Properties

Label 972.2.l.b.215.15
Level $972$
Weight $2$
Character 972.215
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,-3,0,3,-6,0,0,9,0,-3,0,0,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.15
Character \(\chi\) \(=\) 972.215
Dual form 972.2.l.b.755.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37930 + 0.312303i) q^{2} +(1.80493 + 0.861519i) q^{4} +(1.46028 - 1.74029i) q^{5} +(0.448132 - 1.23123i) q^{7} +(2.22049 + 1.75198i) q^{8} +(2.55766 - 1.94434i) q^{10} +(2.07176 - 1.73841i) q^{11} +(0.789120 - 4.47532i) q^{13} +(1.00263 - 1.55829i) q^{14} +(2.51557 + 3.10997i) q^{16} +(-4.20783 - 2.42939i) q^{17} +(-5.44971 + 3.14639i) q^{19} +(4.13500 - 1.88306i) q^{20} +(3.40048 - 1.75077i) q^{22} +(-2.38405 + 0.867725i) q^{23} +(-0.0279630 - 0.158586i) q^{25} +(2.48609 - 5.92636i) q^{26} +(1.86958 - 1.83622i) q^{28} +(4.85038 - 0.855253i) q^{29} +(0.999738 + 2.74676i) q^{31} +(2.49847 + 5.07520i) q^{32} +(-5.04515 - 4.66498i) q^{34} +(-1.48831 - 2.57783i) q^{35} +(-3.86074 + 6.68701i) q^{37} +(-8.49941 + 2.63785i) q^{38} +(6.29149 - 1.30592i) q^{40} +(3.91196 + 0.689785i) q^{41} +(-5.46733 - 6.51571i) q^{43} +(5.23705 - 1.35286i) q^{44} +(-3.55932 + 0.452305i) q^{46} +(11.2519 + 4.09536i) q^{47} +(4.04720 + 3.39600i) q^{49} +(0.0109576 - 0.227471i) q^{50} +(5.27988 - 7.39781i) q^{52} +3.84281i q^{53} -6.14402i q^{55} +(3.15217 - 1.94882i) q^{56} +(6.95722 + 0.335138i) q^{58} +(8.77893 + 7.36639i) q^{59} +(-0.0369509 - 0.0134490i) q^{61} +(0.521117 + 4.10082i) q^{62} +(1.86114 + 7.78050i) q^{64} +(-6.63603 - 7.90851i) q^{65} +(-11.7530 - 2.07238i) q^{67} +(-5.50189 - 8.01001i) q^{68} +(-1.24776 - 4.02040i) q^{70} +(-1.22570 + 2.12297i) q^{71} +(3.09175 + 5.35507i) q^{73} +(-7.41349 + 8.01766i) q^{74} +(-12.5470 + 0.984001i) q^{76} +(-1.21197 - 3.32985i) q^{77} +(-5.93205 + 1.04598i) q^{79} +(9.08569 + 0.163591i) q^{80} +(5.18035 + 2.17314i) q^{82} +(-1.65768 - 9.40119i) q^{83} +(-10.3725 + 3.77526i) q^{85} +(-5.50621 - 10.6946i) q^{86} +(7.64596 - 0.230448i) q^{88} +(5.99050 - 3.45862i) q^{89} +(-5.15653 - 2.97713i) q^{91} +(-5.05062 - 0.487722i) q^{92} +(14.2408 + 9.16274i) q^{94} +(-2.48245 + 14.0787i) q^{95} +(-6.70720 + 5.62801i) q^{97} +(4.52172 + 5.94806i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 3 q^{2} + 3 q^{4} - 6 q^{5} + 9 q^{8} - 3 q^{10} + 6 q^{13} + 12 q^{14} + 3 q^{16} + 18 q^{17} - 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 6 q^{29} + 57 q^{32} - 3 q^{34} - 6 q^{37} - 45 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37930 + 0.312303i 0.975312 + 0.220832i
\(3\) 0 0
\(4\) 1.80493 + 0.861519i 0.902467 + 0.430759i
\(5\) 1.46028 1.74029i 0.653057 0.778282i −0.333315 0.942816i \(-0.608167\pi\)
0.986372 + 0.164533i \(0.0526117\pi\)
\(6\) 0 0
\(7\) 0.448132 1.23123i 0.169378 0.465363i −0.825740 0.564050i \(-0.809242\pi\)
0.995118 + 0.0986879i \(0.0314646\pi\)
\(8\) 2.22049 + 1.75198i 0.785061 + 0.619418i
\(9\) 0 0
\(10\) 2.55766 1.94434i 0.808803 0.614853i
\(11\) 2.07176 1.73841i 0.624658 0.524150i −0.274606 0.961557i \(-0.588547\pi\)
0.899264 + 0.437407i \(0.144103\pi\)
\(12\) 0 0
\(13\) 0.789120 4.47532i 0.218862 1.24123i −0.655215 0.755443i \(-0.727422\pi\)
0.874077 0.485788i \(-0.161467\pi\)
\(14\) 1.00263 1.55829i 0.267963 0.416470i
\(15\) 0 0
\(16\) 2.51557 + 3.10997i 0.628893 + 0.777492i
\(17\) −4.20783 2.42939i −1.02055 0.589214i −0.106286 0.994336i \(-0.533896\pi\)
−0.914263 + 0.405122i \(0.867229\pi\)
\(18\) 0 0
\(19\) −5.44971 + 3.14639i −1.25025 + 0.721832i −0.971159 0.238433i \(-0.923366\pi\)
−0.279090 + 0.960265i \(0.590033\pi\)
\(20\) 4.13500 1.88306i 0.924614 0.421064i
\(21\) 0 0
\(22\) 3.40048 1.75077i 0.724985 0.373266i
\(23\) −2.38405 + 0.867725i −0.497110 + 0.180933i −0.578394 0.815758i \(-0.696320\pi\)
0.0812839 + 0.996691i \(0.474098\pi\)
\(24\) 0 0
\(25\) −0.0279630 0.158586i −0.00559260 0.0317172i
\(26\) 2.48609 5.92636i 0.487562 1.16226i
\(27\) 0 0
\(28\) 1.86958 1.83622i 0.353317 0.347013i
\(29\) 4.85038 0.855253i 0.900693 0.158816i 0.295918 0.955213i \(-0.404374\pi\)
0.604775 + 0.796397i \(0.293263\pi\)
\(30\) 0 0
\(31\) 0.999738 + 2.74676i 0.179558 + 0.493332i 0.996519 0.0833604i \(-0.0265653\pi\)
−0.816961 + 0.576693i \(0.804343\pi\)
\(32\) 2.49847 + 5.07520i 0.441672 + 0.897177i
\(33\) 0 0
\(34\) −5.04515 4.66498i −0.865236 0.800037i
\(35\) −1.48831 2.57783i −0.251570 0.435732i
\(36\) 0 0
\(37\) −3.86074 + 6.68701i −0.634703 + 1.09934i 0.351876 + 0.936047i \(0.385544\pi\)
−0.986578 + 0.163290i \(0.947789\pi\)
\(38\) −8.49941 + 2.63785i −1.37879 + 0.427917i
\(39\) 0 0
\(40\) 6.29149 1.30592i 0.994772 0.206485i
\(41\) 3.91196 + 0.689785i 0.610946 + 0.107726i 0.470556 0.882370i \(-0.344053\pi\)
0.140390 + 0.990096i \(0.455164\pi\)
\(42\) 0 0
\(43\) −5.46733 6.51571i −0.833760 0.993637i −0.999972 0.00754644i \(-0.997598\pi\)
0.166211 0.986090i \(-0.446847\pi\)
\(44\) 5.23705 1.35286i 0.789515 0.203951i
\(45\) 0 0
\(46\) −3.55932 + 0.452305i −0.524793 + 0.0666887i
\(47\) 11.2519 + 4.09536i 1.64126 + 0.597370i 0.987259 0.159123i \(-0.0508668\pi\)
0.654001 + 0.756493i \(0.273089\pi\)
\(48\) 0 0
\(49\) 4.04720 + 3.39600i 0.578171 + 0.485143i
\(50\) 0.0109576 0.227471i 0.00154963 0.0321692i
\(51\) 0 0
\(52\) 5.27988 7.39781i 0.732188 1.02589i
\(53\) 3.84281i 0.527851i 0.964543 + 0.263925i \(0.0850173\pi\)
−0.964543 + 0.263925i \(0.914983\pi\)
\(54\) 0 0
\(55\) 6.14402i 0.828460i
\(56\) 3.15217 1.94882i 0.421226 0.260422i
\(57\) 0 0
\(58\) 6.95722 + 0.335138i 0.913528 + 0.0440058i
\(59\) 8.77893 + 7.36639i 1.14292 + 0.959023i 0.999530 0.0306438i \(-0.00975574\pi\)
0.143388 + 0.989666i \(0.454200\pi\)
\(60\) 0 0
\(61\) −0.0369509 0.0134490i −0.00473108 0.00172197i 0.339654 0.940551i \(-0.389690\pi\)
−0.344385 + 0.938829i \(0.611912\pi\)
\(62\) 0.521117 + 4.10082i 0.0661820 + 0.520805i
\(63\) 0 0
\(64\) 1.86114 + 7.78050i 0.232643 + 0.972562i
\(65\) −6.63603 7.90851i −0.823098 0.980930i
\(66\) 0 0
\(67\) −11.7530 2.07238i −1.43586 0.253181i −0.599068 0.800698i \(-0.704462\pi\)
−0.836795 + 0.547517i \(0.815573\pi\)
\(68\) −5.50189 8.01001i −0.667202 0.971357i
\(69\) 0 0
\(70\) −1.24776 4.02040i −0.149136 0.480529i
\(71\) −1.22570 + 2.12297i −0.145463 + 0.251950i −0.929546 0.368707i \(-0.879801\pi\)
0.784082 + 0.620657i \(0.213134\pi\)
\(72\) 0 0
\(73\) 3.09175 + 5.35507i 0.361862 + 0.626764i 0.988267 0.152734i \(-0.0488077\pi\)
−0.626405 + 0.779498i \(0.715474\pi\)
\(74\) −7.41349 + 8.01766i −0.861801 + 0.932034i
\(75\) 0 0
\(76\) −12.5470 + 0.984001i −1.43924 + 0.112873i
\(77\) −1.21197 3.32985i −0.138116 0.379472i
\(78\) 0 0
\(79\) −5.93205 + 1.04598i −0.667408 + 0.117682i −0.497079 0.867705i \(-0.665594\pi\)
−0.170329 + 0.985387i \(0.554483\pi\)
\(80\) 9.08569 + 0.163591i 1.01581 + 0.0182900i
\(81\) 0 0
\(82\) 5.18035 + 2.17314i 0.572074 + 0.239983i
\(83\) −1.65768 9.40119i −0.181954 1.03191i −0.929806 0.368049i \(-0.880026\pi\)
0.747852 0.663865i \(-0.231085\pi\)
\(84\) 0 0
\(85\) −10.3725 + 3.77526i −1.12505 + 0.409485i
\(86\) −5.50621 10.6946i −0.593750 1.15323i
\(87\) 0 0
\(88\) 7.64596 0.230448i 0.815063 0.0245658i
\(89\) 5.99050 3.45862i 0.634991 0.366613i −0.147691 0.989034i \(-0.547184\pi\)
0.782683 + 0.622421i \(0.213851\pi\)
\(90\) 0 0
\(91\) −5.15653 2.97713i −0.540552 0.312088i
\(92\) −5.05062 0.487722i −0.526564 0.0508485i
\(93\) 0 0
\(94\) 14.2408 + 9.16274i 1.46882 + 0.945064i
\(95\) −2.48245 + 14.0787i −0.254694 + 1.44444i
\(96\) 0 0
\(97\) −6.70720 + 5.62801i −0.681012 + 0.571437i −0.916302 0.400488i \(-0.868841\pi\)
0.235290 + 0.971925i \(0.424396\pi\)
\(98\) 4.52172 + 5.94806i 0.456762 + 0.600844i
\(99\) 0 0
\(100\) 0.0861535 0.310328i 0.00861535 0.0310328i
\(101\) −0.753107 + 2.06914i −0.0749369 + 0.205888i −0.971505 0.237018i \(-0.923830\pi\)
0.896568 + 0.442905i \(0.146052\pi\)
\(102\) 0 0
\(103\) −1.26442 + 1.50687i −0.124587 + 0.148476i −0.824732 0.565524i \(-0.808674\pi\)
0.700145 + 0.714000i \(0.253118\pi\)
\(104\) 9.59289 8.55488i 0.940661 0.838875i
\(105\) 0 0
\(106\) −1.20012 + 5.30039i −0.116566 + 0.514819i
\(107\) −4.06709 −0.393180 −0.196590 0.980486i \(-0.562987\pi\)
−0.196590 + 0.980486i \(0.562987\pi\)
\(108\) 0 0
\(109\) −1.81021 −0.173387 −0.0866934 0.996235i \(-0.527630\pi\)
−0.0866934 + 0.996235i \(0.527630\pi\)
\(110\) 1.91880 8.47445i 0.182950 0.808007i
\(111\) 0 0
\(112\) 4.95641 1.70358i 0.468336 0.160973i
\(113\) 2.25644 2.68911i 0.212268 0.252971i −0.649396 0.760450i \(-0.724978\pi\)
0.861664 + 0.507480i \(0.169423\pi\)
\(114\) 0 0
\(115\) −1.97129 + 5.41607i −0.183824 + 0.505051i
\(116\) 9.49143 + 2.63502i 0.881257 + 0.244655i
\(117\) 0 0
\(118\) 9.80822 + 12.9021i 0.902920 + 1.18774i
\(119\) −4.87681 + 4.09213i −0.447057 + 0.375125i
\(120\) 0 0
\(121\) −0.640026 + 3.62977i −0.0581842 + 0.329979i
\(122\) −0.0467662 0.0300901i −0.00423401 0.00272423i
\(123\) 0 0
\(124\) −0.561922 + 5.81901i −0.0504621 + 0.522562i
\(125\) 9.52032 + 5.49656i 0.851523 + 0.491627i
\(126\) 0 0
\(127\) −9.71588 + 5.60947i −0.862145 + 0.497760i −0.864730 0.502237i \(-0.832511\pi\)
0.00258477 + 0.999997i \(0.499177\pi\)
\(128\) 0.137201 + 11.3129i 0.0121270 + 0.999926i
\(129\) 0 0
\(130\) −6.68322 12.9807i −0.586157 1.13848i
\(131\) 4.82128 1.75480i 0.421237 0.153318i −0.122700 0.992444i \(-0.539155\pi\)
0.543937 + 0.839126i \(0.316933\pi\)
\(132\) 0 0
\(133\) 1.43175 + 8.11986i 0.124149 + 0.704081i
\(134\) −15.5638 6.52894i −1.34450 0.564015i
\(135\) 0 0
\(136\) −5.08720 12.7665i −0.436224 1.09472i
\(137\) −1.78089 + 0.314019i −0.152152 + 0.0268285i −0.249205 0.968451i \(-0.580169\pi\)
0.0970534 + 0.995279i \(0.469058\pi\)
\(138\) 0 0
\(139\) −4.44656 12.2168i −0.377152 1.03622i −0.972531 0.232772i \(-0.925220\pi\)
0.595379 0.803445i \(-0.297002\pi\)
\(140\) −0.465453 5.93501i −0.0393379 0.501600i
\(141\) 0 0
\(142\) −2.35361 + 2.54542i −0.197511 + 0.213607i
\(143\) −6.14507 10.6436i −0.513877 0.890061i
\(144\) 0 0
\(145\) 5.59452 9.68999i 0.464599 0.804710i
\(146\) 2.59205 + 8.35182i 0.214519 + 0.691201i
\(147\) 0 0
\(148\) −12.7294 + 8.74350i −1.04635 + 0.718711i
\(149\) −2.53451 0.446902i −0.207635 0.0366116i 0.0688632 0.997626i \(-0.478063\pi\)
−0.276498 + 0.961014i \(0.589174\pi\)
\(150\) 0 0
\(151\) 3.37473 + 4.02185i 0.274632 + 0.327293i 0.885677 0.464303i \(-0.153695\pi\)
−0.611045 + 0.791596i \(0.709251\pi\)
\(152\) −17.6134 2.56125i −1.42864 0.207744i
\(153\) 0 0
\(154\) −0.631743 4.97136i −0.0509073 0.400604i
\(155\) 6.24006 + 2.27120i 0.501214 + 0.182427i
\(156\) 0 0
\(157\) 16.0051 + 13.4298i 1.27734 + 1.07182i 0.993605 + 0.112916i \(0.0360190\pi\)
0.283738 + 0.958902i \(0.408425\pi\)
\(158\) −8.50873 0.409877i −0.676919 0.0326080i
\(159\) 0 0
\(160\) 12.4808 + 3.06313i 0.986694 + 0.242162i
\(161\) 3.32418i 0.261982i
\(162\) 0 0
\(163\) 3.28308i 0.257151i −0.991700 0.128575i \(-0.958960\pi\)
0.991700 0.128575i \(-0.0410404\pi\)
\(164\) 6.46657 + 4.61525i 0.504954 + 0.360390i
\(165\) 0 0
\(166\) 0.649578 13.4848i 0.0504170 1.04662i
\(167\) −14.6697 12.3093i −1.13517 0.952523i −0.135902 0.990722i \(-0.543393\pi\)
−0.999270 + 0.0381993i \(0.987838\pi\)
\(168\) 0 0
\(169\) −7.18977 2.61686i −0.553059 0.201297i
\(170\) −15.4857 + 1.96787i −1.18770 + 0.150929i
\(171\) 0 0
\(172\) −4.25476 16.4706i −0.324423 1.25587i
\(173\) −5.61931 6.69683i −0.427228 0.509150i 0.508892 0.860830i \(-0.330055\pi\)
−0.936120 + 0.351680i \(0.885611\pi\)
\(174\) 0 0
\(175\) −0.207788 0.0366386i −0.0157073 0.00276962i
\(176\) 10.6180 + 2.07000i 0.800365 + 0.156032i
\(177\) 0 0
\(178\) 9.34283 2.89962i 0.700274 0.217335i
\(179\) 3.03371 5.25454i 0.226750 0.392743i −0.730093 0.683348i \(-0.760523\pi\)
0.956843 + 0.290605i \(0.0938565\pi\)
\(180\) 0 0
\(181\) −8.01419 13.8810i −0.595690 1.03177i −0.993449 0.114276i \(-0.963545\pi\)
0.397759 0.917490i \(-0.369788\pi\)
\(182\) −6.18264 5.71675i −0.458288 0.423754i
\(183\) 0 0
\(184\) −6.81400 2.25004i −0.502335 0.165875i
\(185\) 5.99958 + 16.4837i 0.441098 + 1.21191i
\(186\) 0 0
\(187\) −12.9409 + 2.28182i −0.946330 + 0.166863i
\(188\) 16.7807 + 17.0856i 1.22386 + 1.24609i
\(189\) 0 0
\(190\) −7.82087 + 18.6435i −0.567385 + 1.35254i
\(191\) −2.03119 11.5195i −0.146972 0.833520i −0.965763 0.259428i \(-0.916466\pi\)
0.818791 0.574092i \(-0.194645\pi\)
\(192\) 0 0
\(193\) −16.5117 + 6.00978i −1.18854 + 0.432593i −0.859211 0.511622i \(-0.829045\pi\)
−0.329330 + 0.944215i \(0.606823\pi\)
\(194\) −11.0089 + 5.66803i −0.790391 + 0.406941i
\(195\) 0 0
\(196\) 4.37920 + 9.61630i 0.312800 + 0.686878i
\(197\) −19.9607 + 11.5243i −1.42214 + 0.821074i −0.996482 0.0838089i \(-0.973291\pi\)
−0.425660 + 0.904883i \(0.639958\pi\)
\(198\) 0 0
\(199\) −2.70763 1.56325i −0.191939 0.110816i 0.400951 0.916099i \(-0.368680\pi\)
−0.592890 + 0.805284i \(0.702013\pi\)
\(200\) 0.215748 0.401129i 0.0152557 0.0283641i
\(201\) 0 0
\(202\) −1.68496 + 2.61877i −0.118553 + 0.184256i
\(203\) 1.12060 6.35522i 0.0786504 0.446049i
\(204\) 0 0
\(205\) 6.91298 5.80068i 0.482824 0.405137i
\(206\) −2.21461 + 1.68355i −0.154299 + 0.117298i
\(207\) 0 0
\(208\) 15.9032 8.80385i 1.10269 0.610437i
\(209\) −5.82075 + 15.9924i −0.402630 + 1.10622i
\(210\) 0 0
\(211\) 8.26193 9.84619i 0.568775 0.677839i −0.402604 0.915374i \(-0.631895\pi\)
0.971379 + 0.237535i \(0.0763393\pi\)
\(212\) −3.31065 + 6.93602i −0.227377 + 0.476368i
\(213\) 0 0
\(214\) −5.60974 1.27016i −0.383474 0.0868267i
\(215\) −19.3231 −1.31782
\(216\) 0 0
\(217\) 3.82992 0.259992
\(218\) −2.49682 0.565335i −0.169106 0.0382893i
\(219\) 0 0
\(220\) 5.29319 11.0896i 0.356867 0.747657i
\(221\) −14.1928 + 16.9143i −0.954710 + 1.13778i
\(222\) 0 0
\(223\) 3.53622 9.71568i 0.236803 0.650610i −0.763187 0.646177i \(-0.776367\pi\)
0.999990 0.00443299i \(-0.00141107\pi\)
\(224\) 7.36840 0.801844i 0.492322 0.0535754i
\(225\) 0 0
\(226\) 3.95212 3.00440i 0.262891 0.199850i
\(227\) 0.0735740 0.0617359i 0.00488328 0.00409756i −0.640343 0.768089i \(-0.721208\pi\)
0.645226 + 0.763992i \(0.276763\pi\)
\(228\) 0 0
\(229\) 4.66642 26.4646i 0.308366 1.74883i −0.298856 0.954298i \(-0.596605\pi\)
0.607222 0.794532i \(-0.292284\pi\)
\(230\) −4.41045 + 6.85475i −0.290817 + 0.451989i
\(231\) 0 0
\(232\) 12.2686 + 6.59868i 0.805473 + 0.433225i
\(233\) −6.26494 3.61706i −0.410430 0.236962i 0.280545 0.959841i \(-0.409485\pi\)
−0.690974 + 0.722879i \(0.742818\pi\)
\(234\) 0 0
\(235\) 23.5581 13.6013i 1.53676 0.887248i
\(236\) 9.49909 + 20.8591i 0.618338 + 1.35781i
\(237\) 0 0
\(238\) −8.00457 + 4.12123i −0.518859 + 0.267140i
\(239\) −11.9878 + 4.36319i −0.775424 + 0.282231i −0.699263 0.714864i \(-0.746488\pi\)
−0.0761609 + 0.997096i \(0.524266\pi\)
\(240\) 0 0
\(241\) −1.31501 7.45780i −0.0847073 0.480399i −0.997419 0.0717956i \(-0.977127\pi\)
0.912712 0.408603i \(-0.133984\pi\)
\(242\) −2.01638 + 4.80666i −0.129618 + 0.308984i
\(243\) 0 0
\(244\) −0.0551074 0.0561085i −0.00352789 0.00359198i
\(245\) 11.8201 2.08420i 0.755157 0.133155i
\(246\) 0 0
\(247\) 9.78063 + 26.8721i 0.622327 + 1.70983i
\(248\) −2.59235 + 7.85067i −0.164615 + 0.498518i
\(249\) 0 0
\(250\) 11.4148 + 10.5546i 0.721934 + 0.667533i
\(251\) 5.95007 + 10.3058i 0.375565 + 0.650498i 0.990411 0.138149i \(-0.0441153\pi\)
−0.614846 + 0.788647i \(0.710782\pi\)
\(252\) 0 0
\(253\) −3.43072 + 5.94217i −0.215687 + 0.373581i
\(254\) −15.1530 + 4.70284i −0.950782 + 0.295082i
\(255\) 0 0
\(256\) −3.34380 + 15.6467i −0.208988 + 0.977918i
\(257\) −5.37613 0.947957i −0.335354 0.0591320i 0.00343564 0.999994i \(-0.498906\pi\)
−0.338790 + 0.940862i \(0.610018\pi\)
\(258\) 0 0
\(259\) 6.50314 + 7.75014i 0.404086 + 0.481570i
\(260\) −5.16426 19.9914i −0.320274 1.23981i
\(261\) 0 0
\(262\) 7.19802 0.914698i 0.444695 0.0565102i
\(263\) −19.1400 6.96640i −1.18022 0.429566i −0.323943 0.946077i \(-0.605009\pi\)
−0.856281 + 0.516510i \(0.827231\pi\)
\(264\) 0 0
\(265\) 6.68762 + 5.61158i 0.410817 + 0.344716i
\(266\) −0.561044 + 11.6469i −0.0343998 + 0.714115i
\(267\) 0 0
\(268\) −19.4281 13.8660i −1.18676 0.846999i
\(269\) 9.12305i 0.556242i −0.960546 0.278121i \(-0.910288\pi\)
0.960546 0.278121i \(-0.0897116\pi\)
\(270\) 0 0
\(271\) 21.2629i 1.29163i 0.763495 + 0.645813i \(0.223482\pi\)
−0.763495 + 0.645813i \(0.776518\pi\)
\(272\) −3.02976 19.1975i −0.183706 1.16402i
\(273\) 0 0
\(274\) −2.55445 0.123051i −0.154320 0.00743379i
\(275\) −0.333620 0.279940i −0.0201180 0.0168810i
\(276\) 0 0
\(277\) 23.9850 + 8.72982i 1.44112 + 0.524524i 0.940096 0.340911i \(-0.110735\pi\)
0.501022 + 0.865435i \(0.332958\pi\)
\(278\) −2.31779 18.2393i −0.139012 1.09392i
\(279\) 0 0
\(280\) 1.21152 8.33152i 0.0724023 0.497903i
\(281\) 7.92327 + 9.44259i 0.472663 + 0.563298i 0.948720 0.316116i \(-0.102379\pi\)
−0.476057 + 0.879414i \(0.657935\pi\)
\(282\) 0 0
\(283\) −16.4533 2.90116i −0.978045 0.172456i −0.338296 0.941040i \(-0.609851\pi\)
−0.639749 + 0.768584i \(0.720962\pi\)
\(284\) −4.04128 + 2.77586i −0.239806 + 0.164717i
\(285\) 0 0
\(286\) −5.15187 16.5998i −0.304637 0.981567i
\(287\) 2.60236 4.50743i 0.153613 0.266065i
\(288\) 0 0
\(289\) 3.30388 + 5.72249i 0.194346 + 0.336617i
\(290\) 10.7427 11.6182i 0.630835 0.682245i
\(291\) 0 0
\(292\) 0.966914 + 12.3292i 0.0565843 + 0.721509i
\(293\) −4.55894 12.5256i −0.266336 0.731752i −0.998707 0.0508459i \(-0.983808\pi\)
0.732370 0.680906i \(-0.238414\pi\)
\(294\) 0 0
\(295\) 25.6394 4.52091i 1.49278 0.263218i
\(296\) −20.2882 + 8.08448i −1.17923 + 0.469901i
\(297\) 0 0
\(298\) −3.35627 1.40794i −0.194424 0.0815601i
\(299\) 2.00204 + 11.3541i 0.115781 + 0.656627i
\(300\) 0 0
\(301\) −10.4724 + 3.81166i −0.603622 + 0.219700i
\(302\) 3.39873 + 6.60127i 0.195575 + 0.379860i
\(303\) 0 0
\(304\) −23.4943 9.03345i −1.34749 0.518104i
\(305\) −0.0773639 + 0.0446661i −0.00442984 + 0.00255757i
\(306\) 0 0
\(307\) 18.8505 + 10.8833i 1.07585 + 0.621144i 0.929775 0.368129i \(-0.120002\pi\)
0.146078 + 0.989273i \(0.453335\pi\)
\(308\) 0.681210 7.05429i 0.0388155 0.401956i
\(309\) 0 0
\(310\) 7.89761 + 5.08145i 0.448554 + 0.288607i
\(311\) 2.47718 14.0488i 0.140468 0.796633i −0.830427 0.557128i \(-0.811903\pi\)
0.970895 0.239506i \(-0.0769854\pi\)
\(312\) 0 0
\(313\) 16.2981 13.6758i 0.921225 0.772999i −0.0529965 0.998595i \(-0.516877\pi\)
0.974221 + 0.225596i \(0.0724328\pi\)
\(314\) 17.8816 + 23.5222i 1.00912 + 1.32743i
\(315\) 0 0
\(316\) −11.6081 3.22265i −0.653006 0.181288i
\(317\) 2.30546 6.33420i 0.129488 0.355764i −0.857959 0.513718i \(-0.828268\pi\)
0.987446 + 0.157954i \(0.0504898\pi\)
\(318\) 0 0
\(319\) 8.56202 10.2038i 0.479381 0.571304i
\(320\) 16.2581 + 8.12276i 0.908857 + 0.454076i
\(321\) 0 0
\(322\) −1.03815 + 4.58504i −0.0578540 + 0.255515i
\(323\) 30.5753 1.70125
\(324\) 0 0
\(325\) −0.731790 −0.0405924
\(326\) 1.02532 4.52835i 0.0567870 0.250802i
\(327\) 0 0
\(328\) 7.47798 + 8.38533i 0.412903 + 0.463003i
\(329\) 10.0847 12.0185i 0.555987 0.662600i
\(330\) 0 0
\(331\) −8.27597 + 22.7380i −0.454888 + 1.24980i 0.474357 + 0.880333i \(0.342681\pi\)
−0.929245 + 0.369463i \(0.879542\pi\)
\(332\) 5.10729 18.3966i 0.280299 1.00965i
\(333\) 0 0
\(334\) −16.3896 21.5596i −0.896800 1.17969i
\(335\) −20.7693 + 17.4275i −1.13475 + 0.952165i
\(336\) 0 0
\(337\) 3.79458 21.5201i 0.206704 1.17228i −0.688032 0.725681i \(-0.741525\pi\)
0.894736 0.446596i \(-0.147364\pi\)
\(338\) −9.09959 5.85483i −0.494953 0.318461i
\(339\) 0 0
\(340\) −21.9741 2.12196i −1.19171 0.115079i
\(341\) 6.84620 + 3.95266i 0.370743 + 0.214048i
\(342\) 0 0
\(343\) 13.9379 8.04707i 0.752577 0.434501i
\(344\) −0.724763 24.0467i −0.0390766 1.29651i
\(345\) 0 0
\(346\) −5.65927 10.9919i −0.304244 0.590926i
\(347\) 12.1710 4.42990i 0.653376 0.237809i 0.00600211 0.999982i \(-0.498089\pi\)
0.647374 + 0.762173i \(0.275867\pi\)
\(348\) 0 0
\(349\) −0.671596 3.80881i −0.0359497 0.203881i 0.961543 0.274656i \(-0.0885639\pi\)
−0.997492 + 0.0707748i \(0.977453\pi\)
\(350\) −0.275159 0.115428i −0.0147079 0.00616990i
\(351\) 0 0
\(352\) 13.9990 + 6.17120i 0.746149 + 0.328926i
\(353\) −2.99642 + 0.528350i −0.159483 + 0.0281212i −0.252820 0.967513i \(-0.581358\pi\)
0.0933363 + 0.995635i \(0.470247\pi\)
\(354\) 0 0
\(355\) 1.90473 + 5.23319i 0.101092 + 0.277749i
\(356\) 13.7921 1.08165i 0.730981 0.0573271i
\(357\) 0 0
\(358\) 5.82541 6.30015i 0.307882 0.332973i
\(359\) 8.27544 + 14.3335i 0.436761 + 0.756492i 0.997438 0.0715425i \(-0.0227922\pi\)
−0.560676 + 0.828035i \(0.689459\pi\)
\(360\) 0 0
\(361\) 10.2995 17.8393i 0.542082 0.938913i
\(362\) −6.71890 21.6489i −0.353137 1.13784i
\(363\) 0 0
\(364\) −6.74235 9.81597i −0.353395 0.514496i
\(365\) 13.8342 + 2.43935i 0.724116 + 0.127681i
\(366\) 0 0
\(367\) −1.41856 1.69058i −0.0740484 0.0882474i 0.727748 0.685844i \(-0.240567\pi\)
−0.801797 + 0.597597i \(0.796122\pi\)
\(368\) −8.69586 5.23151i −0.453303 0.272711i
\(369\) 0 0
\(370\) 3.12731 + 24.6097i 0.162581 + 1.27940i
\(371\) 4.73140 + 1.72209i 0.245642 + 0.0894064i
\(372\) 0 0
\(373\) −8.03381 6.74117i −0.415975 0.349044i 0.410655 0.911791i \(-0.365300\pi\)
−0.826629 + 0.562747i \(0.809745\pi\)
\(374\) −18.5619 0.894153i −0.959816 0.0462356i
\(375\) 0 0
\(376\) 17.8098 + 28.8068i 0.918468 + 1.48560i
\(377\) 22.3819i 1.15273i
\(378\) 0 0
\(379\) 3.08694i 0.158565i 0.996852 + 0.0792826i \(0.0252630\pi\)
−0.996852 + 0.0792826i \(0.974737\pi\)
\(380\) −16.6097 + 23.2724i −0.852061 + 1.19385i
\(381\) 0 0
\(382\) 0.795942 16.5232i 0.0407239 0.845398i
\(383\) 12.3070 + 10.3268i 0.628856 + 0.527673i 0.900573 0.434704i \(-0.143147\pi\)
−0.271717 + 0.962377i \(0.587592\pi\)
\(384\) 0 0
\(385\) −7.56473 2.75333i −0.385534 0.140323i
\(386\) −24.6515 + 3.13262i −1.25473 + 0.159446i
\(387\) 0 0
\(388\) −16.9547 + 4.37980i −0.860743 + 0.222351i
\(389\) 11.3463 + 13.5220i 0.575280 + 0.685593i 0.972706 0.232042i \(-0.0745407\pi\)
−0.397425 + 0.917635i \(0.630096\pi\)
\(390\) 0 0
\(391\) 12.1397 + 2.14056i 0.613933 + 0.108253i
\(392\) 3.03704 + 14.6314i 0.153393 + 0.738997i
\(393\) 0 0
\(394\) −31.1309 + 9.66170i −1.56835 + 0.486750i
\(395\) −6.84213 + 11.8509i −0.344265 + 0.596285i
\(396\) 0 0
\(397\) 6.73828 + 11.6710i 0.338185 + 0.585753i 0.984091 0.177663i \(-0.0568538\pi\)
−0.645907 + 0.763416i \(0.723520\pi\)
\(398\) −3.24642 3.00179i −0.162728 0.150466i
\(399\) 0 0
\(400\) 0.422855 0.485899i 0.0211427 0.0242949i
\(401\) −2.31159 6.35103i −0.115435 0.317155i 0.868498 0.495693i \(-0.165086\pi\)
−0.983933 + 0.178537i \(0.942863\pi\)
\(402\) 0 0
\(403\) 13.0815 2.30663i 0.651638 0.114901i
\(404\) −3.14191 + 3.08585i −0.156316 + 0.153527i
\(405\) 0 0
\(406\) 3.53039 8.41578i 0.175210 0.417668i
\(407\) 3.62623 + 20.5654i 0.179746 + 1.01939i
\(408\) 0 0
\(409\) −17.7069 + 6.44479i −0.875551 + 0.318674i −0.740413 0.672152i \(-0.765370\pi\)
−0.135138 + 0.990827i \(0.543148\pi\)
\(410\) 11.3466 5.84193i 0.560371 0.288512i
\(411\) 0 0
\(412\) −3.58038 + 1.63049i −0.176393 + 0.0803283i
\(413\) 13.0039 7.50779i 0.639879 0.369434i
\(414\) 0 0
\(415\) −18.7815 10.8435i −0.921947 0.532287i
\(416\) 24.6847 7.17653i 1.21027 0.351858i
\(417\) 0 0
\(418\) −13.0230 + 20.2404i −0.636977 + 0.989992i
\(419\) 3.31570 18.8043i 0.161983 0.918649i −0.790139 0.612928i \(-0.789991\pi\)
0.952121 0.305721i \(-0.0988974\pi\)
\(420\) 0 0
\(421\) −17.2688 + 14.4903i −0.841631 + 0.706212i −0.957930 0.287002i \(-0.907341\pi\)
0.116299 + 0.993214i \(0.462897\pi\)
\(422\) 14.4707 11.0006i 0.704421 0.535502i
\(423\) 0 0
\(424\) −6.73252 + 8.53292i −0.326960 + 0.414395i
\(425\) −0.267604 + 0.735236i −0.0129807 + 0.0356642i
\(426\) 0 0
\(427\) −0.0331178 + 0.0394683i −0.00160268 + 0.00191000i
\(428\) −7.34083 3.50387i −0.354832 0.169366i
\(429\) 0 0
\(430\) −26.6523 6.03465i −1.28529 0.291017i
\(431\) 10.8059 0.520500 0.260250 0.965541i \(-0.416195\pi\)
0.260250 + 0.965541i \(0.416195\pi\)
\(432\) 0 0
\(433\) −37.5914 −1.80653 −0.903264 0.429084i \(-0.858836\pi\)
−0.903264 + 0.429084i \(0.858836\pi\)
\(434\) 5.28260 + 1.19609i 0.253573 + 0.0574144i
\(435\) 0 0
\(436\) −3.26731 1.55953i −0.156476 0.0746880i
\(437\) 10.2622 12.2300i 0.490908 0.585041i
\(438\) 0 0
\(439\) 10.9220 30.0080i 0.521279 1.43220i −0.347818 0.937562i \(-0.613077\pi\)
0.869097 0.494641i \(-0.164700\pi\)
\(440\) 10.7642 13.6427i 0.513163 0.650392i
\(441\) 0 0
\(442\) −24.8585 + 18.8974i −1.18240 + 0.898859i
\(443\) 28.7890 24.1569i 1.36781 1.14773i 0.394324 0.918972i \(-0.370979\pi\)
0.973484 0.228755i \(-0.0734655\pi\)
\(444\) 0 0
\(445\) 2.72879 15.4758i 0.129357 0.733621i
\(446\) 7.91174 12.2965i 0.374632 0.582254i
\(447\) 0 0
\(448\) 10.4136 + 1.19519i 0.491999 + 0.0564675i
\(449\) 6.99926 + 4.04102i 0.330315 + 0.190708i 0.655981 0.754777i \(-0.272255\pi\)
−0.325666 + 0.945485i \(0.605588\pi\)
\(450\) 0 0
\(451\) 9.30376 5.37153i 0.438097 0.252935i
\(452\) 6.38944 2.90971i 0.300534 0.136861i
\(453\) 0 0
\(454\) 0.120761 0.0621750i 0.00566759 0.00291802i
\(455\) −12.7110 + 4.62644i −0.595903 + 0.216891i
\(456\) 0 0
\(457\) −0.429633 2.43657i −0.0200974 0.113978i 0.973109 0.230346i \(-0.0739858\pi\)
−0.993206 + 0.116368i \(0.962875\pi\)
\(458\) 14.7014 35.0453i 0.686950 1.63756i
\(459\) 0 0
\(460\) −8.22409 + 8.07735i −0.383450 + 0.376608i
\(461\) −8.89827 + 1.56901i −0.414434 + 0.0730759i −0.376978 0.926222i \(-0.623037\pi\)
−0.0374563 + 0.999298i \(0.511925\pi\)
\(462\) 0 0
\(463\) 0.476987 + 1.31051i 0.0221675 + 0.0609046i 0.950283 0.311388i \(-0.100794\pi\)
−0.928115 + 0.372293i \(0.878572\pi\)
\(464\) 14.8613 + 12.9331i 0.689918 + 0.600403i
\(465\) 0 0
\(466\) −7.51161 6.94557i −0.347968 0.321747i
\(467\) 10.5492 + 18.2717i 0.488158 + 0.845515i 0.999907 0.0136203i \(-0.00433561\pi\)
−0.511749 + 0.859135i \(0.671002\pi\)
\(468\) 0 0
\(469\) −7.81850 + 13.5420i −0.361025 + 0.625313i
\(470\) 36.7413 11.4029i 1.69475 0.525979i
\(471\) 0 0
\(472\) 6.58775 + 31.7375i 0.303226 + 1.46084i
\(473\) −22.6539 3.99450i −1.04163 0.183667i
\(474\) 0 0
\(475\) 0.651364 + 0.776265i 0.0298866 + 0.0356175i
\(476\) −12.3278 + 3.18456i −0.565042 + 0.145964i
\(477\) 0 0
\(478\) −17.8974 + 2.27433i −0.818606 + 0.104025i
\(479\) −13.7237 4.99501i −0.627051 0.228228i 0.00889607 0.999960i \(-0.497168\pi\)
−0.635947 + 0.771732i \(0.719390\pi\)
\(480\) 0 0
\(481\) 26.8799 + 22.5549i 1.22562 + 1.02842i
\(482\) 0.515299 10.6972i 0.0234712 0.487245i
\(483\) 0 0
\(484\) −4.28232 + 6.00010i −0.194651 + 0.272732i
\(485\) 19.8909i 0.903201i
\(486\) 0 0
\(487\) 0.282541i 0.0128032i 0.999980 + 0.00640158i \(0.00203770\pi\)
−0.999980 + 0.00640158i \(0.997962\pi\)
\(488\) −0.0584867 0.0946006i −0.00264757 0.00428237i
\(489\) 0 0
\(490\) 16.9543 + 0.816712i 0.765918 + 0.0368953i
\(491\) −11.8728 9.96249i −0.535814 0.449601i 0.334290 0.942470i \(-0.391504\pi\)
−0.870103 + 0.492869i \(0.835948\pi\)
\(492\) 0 0
\(493\) −22.4873 8.18471i −1.01278 0.368621i
\(494\) 5.09819 + 40.1191i 0.229379 + 1.80505i
\(495\) 0 0
\(496\) −6.02742 + 10.0188i −0.270639 + 0.449858i
\(497\) 2.06459 + 2.46049i 0.0926097 + 0.110368i
\(498\) 0 0
\(499\) 40.2749 + 7.10155i 1.80295 + 0.317909i 0.971384 0.237513i \(-0.0763324\pi\)
0.831568 + 0.555423i \(0.187443\pi\)
\(500\) 12.4482 + 18.1229i 0.556699 + 0.810479i
\(501\) 0 0
\(502\) 4.98839 + 16.0730i 0.222643 + 0.717375i
\(503\) −9.96192 + 17.2546i −0.444180 + 0.769343i −0.997995 0.0632975i \(-0.979838\pi\)
0.553815 + 0.832640i \(0.313172\pi\)
\(504\) 0 0
\(505\) 2.50117 + 4.33215i 0.111301 + 0.192778i
\(506\) −6.58774 + 7.12462i −0.292861 + 0.316728i
\(507\) 0 0
\(508\) −22.3692 + 1.75430i −0.992472 + 0.0778346i
\(509\) −9.68384 26.6061i −0.429229 1.17930i −0.946282 0.323343i \(-0.895193\pi\)
0.517053 0.855953i \(-0.327029\pi\)
\(510\) 0 0
\(511\) 7.97886 1.40689i 0.352964 0.0622371i
\(512\) −9.49862 + 20.5372i −0.419783 + 0.907624i
\(513\) 0 0
\(514\) −7.11925 2.98650i −0.314017 0.131729i
\(515\) 0.775998 + 4.40091i 0.0341946 + 0.193927i
\(516\) 0 0
\(517\) 30.4306 11.0758i 1.33834 0.487115i
\(518\) 6.54939 + 12.7207i 0.287764 + 0.558916i
\(519\) 0 0
\(520\) −0.879689 29.1870i −0.0385769 1.27993i
\(521\) 18.4642 10.6603i 0.808931 0.467036i −0.0376537 0.999291i \(-0.511988\pi\)
0.846584 + 0.532255i \(0.178655\pi\)
\(522\) 0 0
\(523\) 17.0213 + 9.82725i 0.744289 + 0.429716i 0.823627 0.567132i \(-0.191947\pi\)
−0.0793376 + 0.996848i \(0.525281\pi\)
\(524\) 10.2139 + 0.986321i 0.446196 + 0.0430876i
\(525\) 0 0
\(526\) −24.2242 15.5862i −1.05622 0.679592i
\(527\) 2.46622 13.9866i 0.107430 0.609268i
\(528\) 0 0
\(529\) −12.6883 + 10.6467i −0.551663 + 0.462900i
\(530\) 7.47171 + 9.82861i 0.324551 + 0.426927i
\(531\) 0 0
\(532\) −4.41120 + 15.8893i −0.191250 + 0.688888i
\(533\) 6.17401 16.9630i 0.267426 0.734748i
\(534\) 0 0
\(535\) −5.93909 + 7.07793i −0.256769 + 0.306005i
\(536\) −22.4667 25.1928i −0.970415 1.08816i
\(537\) 0 0
\(538\) 2.84916 12.5834i 0.122836 0.542510i
\(539\) 14.2884 0.615447
\(540\) 0 0
\(541\) 41.1619 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(542\) −6.64046 + 29.3279i −0.285232 + 1.25974i
\(543\) 0 0
\(544\) 1.81649 27.4253i 0.0778814 1.17585i
\(545\) −2.64341 + 3.15030i −0.113231 + 0.134944i
\(546\) 0 0
\(547\) −2.48445 + 6.82596i −0.106227 + 0.291857i −0.981406 0.191942i \(-0.938521\pi\)
0.875179 + 0.483799i \(0.160744\pi\)
\(548\) −3.48492 0.967487i −0.148869 0.0413290i
\(549\) 0 0
\(550\) −0.372736 0.490312i −0.0158935 0.0209070i
\(551\) −23.7422 + 19.9221i −1.01145 + 0.848709i
\(552\) 0 0
\(553\) −1.37050 + 7.77247i −0.0582795 + 0.330519i
\(554\) 30.3561 + 19.5316i 1.28971 + 0.829819i
\(555\) 0 0
\(556\) 2.49927 25.8813i 0.105993 1.09761i
\(557\) −32.2123 18.5978i −1.36488 0.788012i −0.374609 0.927183i \(-0.622223\pi\)
−0.990268 + 0.139170i \(0.955556\pi\)
\(558\) 0 0
\(559\) −33.4743 + 19.3264i −1.41581 + 0.817419i
\(560\) 4.27301 11.1133i 0.180568 0.469622i
\(561\) 0 0
\(562\) 7.97962 + 15.4986i 0.336600 + 0.653770i
\(563\) 41.7085 15.1806i 1.75780 0.639788i 0.757881 0.652392i \(-0.226235\pi\)
0.999921 + 0.0126049i \(0.00401237\pi\)
\(564\) 0 0
\(565\) −1.38482 7.85371i −0.0582599 0.330408i
\(566\) −21.7879 9.13997i −0.915816 0.384181i
\(567\) 0 0
\(568\) −6.44104 + 2.56663i −0.270260 + 0.107694i
\(569\) −29.0449 + 5.12140i −1.21763 + 0.214700i −0.745303 0.666726i \(-0.767695\pi\)
−0.472322 + 0.881426i \(0.656584\pi\)
\(570\) 0 0
\(571\) 4.48049 + 12.3101i 0.187503 + 0.515160i 0.997452 0.0713402i \(-0.0227276\pi\)
−0.809949 + 0.586500i \(0.800505\pi\)
\(572\) −1.92181 24.5050i −0.0803548 1.02461i
\(573\) 0 0
\(574\) 4.99712 5.40436i 0.208576 0.225574i
\(575\) 0.204274 + 0.353814i 0.00851883 + 0.0147550i
\(576\) 0 0
\(577\) 2.02124 3.50090i 0.0841455 0.145744i −0.820881 0.571099i \(-0.806517\pi\)
0.905027 + 0.425355i \(0.139851\pi\)
\(578\) 2.76989 + 8.92484i 0.115212 + 0.371225i
\(579\) 0 0
\(580\) 18.4458 12.6700i 0.765922 0.526093i
\(581\) −12.3179 2.17198i −0.511033 0.0901090i
\(582\) 0 0
\(583\) 6.68038 + 7.96137i 0.276673 + 0.329726i
\(584\) −2.51677 + 17.3076i −0.104145 + 0.716192i
\(585\) 0 0
\(586\) −2.37637 18.7003i −0.0981667 0.772502i
\(587\) −6.83715 2.48852i −0.282199 0.102712i 0.197043 0.980395i \(-0.436866\pi\)
−0.479242 + 0.877683i \(0.659088\pi\)
\(588\) 0 0
\(589\) −14.0907 11.8235i −0.580595 0.487177i
\(590\) 36.7762 + 1.77156i 1.51405 + 0.0729339i
\(591\) 0 0
\(592\) −30.5084 + 4.81485i −1.25389 + 0.197889i
\(593\) 2.93118i 0.120369i 0.998187 + 0.0601846i \(0.0191689\pi\)
−0.998187 + 0.0601846i \(0.980831\pi\)
\(594\) 0 0
\(595\) 14.4627i 0.592914i
\(596\) −4.18960 2.99015i −0.171613 0.122481i
\(597\) 0 0
\(598\) −0.784518 + 16.2860i −0.0320813 + 0.665984i
\(599\) −1.03995 0.872619i −0.0424911 0.0356543i 0.621295 0.783577i \(-0.286607\pi\)
−0.663786 + 0.747923i \(0.731051\pi\)
\(600\) 0 0
\(601\) −7.27189 2.64675i −0.296626 0.107963i 0.189420 0.981896i \(-0.439339\pi\)
−0.486047 + 0.873933i \(0.661561\pi\)
\(602\) −15.6350 + 1.98684i −0.637236 + 0.0809777i
\(603\) 0 0
\(604\) 2.62627 + 10.1666i 0.106861 + 0.413672i
\(605\) 5.38225 + 6.41431i 0.218819 + 0.260779i
\(606\) 0 0
\(607\) 11.2517 + 1.98398i 0.456692 + 0.0805271i 0.397262 0.917705i \(-0.369961\pi\)
0.0594302 + 0.998232i \(0.481072\pi\)
\(608\) −29.5845 19.7972i −1.19981 0.802881i
\(609\) 0 0
\(610\) −0.120657 + 0.0374469i −0.00488527 + 0.00151618i
\(611\) 27.2072 47.1242i 1.10068 1.90644i
\(612\) 0 0
\(613\) −12.0261 20.8298i −0.485729 0.841307i 0.514137 0.857708i \(-0.328112\pi\)
−0.999865 + 0.0164015i \(0.994779\pi\)
\(614\) 22.6015 + 20.8984i 0.912124 + 0.843391i
\(615\) 0 0
\(616\) 3.14267 9.51724i 0.126622 0.383460i
\(617\) 16.5026 + 45.3406i 0.664371 + 1.82534i 0.555909 + 0.831243i \(0.312370\pi\)
0.108462 + 0.994101i \(0.465407\pi\)
\(618\) 0 0
\(619\) −4.44121 + 0.783104i −0.178507 + 0.0314756i −0.262187 0.965017i \(-0.584444\pi\)
0.0836800 + 0.996493i \(0.473333\pi\)
\(620\) 9.30621 + 9.47528i 0.373747 + 0.380537i
\(621\) 0 0
\(622\) 7.80425 18.6038i 0.312922 0.745946i
\(623\) −1.57383 8.92562i −0.0630541 0.357597i
\(624\) 0 0
\(625\) 24.2246 8.81702i 0.968982 0.352681i
\(626\) 26.7510 13.7730i 1.06918 0.550480i
\(627\) 0 0
\(628\) 17.3180 + 38.0286i 0.691064 + 1.51751i
\(629\) 32.4907 18.7585i 1.29549 0.747951i
\(630\) 0 0
\(631\) −9.73065 5.61799i −0.387371 0.223649i 0.293649 0.955913i \(-0.405130\pi\)
−0.681020 + 0.732264i \(0.738464\pi\)
\(632\) −15.0046 8.07023i −0.596850 0.321017i
\(633\) 0 0
\(634\) 5.15811 8.01676i 0.204855 0.318386i
\(635\) −4.42578 + 25.0999i −0.175632 + 0.996058i
\(636\) 0 0
\(637\) 18.3919 15.4327i 0.728714 0.611464i
\(638\) 14.9963 11.4002i 0.593708 0.451337i
\(639\) 0 0
\(640\) 19.8881 + 16.2812i 0.786145 + 0.643570i
\(641\) 13.8530 38.0609i 0.547163 1.50332i −0.290362 0.956917i \(-0.593776\pi\)
0.837524 0.546400i \(-0.184002\pi\)
\(642\) 0 0
\(643\) 20.7380 24.7146i 0.817827 0.974648i −0.182136 0.983273i \(-0.558301\pi\)
0.999963 + 0.00862524i \(0.00274553\pi\)
\(644\) −2.86385 + 5.99993i −0.112851 + 0.236430i
\(645\) 0 0
\(646\) 42.1724 + 9.54874i 1.65925 + 0.375690i
\(647\) −7.00490 −0.275391 −0.137696 0.990475i \(-0.543970\pi\)
−0.137696 + 0.990475i \(0.543970\pi\)
\(648\) 0 0
\(649\) 30.9936 1.21660
\(650\) −1.00936 0.228540i −0.0395902 0.00896408i
\(651\) 0 0
\(652\) 2.82844 5.92575i 0.110770 0.232070i
\(653\) −22.5667 + 26.8939i −0.883102 + 1.05244i 0.115150 + 0.993348i \(0.463265\pi\)
−0.998253 + 0.0590921i \(0.981179\pi\)
\(654\) 0 0
\(655\) 3.98654 10.9529i 0.155767 0.427967i
\(656\) 7.69561 + 13.9013i 0.300463 + 0.542754i
\(657\) 0 0
\(658\) 17.6632 13.4276i 0.688584 0.523462i
\(659\) 6.86177 5.75771i 0.267297 0.224289i −0.499281 0.866440i \(-0.666402\pi\)
0.766578 + 0.642152i \(0.221958\pi\)
\(660\) 0 0
\(661\) −6.18560 + 35.0803i −0.240592 + 1.36447i 0.589919 + 0.807463i \(0.299160\pi\)
−0.830511 + 0.557003i \(0.811951\pi\)
\(662\) −18.5162 + 28.7779i −0.719652 + 1.11849i
\(663\) 0 0
\(664\) 12.7898 23.7795i 0.496341 0.922822i
\(665\) 16.2217 + 9.36560i 0.629050 + 0.363182i
\(666\) 0 0
\(667\) −10.8214 + 6.24776i −0.419008 + 0.241914i
\(668\) −15.8731 34.8557i −0.614147 1.34861i
\(669\) 0 0
\(670\) −34.0897 + 17.5514i −1.31700 + 0.678070i
\(671\) −0.0999332 + 0.0363727i −0.00385788 + 0.00140415i
\(672\) 0 0
\(673\) −0.586335 3.32527i −0.0226015 0.128180i 0.971419 0.237370i \(-0.0762854\pi\)
−0.994021 + 0.109190i \(0.965174\pi\)
\(674\) 11.9547 28.4977i 0.460477 1.09769i
\(675\) 0 0
\(676\) −10.7226 10.9174i −0.412407 0.419900i
\(677\) 1.13808 0.200675i 0.0437401 0.00771256i −0.151735 0.988421i \(-0.548486\pi\)
0.195475 + 0.980709i \(0.437375\pi\)
\(678\) 0 0
\(679\) 3.92368 + 10.7802i 0.150577 + 0.413707i
\(680\) −29.6461 9.78938i −1.13688 0.375406i
\(681\) 0 0
\(682\) 8.20853 + 7.58998i 0.314321 + 0.290636i
\(683\) −21.5897 37.3945i −0.826107 1.43086i −0.901070 0.433673i \(-0.857217\pi\)
0.0749630 0.997186i \(-0.476116\pi\)
\(684\) 0 0
\(685\) −2.05411 + 3.55783i −0.0784836 + 0.135938i
\(686\) 21.7377 6.74646i 0.829949 0.257581i
\(687\) 0 0
\(688\) 6.51019 33.3940i 0.248199 1.27313i
\(689\) 17.1978 + 3.03244i 0.655184 + 0.115527i
\(690\) 0 0
\(691\) 8.25397 + 9.83670i 0.313996 + 0.374206i 0.899842 0.436217i \(-0.143682\pi\)
−0.585846 + 0.810423i \(0.699238\pi\)
\(692\) −4.37303 16.9285i −0.166238 0.643524i
\(693\) 0 0
\(694\) 18.1710 2.30910i 0.689761 0.0876523i
\(695\) −27.7540 10.1016i −1.05277 0.383177i
\(696\) 0 0
\(697\) −14.7851 12.4062i −0.560026 0.469918i
\(698\) 0.263171 5.46323i 0.00996117 0.206786i
\(699\) 0 0
\(700\) −0.343478 0.245143i −0.0129823 0.00926554i
\(701\) 3.10248i 0.117179i −0.998282 0.0585896i \(-0.981340\pi\)
0.998282 0.0585896i \(-0.0186603\pi\)
\(702\) 0 0
\(703\) 48.5896i 1.83259i
\(704\) 17.3815 + 12.8839i 0.655091 + 0.485579i
\(705\) 0 0
\(706\) −4.29797 0.207039i −0.161756 0.00779200i
\(707\) 2.21011 + 1.85450i 0.0831197 + 0.0697457i
\(708\) 0 0
\(709\) −9.07129 3.30168i −0.340680 0.123997i 0.166014 0.986123i \(-0.446910\pi\)
−0.506694 + 0.862126i \(0.669132\pi\)
\(710\) 0.992846 + 7.81299i 0.0372609 + 0.293216i
\(711\) 0 0
\(712\) 19.3613 + 2.81540i 0.725594 + 0.105512i
\(713\) −4.76686 5.68092i −0.178520 0.212752i
\(714\) 0 0
\(715\) −27.4965 4.84837i −1.02831 0.181319i
\(716\) 10.0025 6.87050i 0.373812 0.256763i
\(717\) 0 0
\(718\) 6.93792 + 22.3546i 0.258921 + 0.834267i
\(719\) −20.9190 + 36.2327i −0.780146 + 1.35125i 0.151711 + 0.988425i \(0.451522\pi\)
−0.931856 + 0.362827i \(0.881812\pi\)
\(720\) 0 0
\(721\) 1.28869 + 2.23207i 0.0479931 + 0.0831266i
\(722\) 19.7774 21.3892i 0.736040 0.796024i
\(723\) 0 0
\(724\) −2.50635 31.9586i −0.0931479 1.18773i
\(725\) −0.271262 0.745287i −0.0100744 0.0276793i
\(726\) 0 0
\(727\) 0.483085 0.0851808i 0.0179166 0.00315918i −0.164683 0.986347i \(-0.552660\pi\)
0.182599 + 0.983187i \(0.441549\pi\)
\(728\) −6.23417 15.6448i −0.231054 0.579835i
\(729\) 0 0
\(730\) 18.3197 + 7.68506i 0.678043 + 0.284437i
\(731\) 7.17638 + 40.6993i 0.265428 + 1.50532i
\(732\) 0 0
\(733\) −27.5380 + 10.0230i −1.01714 + 0.370208i −0.796170 0.605073i \(-0.793144\pi\)
−0.220969 + 0.975281i \(0.570922\pi\)
\(734\) −1.42865 2.77483i −0.0527325 0.102421i
\(735\) 0 0
\(736\) −10.3604 9.93156i −0.381888 0.366082i
\(737\) −27.9521 + 16.1381i −1.02963 + 0.594456i
\(738\) 0 0
\(739\) 34.8536 + 20.1228i 1.28211 + 0.740227i 0.977234 0.212164i \(-0.0680512\pi\)
0.304877 + 0.952392i \(0.401384\pi\)
\(740\) −3.37218 + 34.9208i −0.123964 + 1.28371i
\(741\) 0 0
\(742\) 5.98820 + 3.85291i 0.219834 + 0.141445i
\(743\) −6.83166 + 38.7443i −0.250629 + 1.42139i 0.556418 + 0.830902i \(0.312175\pi\)
−0.807047 + 0.590487i \(0.798936\pi\)
\(744\) 0 0
\(745\) −4.47882 + 3.75818i −0.164091 + 0.137689i
\(746\) −8.97574 11.8071i −0.328625 0.432287i
\(747\) 0 0
\(748\) −25.3232 7.03026i −0.925909 0.257052i
\(749\) −1.82259 + 5.00754i −0.0665962 + 0.182971i
\(750\) 0 0
\(751\) −17.6268 + 21.0068i −0.643211 + 0.766549i −0.984874 0.173273i \(-0.944566\pi\)
0.341663 + 0.939823i \(0.389010\pi\)
\(752\) 15.5685 + 45.2953i 0.567726 + 1.65175i
\(753\) 0 0
\(754\) 6.98993 30.8713i 0.254558 1.12427i
\(755\) 11.9272 0.434077
\(756\) 0 0
\(757\) −13.2822 −0.482750 −0.241375 0.970432i \(-0.577598\pi\)
−0.241375 + 0.970432i \(0.577598\pi\)
\(758\) −0.964059 + 4.25781i −0.0350162 + 0.154651i
\(759\) 0 0
\(760\) −30.1778 + 26.9124i −1.09466 + 0.976215i
\(761\) 8.27376 9.86029i 0.299924 0.357435i −0.594944 0.803767i \(-0.702826\pi\)
0.894867 + 0.446332i \(0.147270\pi\)
\(762\) 0 0
\(763\) −0.811214 + 2.22879i −0.0293679 + 0.0806877i
\(764\) 6.25807 22.5418i 0.226409 0.815534i
\(765\) 0 0
\(766\) 13.7499 + 18.0872i 0.496804 + 0.653517i
\(767\) 39.8946 33.4755i 1.44051 1.20873i
\(768\) 0 0
\(769\) 5.04800 28.6286i 0.182036 1.03237i −0.747670 0.664071i \(-0.768827\pi\)
0.929705 0.368304i \(-0.120061\pi\)
\(770\) −9.57415 6.16016i −0.345028 0.221997i
\(771\) 0 0
\(772\) −34.9801 3.37791i −1.25896 0.121574i
\(773\) −4.16046 2.40204i −0.149641 0.0863954i 0.423310 0.905985i \(-0.360868\pi\)
−0.572951 + 0.819590i \(0.694202\pi\)
\(774\) 0 0
\(775\) 0.407642 0.235352i 0.0146429 0.00845410i
\(776\) −24.7534 + 0.746062i −0.888595 + 0.0267821i
\(777\) 0 0
\(778\) 11.4270 + 22.1944i 0.409677 + 0.795707i
\(779\) −23.4894 + 8.54944i −0.841595 + 0.306315i
\(780\) 0 0
\(781\) 1.15124 + 6.52903i 0.0411948 + 0.233627i
\(782\) 16.0758 + 6.74375i 0.574870 + 0.241156i
\(783\) 0 0
\(784\) −0.380445 + 21.1295i −0.0135873 + 0.754626i
\(785\) 46.7437 8.24217i 1.66835 0.294176i
\(786\) 0 0
\(787\) −13.7229 37.7035i −0.489170 1.34398i −0.901433 0.432919i \(-0.857484\pi\)
0.412263 0.911065i \(-0.364739\pi\)
\(788\) −45.9562 + 3.60411i −1.63712 + 0.128391i
\(789\) 0 0
\(790\) −13.1384 + 14.2092i −0.467444 + 0.505539i
\(791\) −2.29975 3.98328i −0.0817696 0.141629i
\(792\) 0 0
\(793\) −0.0893474 + 0.154754i −0.00317282 + 0.00549548i
\(794\) 5.64921 + 18.2023i 0.200483 + 0.645974i
\(795\) 0 0
\(796\) −3.54032 5.15424i −0.125483 0.182687i
\(797\) 30.6136 + 5.39800i 1.08439 + 0.191207i 0.687156 0.726510i \(-0.258859\pi\)
0.397234 + 0.917717i \(0.369970\pi\)
\(798\) 0 0
\(799\) −37.3969 44.5679i −1.32301 1.57670i
\(800\) 0.734991 0.538141i 0.0259859 0.0190262i
\(801\) 0 0
\(802\) −1.20492 9.48189i −0.0425473 0.334817i
\(803\) 15.7147 + 5.71967i 0.554559 + 0.201843i
\(804\) 0 0
\(805\) 5.78505 + 4.85423i 0.203896 + 0.171089i
\(806\) 18.7637 + 0.903872i 0.660924 + 0.0318375i
\(807\) 0 0
\(808\) −5.29736 + 3.27508i −0.186361 + 0.115217i
\(809\) 26.7938i 0.942021i 0.882128 + 0.471010i \(0.156111\pi\)
−0.882128 + 0.471010i \(0.843889\pi\)
\(810\) 0 0
\(811\) 22.6335i 0.794769i −0.917652 0.397384i \(-0.869918\pi\)
0.917652 0.397384i \(-0.130082\pi\)
\(812\) 7.49774 10.5053i 0.263119 0.368665i
\(813\) 0 0
\(814\) −1.42097 + 29.4983i −0.0498050 + 1.03392i
\(815\) −5.71352 4.79422i −0.200136 0.167934i
\(816\) 0 0
\(817\) 50.2963 + 18.3064i 1.75965 + 0.640459i
\(818\) −26.4359 + 3.35937i −0.924309 + 0.117458i
\(819\) 0 0
\(820\) 17.4749 4.51418i 0.610249 0.157642i
\(821\) −8.22523 9.80244i −0.287062 0.342108i 0.603171 0.797612i \(-0.293903\pi\)
−0.890234 + 0.455504i \(0.849459\pi\)
\(822\) 0 0
\(823\) −25.5687 4.50845i −0.891269 0.157155i −0.290782 0.956789i \(-0.593915\pi\)
−0.600487 + 0.799635i \(0.705027\pi\)
\(824\) −5.44763 + 1.13076i −0.189777 + 0.0393920i
\(825\) 0 0
\(826\) 20.2809 6.29434i 0.705664 0.219008i
\(827\) 9.69134 16.7859i 0.337001 0.583703i −0.646866 0.762603i \(-0.723921\pi\)
0.983867 + 0.178901i \(0.0572542\pi\)
\(828\) 0 0
\(829\) −15.3678 26.6178i −0.533745 0.924474i −0.999223 0.0394143i \(-0.987451\pi\)
0.465478 0.885060i \(-0.345883\pi\)
\(830\) −22.5188 20.8220i −0.781641 0.722741i
\(831\) 0 0
\(832\) 36.2889 2.18947i 1.25809 0.0759062i
\(833\) −8.77970 24.1220i −0.304199 0.835779i
\(834\) 0 0
\(835\) −42.8436 + 7.55448i −1.48266 + 0.261434i
\(836\) −24.2838 + 23.8505i −0.839872 + 0.824886i
\(837\) 0 0
\(838\) 10.4460 24.9012i 0.360850 0.860199i
\(839\) 1.89878 + 10.7685i 0.0655533 + 0.371771i 0.999882 + 0.0153587i \(0.00488902\pi\)
−0.934329 + 0.356412i \(0.884000\pi\)
\(840\) 0 0
\(841\) −4.45636 + 1.62198i −0.153668 + 0.0559304i
\(842\) −28.3442 + 14.5933i −0.976807 + 0.502919i
\(843\) 0 0
\(844\) 23.3949 10.6539i 0.805286 0.366723i
\(845\) −15.0532 + 8.69096i −0.517845 + 0.298978i
\(846\) 0 0
\(847\) 4.18228 + 2.41464i 0.143705 + 0.0829680i
\(848\) −11.9510 + 9.66687i −0.410400 + 0.331962i
\(849\) 0 0
\(850\) −0.598723 + 0.930537i −0.0205360 + 0.0319172i
\(851\) 3.40174 19.2923i 0.116610 0.661330i
\(852\) 0 0
\(853\) 4.92621 4.13359i 0.168670 0.141531i −0.554545 0.832154i \(-0.687108\pi\)
0.723216 + 0.690622i \(0.242663\pi\)
\(854\) −0.0580054 + 0.0440958i −0.00198490 + 0.00150893i
\(855\) 0 0
\(856\) −9.03093 7.12545i −0.308671 0.243543i
\(857\) 1.08582 2.98327i 0.0370910 0.101907i −0.919765 0.392470i \(-0.871621\pi\)
0.956856 + 0.290564i \(0.0938428\pi\)
\(858\) 0 0
\(859\) −18.2176 + 21.7108i −0.621575 + 0.740765i −0.981340 0.192278i \(-0.938412\pi\)
0.359765 + 0.933043i \(0.382857\pi\)
\(860\) −34.8769 16.6472i −1.18929 0.567664i
\(861\) 0 0
\(862\) 14.9045 + 3.37470i 0.507649 + 0.114943i
\(863\) −53.5310 −1.82222 −0.911108 0.412168i \(-0.864772\pi\)
−0.911108 + 0.412168i \(0.864772\pi\)
\(864\) 0 0
\(865\) −19.8602 −0.675267
\(866\) −51.8498 11.7399i −1.76193 0.398939i
\(867\) 0 0
\(868\) 6.91274 + 3.29954i 0.234634 + 0.111994i
\(869\) −10.4714 + 12.4793i −0.355218 + 0.423333i
\(870\) 0 0
\(871\) −18.5491 + 50.9633i −0.628513 + 1.72682i
\(872\) −4.01956 3.17145i −0.136119 0.107399i
\(873\) 0 0
\(874\) 17.9741 13.6639i 0.607984 0.462190i
\(875\) 11.0339 9.25855i 0.373014 0.312996i
\(876\) 0 0
\(877\) −5.19031 + 29.4357i −0.175264 + 0.993974i 0.762574 + 0.646901i \(0.223935\pi\)
−0.937838 + 0.347073i \(0.887176\pi\)
\(878\) 24.4363 37.9790i 0.824686 1.28173i
\(879\) 0 0
\(880\) 19.1077 15.4557i 0.644121 0.521012i
\(881\) −14.9002 8.60262i −0.502000 0.289830i 0.227539 0.973769i \(-0.426932\pi\)
−0.729539 + 0.683939i \(0.760265\pi\)
\(882\) 0 0
\(883\) 19.9228 11.5024i 0.670455 0.387088i −0.125794 0.992056i \(-0.540148\pi\)
0.796249 + 0.604969i \(0.206814\pi\)
\(884\) −40.1890 + 18.3018i −1.35170 + 0.615558i
\(885\) 0 0
\(886\) 47.2529 24.3286i 1.58749 0.817337i
\(887\) −26.8201 + 9.76172i −0.900531 + 0.327767i −0.750466 0.660909i \(-0.770171\pi\)
−0.150066 + 0.988676i \(0.547948\pi\)
\(888\) 0 0
\(889\) 2.55256 + 14.4763i 0.0856102 + 0.485520i
\(890\) 8.59695 20.4935i 0.288170 0.686944i
\(891\) 0 0
\(892\) 14.7529 14.4896i 0.493963 0.485149i
\(893\) −74.2053 + 13.0844i −2.48318 + 0.437852i
\(894\) 0 0
\(895\) −4.71438 12.9526i −0.157584 0.432959i
\(896\) 13.9903 + 4.90074i 0.467382 + 0.163722i
\(897\) 0 0
\(898\) 8.39205 + 7.75967i 0.280046 + 0.258943i
\(899\) 7.19828 + 12.4678i 0.240076 + 0.415824i
\(900\) 0 0
\(901\) 9.33569 16.1699i 0.311017 0.538697i
\(902\) 14.5102 4.50335i 0.483137 0.149945i
\(903\) 0 0
\(904\) 9.72166 2.01792i 0.323338 0.0671152i
\(905\) −35.8599 6.32307i −1.19202 0.210186i
\(906\) 0 0
\(907\) 37.4764 + 44.6626i 1.24438 + 1.48300i 0.814553 + 0.580089i \(0.196982\pi\)
0.429831 + 0.902909i \(0.358573\pi\)
\(908\) 0.185983 0.0480439i 0.00617206 0.00159439i
\(909\) 0 0
\(910\) −18.9772 + 2.41155i −0.629088 + 0.0799422i
\(911\) −3.70530 1.34862i −0.122762 0.0446817i 0.279909 0.960027i \(-0.409696\pi\)
−0.402671 + 0.915345i \(0.631918\pi\)
\(912\) 0 0
\(913\) −19.7774 16.5952i −0.654537 0.549222i
\(914\) 0.168355 3.49493i 0.00556870 0.115602i
\(915\) 0 0
\(916\) 31.2223 43.7467i 1.03162 1.44543i
\(917\) 6.72250i 0.221997i
\(918\) 0 0
\(919\) 6.45794i 0.213028i 0.994311 + 0.106514i \(0.0339689\pi\)
−0.994311 + 0.106514i \(0.966031\pi\)
\(920\) −13.8661 + 8.57267i −0.457151 + 0.282633i
\(921\) 0 0
\(922\) −12.7634 0.614829i −0.420340 0.0202483i
\(923\) 8.53374 + 7.16066i 0.280891 + 0.235696i
\(924\) 0 0
\(925\) 1.16842 + 0.425272i 0.0384175 + 0.0139828i
\(926\) 0.248631 + 1.95655i 0.00817054 + 0.0642963i
\(927\) 0 0
\(928\) 16.4591 + 22.4798i 0.540297 + 0.737936i
\(929\) 36.6277 + 43.6512i 1.20172 + 1.43215i 0.872998 + 0.487723i \(0.162172\pi\)
0.328719 + 0.944428i \(0.393383\pi\)
\(930\) 0 0
\(931\) −32.7412 5.77316i −1.07305 0.189208i
\(932\) −8.19163 11.9259i −0.268326 0.390647i
\(933\) 0 0
\(934\) 8.84417 + 28.4967i 0.289390 + 0.932441i
\(935\) −14.9262 + 25.8530i −0.488140 + 0.845483i
\(936\) 0 0
\(937\) 9.57464 + 16.5838i 0.312790 + 0.541768i 0.978965 0.204027i \(-0.0654031\pi\)
−0.666175 + 0.745795i \(0.732070\pi\)
\(938\) −15.0133 + 16.2368i −0.490201 + 0.530150i
\(939\) 0 0
\(940\) 54.2385 4.25365i 1.76906 0.138739i
\(941\) 6.39294 + 17.5645i 0.208404 + 0.572585i 0.999221 0.0394679i \(-0.0125663\pi\)
−0.790817 + 0.612053i \(0.790344\pi\)
\(942\) 0 0
\(943\) −9.92488 + 1.75002i −0.323198 + 0.0569886i
\(944\) −0.825237 + 45.8329i −0.0268592 + 1.49173i
\(945\) 0 0
\(946\) −29.9991 12.5845i −0.975354 0.409158i
\(947\) −4.94182 28.0265i −0.160588 0.910738i −0.953498 0.301400i \(-0.902546\pi\)
0.792910 0.609338i \(-0.208565\pi\)
\(948\) 0 0
\(949\) 26.4054 9.61079i 0.857157 0.311980i
\(950\) 0.655996 + 1.27413i 0.0212833 + 0.0413381i
\(951\) 0 0
\(952\) −17.9982 + 0.542463i −0.583326 + 0.0175813i
\(953\) −39.0891 + 22.5681i −1.26622 + 0.731052i −0.974270 0.225382i \(-0.927637\pi\)
−0.291949 + 0.956434i \(0.594304\pi\)
\(954\) 0 0
\(955\) −23.0134 13.2868i −0.744695 0.429950i
\(956\) −25.3961 2.45242i −0.821368 0.0793168i
\(957\) 0 0
\(958\) −17.3691 11.1756i −0.561171 0.361066i
\(959\) −0.411444 + 2.33341i −0.0132862 + 0.0753499i
\(960\) 0 0
\(961\) 17.2022 14.4343i 0.554909 0.465624i
\(962\) 30.0315 + 39.5047i 0.968253 + 1.27368i
\(963\) 0 0
\(964\) 4.05152 14.5937i 0.130491 0.470032i
\(965\) −13.6530 + 37.5112i −0.439504 + 1.20753i
\(966\) 0 0
\(967\) −5.89240 + 7.02229i −0.189487 + 0.225822i −0.852421 0.522856i \(-0.824867\pi\)
0.662934 + 0.748678i \(0.269311\pi\)
\(968\) −7.78045 + 6.93855i −0.250073 + 0.223014i
\(969\) 0 0
\(970\) −6.21200 + 27.4356i −0.199455 + 0.880903i
\(971\) −10.7197 −0.344010 −0.172005 0.985096i \(-0.555025\pi\)
−0.172005 + 0.985096i \(0.555025\pi\)
\(972\) 0 0
\(973\) −17.0344 −0.546098
\(974\) −0.0882385 + 0.389709i −0.00282734 + 0.0124871i
\(975\) 0 0
\(976\) −0.0511266 0.148748i −0.00163652 0.00476131i
\(977\) 32.0082 38.1459i 1.02403 1.22040i 0.0488952 0.998804i \(-0.484430\pi\)
0.975139 0.221593i \(-0.0711256\pi\)
\(978\) 0 0
\(979\) 6.39836 17.5793i 0.204492 0.561838i
\(980\) 23.1300 + 6.42138i 0.738862 + 0.205123i
\(981\) 0 0
\(982\) −13.2649 17.4492i −0.423299 0.556826i
\(983\) −1.39362 + 1.16939i −0.0444496 + 0.0372976i −0.664742 0.747073i \(-0.731458\pi\)
0.620292 + 0.784371i \(0.287014\pi\)
\(984\) 0 0
\(985\) −9.09251 + 51.5662i −0.289712 + 1.64304i
\(986\) −28.4606 18.3120i −0.906371 0.583174i
\(987\) 0 0
\(988\) −5.49739 + 56.9285i −0.174895 + 1.81114i
\(989\) 18.6883 + 10.7897i 0.594252 + 0.343092i
\(990\) 0 0
\(991\) −48.8792 + 28.2204i −1.55270 + 0.896451i −0.554777 + 0.831999i \(0.687196\pi\)
−0.997921 + 0.0644516i \(0.979470\pi\)
\(992\) −11.4425 + 11.9366i −0.363300 + 0.378986i
\(993\) 0 0
\(994\) 2.07928 + 4.03853i 0.0659507 + 0.128094i
\(995\) −6.67441 + 2.42928i −0.211593 + 0.0770135i
\(996\) 0 0
\(997\) 2.04998 + 11.6260i 0.0649234 + 0.368199i 0.999909 + 0.0135125i \(0.00430130\pi\)
−0.934985 + 0.354687i \(0.884588\pi\)
\(998\) 53.3333 + 22.3731i 1.68824 + 0.708209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.b.215.15 96
3.2 odd 2 972.2.l.c.215.2 96
4.3 odd 2 inner 972.2.l.b.215.13 96
9.2 odd 6 972.2.l.d.863.10 96
9.4 even 3 324.2.l.a.179.4 96
9.5 odd 6 108.2.l.a.23.13 yes 96
9.7 even 3 972.2.l.a.863.7 96
12.11 even 2 972.2.l.c.215.4 96
27.2 odd 18 inner 972.2.l.b.755.13 96
27.7 even 9 972.2.l.d.107.15 96
27.11 odd 18 324.2.l.a.143.9 96
27.16 even 9 108.2.l.a.47.8 yes 96
27.20 odd 18 972.2.l.a.107.2 96
27.25 even 9 972.2.l.c.755.4 96
36.7 odd 6 972.2.l.a.863.2 96
36.11 even 6 972.2.l.d.863.15 96
36.23 even 6 108.2.l.a.23.8 96
36.31 odd 6 324.2.l.a.179.9 96
108.7 odd 18 972.2.l.d.107.10 96
108.11 even 18 324.2.l.a.143.4 96
108.43 odd 18 108.2.l.a.47.13 yes 96
108.47 even 18 972.2.l.a.107.7 96
108.79 odd 18 972.2.l.c.755.2 96
108.83 even 18 inner 972.2.l.b.755.15 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.8 96 36.23 even 6
108.2.l.a.23.13 yes 96 9.5 odd 6
108.2.l.a.47.8 yes 96 27.16 even 9
108.2.l.a.47.13 yes 96 108.43 odd 18
324.2.l.a.143.4 96 108.11 even 18
324.2.l.a.143.9 96 27.11 odd 18
324.2.l.a.179.4 96 9.4 even 3
324.2.l.a.179.9 96 36.31 odd 6
972.2.l.a.107.2 96 27.20 odd 18
972.2.l.a.107.7 96 108.47 even 18
972.2.l.a.863.2 96 36.7 odd 6
972.2.l.a.863.7 96 9.7 even 3
972.2.l.b.215.13 96 4.3 odd 2 inner
972.2.l.b.215.15 96 1.1 even 1 trivial
972.2.l.b.755.13 96 27.2 odd 18 inner
972.2.l.b.755.15 96 108.83 even 18 inner
972.2.l.c.215.2 96 3.2 odd 2
972.2.l.c.215.4 96 12.11 even 2
972.2.l.c.755.2 96 108.79 odd 18
972.2.l.c.755.4 96 27.25 even 9
972.2.l.d.107.10 96 108.7 odd 18
972.2.l.d.107.15 96 27.7 even 9
972.2.l.d.863.10 96 9.2 odd 6
972.2.l.d.863.15 96 36.11 even 6