(567\) 0 0
\(568\) −6.44104 + 2.56663i −0.270260 + 0.107694i
\(569\) 10.0872 27.7143i 0.422877 1.16184i −0.527176 0.849756i \(-0.676749\pi\)
0.950053 0.312089i \(-0.101029\pi\)
\(570\) 0 0
\(571\) 8.42058 10.0353i 0.352390 0.419962i −0.560508 0.828149i \(-0.689394\pi\)
0.912899 + 0.408187i \(0.133839\pi\)
\(572\) −20.2611 + 13.9169i −0.847159 + 0.581893i
\(573\) 0 0
\(574\) 2.18176 + 7.02982i 0.0910647 + 0.293419i
\(575\) 0.204274 + 0.353814i 0.00851883 + 0.0147550i
\(576\) 0 0
\(577\) 2.02124 3.50090i 0.0841455 0.145744i −0.820881 0.571099i \(-0.806517\pi\)
0.905027 + 0.425355i \(0.139851\pi\)
\(578\) −9.11409 2.06363i −0.379096 0.0858355i
\(579\) 0 0
\(580\) −20.1955 9.63956i −0.838571 0.400261i
\(581\) 4.27797 + 11.7536i 0.177480 + 0.487622i
\(582\) 0 0
\(583\) −10.2349 + 1.80469i −0.423888 + 0.0747428i
\(584\) −2.51677 + 17.3076i −0.104145 + 0.716192i
\(585\) 0 0
\(586\) −2.37637 18.7003i −0.0981667 0.772502i
\(587\) 5.57370 4.67689i 0.230051 0.193036i −0.520474 0.853877i \(-0.674245\pi\)
0.750525 + 0.660842i \(0.229800\pi\)
\(588\) 0 0
\(589\) −3.19409 + 18.1146i −0.131610 + 0.746399i
\(590\) −16.8539 32.7349i −0.693864 1.34768i
\(591\) 0 0
\(592\) 11.0844 28.8284i 0.455566 1.18484i
\(593\) 2.93118i 0.120369i 0.998187 + 0.0601846i \(0.0191689\pi\)
−0.998187 + 0.0601846i \(0.980831\pi\)
\(594\) 0 0
\(595\) 14.4627i 0.592914i
\(596\) 4.68435 2.13322i 0.191878 0.0873803i
\(597\) 0 0
\(598\) 14.4964 7.46359i 0.592800 0.305209i
\(599\) −0.235737 + 1.33693i −0.00963195 + 0.0546255i −0.989245 0.146269i \(-0.953274\pi\)
0.979613 + 0.200894i \(0.0643847\pi\)
\(600\) 0 0
\(601\) 5.92810 4.97426i 0.241812 0.202904i −0.513825 0.857895i \(-0.671772\pi\)
0.755637 + 0.654991i \(0.227327\pi\)
\(602\) −15.6350 + 1.98684i −0.637236 + 0.0809777i
\(603\) 0 0
\(604\) 2.62627 + 10.1666i 0.106861 + 0.413672i
\(605\) −8.24608 + 1.45401i −0.335251 + 0.0591138i
\(606\) 0 0
\(607\) −3.90767 10.7362i −0.158607 0.435770i 0.834780 0.550584i \(-0.185595\pi\)
−0.993387 + 0.114814i \(0.963373\pi\)
\(608\) −2.35260 + 35.5195i −0.0954106 + 1.44051i
\(609\) 0 0
\(610\) 0.0278987 0.123216i 0.00112958 0.00498886i
\(611\) 27.2072 47.1242i 1.10068 1.90644i
\(612\) 0 0
\(613\) −12.0261 20.8298i −0.485729 0.841307i 0.514137 0.857708i \(-0.328112\pi\)
−0.999865 + 0.0164015i \(0.994779\pi\)
\(614\) −29.3993 + 9.12430i −1.18646 + 0.368227i
\(615\) 0 0
\(616\) −9.81350 + 2.03699i −0.395397 + 0.0820726i
\(617\) 31.0148 36.9620i 1.24861 1.48803i 0.441923 0.897053i \(-0.354296\pi\)
0.806685 0.590981i \(-0.201259\pi\)
\(618\) 0 0
\(619\) 1.54241 4.23775i 0.0619949 0.170329i −0.904828 0.425777i \(-0.860001\pi\)
0.966823 + 0.255448i \(0.0822229\pi\)
\(620\) 9.30621 + 9.47528i 0.373747 + 0.380537i
\(621\) 0 0
\(622\) 7.80425 18.6038i 0.312922 0.745946i
\(623\) 8.51673 + 3.09983i 0.341215 + 0.124192i
\(624\) 0 0
\(625\) −19.7480 16.5706i −0.789921 0.662823i
\(626\) −25.3033 16.2805i −1.01132 0.650700i
\(627\) 0 0
\(628\) −41.5927 4.01647i −1.65973 0.160275i
\(629\) 32.4907 18.7585i 1.29549 0.747951i
\(630\) 0 0
\(631\) −9.73065 5.61799i −0.387371 0.223649i 0.293649 0.955913i \(-0.405130\pi\)
−0.681020 + 0.732264i \(0.738464\pi\)
\(632\) 14.4913 8.95923i 0.576434 0.356379i
\(633\) 0 0
\(634\) −9.52178 0.458676i −0.378158 0.0182164i
\(635\) 23.9500 8.71709i 0.950427 0.345927i
\(636\) 0 0
\(637\) 4.16911 + 23.6442i 0.165186 + 0.936817i
\(638\) 14.9963 11.4002i 0.593708 0.451337i
\(639\) 0 0
\(640\) 19.8881 + 16.2812i 0.786145 + 0.643570i
\(641\) 26.0352 + 31.0276i 1.02833 + 1.22551i 0.973895 + 0.226998i \(0.0728910\pi\)
0.0544338 + 0.998517i \(0.482665\pi\)
\(642\) 0 0
\(643\) −31.7725 5.60234i −1.25298 0.220935i −0.492512 0.870306i \(-0.663921\pi\)
−0.760472 + 0.649371i \(0.775032\pi\)
\(644\) 6.62802 0.519802i 0.261180 0.0204831i
\(645\) 0 0
\(646\) −29.3557 + 31.7480i −1.15498 + 1.24911i
\(647\) −7.00490 −0.275391 −0.137696 0.990475i \(-0.543970\pi\)
−0.137696 + 0.990475i \(0.543970\pi\)
\(648\) 0 0
\(649\) 30.9936 1.21660
\(650\) 0.702600 0.759859i 0.0275582 0.0298041i
\(651\) 0 0
\(652\) −6.54607 + 0.513375i −0.256364 + 0.0201053i
\(653\) 34.5742 + 6.09636i 1.35299 + 0.238569i 0.802689 0.596397i \(-0.203402\pi\)
0.550302 + 0.834966i \(0.314513\pi\)
\(654\) 0 0
\(655\) 7.49225 + 8.92892i 0.292746 + 0.348882i
\(656\) 7.69561 + 13.9013i 0.300463 + 0.542754i
\(657\) 0 0
\(658\) 17.6632 13.4276i 0.688584 0.523462i
\(659\) 1.55544 + 8.82132i 0.0605912 + 0.343630i 1.00000 0.000830029i \(0.000264206\pi\)
−0.939408 + 0.342800i \(0.888625\pi\)
\(660\) 0 0
\(661\) 33.4732 12.1833i 1.30196 0.473874i 0.404324 0.914616i \(-0.367507\pi\)
0.897634 + 0.440742i \(0.145285\pi\)
\(662\) 34.1805 + 1.64652i 1.32846 + 0.0639938i
\(663\) 0 0
\(664\) 14.1987 + 22.9660i 0.551017 + 0.891255i
\(665\) 16.2217 + 9.36560i 0.629050 + 0.363182i
\(666\) 0 0
\(667\) −10.8214 + 6.24776i −0.419008 + 0.241914i
\(668\) 38.1224 + 3.68136i 1.47500 + 0.142436i
\(669\) 0 0
\(670\) 32.2448 + 20.7468i 1.24573 + 0.801520i
\(671\) 0.0814663 + 0.0683583i 0.00314497 + 0.00263894i
\(672\) 0 0
\(673\) 3.17294 + 1.15485i 0.122308 + 0.0445164i 0.402449 0.915442i \(-0.368159\pi\)
−0.280141 + 0.959959i \(0.590381\pi\)
\(674\) 11.9547 28.4977i 0.460477 1.09769i
\(675\) 0 0
\(676\) −10.7226 10.9174i −0.412407 0.419900i
\(677\) −0.395252 + 1.08595i −0.0151908 + 0.0417363i −0.947056 0.321068i \(-0.895958\pi\)
0.931865 + 0.362804i \(0.118181\pi\)
\(678\) 0 0
\(679\) 7.37410 8.78811i 0.282992 0.337257i
\(680\) 6.34520 + 30.5690i 0.243327 + 1.17227i
\(681\) 0 0
\(682\) −10.6774 + 3.31381i −0.408858 + 0.126892i
\(683\) −21.5897 37.3945i −0.826107 1.43086i −0.901070 0.433673i \(-0.857217\pi\)
0.0749630 0.997186i \(-0.476116\pi\)
\(684\) 0 0
\(685\) −2.05411 + 3.55783i −0.0784836 + 0.135938i
\(686\) −5.02625 + 22.1986i −0.191903 + 0.847548i
\(687\) 0 0
\(688\) −32.1751 + 11.0590i −1.22666 + 0.421620i
\(689\) −5.97274 16.4100i −0.227543 0.625170i
\(690\) 0 0
\(691\) −12.6458 + 2.22980i −0.481070 + 0.0848255i −0.408924 0.912569i \(-0.634096\pi\)
−0.0721458 + 0.997394i \(0.522985\pi\)
\(692\) −4.37303 16.9285i −0.166238 0.643524i
\(693\) 0 0
\(694\) 18.1710 2.30910i 0.689761 0.0876523i
\(695\) 22.6253 18.9849i 0.858227 0.720138i
\(696\) 0 0
\(697\) −3.35151 + 19.0074i −0.126948 + 0.719956i
\(698\) −4.86288 + 2.50370i −0.184063 + 0.0947666i
\(699\) 0 0
\(700\) 0.384039 0.174889i 0.0145153 0.00661019i
\(701\) 3.10248i 0.117179i −0.998282 0.0585896i \(-0.981340\pi\)
0.998282 0.0585896i \(-0.0186603\pi\)
\(702\) 0 0
\(703\) 48.5896i 1.83259i
\(704\) −19.8485 + 8.61091i −0.748069 + 0.324536i
\(705\) 0 0
\(706\) 1.96968 + 3.82567i 0.0741300 + 0.143981i
\(707\) 0.500991 2.84126i 0.0188417 0.106857i
\(708\) 0 0
\(709\) 7.39499 6.20513i 0.277725 0.233039i −0.493276 0.869873i \(-0.664201\pi\)
0.771001 + 0.636834i \(0.219756\pi\)
\(710\) 0.992846 + 7.81299i 0.0372609 + 0.293216i
\(711\) 0 0
\(712\) 19.3613 + 2.81540i 0.725594 + 0.105512i
\(713\) 7.30325 1.28776i 0.273509 0.0482270i
\(714\) 0 0
\(715\) 9.54942 + 26.2368i 0.357128 + 0.981201i
\(716\) −10.9513 5.22720i −0.409269 0.195350i
\(717\) 0 0
\(718\) −22.8286 5.16889i −0.851957 0.192901i
\(719\) −20.9190 + 36.2327i −0.780146 + 1.35125i 0.151711 + 0.988425i \(0.451522\pi\)
−0.931856 + 0.362827i \(0.881812\pi\)
\(720\) 0 0
\(721\) 1.28869 + 2.23207i 0.0479931 + 0.0831266i
\(722\) 8.63488 + 27.8224i 0.321357 + 1.03544i
\(723\) 0 0
\(724\) −26.4238 + 18.1499i −0.982033 + 0.674535i
\(725\) −0.509807 + 0.607564i −0.0189337 + 0.0225644i
\(726\) 0 0
\(727\) −0.167774 + 0.460954i −0.00622238 + 0.0170958i −0.942765 0.333458i \(-0.891784\pi\)
0.936543 + 0.350554i \(0.114007\pi\)
\(728\) −6.23417 15.6448i −0.231054 0.579835i
\(729\) 0 0
\(730\) 18.3197 + 7.68506i 0.678043 + 0.284437i
\(731\) −38.8348 14.1347i −1.43636 0.522791i
\(732\) 0 0
\(733\) 22.4492 + 18.8371i 0.829179 + 0.695764i 0.955102 0.296276i \(-0.0957448\pi\)
−0.125923 + 0.992040i \(0.540189\pi\)
\(734\) −1.68875 + 2.62466i −0.0623330 + 0.0968781i
\(735\) 0 0
\(736\) 13.7812 4.00657i 0.507981 0.147684i
\(737\) −27.9521 + 16.1381i −1.02963 + 0.594456i
\(738\) 0 0
\(739\) 34.8536 + 20.1228i 1.28211 + 0.740227i 0.977234 0.212164i \(-0.0680512\pi\)
0.304877 + 0.952392i \(0.401384\pi\)
\(740\) −28.5562 20.3808i −1.04975 0.749212i
\(741\) 0 0
\(742\) 0.342613 7.11239i 0.0125777 0.261104i
\(743\) 36.9693 13.4557i 1.35627 0.493643i 0.441373 0.897324i \(-0.354491\pi\)
0.914900 + 0.403680i \(0.132269\pi\)
\(744\) 0 0
\(745\) −1.01527 5.75787i −0.0371965 0.210952i
\(746\) −8.97574 11.8071i −0.328625 0.432287i
\(747\) 0 0
\(748\) −25.3232 7.03026i −0.925909 0.257052i
\(749\) −3.42536 4.08218i −0.125160 0.149160i
\(750\) 0 0
\(751\) 27.0058 + 4.76186i 0.985457 + 0.173763i 0.643079 0.765800i \(-0.277657\pi\)
0.342378 + 0.939562i \(0.388768\pi\)
\(752\) 31.4426 36.1304i 1.14659 1.31754i
\(753\) 0 0
\(754\) 23.2404 + 21.4891i 0.846365 + 0.782588i
\(755\) 11.9272 0.434077
\(756\) 0 0
\(757\) −13.2822 −0.482750 −0.241375 0.970432i \(-0.577598\pi\)
−0.241375 + 0.970432i \(0.577598\pi\)
\(758\) −3.20534 2.96380i −0.116423 0.107650i
\(759\) 0 0
\(760\) 38.3957 + 12.6786i 1.39276 + 0.459900i
\(761\) −12.6761 2.23515i −0.459510 0.0810240i −0.0608985 0.998144i \(-0.519397\pi\)
−0.398611 + 0.917120i \(0.630508\pi\)
\(762\) 0 0
\(763\) −1.52458 1.81693i −0.0551937 0.0657772i
\(764\) 6.25807 22.5418i 0.226409 0.815534i
\(765\) 0 0
\(766\) 13.7499 + 18.0872i 0.496804 + 0.653517i
\(767\) 9.04337 + 51.2875i 0.326537 + 1.85188i
\(768\) 0 0
\(769\) −27.3171 + 9.94262i −0.985080 + 0.358540i −0.783813 0.620996i \(-0.786728\pi\)
−0.201267 + 0.979536i \(0.564506\pi\)
\(770\) −0.547781 + 11.3715i −0.0197407 + 0.409802i
\(771\) 0 0
\(772\) 20.4154 28.6047i 0.734767 1.02951i
\(773\) −4.16046 2.40204i −0.149641 0.0863954i 0.423310 0.905985i \(-0.360868\pi\)
−0.572951 + 0.819590i \(0.694202\pi\)
\(774\) 0 0
\(775\) 0.407642 0.235352i 0.0146429 0.00845410i
\(776\) 11.7306 21.8101i 0.421104 0.782937i
\(777\) 0 0
\(778\) 13.5074 20.9932i 0.484264 0.752644i
\(779\) 19.1487 + 16.0677i 0.686074 + 0.575685i
\(780\) 0 0
\(781\) −6.22993 2.26751i −0.222924 0.0811378i
\(782\) 16.0758 + 6.74375i 0.574870 + 0.241156i
\(783\) 0 0
\(784\) −0.380445 + 21.1295i −0.0135873 + 0.754626i
\(785\) −16.2339 + 44.6023i −0.579413 + 1.59192i
\(786\) 0 0
\(787\) −25.7907 + 30.7362i −0.919339 + 1.09563i 0.0757975 + 0.997123i \(0.475850\pi\)
−0.995137 + 0.0985027i \(0.968595\pi\)
\(788\) 26.0993 + 37.9972i 0.929751 + 1.35359i
\(789\) 0 0
\(790\) −5.73627 18.4828i −0.204087 0.657588i
\(791\) −2.29975 3.98328i −0.0817696 0.141629i
\(792\) 0 0
\(793\) −0.0893474 + 0.154754i −0.00317282 + 0.00549548i
\(794\) −18.5882 4.20877i −0.659671 0.149364i
\(795\) 0 0
\(796\) −2.69354 + 5.64313i −0.0954699 + 0.200015i
\(797\) −10.6320 29.2112i −0.376605 1.03471i −0.972754 0.231839i \(-0.925526\pi\)
0.596150 0.802873i \(-0.296697\pi\)
\(798\) 0 0
\(799\) 57.2954 10.1027i 2.02696 0.357408i
\(800\) 0.734991 0.538141i 0.0259859 0.0190262i
\(801\) 0 0
\(802\) −1.20492 9.48189i −0.0425473 0.334817i
\(803\) −12.8107 + 10.7495i −0.452080 + 0.379340i
\(804\) 0 0
\(805\) 1.31136 7.43712i 0.0462195 0.262124i
\(806\) −8.59908 16.7018i −0.302890 0.588296i
\(807\) 0 0
\(808\) −0.187626 6.22519i −0.00660066 0.219001i
\(809\) 26.7938i 0.942021i 0.882128 + 0.471010i \(0.156111\pi\)
−0.882128 + 0.471010i \(0.843889\pi\)
\(810\) 0 0
\(811\) 22.6335i 0.794769i −0.917652 0.397384i \(-0.869918\pi\)
0.917652 0.397384i \(-0.130082\pi\)
\(812\) 5.34901 + 11.7459i 0.187714 + 0.412200i
\(813\) 0 0
\(814\) 26.2568 13.5186i 0.920300 0.473825i
\(815\) −1.29515 + 7.34517i −0.0453672 + 0.257290i
\(816\) 0 0
\(817\) −41.0019 + 34.4047i −1.43448 + 1.20367i
\(818\) −26.4359 + 3.35937i −0.924309 + 0.117458i
\(819\) 0 0
\(820\) 17.4749 4.51418i 0.610249 0.157642i
\(821\) 12.6018 2.22203i 0.439805 0.0775495i 0.0506388 0.998717i \(-0.483874\pi\)
0.389166 + 0.921168i \(0.372763\pi\)
\(822\) 0 0
\(823\) 8.87992 + 24.3974i 0.309534 + 0.850439i 0.992747 + 0.120220i \(0.0383599\pi\)
−0.683213 + 0.730219i \(0.739418\pi\)
\(824\) 3.70308 + 4.15240i 0.129003 + 0.144656i
\(825\) 0 0
\(826\) −4.68941 + 20.7110i −0.163165 + 0.720627i
\(827\) 9.69134 16.7859i 0.337001 0.583703i −0.646866 0.762603i \(-0.723921\pi\)
0.983867 + 0.178901i \(0.0572542\pi\)
\(828\) 0 0
\(829\) −15.3678 26.6178i −0.533745 0.924474i −0.999223 0.0394143i \(-0.987451\pi\)
0.465478 0.885060i \(-0.345883\pi\)
\(830\) 29.2918 9.09092i 1.01673 0.315550i
\(831\) 0 0
\(832\) −20.0406 30.3324i −0.694782 1.05159i
\(833\) −16.5004 + 19.6645i −0.571706 + 0.681333i
\(834\) 0 0
\(835\) 14.8794 40.8809i 0.514924 1.41474i
\(836\) −24.2838 + 23.8505i −0.839872 + 0.824886i
\(837\) 0 0
\(838\) 10.4460 24.9012i 0.360850 0.860199i
\(839\) −10.2752 3.73987i −0.354740 0.129115i 0.158502 0.987359i \(-0.449333\pi\)
−0.513242 + 0.858244i \(0.671556\pi\)
\(840\) 0 0
\(841\) 3.63286 + 3.04833i 0.125271 + 0.105115i
\(842\) 26.8103 + 17.2502i 0.923944 + 0.594480i
\(843\) 0 0
\(844\) −2.47090 + 25.5875i −0.0850520 + 0.880760i
\(845\) −15.0532 + 8.69096i −0.517845 + 0.298978i
\(846\) 0 0
\(847\) 4.18228 + 2.41464i 0.143705 + 0.0829680i
\(848\) −2.39624 15.1833i −0.0822872 0.521397i
\(849\) 0 0
\(850\) 1.10523 + 0.0532404i 0.0379091 + 0.00182613i
\(851\) −18.4085 + 6.70013i −0.631034 + 0.229677i
\(852\) 0 0
\(853\) 1.11668 + 6.33302i 0.0382345 + 0.216838i 0.997939 0.0641734i \(-0.0204411\pi\)
−0.959704 + 0.281012i \(0.909330\pi\)
\(854\) −0.0580054 + 0.0440958i −0.00198490 + 0.00150893i
\(855\) 0 0
\(856\) −9.03093 7.12545i −0.308671 0.243543i
\(857\) 2.04068 + 2.43199i 0.0697083 + 0.0830751i 0.799772 0.600304i \(-0.204954\pi\)
−0.730063 + 0.683380i \(0.760509\pi\)
\(858\) 0 0
\(859\) 27.9109 + 4.92145i 0.952309 + 0.167918i 0.628156 0.778087i \(-0.283810\pi\)
0.324152 + 0.946005i \(0.394921\pi\)
\(860\) 3.02154 + 38.5278i 0.103034 + 1.31379i
\(861\) 0 0
\(862\) −10.3748 + 11.2203i −0.353368 + 0.382166i
\(863\) −53.5310 −1.82222 −0.911108 0.412168i \(-0.864772\pi\)
−0.911108 + 0.412168i \(0.864772\pi\)
\(864\) 0 0
\(865\) −19.8602 −0.675267
\(866\) 36.0920 39.0333i 1.22646 1.32641i
\(867\) 0 0
\(868\) −0.598883 7.63638i −0.0203274 0.259196i
\(869\) 16.0431 + 2.82884i 0.544226 + 0.0959617i
\(870\) 0 0
\(871\) −34.8609 41.5456i −1.18122 1.40772i
\(872\) −4.01956 3.17145i −0.136119 0.107399i
\(873\) 0 0
\(874\) 17.9741 13.6639i 0.607984 0.462190i
\(875\) 2.50119 + 14.1849i 0.0845555 + 0.479538i
\(876\) 0 0
\(877\) 28.0872 10.2229i 0.948439 0.345204i 0.178946 0.983859i \(-0.442731\pi\)
0.769493 + 0.638655i \(0.220509\pi\)
\(878\) −45.1090 2.17296i −1.52235 0.0733337i
\(879\) 0 0
\(880\) 3.83119 + 24.2756i 0.129149 + 0.818331i
\(881\) −14.9002 8.60262i −0.502000 0.289830i 0.227539 0.973769i \(-0.426932\pi\)
−0.729539 + 0.683939i \(0.760265\pi\)
\(882\) 0 0
\(883\) 19.9228 11.5024i 0.670455 0.387088i −0.125794 0.992056i \(-0.540148\pi\)
0.796249 + 0.604969i \(0.206814\pi\)
\(884\) 4.24465 43.9556i 0.142763 1.47839i
\(885\) 0 0
\(886\) −44.6957 28.7579i −1.50158 0.966141i
\(887\) 21.8640 + 18.3460i 0.734120 + 0.616000i 0.931251 0.364377i \(-0.118718\pi\)
−0.197132 + 0.980377i \(0.563163\pi\)
\(888\) 0 0
\(889\) −13.8131 5.02757i −0.463278 0.168619i
\(890\) 8.59695 20.4935i 0.288170 0.686944i
\(891\) 0 0
\(892\) 14.7529 14.4896i 0.493963 0.485149i
\(893\) 25.7712 70.8058i 0.862401 2.36943i
\(894\) 0 0
\(895\) −8.86013 + 10.5591i −0.296162 + 0.352952i
\(896\) −2.75097 14.5663i −0.0919036 0.486626i
\(897\) 0 0
\(898\) −10.9161 + 3.38789i −0.364275 + 0.113055i
\(899\) 7.19828 + 12.4678i 0.240076 + 0.415824i
\(900\) 0 0
\(901\) 9.33569 16.1699i 0.311017 0.538697i
\(902\) −3.35509 + 14.8179i −0.111712 + 0.493382i
\(903\) 0 0
\(904\) −6.60840 7.41024i −0.219792 0.246461i
\(905\) 12.4540 + 34.2172i 0.413986 + 1.13742i
\(906\) 0 0
\(907\) −57.4172 + 10.1242i −1.90651 + 0.336169i −0.996858 0.0792103i \(-0.974760\pi\)
−0.909649 + 0.415379i \(0.863649\pi\)
\(908\) 0.185983 0.0480439i 0.00617206 0.00159439i
\(909\) 0 0
\(910\) −18.9772 + 2.41155i −0.629088 + 0.0799422i
\(911\) 3.02058 2.53457i 0.100076 0.0839741i −0.591377 0.806395i \(-0.701415\pi\)
0.691453 + 0.722421i \(0.256971\pi\)
\(912\) 0 0
\(913\) −4.48318 + 25.4254i −0.148372 + 0.841457i
\(914\) −3.11088 + 1.60167i −0.102899 + 0.0529784i
\(915\) 0 0
\(916\) 22.2745 + 48.9127i 0.735972 + 1.61612i
\(917\) 6.72250i 0.221997i
\(918\) 0 0
\(919\) 6.45794i 0.213028i 0.994311 + 0.106514i \(0.0339689\pi\)
−0.994311 + 0.106514i \(0.966031\pi\)
\(920\) −0.491119 16.2947i −0.0161917 0.537220i
\(921\) 0 0
\(922\) 5.84924 + 11.3608i 0.192634 + 0.374149i
\(923\) 1.93444 10.9708i 0.0636729 0.361107i
\(924\) 0 0
\(925\) −0.952508 + 0.799249i −0.0313183 + 0.0262792i
\(926\) 0.248631 + 1.95655i 0.00817054 + 0.0642963i
\(927\) 0 0
\(928\) 16.4591 + 22.4798i 0.540297 + 0.737936i
\(929\) −56.1170 + 9.89493i −1.84114 + 0.324642i −0.982258 0.187535i \(-0.939950\pi\)
−0.858880 + 0.512177i \(0.828839\pi\)
\(930\) 0 0
\(931\) 11.3709 + 31.2413i 0.372666 + 1.02389i
\(932\) −6.23234 + 13.0571i −0.204147 + 0.427700i
\(933\) 0 0
\(934\) −29.1010 6.58908i −0.952213 0.215601i
\(935\) −14.9262 + 25.8530i −0.488140 + 0.845483i
\(936\) 0 0
\(937\) 9.57464 + 16.5838i 0.312790 + 0.541768i 0.978965 0.204027i \(-0.0654031\pi\)
−0.666175 + 0.745795i \(0.732070\pi\)
\(938\) −6.55483 21.1203i −0.214023 0.689601i
\(939\) 0 0
\(940\) −30.8030 44.8451i −1.00468 1.46268i
\(941\) 12.0148 14.3187i 0.391671 0.466775i −0.533791 0.845617i \(-0.679233\pi\)
0.925462 + 0.378841i \(0.123677\pi\)
\(942\) 0 0
\(943\) 3.44687 9.47021i 0.112246 0.308392i
\(944\) −0.825237 + 45.8329i −0.0268592 + 1.49173i
\(945\) 0 0
\(946\) −29.9991 12.5845i −0.975354 0.409158i
\(947\) 26.7426 + 9.73349i 0.869016 + 0.316296i 0.737769 0.675054i \(-0.235880\pi\)
0.131247 + 0.991350i \(0.458102\pi\)
\(948\) 0 0
\(949\) −21.5259 18.0624i −0.698761 0.586330i
\(950\) 0.775427 1.20517i 0.0251582 0.0391009i
\(951\) 0 0
\(952\) 8.52933 15.8582i 0.276437 0.513966i
\(953\) −39.0891 + 22.5681i −1.26622 + 0.731052i −0.974270 0.225382i \(-0.927637\pi\)
−0.291949 + 0.956434i \(0.594304\pi\)
\(954\) 0 0
\(955\) −23.0134 13.2868i −0.744695 0.429950i
\(956\) 14.8219 20.7675i 0.479375 0.671668i
\(957\) 0 0
\(958\) −0.993768 + 20.6299i −0.0321072 + 0.666521i
\(959\) 2.22652 0.810386i 0.0718980 0.0261687i
\(960\) 0 0
\(961\) 3.89942 + 22.1147i 0.125788 + 0.713377i
\(962\) 30.0315 + 39.5047i 0.968253 + 1.27368i
\(963\) 0 0
\(964\) 4.05152 14.5937i 0.130491 0.470032i
\(965\) −25.6592 30.5794i −0.825998 0.984386i
\(966\) 0 0
\(967\) 9.02769 + 1.59182i 0.290311 + 0.0511896i 0.316907 0.948457i \(-0.397356\pi\)
−0.0265962 + 0.999646i \(0.508467\pi\)
\(968\) 9.89919 + 3.26879i 0.318172 + 0.105063i
\(969\) 0 0
\(970\) −20.6539 19.0975i −0.663156 0.613185i
\(971\) −10.7197 −0.344010 −0.172005 0.985096i \(-0.555025\pi\)
−0.172005 + 0.985096i \(0.555025\pi\)
\(972\) 0 0
\(973\) −17.0344 −0.546098
\(974\) −0.293379 0.271271i −0.00940046 0.00869209i
\(975\) 0 0
\(976\) −0.103256 + 0.118651i −0.00330516 + 0.00379793i
\(977\) −49.0395 8.64698i −1.56891 0.276641i −0.679475 0.733699i \(-0.737792\pi\)
−0.889437 + 0.457057i \(0.848903\pi\)
\(978\) 0 0
\(979\) 12.0250 + 14.3308i 0.384320 + 0.458015i
\(980\) 23.1300 + 6.42138i 0.738862 + 0.205123i
\(981\) 0 0
\(982\) −13.2649 17.4492i −0.423299 0.556826i
\(983\) −0.315908 1.79160i −0.0100759 0.0571433i 0.979355 0.202147i \(-0.0647918\pi\)
−0.989431 + 0.145003i \(0.953681\pi\)
\(984\) 0 0
\(985\) 49.2039 17.9088i 1.56777 0.570620i
\(986\) −1.62836 + 33.8036i −0.0518577 + 1.07653i
\(987\) 0 0
\(988\) −46.5528 33.2251i −1.48104 1.05703i
\(989\) 18.6883 + 10.7897i 0.594252 + 0.343092i
\(990\) 0 0
\(991\) −48.8792 + 28.2204i −1.55270 + 0.896451i −0.554777 + 0.831999i \(0.687196\pi\)
−0.997921 + 0.0644516i \(0.979470\pi\)
\(992\) −4.61611 15.8778i −0.146562 0.504121i
\(993\) 0 0
\(994\) 2.45783 3.81997i 0.0779577 0.121162i
\(995\) 5.44102 + 4.56556i 0.172492 + 0.144738i
\(996\) 0 0
\(997\) −11.0934 4.03767i −0.351331 0.127874i 0.160325 0.987064i \(-0.448746\pi\)
−0.511657 + 0.859190i \(0.670968\pi\)
\(998\) 53.3333 + 22.3731i 1.68824 + 0.708209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.2.l.a.179.4 96
3.2 odd 2 108.2.l.a.23.13 yes 96
4.3 odd 2 inner 324.2.l.a.179.9 96
9.2 odd 6 972.2.l.c.215.2 96
9.4 even 3 972.2.l.a.863.7 96
9.5 odd 6 972.2.l.d.863.10 96
9.7 even 3 972.2.l.b.215.15 96
12.11 even 2 108.2.l.a.23.8 96
27.2 odd 18 972.2.l.a.107.2 96
27.7 even 9 108.2.l.a.47.8 yes 96
27.11 odd 18 972.2.l.b.755.13 96
27.16 even 9 972.2.l.c.755.4 96
27.20 odd 18 inner 324.2.l.a.143.9 96
27.25 even 9 972.2.l.d.107.15 96
36.7 odd 6 972.2.l.b.215.13 96
36.11 even 6 972.2.l.c.215.4 96
36.23 even 6 972.2.l.d.863.15 96
36.31 odd 6 972.2.l.a.863.2 96
108.7 odd 18 108.2.l.a.47.13 yes 96
108.11 even 18 972.2.l.b.755.15 96
108.43 odd 18 972.2.l.c.755.2 96
108.47 even 18 inner 324.2.l.a.143.4 96
108.79 odd 18 972.2.l.d.107.10 96
108.83 even 18 972.2.l.a.107.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.8 96 12.11 even 2
108.2.l.a.23.13 yes 96 3.2 odd 2
108.2.l.a.47.8 yes 96 27.7 even 9
108.2.l.a.47.13 yes 96 108.7 odd 18
324.2.l.a.143.4 96 108.47 even 18 inner
324.2.l.a.143.9 96 27.20 odd 18 inner
324.2.l.a.179.4 96 1.1 even 1 trivial
324.2.l.a.179.9 96 4.3 odd 2 inner
972.2.l.a.107.2 96 27.2 odd 18
972.2.l.a.107.7 96 108.83 even 18
972.2.l.a.863.2 96 36.31 odd 6
972.2.l.a.863.7 96 9.4 even 3
972.2.l.b.215.13 96 36.7 odd 6
972.2.l.b.215.15 96 9.7 even 3
972.2.l.b.755.13 96 27.11 odd 18
972.2.l.b.755.15 96 108.11 even 18
972.2.l.c.215.2 96 9.2 odd 6
972.2.l.c.215.4 96 36.11 even 6
972.2.l.c.755.2 96 108.43 odd 18
972.2.l.c.755.4 96 27.16 even 9
972.2.l.d.107.10 96 108.79 odd 18
972.2.l.d.107.15 96 27.25 even 9
972.2.l.d.863.10 96 9.5 odd 6
972.2.l.d.863.15 96 36.23 even 6