Properties

Label 972.2.l.d.107.10
Level $972$
Weight $2$
Character 972.107
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.10
Character \(\chi\) \(=\) 972.107
Dual form 972.2.l.d.863.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.419187 - 1.35066i) q^{2} +(-1.64856 - 1.13236i) q^{4} +(-0.776998 + 2.13478i) q^{5} +(-1.29035 - 0.227523i) q^{7} +(-2.22049 + 1.75198i) q^{8} +(2.55766 + 1.94434i) q^{10} +(2.54138 - 0.924988i) q^{11} +(3.48118 - 2.92106i) q^{13} +(-0.848202 + 1.64744i) q^{14} +(1.43553 + 3.73353i) q^{16} +(4.20783 - 2.42939i) q^{17} +(-5.44971 - 3.14639i) q^{19} +(3.69827 - 2.63949i) q^{20} +(-0.184028 - 3.82029i) q^{22} +(-0.440555 - 2.49851i) q^{23} +(-0.123358 - 0.103510i) q^{25} +(-2.48609 - 5.92636i) q^{26} +(1.86958 + 1.83622i) q^{28} +(3.16586 - 3.77293i) q^{29} +(-2.87863 + 0.507580i) q^{31} +(5.64449 - 0.373857i) q^{32} +(-1.51741 - 6.70172i) q^{34} +(1.48831 - 2.57783i) q^{35} +(-3.86074 - 6.68701i) q^{37} +(-6.53415 + 6.04178i) q^{38} +(-2.01478 - 6.10155i) q^{40} +(2.55335 + 3.04297i) q^{41} +(-2.90911 - 7.99270i) q^{43} +(-5.23705 - 1.35286i) q^{44} +(-3.55932 - 0.452305i) q^{46} +(2.07927 - 11.7921i) q^{47} +(-4.96462 - 1.80697i) q^{49} +(-0.191517 + 0.123225i) q^{50} +(-9.04663 + 0.873603i) q^{52} +3.84281i q^{53} +6.14402i q^{55} +(3.26381 - 1.75545i) q^{56} +(-3.76885 - 5.85756i) q^{58} +(10.7689 + 3.91958i) q^{59} +(0.00682825 - 0.0387249i) q^{61} +(-0.521117 + 4.10082i) q^{62} +(1.86114 - 7.78050i) q^{64} +(3.53096 + 9.70123i) q^{65} +(7.67125 + 9.14224i) q^{67} +(-9.68782 - 0.759767i) q^{68} +(-2.85789 - 3.09079i) q^{70} +(1.22570 + 2.12297i) q^{71} +(3.09175 - 5.35507i) q^{73} +(-10.6502 + 2.41144i) q^{74} +(5.42135 + 11.3581i) q^{76} +(-3.48972 + 0.615332i) q^{77} +(3.87187 - 4.61431i) q^{79} +(-9.08569 + 0.163591i) q^{80} +(5.18035 - 2.17314i) q^{82} +(7.31283 + 6.13619i) q^{83} +(1.91675 + 10.8704i) q^{85} +(-12.0149 + 0.578772i) q^{86} +(-4.02256 + 6.50638i) q^{88} +(-5.99050 - 3.45862i) q^{89} +(-5.15653 + 2.97713i) q^{91} +(-2.10293 + 4.61783i) q^{92} +(-15.0555 - 7.75149i) q^{94} +(10.9513 - 9.18922i) q^{95} +(8.22759 - 2.99460i) q^{97} +(-4.52172 + 5.94806i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} + 33 q^{14} + 3 q^{16} - 18 q^{17} - 18 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 30 q^{29} + 33 q^{32} + 15 q^{34} - 6 q^{37} - 63 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.419187 1.35066i 0.296410 0.955061i
\(3\) 0 0
\(4\) −1.64856 1.13236i −0.824282 0.566180i
\(5\) −0.776998 + 2.13478i −0.347484 + 0.954705i 0.635676 + 0.771956i \(0.280722\pi\)
−0.983160 + 0.182748i \(0.941501\pi\)
\(6\) 0 0
\(7\) −1.29035 0.227523i −0.487705 0.0859955i −0.0756119 0.997137i \(-0.524091\pi\)
−0.412093 + 0.911142i \(0.635202\pi\)
\(8\) −2.22049 + 1.75198i −0.785061 + 0.619418i
\(9\) 0 0
\(10\) 2.55766 + 1.94434i 0.808803 + 0.614853i
\(11\) 2.54138 0.924988i 0.766256 0.278894i 0.0708265 0.997489i \(-0.477436\pi\)
0.695430 + 0.718594i \(0.255214\pi\)
\(12\) 0 0
\(13\) 3.48118 2.92106i 0.965506 0.810156i −0.0163342 0.999867i \(-0.505200\pi\)
0.981840 + 0.189711i \(0.0607551\pi\)
\(14\) −0.848202 + 1.64744i −0.226692 + 0.440298i
\(15\) 0 0
\(16\) 1.43553 + 3.73353i 0.358881 + 0.933383i
\(17\) 4.20783 2.42939i 1.02055 0.589214i 0.106286 0.994336i \(-0.466104\pi\)
0.914263 + 0.405122i \(0.132771\pi\)
\(18\) 0 0
\(19\) −5.44971 3.14639i −1.25025 0.721832i −0.279090 0.960265i \(-0.590033\pi\)
−0.971159 + 0.238433i \(0.923366\pi\)
\(20\) 3.69827 2.63949i 0.826959 0.590208i
\(21\) 0 0
\(22\) −0.184028 3.82029i −0.0392349 0.814488i
\(23\) −0.440555 2.49851i −0.0918622 0.520976i −0.995664 0.0930246i \(-0.970346\pi\)
0.903802 0.427952i \(-0.140765\pi\)
\(24\) 0 0
\(25\) −0.123358 0.103510i −0.0246716 0.0207019i
\(26\) −2.48609 5.92636i −0.487562 1.16226i
\(27\) 0 0
\(28\) 1.86958 + 1.83622i 0.353317 + 0.347013i
\(29\) 3.16586 3.77293i 0.587886 0.700615i −0.387313 0.921948i \(-0.626597\pi\)
0.975198 + 0.221334i \(0.0710410\pi\)
\(30\) 0 0
\(31\) −2.87863 + 0.507580i −0.517017 + 0.0911641i −0.426068 0.904691i \(-0.640101\pi\)
−0.0909499 + 0.995855i \(0.528990\pi\)
\(32\) 5.64449 0.373857i 0.997814 0.0660893i
\(33\) 0 0
\(34\) −1.51741 6.70172i −0.260234 1.14933i
\(35\) 1.48831 2.57783i 0.251570 0.435732i
\(36\) 0 0
\(37\) −3.86074 6.68701i −0.634703 1.09934i −0.986578 0.163290i \(-0.947789\pi\)
0.351876 0.936047i \(-0.385544\pi\)
\(38\) −6.53415 + 6.04178i −1.05998 + 0.980105i
\(39\) 0 0
\(40\) −2.01478 6.10155i −0.318565 0.964740i
\(41\) 2.55335 + 3.04297i 0.398767 + 0.475232i 0.927643 0.373467i \(-0.121831\pi\)
−0.528877 + 0.848699i \(0.677387\pi\)
\(42\) 0 0
\(43\) −2.90911 7.99270i −0.443634 1.21888i −0.937085 0.349102i \(-0.886487\pi\)
0.493450 0.869774i \(-0.335735\pi\)
\(44\) −5.23705 1.35286i −0.789515 0.203951i
\(45\) 0 0
\(46\) −3.55932 0.452305i −0.524793 0.0666887i
\(47\) 2.07927 11.7921i 0.303293 1.72006i −0.328142 0.944629i \(-0.606422\pi\)
0.631434 0.775429i \(-0.282467\pi\)
\(48\) 0 0
\(49\) −4.96462 1.80697i −0.709232 0.258139i
\(50\) −0.191517 + 0.123225i −0.0270845 + 0.0174266i
\(51\) 0 0
\(52\) −9.04663 + 0.873603i −1.25454 + 0.121147i
\(53\) 3.84281i 0.527851i 0.964543 + 0.263925i \(0.0850173\pi\)
−0.964543 + 0.263925i \(0.914983\pi\)
\(54\) 0 0
\(55\) 6.14402i 0.828460i
\(56\) 3.26381 1.75545i 0.436145 0.234581i
\(57\) 0 0
\(58\) −3.76885 5.85756i −0.494874 0.769136i
\(59\) 10.7689 + 3.91958i 1.40200 + 0.510285i 0.928771 0.370655i \(-0.120867\pi\)
0.473227 + 0.880941i \(0.343089\pi\)
\(60\) 0 0
\(61\) 0.00682825 0.0387249i 0.000874268 0.00495822i −0.984367 0.176127i \(-0.943643\pi\)
0.985242 + 0.171169i \(0.0547543\pi\)
\(62\) −0.521117 + 4.10082i −0.0661820 + 0.520805i
\(63\) 0 0
\(64\) 1.86114 7.78050i 0.232643 0.972562i
\(65\) 3.53096 + 9.70123i 0.437961 + 1.20329i
\(66\) 0 0
\(67\) 7.67125 + 9.14224i 0.937193 + 1.11690i 0.992959 + 0.118459i \(0.0377954\pi\)
−0.0557663 + 0.998444i \(0.517760\pi\)
\(68\) −9.68782 0.759767i −1.17482 0.0921352i
\(69\) 0 0
\(70\) −2.85789 3.09079i −0.341583 0.369420i
\(71\) 1.22570 + 2.12297i 0.145463 + 0.251950i 0.929546 0.368707i \(-0.120199\pi\)
−0.784082 + 0.620657i \(0.786866\pi\)
\(72\) 0 0
\(73\) 3.09175 5.35507i 0.361862 0.626764i −0.626405 0.779498i \(-0.715474\pi\)
0.988267 + 0.152734i \(0.0488077\pi\)
\(74\) −10.6502 + 2.41144i −1.23807 + 0.280325i
\(75\) 0 0
\(76\) 5.42135 + 11.3581i 0.621871 + 1.30286i
\(77\) −3.48972 + 0.615332i −0.397690 + 0.0701236i
\(78\) 0 0
\(79\) 3.87187 4.61431i 0.435619 0.519151i −0.502915 0.864336i \(-0.667739\pi\)
0.938535 + 0.345185i \(0.112184\pi\)
\(80\) −9.08569 + 0.163591i −1.01581 + 0.0182900i
\(81\) 0 0
\(82\) 5.18035 2.17314i 0.572074 0.239983i
\(83\) 7.31283 + 6.13619i 0.802687 + 0.673534i 0.948850 0.315726i \(-0.102248\pi\)
−0.146163 + 0.989260i \(0.546693\pi\)
\(84\) 0 0
\(85\) 1.91675 + 10.8704i 0.207901 + 1.17906i
\(86\) −12.0149 + 0.578772i −1.29560 + 0.0624106i
\(87\) 0 0
\(88\) −4.02256 + 6.50638i −0.428806 + 0.693582i
\(89\) −5.99050 3.45862i −0.634991 0.366613i 0.147691 0.989034i \(-0.452816\pi\)
−0.782683 + 0.622421i \(0.786149\pi\)
\(90\) 0 0
\(91\) −5.15653 + 2.97713i −0.540552 + 0.312088i
\(92\) −2.10293 + 4.61783i −0.219246 + 0.481442i
\(93\) 0 0
\(94\) −15.0555 7.75149i −1.55286 0.799506i
\(95\) 10.9513 9.18922i 1.12358 0.942794i
\(96\) 0 0
\(97\) 8.22759 2.99460i 0.835385 0.304055i 0.111318 0.993785i \(-0.464493\pi\)
0.724067 + 0.689729i \(0.242270\pi\)
\(98\) −4.52172 + 5.94806i −0.456762 + 0.600844i
\(99\) 0 0
\(100\) 0.0861535 + 0.310328i 0.00861535 + 0.0310328i
\(101\) −2.16848 0.382362i −0.215772 0.0380465i 0.0647169 0.997904i \(-0.479386\pi\)
−0.280489 + 0.959857i \(0.590497\pi\)
\(102\) 0 0
\(103\) −0.672781 + 1.84845i −0.0662911 + 0.182133i −0.968415 0.249344i \(-0.919785\pi\)
0.902124 + 0.431477i \(0.142007\pi\)
\(104\) −2.61229 + 12.5851i −0.256157 + 1.23407i
\(105\) 0 0
\(106\) 5.19033 + 1.61086i 0.504130 + 0.156460i
\(107\) 4.06709 0.393180 0.196590 0.980486i \(-0.437013\pi\)
0.196590 + 0.980486i \(0.437013\pi\)
\(108\) 0 0
\(109\) −1.81021 −0.173387 −0.0866934 0.996235i \(-0.527630\pi\)
−0.0866934 + 0.996235i \(0.527630\pi\)
\(110\) 8.29848 + 2.57550i 0.791229 + 0.245564i
\(111\) 0 0
\(112\) −1.00286 5.14416i −0.0947615 0.486078i
\(113\) −1.20062 + 3.29869i −0.112945 + 0.310314i −0.983267 0.182168i \(-0.941688\pi\)
0.870322 + 0.492483i \(0.163911\pi\)
\(114\) 0 0
\(115\) 5.67610 + 1.00085i 0.529299 + 0.0933297i
\(116\) −9.49143 + 2.63502i −0.881257 + 0.244655i
\(117\) 0 0
\(118\) 9.80822 12.9021i 0.902920 1.18774i
\(119\) −5.98230 + 2.17738i −0.548396 + 0.199600i
\(120\) 0 0
\(121\) −2.82346 + 2.36916i −0.256678 + 0.215379i
\(122\) −0.0494419 0.0254557i −0.00447626 0.00230465i
\(123\) 0 0
\(124\) 5.32037 + 2.42287i 0.477783 + 0.217580i
\(125\) −9.52032 + 5.49656i −0.851523 + 0.491627i
\(126\) 0 0
\(127\) −9.71588 5.60947i −0.862145 0.497760i 0.00258477 0.999997i \(-0.499177\pi\)
−0.864730 + 0.502237i \(0.832511\pi\)
\(128\) −9.72864 5.77526i −0.859898 0.510466i
\(129\) 0 0
\(130\) 14.5832 0.702491i 1.27903 0.0616126i
\(131\) 0.890936 + 5.05275i 0.0778415 + 0.441461i 0.998673 + 0.0515002i \(0.0164003\pi\)
−0.920832 + 0.389961i \(0.872489\pi\)
\(132\) 0 0
\(133\) 6.31613 + 5.29986i 0.547678 + 0.459557i
\(134\) 15.5638 6.52894i 1.34450 0.564015i
\(135\) 0 0
\(136\) −5.08720 + 12.7665i −0.436224 + 1.09472i
\(137\) −1.16239 + 1.38529i −0.0993100 + 0.118353i −0.813410 0.581690i \(-0.802392\pi\)
0.714100 + 0.700043i \(0.246836\pi\)
\(138\) 0 0
\(139\) 12.8033 2.25758i 1.08597 0.191485i 0.398114 0.917336i \(-0.369665\pi\)
0.687852 + 0.725851i \(0.258554\pi\)
\(140\) −5.37260 + 2.56441i −0.454067 + 0.216732i
\(141\) 0 0
\(142\) 3.38120 0.765577i 0.283744 0.0642458i
\(143\) 6.14507 10.6436i 0.513877 0.890061i
\(144\) 0 0
\(145\) 5.59452 + 9.68999i 0.464599 + 0.804710i
\(146\) −5.93686 6.42069i −0.491338 0.531380i
\(147\) 0 0
\(148\) −1.20741 + 15.3957i −0.0992483 + 1.26552i
\(149\) −1.65428 1.97150i −0.135524 0.161511i 0.694014 0.719962i \(-0.255841\pi\)
−0.829538 + 0.558450i \(0.811396\pi\)
\(150\) 0 0
\(151\) 1.79566 + 4.93353i 0.146128 + 0.401485i 0.991065 0.133382i \(-0.0425839\pi\)
−0.844936 + 0.534867i \(0.820362\pi\)
\(152\) 17.6134 2.56125i 1.42864 0.207744i
\(153\) 0 0
\(154\) −0.631743 + 4.97136i −0.0509073 + 0.400604i
\(155\) 1.15312 6.53965i 0.0926205 0.525277i
\(156\) 0 0
\(157\) −19.6331 7.14587i −1.56689 0.570302i −0.594590 0.804029i \(-0.702686\pi\)
−0.972302 + 0.233727i \(0.924908\pi\)
\(158\) −4.60933 7.16384i −0.366699 0.569925i
\(159\) 0 0
\(160\) −3.58765 + 12.3403i −0.283629 + 0.975583i
\(161\) 3.32418i 0.261982i
\(162\) 0 0
\(163\) 3.28308i 0.257151i 0.991700 + 0.128575i \(0.0410404\pi\)
−0.991700 + 0.128575i \(0.958960\pi\)
\(164\) −0.763634 7.90784i −0.0596298 0.617498i
\(165\) 0 0
\(166\) 11.3533 7.30493i 0.881191 0.566972i
\(167\) −17.9950 6.54965i −1.39250 0.506827i −0.466553 0.884493i \(-0.654504\pi\)
−0.925942 + 0.377666i \(0.876727\pi\)
\(168\) 0 0
\(169\) 1.32862 7.53496i 0.102201 0.579612i
\(170\) 15.4857 + 1.96787i 1.18770 + 0.150929i
\(171\) 0 0
\(172\) −4.25476 + 16.4706i −0.324423 + 1.25587i
\(173\) 2.98997 + 8.21488i 0.227323 + 0.624566i 0.999947 0.0102987i \(-0.00327824\pi\)
−0.772624 + 0.634864i \(0.781056\pi\)
\(174\) 0 0
\(175\) 0.135624 + 0.161630i 0.0102522 + 0.0122181i
\(176\) 7.10170 + 8.16049i 0.535310 + 0.615120i
\(177\) 0 0
\(178\) −7.18255 + 6.64132i −0.538355 + 0.497788i
\(179\) −3.03371 5.25454i −0.226750 0.392743i 0.730093 0.683348i \(-0.239477\pi\)
−0.956843 + 0.290605i \(0.906143\pi\)
\(180\) 0 0
\(181\) −8.01419 + 13.8810i −0.595690 + 1.03177i 0.397759 + 0.917490i \(0.369788\pi\)
−0.993449 + 0.114276i \(0.963545\pi\)
\(182\) 1.85953 + 8.21270i 0.137838 + 0.608766i
\(183\) 0 0
\(184\) 5.35559 + 4.77608i 0.394819 + 0.352097i
\(185\) 17.2751 3.04607i 1.27009 0.223951i
\(186\) 0 0
\(187\) 8.44655 10.0662i 0.617673 0.736114i
\(188\) −16.7807 + 17.0856i −1.22386 + 1.24609i
\(189\) 0 0
\(190\) −7.82087 18.6435i −0.567385 1.35254i
\(191\) 8.96056 + 7.51880i 0.648363 + 0.544042i 0.906574 0.422047i \(-0.138688\pi\)
−0.258210 + 0.966089i \(0.583133\pi\)
\(192\) 0 0
\(193\) 3.05125 + 17.3045i 0.219633 + 1.24560i 0.872683 + 0.488288i \(0.162378\pi\)
−0.653049 + 0.757315i \(0.726511\pi\)
\(194\) −0.595781 12.3680i −0.0427746 0.887969i
\(195\) 0 0
\(196\) 6.13835 + 8.60065i 0.438454 + 0.614332i
\(197\) 19.9607 + 11.5243i 1.42214 + 0.821074i 0.996482 0.0838089i \(-0.0267085\pi\)
0.425660 + 0.904883i \(0.360042\pi\)
\(198\) 0 0
\(199\) −2.70763 + 1.56325i −0.191939 + 0.110816i −0.592890 0.805284i \(-0.702013\pi\)
0.400951 + 0.916099i \(0.368680\pi\)
\(200\) 0.455262 + 0.0137215i 0.0321919 + 0.000970257i
\(201\) 0 0
\(202\) −1.42544 + 2.76860i −0.100294 + 0.194798i
\(203\) −4.94348 + 4.14807i −0.346964 + 0.291138i
\(204\) 0 0
\(205\) −8.48003 + 3.08648i −0.592271 + 0.215569i
\(206\) 2.21461 + 1.68355i 0.154299 + 0.117298i
\(207\) 0 0
\(208\) 15.9032 + 8.80385i 1.10269 + 0.610437i
\(209\) −16.7602 2.95527i −1.15933 0.204420i
\(210\) 0 0
\(211\) 4.39608 12.0781i 0.302639 0.831493i −0.691401 0.722472i \(-0.743006\pi\)
0.994039 0.109022i \(-0.0347718\pi\)
\(212\) 4.35144 6.33512i 0.298858 0.435098i
\(213\) 0 0
\(214\) 1.70487 5.49326i 0.116543 0.375511i
\(215\) 19.3231 1.31782
\(216\) 0 0
\(217\) 3.82992 0.259992
\(218\) −0.758818 + 2.44498i −0.0513936 + 0.165595i
\(219\) 0 0
\(220\) 6.95724 10.1288i 0.469057 0.682884i
\(221\) 7.55182 20.7485i 0.507991 1.39569i
\(222\) 0 0
\(223\) −10.1821 1.79539i −0.681846 0.120228i −0.178012 0.984028i \(-0.556967\pi\)
−0.503834 + 0.863800i \(0.668078\pi\)
\(224\) −7.36840 0.801844i −0.492322 0.0535754i
\(225\) 0 0
\(226\) 3.95212 + 3.00440i 0.262891 + 0.199850i
\(227\) 0.0902519 0.0328490i 0.00599023 0.00218027i −0.339023 0.940778i \(-0.610097\pi\)
0.345014 + 0.938598i \(0.387874\pi\)
\(228\) 0 0
\(229\) 20.5858 17.2735i 1.36035 1.14147i 0.384474 0.923136i \(-0.374383\pi\)
0.975874 0.218332i \(-0.0700617\pi\)
\(230\) 3.73116 7.24694i 0.246025 0.477849i
\(231\) 0 0
\(232\) −0.419674 + 13.9243i −0.0275530 + 0.914172i
\(233\) 6.26494 3.61706i 0.410430 0.236962i −0.280545 0.959841i \(-0.590515\pi\)
0.690974 + 0.722879i \(0.257182\pi\)
\(234\) 0 0
\(235\) 23.5581 + 13.6013i 1.53676 + 0.887248i
\(236\) −13.3149 18.6560i −0.866728 1.21440i
\(237\) 0 0
\(238\) 0.433194 + 8.99278i 0.0280798 + 0.582915i
\(239\) −2.21525 12.5633i −0.143293 0.812653i −0.968722 0.248148i \(-0.920178\pi\)
0.825430 0.564505i \(-0.190933\pi\)
\(240\) 0 0
\(241\) −5.80114 4.86773i −0.373684 0.313558i 0.436533 0.899688i \(-0.356206\pi\)
−0.810217 + 0.586130i \(0.800651\pi\)
\(242\) 2.01638 + 4.80666i 0.129618 + 0.308984i
\(243\) 0 0
\(244\) −0.0551074 + 0.0561085i −0.00352789 + 0.00359198i
\(245\) 7.71501 9.19439i 0.492894 0.587408i
\(246\) 0 0
\(247\) −28.1622 + 4.96576i −1.79192 + 0.315964i
\(248\) 5.50270 6.17038i 0.349422 0.391819i
\(249\) 0 0
\(250\) 3.43318 + 15.1628i 0.217134 + 0.958980i
\(251\) −5.95007 + 10.3058i −0.375565 + 0.650498i −0.990411 0.138149i \(-0.955885\pi\)
0.614846 + 0.788647i \(0.289218\pi\)
\(252\) 0 0
\(253\) −3.43072 5.94217i −0.215687 0.373581i
\(254\) −11.6493 + 10.7714i −0.730940 + 0.675860i
\(255\) 0 0
\(256\) −11.8785 + 10.7192i −0.742408 + 0.669948i
\(257\) −3.50902 4.18189i −0.218887 0.260859i 0.645416 0.763832i \(-0.276684\pi\)
−0.864302 + 0.502972i \(0.832240\pi\)
\(258\) 0 0
\(259\) 3.46025 + 9.50696i 0.215009 + 0.590734i
\(260\) 5.16426 19.9914i 0.320274 1.23981i
\(261\) 0 0
\(262\) 7.19802 + 0.914698i 0.444695 + 0.0565102i
\(263\) −3.53693 + 20.0589i −0.218097 + 1.23689i 0.657355 + 0.753581i \(0.271675\pi\)
−0.875451 + 0.483306i \(0.839436\pi\)
\(264\) 0 0
\(265\) −8.20358 2.98586i −0.503942 0.183420i
\(266\) 9.80596 6.30931i 0.601242 0.386849i
\(267\) 0 0
\(268\) −2.29425 23.7582i −0.140144 1.45126i
\(269\) 9.12305i 0.556242i −0.960546 0.278121i \(-0.910288\pi\)
0.960546 0.278121i \(-0.0897116\pi\)
\(270\) 0 0
\(271\) 21.2629i 1.29163i −0.763495 0.645813i \(-0.776518\pi\)
0.763495 0.645813i \(-0.223482\pi\)
\(272\) 15.1107 + 12.2226i 0.916218 + 0.741105i
\(273\) 0 0
\(274\) 1.38379 + 2.15069i 0.0835979 + 0.129928i
\(275\) −0.409245 0.148953i −0.0246784 0.00898221i
\(276\) 0 0
\(277\) −4.43224 + 25.1365i −0.266308 + 1.51031i 0.498977 + 0.866615i \(0.333709\pi\)
−0.765285 + 0.643691i \(0.777402\pi\)
\(278\) 2.31779 18.2393i 0.139012 1.09392i
\(279\) 0 0
\(280\) 1.21152 + 8.33152i 0.0724023 + 0.497903i
\(281\) −4.21589 11.5831i −0.251499 0.690987i −0.999624 0.0274292i \(-0.991268\pi\)
0.748125 0.663558i \(-0.230954\pi\)
\(282\) 0 0
\(283\) 10.7391 + 12.7984i 0.638374 + 0.760784i 0.984112 0.177547i \(-0.0568161\pi\)
−0.345739 + 0.938331i \(0.612372\pi\)
\(284\) 0.383324 4.88778i 0.0227461 0.290036i
\(285\) 0 0
\(286\) −11.7999 12.7616i −0.697744 0.754607i
\(287\) −2.60236 4.50743i −0.153613 0.266065i
\(288\) 0 0
\(289\) 3.30388 5.72249i 0.194346 0.336617i
\(290\) 15.4330 3.49437i 0.906259 0.205196i
\(291\) 0 0
\(292\) −11.1608 + 5.32721i −0.653138 + 0.311751i
\(293\) −13.1269 + 2.31463i −0.766884 + 0.135222i −0.543387 0.839482i \(-0.682858\pi\)
−0.223497 + 0.974705i \(0.571747\pi\)
\(294\) 0 0
\(295\) −16.7349 + 19.9439i −0.974344 + 1.16118i
\(296\) 20.2882 + 8.08448i 1.17923 + 0.469901i
\(297\) 0 0
\(298\) −3.35627 + 1.40794i −0.194424 + 0.0815601i
\(299\) −8.83196 7.41089i −0.510765 0.428583i
\(300\) 0 0
\(301\) 1.93523 + 10.9752i 0.111545 + 0.632602i
\(302\) 7.41623 0.357249i 0.426756 0.0205574i
\(303\) 0 0
\(304\) 3.92395 24.8634i 0.225054 1.42601i
\(305\) 0.0773639 + 0.0446661i 0.00442984 + 0.00255757i
\(306\) 0 0
\(307\) 18.8505 10.8833i 1.07585 0.621144i 0.146078 0.989273i \(-0.453335\pi\)
0.929775 + 0.368129i \(0.120002\pi\)
\(308\) 6.44980 + 2.93720i 0.367512 + 0.167363i
\(309\) 0 0
\(310\) −8.34947 4.29881i −0.474218 0.244156i
\(311\) −10.9280 + 9.16969i −0.619671 + 0.519966i −0.897700 0.440607i \(-0.854763\pi\)
0.278029 + 0.960573i \(0.410319\pi\)
\(312\) 0 0
\(313\) −19.9926 + 7.27672i −1.13005 + 0.411304i −0.838310 0.545194i \(-0.816456\pi\)
−0.291739 + 0.956498i \(0.594234\pi\)
\(314\) −17.8816 + 23.5222i −1.00912 + 1.32743i
\(315\) 0 0
\(316\) −11.6081 + 3.22265i −0.653006 + 0.181288i
\(317\) 6.63831 + 1.17051i 0.372845 + 0.0657426i 0.356931 0.934131i \(-0.383823\pi\)
0.0159138 + 0.999873i \(0.494934\pi\)
\(318\) 0 0
\(319\) 4.55576 12.5168i 0.255073 0.700808i
\(320\) 15.1636 + 10.0186i 0.847670 + 0.560055i
\(321\) 0 0
\(322\) 4.48984 + 1.39346i 0.250209 + 0.0776542i
\(323\) −30.5753 −1.70125
\(324\) 0 0
\(325\) −0.731790 −0.0405924
\(326\) 4.43433 + 1.37623i 0.245595 + 0.0762222i
\(327\) 0 0
\(328\) −11.0009 2.28346i −0.607423 0.126083i
\(329\) −5.36595 + 14.7428i −0.295835 + 0.812799i
\(330\) 0 0
\(331\) 23.8297 + 4.20182i 1.30980 + 0.230953i 0.784587 0.620019i \(-0.212875\pi\)
0.525212 + 0.850972i \(0.323986\pi\)
\(332\) −5.10729 18.3966i −0.280299 1.00965i
\(333\) 0 0
\(334\) −16.3896 + 21.5596i −0.896800 + 1.17969i
\(335\) −25.4773 + 9.27297i −1.39197 + 0.506636i
\(336\) 0 0
\(337\) 16.7397 14.0463i 0.911869 0.765149i −0.0606043 0.998162i \(-0.519303\pi\)
0.972474 + 0.233013i \(0.0748583\pi\)
\(338\) −9.62022 4.95307i −0.523271 0.269411i
\(339\) 0 0
\(340\) 9.14936 20.0911i 0.496193 1.08959i
\(341\) −6.84620 + 3.95266i −0.370743 + 0.214048i
\(342\) 0 0
\(343\) 13.9379 + 8.04707i 0.752577 + 0.434501i
\(344\) 20.4627 + 12.6510i 1.10327 + 0.682097i
\(345\) 0 0
\(346\) 12.3489 0.594861i 0.663879 0.0319799i
\(347\) 2.24912 + 12.7554i 0.120739 + 0.684745i 0.983748 + 0.179556i \(0.0574661\pi\)
−0.863009 + 0.505189i \(0.831423\pi\)
\(348\) 0 0
\(349\) −2.96273 2.48603i −0.158591 0.133074i 0.560039 0.828466i \(-0.310786\pi\)
−0.718630 + 0.695392i \(0.755231\pi\)
\(350\) 0.275159 0.115428i 0.0147079 0.00616990i
\(351\) 0 0
\(352\) 13.9990 6.17120i 0.746149 0.328926i
\(353\) −1.95578 + 2.33080i −0.104095 + 0.124056i −0.815577 0.578649i \(-0.803580\pi\)
0.711481 + 0.702705i \(0.248025\pi\)
\(354\) 0 0
\(355\) −5.48444 + 0.967055i −0.291084 + 0.0513260i
\(356\) 5.95932 + 12.4851i 0.315844 + 0.661711i
\(357\) 0 0
\(358\) −8.36880 + 1.89488i −0.442305 + 0.100147i
\(359\) −8.27544 + 14.3335i −0.436761 + 0.756492i −0.997438 0.0715425i \(-0.977208\pi\)
0.560676 + 0.828035i \(0.310541\pi\)
\(360\) 0 0
\(361\) 10.2995 + 17.8393i 0.542082 + 0.938913i
\(362\) 15.3890 + 16.6432i 0.808830 + 0.874746i
\(363\) 0 0
\(364\) 11.8721 + 0.931065i 0.622265 + 0.0488011i
\(365\) 9.02965 + 10.7611i 0.472633 + 0.563262i
\(366\) 0 0
\(367\) −0.754802 2.07380i −0.0394003 0.108252i 0.918432 0.395578i \(-0.129456\pi\)
−0.957833 + 0.287327i \(0.907234\pi\)
\(368\) 8.69586 5.23151i 0.453303 0.272711i
\(369\) 0 0
\(370\) 3.12731 24.6097i 0.162581 1.27940i
\(371\) 0.874327 4.95856i 0.0453928 0.257435i
\(372\) 0 0
\(373\) 9.85493 + 3.58690i 0.510269 + 0.185723i 0.584307 0.811533i \(-0.301366\pi\)
−0.0740382 + 0.997255i \(0.523589\pi\)
\(374\) −10.0553 15.6280i −0.519949 0.808107i
\(375\) 0 0
\(376\) 16.0425 + 29.8271i 0.827331 + 1.53822i
\(377\) 22.3819i 1.15273i
\(378\) 0 0
\(379\) 3.08694i 0.158565i −0.996852 0.0792826i \(-0.974737\pi\)
0.996852 0.0792826i \(-0.0252630\pi\)
\(380\) −28.4594 + 2.74823i −1.45994 + 0.140981i
\(381\) 0 0
\(382\) 13.9115 8.95088i 0.711774 0.457967i
\(383\) 15.0967 + 5.49476i 0.771406 + 0.280769i 0.697585 0.716503i \(-0.254258\pi\)
0.0738218 + 0.997271i \(0.476480\pi\)
\(384\) 0 0
\(385\) 1.39790 7.92791i 0.0712438 0.404044i
\(386\) 24.6515 + 3.13262i 1.25473 + 0.159446i
\(387\) 0 0
\(388\) −16.9547 4.37980i −0.860743 0.222351i
\(389\) −6.03724 16.5872i −0.306100 0.841004i −0.993407 0.114637i \(-0.963430\pi\)
0.687307 0.726367i \(-0.258793\pi\)
\(390\) 0 0
\(391\) −7.92365 9.44304i −0.400716 0.477555i
\(392\) 14.1897 4.68554i 0.716687 0.236656i
\(393\) 0 0
\(394\) 23.9327 22.1293i 1.20571 1.11486i
\(395\) 6.84213 + 11.8509i 0.344265 + 0.596285i
\(396\) 0 0
\(397\) 6.73828 11.6710i 0.338185 0.585753i −0.645907 0.763416i \(-0.723520\pi\)
0.984091 + 0.177663i \(0.0568538\pi\)
\(398\) 0.976415 + 4.31238i 0.0489433 + 0.216160i
\(399\) 0 0
\(400\) 0.209373 0.609152i 0.0104687 0.0304576i
\(401\) −6.65594 + 1.17362i −0.332382 + 0.0586079i −0.337349 0.941380i \(-0.609530\pi\)
0.00496671 + 0.999988i \(0.498419\pi\)
\(402\) 0 0
\(403\) −8.53836 + 10.1756i −0.425326 + 0.506884i
\(404\) 3.14191 + 3.08585i 0.156316 + 0.153527i
\(405\) 0 0
\(406\) 3.53039 + 8.41578i 0.175210 + 0.417668i
\(407\) −15.9970 13.4231i −0.792944 0.665359i
\(408\) 0 0
\(409\) 3.27211 + 18.5570i 0.161795 + 0.917586i 0.952307 + 0.305140i \(0.0987033\pi\)
−0.790512 + 0.612446i \(0.790186\pi\)
\(410\) 0.614061 + 12.7475i 0.0303263 + 0.629552i
\(411\) 0 0
\(412\) 3.20223 2.28546i 0.157763 0.112597i
\(413\) −13.0039 7.50779i −0.639879 0.369434i
\(414\) 0 0
\(415\) −18.7815 + 10.8435i −0.921947 + 0.532287i
\(416\) 18.5574 17.7893i 0.909852 0.872194i
\(417\) 0 0
\(418\) −11.0172 + 21.3985i −0.538870 + 1.04663i
\(419\) −14.6271 + 12.2736i −0.714582 + 0.599606i −0.925881 0.377816i \(-0.876675\pi\)
0.211299 + 0.977422i \(0.432231\pi\)
\(420\) 0 0
\(421\) 21.1833 7.71011i 1.03241 0.375768i 0.230414 0.973093i \(-0.425992\pi\)
0.801999 + 0.597325i \(0.203770\pi\)
\(422\) −14.4707 11.0006i −0.704421 0.535502i
\(423\) 0 0
\(424\) −6.73252 8.53292i −0.326960 0.414395i
\(425\) −0.770535 0.135866i −0.0373765 0.00659048i
\(426\) 0 0
\(427\) −0.0176216 + 0.0484150i −0.000852770 + 0.00234297i
\(428\) −6.70486 4.60541i −0.324092 0.222611i
\(429\) 0 0
\(430\) 8.09999 26.0989i 0.390616 1.25860i
\(431\) −10.8059 −0.520500 −0.260250 0.965541i \(-0.583805\pi\)
−0.260250 + 0.965541i \(0.583805\pi\)
\(432\) 0 0
\(433\) −37.5914 −1.80653 −0.903264 0.429084i \(-0.858836\pi\)
−0.903264 + 0.429084i \(0.858836\pi\)
\(434\) 1.60545 5.17291i 0.0770642 0.248308i
\(435\) 0 0
\(436\) 2.98425 + 2.04981i 0.142920 + 0.0981681i
\(437\) −5.46040 + 15.0023i −0.261206 + 0.717659i
\(438\) 0 0
\(439\) −31.4487 5.54525i −1.50096 0.264660i −0.638043 0.770000i \(-0.720256\pi\)
−0.862920 + 0.505340i \(0.831367\pi\)
\(440\) −10.7642 13.6427i −0.513163 0.650392i
\(441\) 0 0
\(442\) −24.8585 18.8974i −1.18240 0.898859i
\(443\) 35.3150 12.8536i 1.67786 0.610693i 0.684850 0.728684i \(-0.259868\pi\)
0.993015 + 0.117992i \(0.0376456\pi\)
\(444\) 0 0
\(445\) 12.0380 10.1011i 0.570656 0.478837i
\(446\) −6.69318 + 13.0000i −0.316931 + 0.615568i
\(447\) 0 0
\(448\) −4.17176 + 9.61608i −0.197097 + 0.454317i
\(449\) −6.99926 + 4.04102i −0.330315 + 0.190708i −0.655981 0.754777i \(-0.727745\pi\)
0.325666 + 0.945485i \(0.394412\pi\)
\(450\) 0 0
\(451\) 9.30376 + 5.37153i 0.438097 + 0.252935i
\(452\) 5.71460 4.07856i 0.268792 0.191839i
\(453\) 0 0
\(454\) −0.00653538 0.135670i −0.000306720 0.00636729i
\(455\) −2.34891 13.3213i −0.110118 0.624513i
\(456\) 0 0
\(457\) −1.89531 1.59036i −0.0886590 0.0743937i 0.597381 0.801958i \(-0.296208\pi\)
−0.686040 + 0.727564i \(0.740652\pi\)
\(458\) −14.7014 35.0453i −0.686950 1.63756i
\(459\) 0 0
\(460\) −8.22409 8.07735i −0.383450 0.376608i
\(461\) −5.80793 + 6.92163i −0.270502 + 0.322372i −0.884146 0.467211i \(-0.845259\pi\)
0.613643 + 0.789583i \(0.289703\pi\)
\(462\) 0 0
\(463\) −1.37343 + 0.242173i −0.0638287 + 0.0112547i −0.205471 0.978663i \(-0.565873\pi\)
0.141643 + 0.989918i \(0.454762\pi\)
\(464\) 18.6310 + 6.40371i 0.864923 + 0.297285i
\(465\) 0 0
\(466\) −2.25924 9.97803i −0.104657 0.462223i
\(467\) −10.5492 + 18.2717i −0.488158 + 0.845515i −0.999907 0.0136203i \(-0.995664\pi\)
0.511749 + 0.859135i \(0.328998\pi\)
\(468\) 0 0
\(469\) −7.81850 13.5420i −0.361025 0.625313i
\(470\) 28.2459 26.1174i 1.30289 1.20471i
\(471\) 0 0
\(472\) −30.7793 + 10.1636i −1.41673 + 0.467817i
\(473\) −14.7863 17.6216i −0.679875 0.810244i
\(474\) 0 0
\(475\) 0.346584 + 0.952230i 0.0159023 + 0.0436913i
\(476\) 12.3278 + 3.18456i 0.565042 + 0.145964i
\(477\) 0 0
\(478\) −17.8974 2.27433i −0.818606 0.104025i
\(479\) −2.53604 + 14.3826i −0.115874 + 0.657156i 0.870439 + 0.492276i \(0.163835\pi\)
−0.986314 + 0.164880i \(0.947276\pi\)
\(480\) 0 0
\(481\) −32.9731 12.0012i −1.50344 0.547208i
\(482\) −9.00641 + 5.79487i −0.410231 + 0.263949i
\(483\) 0 0
\(484\) 7.33740 0.708548i 0.333518 0.0322067i
\(485\) 19.8909i 0.903201i
\(486\) 0 0
\(487\) 0.282541i 0.0128032i −0.999980 0.00640158i \(-0.997962\pi\)
0.999980 0.00640158i \(-0.00203770\pi\)
\(488\) 0.0526832 + 0.0979513i 0.00238486 + 0.00443405i
\(489\) 0 0
\(490\) −9.18445 14.2745i −0.414911 0.644857i
\(491\) −14.5642 5.30093i −0.657273 0.239228i −0.00821432 0.999966i \(-0.502615\pi\)
−0.649058 + 0.760739i \(0.724837\pi\)
\(492\) 0 0
\(493\) 4.15549 23.5669i 0.187154 1.06140i
\(494\) −5.09819 + 40.1191i −0.229379 + 1.80505i
\(495\) 0 0
\(496\) −6.02742 10.0188i −0.270639 0.449858i
\(497\) −1.09855 3.01824i −0.0492766 0.135386i
\(498\) 0 0
\(499\) −26.2876 31.3283i −1.17679 1.40245i −0.896794 0.442448i \(-0.854110\pi\)
−0.279999 0.960000i \(-0.590334\pi\)
\(500\) 21.9189 + 1.71899i 0.980245 + 0.0768757i
\(501\) 0 0
\(502\) 11.4255 + 12.3566i 0.509944 + 0.551502i
\(503\) 9.96192 + 17.2546i 0.444180 + 0.769343i 0.997995 0.0632975i \(-0.0201617\pi\)
−0.553815 + 0.832640i \(0.686828\pi\)
\(504\) 0 0
\(505\) 2.50117 4.33215i 0.111301 0.192778i
\(506\) −9.46397 + 2.14285i −0.420725 + 0.0952611i
\(507\) 0 0
\(508\) 9.66532 + 20.2494i 0.428829 + 0.898424i
\(509\) −27.8835 + 4.91661i −1.23591 + 0.217925i −0.753164 0.657833i \(-0.771473\pi\)
−0.482750 + 0.875758i \(0.660362\pi\)
\(510\) 0 0
\(511\) −5.20783 + 6.20645i −0.230381 + 0.274557i
\(512\) 9.49862 + 20.5372i 0.419783 + 0.907624i
\(513\) 0 0
\(514\) −7.11925 + 2.98650i −0.314017 + 0.131729i
\(515\) −3.42330 2.87249i −0.150848 0.126577i
\(516\) 0 0
\(517\) −5.62335 31.8916i −0.247315 1.40259i
\(518\) 14.2912 0.688423i 0.627917 0.0302476i
\(519\) 0 0
\(520\) −24.8368 15.3553i −1.08917 0.673375i
\(521\) −18.4642 10.6603i −0.808931 0.467036i 0.0376537 0.999291i \(-0.488012\pi\)
−0.846584 + 0.532255i \(0.821345\pi\)
\(522\) 0 0
\(523\) 17.0213 9.82725i 0.744289 0.429716i −0.0793376 0.996848i \(-0.525281\pi\)
0.823627 + 0.567132i \(0.191947\pi\)
\(524\) 4.25276 9.33864i 0.185783 0.407961i
\(525\) 0 0
\(526\) 25.6102 + 13.1856i 1.11666 + 0.574922i
\(527\) −10.8797 + 9.12913i −0.473926 + 0.397671i
\(528\) 0 0
\(529\) 15.5644 5.66500i 0.676715 0.246304i
\(530\) −7.47171 + 9.82861i −0.324551 + 0.426927i
\(531\) 0 0
\(532\) −4.41120 15.8893i −0.191250 0.688888i
\(533\) 17.7774 + 3.13463i 0.770023 + 0.135776i
\(534\) 0 0
\(535\) −3.16012 + 8.68236i −0.136624 + 0.375371i
\(536\) −33.0509 6.86038i −1.42758 0.296323i
\(537\) 0 0
\(538\) −12.3221 3.82427i −0.531245 0.164876i
\(539\) −14.2884 −0.615447
\(540\) 0 0
\(541\) 41.1619 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(542\) −28.7189 8.91312i −1.23358 0.382851i
\(543\) 0 0
\(544\) 22.8428 15.2858i 0.979377 0.655373i
\(545\) 1.40653 3.86441i 0.0602492 0.165533i
\(546\) 0 0
\(547\) 7.15368 + 1.26139i 0.305869 + 0.0539330i 0.324476 0.945894i \(-0.394812\pi\)
−0.0186069 + 0.999827i \(0.505923\pi\)
\(548\) 3.48492 0.967487i 0.148869 0.0413290i
\(549\) 0 0
\(550\) −0.372736 + 0.490312i −0.0158935 + 0.0209070i
\(551\) −29.1241 + 10.6003i −1.24073 + 0.451588i
\(552\) 0 0
\(553\) −6.04591 + 5.07312i −0.257098 + 0.215731i
\(554\) 32.0929 + 16.5234i 1.36350 + 0.702010i
\(555\) 0 0
\(556\) −23.6635 10.7762i −1.00356 0.457014i
\(557\) 32.2123 18.5978i 1.36488 0.788012i 0.374609 0.927183i \(-0.377777\pi\)
0.990268 + 0.139170i \(0.0444436\pi\)
\(558\) 0 0
\(559\) −33.4743 19.3264i −1.41581 0.817419i
\(560\) 11.7609 + 1.85611i 0.496989 + 0.0784351i
\(561\) 0 0
\(562\) −17.4120 + 0.838759i −0.734481 + 0.0353809i
\(563\) 7.70741 + 43.7109i 0.324829 + 1.84219i 0.510876 + 0.859654i \(0.329321\pi\)
−0.186048 + 0.982541i \(0.559568\pi\)
\(564\) 0 0
\(565\) −6.10911 5.12615i −0.257012 0.215659i
\(566\) 21.7879 9.13997i 0.915816 0.384181i
\(567\) 0 0
\(568\) −6.44104 2.56663i −0.270260 0.107694i
\(569\) −18.9577 + 22.5929i −0.794749 + 0.947144i −0.999498 0.0316699i \(-0.989917\pi\)
0.204750 + 0.978814i \(0.434362\pi\)
\(570\) 0 0
\(571\) −12.9011 + 2.27481i −0.539893 + 0.0951977i −0.436944 0.899489i \(-0.643939\pi\)
−0.102949 + 0.994687i \(0.532828\pi\)
\(572\) −22.1829 + 10.5882i −0.927514 + 0.442714i
\(573\) 0 0
\(574\) −7.17888 + 1.62545i −0.299641 + 0.0678450i
\(575\) −0.204274 + 0.353814i −0.00851883 + 0.0147550i
\(576\) 0 0
\(577\) 2.02124 + 3.50090i 0.0841455 + 0.145744i 0.905027 0.425355i \(-0.139851\pi\)
−0.820881 + 0.571099i \(0.806517\pi\)
\(578\) −6.34420 6.86122i −0.263884 0.285389i
\(579\) 0 0
\(580\) 1.74963 22.3096i 0.0726493 0.926354i
\(581\) −8.03995 9.58164i −0.333553 0.397513i
\(582\) 0 0
\(583\) 3.55456 + 9.76606i 0.147215 + 0.404469i
\(584\) 2.51677 + 17.3076i 0.104145 + 0.716192i
\(585\) 0 0
\(586\) −2.37637 + 18.7003i −0.0981667 + 0.772502i
\(587\) −1.26345 + 7.16540i −0.0521483 + 0.295748i −0.999717 0.0238055i \(-0.992422\pi\)
0.947568 + 0.319553i \(0.103533\pi\)
\(588\) 0 0
\(589\) 17.2847 + 6.29113i 0.712206 + 0.259222i
\(590\) 19.9223 + 30.9634i 0.820190 + 1.27474i
\(591\) 0 0
\(592\) 19.4240 24.0136i 0.798320 0.986952i
\(593\) 2.93118i 0.120369i 0.998187 + 0.0601846i \(0.0191689\pi\)
−0.998187 + 0.0601846i \(0.980831\pi\)
\(594\) 0 0
\(595\) 14.4627i 0.592914i
\(596\) 0.494747 + 5.12338i 0.0202656 + 0.209862i
\(597\) 0 0
\(598\) −13.7118 + 8.82242i −0.560719 + 0.360775i
\(599\) −1.27568 0.464311i −0.0521230 0.0189712i 0.315827 0.948817i \(-0.397718\pi\)
−0.367950 + 0.929846i \(0.619940\pi\)
\(600\) 0 0
\(601\) 1.34379 7.62101i 0.0548144 0.310868i −0.945057 0.326906i \(-0.893994\pi\)
0.999871 + 0.0160378i \(0.00510522\pi\)
\(602\) 15.6350 + 1.98684i 0.637236 + 0.0809777i
\(603\) 0 0
\(604\) 2.62627 10.1666i 0.106861 0.413672i
\(605\) −2.86383 7.86832i −0.116431 0.319893i
\(606\) 0 0
\(607\) −7.34402 8.75226i −0.298085 0.355243i 0.596125 0.802891i \(-0.296706\pi\)
−0.894210 + 0.447648i \(0.852262\pi\)
\(608\) −31.9371 15.7223i −1.29522 0.637625i
\(609\) 0 0
\(610\) 0.0927586 0.0857688i 0.00375569 0.00347268i
\(611\) −27.2072 47.1242i −1.10068 1.90644i
\(612\) 0 0
\(613\) −12.0261 + 20.8298i −0.485729 + 0.841307i −0.999865 0.0164015i \(-0.994779\pi\)
0.514137 + 0.857708i \(0.328112\pi\)
\(614\) −6.79779 30.0227i −0.274336 1.21162i
\(615\) 0 0
\(616\) 6.67084 7.48025i 0.268776 0.301388i
\(617\) 47.5174 8.37860i 1.91298 0.337310i 0.915147 0.403119i \(-0.132074\pi\)
0.997832 + 0.0658095i \(0.0209630\pi\)
\(618\) 0 0
\(619\) 2.89879 3.45464i 0.116512 0.138854i −0.704636 0.709569i \(-0.748890\pi\)
0.821148 + 0.570715i \(0.193334\pi\)
\(620\) −9.30621 + 9.47528i −0.373747 + 0.380537i
\(621\) 0 0
\(622\) 7.80425 + 18.6038i 0.312922 + 0.745946i
\(623\) 6.94290 + 5.82578i 0.278161 + 0.233405i
\(624\) 0 0
\(625\) −4.47652 25.3876i −0.179061 1.01550i
\(626\) 1.44772 + 30.0535i 0.0578624 + 1.20118i
\(627\) 0 0
\(628\) 24.2747 + 34.0121i 0.968668 + 1.35723i
\(629\) −32.4907 18.7585i −1.29549 0.747951i
\(630\) 0 0
\(631\) −9.73065 + 5.61799i −0.387371 + 0.223649i −0.681020 0.732264i \(-0.738464\pi\)
0.293649 + 0.955913i \(0.405130\pi\)
\(632\) −0.513265 + 17.0295i −0.0204166 + 0.677396i
\(633\) 0 0
\(634\) 4.36366 8.47544i 0.173303 0.336603i
\(635\) 19.5242 16.3828i 0.774796 0.650131i
\(636\) 0 0
\(637\) −22.5610 + 8.21154i −0.893900 + 0.325353i
\(638\) −14.9963 11.4002i −0.593708 0.451337i
\(639\) 0 0
\(640\) 19.8881 16.2812i 0.786145 0.643570i
\(641\) 39.8883 + 7.03338i 1.57549 + 0.277802i 0.891958 0.452118i \(-0.149331\pi\)
0.683533 + 0.729919i \(0.260442\pi\)
\(642\) 0 0
\(643\) 11.0345 30.3169i 0.435157 1.19558i −0.507451 0.861681i \(-0.669412\pi\)
0.942608 0.333902i \(-0.108366\pi\)
\(644\) 3.76417 5.48013i 0.148329 0.215947i
\(645\) 0 0
\(646\) −12.8168 + 41.2968i −0.504269 + 1.62480i
\(647\) 7.00490 0.275391 0.137696 0.990475i \(-0.456030\pi\)
0.137696 + 0.990475i \(0.456030\pi\)
\(648\) 0 0
\(649\) 30.9936 1.21660
\(650\) −0.306757 + 0.988399i −0.0120320 + 0.0387682i
\(651\) 0 0
\(652\) 3.71763 5.41237i 0.145594 0.211965i
\(653\) 12.0075 32.9903i 0.469889 1.29101i −0.447951 0.894058i \(-0.647846\pi\)
0.917840 0.396951i \(-0.129932\pi\)
\(654\) 0 0
\(655\) −11.4788 2.02402i −0.448514 0.0790850i
\(656\) −7.69561 + 13.9013i −0.300463 + 0.542754i
\(657\) 0 0
\(658\) 17.6632 + 13.4276i 0.688584 + 0.523462i
\(659\) 8.41721 3.06361i 0.327888 0.119341i −0.172831 0.984952i \(-0.555291\pi\)
0.500719 + 0.865610i \(0.333069\pi\)
\(660\) 0 0
\(661\) −27.2876 + 22.8970i −1.06137 + 0.890592i −0.994243 0.107153i \(-0.965826\pi\)
−0.0671232 + 0.997745i \(0.521382\pi\)
\(662\) 15.6643 30.4245i 0.608812 1.18248i
\(663\) 0 0
\(664\) −26.9885 0.813429i −1.04736 0.0315672i
\(665\) −16.2217 + 9.36560i −0.629050 + 0.363182i
\(666\) 0 0
\(667\) −10.8214 6.24776i −0.419008 0.241914i
\(668\) 22.2494 + 31.1743i 0.860854 + 1.20617i
\(669\) 0 0
\(670\) 1.84488 + 38.2982i 0.0712738 + 1.47959i
\(671\) −0.0184669 0.104731i −0.000712907 0.00404310i
\(672\) 0 0
\(673\) −2.58660 2.17042i −0.0997062 0.0836634i 0.591572 0.806252i \(-0.298508\pi\)
−0.691278 + 0.722589i \(0.742952\pi\)
\(674\) −11.9547 28.4977i −0.460477 1.09769i
\(675\) 0 0
\(676\) −10.7226 + 10.9174i −0.412407 + 0.419900i
\(677\) 0.742831 0.885272i 0.0285493 0.0340238i −0.751581 0.659641i \(-0.770708\pi\)
0.780130 + 0.625617i \(0.215153\pi\)
\(678\) 0 0
\(679\) −11.2978 + 1.99210i −0.433569 + 0.0764499i
\(680\) −23.3009 20.7796i −0.893549 0.796861i
\(681\) 0 0
\(682\) 2.46885 + 10.9038i 0.0945372 + 0.417528i
\(683\) 21.5897 37.3945i 0.826107 1.43086i −0.0749630 0.997186i \(-0.523884\pi\)
0.901070 0.433673i \(-0.142783\pi\)
\(684\) 0 0
\(685\) −2.05411 3.55783i −0.0784836 0.135938i
\(686\) 16.7115 15.4522i 0.638046 0.589967i
\(687\) 0 0
\(688\) 25.6649 22.3350i 0.978466 0.851513i
\(689\) 11.2251 + 13.3775i 0.427641 + 0.509643i
\(690\) 0 0
\(691\) 4.39185 + 12.0665i 0.167074 + 0.459031i 0.994769 0.102146i \(-0.0325709\pi\)
−0.827696 + 0.561177i \(0.810349\pi\)
\(692\) 4.37303 16.9285i 0.166238 0.643524i
\(693\) 0 0
\(694\) 18.1710 + 2.30910i 0.689761 + 0.0876523i
\(695\) −5.12874 + 29.0865i −0.194544 + 1.10331i
\(696\) 0 0
\(697\) 18.1366 + 6.60119i 0.686974 + 0.250038i
\(698\) −4.59971 + 2.95953i −0.174102 + 0.112020i
\(699\) 0 0
\(700\) −0.0405611 0.420032i −0.00153307 0.0158757i
\(701\) 3.10248i 0.117179i −0.998282 0.0585896i \(-0.981340\pi\)
0.998282 0.0585896i \(-0.0186603\pi\)
\(702\) 0 0
\(703\) 48.5896i 1.83259i
\(704\) −2.46699 21.4948i −0.0929781 0.810114i
\(705\) 0 0
\(706\) 2.32828 + 3.61863i 0.0876262 + 0.136189i
\(707\) 2.71110 + 0.986759i 0.101961 + 0.0371109i
\(708\) 0 0
\(709\) 1.67631 9.50681i 0.0629550 0.357036i −0.937015 0.349289i \(-0.886423\pi\)
0.999970 0.00774652i \(-0.00246582\pi\)
\(710\) −0.992846 + 7.81299i −0.0372609 + 0.293216i
\(711\) 0 0
\(712\) 19.3613 2.81540i 0.725594 0.105512i
\(713\) 2.53639 + 6.96868i 0.0949887 + 0.260979i
\(714\) 0 0
\(715\) 17.9470 + 21.3884i 0.671181 + 0.799883i
\(716\) −0.948762 + 12.0977i −0.0354569 + 0.452112i
\(717\) 0 0
\(718\) 15.8907 + 17.1857i 0.593036 + 0.641365i
\(719\) 20.9190 + 36.2327i 0.780146 + 1.35125i 0.931856 + 0.362827i \(0.118188\pi\)
−0.151711 + 0.988425i \(0.548478\pi\)
\(720\) 0 0
\(721\) 1.28869 2.23207i 0.0479931 0.0831266i
\(722\) 28.4123 6.43316i 1.05740 0.239417i
\(723\) 0 0
\(724\) 28.9302 13.8088i 1.07518 0.513198i
\(725\) −0.781069 + 0.137724i −0.0290082 + 0.00511492i
\(726\) 0 0
\(727\) −0.315311 + 0.375773i −0.0116942 + 0.0139367i −0.771860 0.635793i \(-0.780673\pi\)
0.760166 + 0.649729i \(0.225118\pi\)
\(728\) 6.23417 15.6448i 0.231054 0.579835i
\(729\) 0 0
\(730\) 18.3197 7.68506i 0.678043 0.284437i
\(731\) −31.6584 26.5646i −1.17093 0.982526i
\(732\) 0 0
\(733\) 5.08882 + 28.8601i 0.187960 + 1.06597i 0.922093 + 0.386967i \(0.126477\pi\)
−0.734134 + 0.679005i \(0.762411\pi\)
\(734\) −3.11740 + 0.150169i −0.115065 + 0.00554285i
\(735\) 0 0
\(736\) −3.42080 13.9381i −0.126092 0.513766i
\(737\) 27.9521 + 16.1381i 1.02963 + 0.594456i
\(738\) 0 0
\(739\) 34.8536 20.1228i 1.28211 0.740227i 0.304877 0.952392i \(-0.401384\pi\)
0.977234 + 0.212164i \(0.0680512\pi\)
\(740\) −31.9284 14.5400i −1.17371 0.534501i
\(741\) 0 0
\(742\) −6.33082 3.25948i −0.232412 0.119659i
\(743\) 30.1377 25.2885i 1.10564 0.927746i 0.107853 0.994167i \(-0.465603\pi\)
0.997792 + 0.0664212i \(0.0211581\pi\)
\(744\) 0 0
\(745\) 5.49409 1.99969i 0.201288 0.0732628i
\(746\) 8.97574 11.8071i 0.328625 0.432287i
\(747\) 0 0
\(748\) −25.3232 + 7.03026i −0.925909 + 0.257052i
\(749\) −5.24795 0.925356i −0.191756 0.0338118i
\(750\) 0 0
\(751\) −9.37903 + 25.7687i −0.342246 + 0.940312i 0.642496 + 0.766289i \(0.277899\pi\)
−0.984742 + 0.174023i \(0.944323\pi\)
\(752\) 47.0111 9.16488i 1.71432 0.334209i
\(753\) 0 0
\(754\) −30.2303 9.38221i −1.10092 0.341680i
\(755\) −11.9272 −0.434077
\(756\) 0 0
\(757\) −13.2822 −0.482750 −0.241375 0.970432i \(-0.577598\pi\)
−0.241375 + 0.970432i \(0.577598\pi\)
\(758\) −4.16940 1.29400i −0.151439 0.0470004i
\(759\) 0 0
\(760\) −8.21789 + 39.5910i −0.298094 + 1.43612i
\(761\) −4.40238 + 12.0954i −0.159586 + 0.438459i −0.993555 0.113353i \(-0.963841\pi\)
0.833969 + 0.551812i \(0.186063\pi\)
\(762\) 0 0
\(763\) 2.33580 + 0.411864i 0.0845616 + 0.0149105i
\(764\) −6.25807 22.5418i −0.226409 0.815534i
\(765\) 0 0
\(766\) 13.7499 18.0872i 0.496804 0.653517i
\(767\) 48.9380 17.8120i 1.76705 0.643153i
\(768\) 0 0
\(769\) 22.2691 18.6860i 0.803045 0.673835i −0.145892 0.989301i \(-0.546605\pi\)
0.948937 + 0.315466i \(0.102161\pi\)
\(770\) −10.1219 5.21137i −0.364769 0.187805i
\(771\) 0 0
\(772\) 14.5647 31.9826i 0.524195 1.15108i
\(773\) 4.16046 2.40204i 0.149641 0.0863954i −0.423310 0.905985i \(-0.639132\pi\)
0.572951 + 0.819590i \(0.305798\pi\)
\(774\) 0 0
\(775\) 0.407642 + 0.235352i 0.0146429 + 0.00845410i
\(776\) −13.0228 + 21.0640i −0.467492 + 0.756155i
\(777\) 0 0
\(778\) −24.9344 + 1.20112i −0.893941 + 0.0430623i
\(779\) −4.34066 24.6171i −0.155520 0.882000i
\(780\) 0 0
\(781\) 5.07868 + 4.26152i 0.181730 + 0.152489i
\(782\) −16.0758 + 6.74375i −0.574870 + 0.241156i
\(783\) 0 0
\(784\) −0.380445 21.1295i −0.0135873 0.754626i
\(785\) 30.5098 36.3601i 1.08894 1.29775i
\(786\) 0 0
\(787\) 39.5137 6.96732i 1.40851 0.248358i 0.582874 0.812562i \(-0.301928\pi\)
0.825635 + 0.564204i \(0.190817\pi\)
\(788\) −19.8568 41.6013i −0.707371 1.48198i
\(789\) 0 0
\(790\) 18.8747 4.27364i 0.671532 0.152049i
\(791\) 2.29975 3.98328i 0.0817696 0.141629i
\(792\) 0 0
\(793\) −0.0893474 0.154754i −0.00317282 0.00549548i
\(794\) −12.9390 13.9935i −0.459188 0.496610i
\(795\) 0 0
\(796\) 6.23386 + 0.488890i 0.220953 + 0.0173283i
\(797\) 19.9816 + 23.8132i 0.707785 + 0.843505i 0.993384 0.114844i \(-0.0366368\pi\)
−0.285599 + 0.958349i \(0.592192\pi\)
\(798\) 0 0
\(799\) −19.8985 54.6706i −0.703957 1.93411i
\(800\) −0.734991 0.538141i −0.0259859 0.0190262i
\(801\) 0 0
\(802\) −1.20492 + 9.48189i −0.0425473 + 0.334817i
\(803\) 2.90395 16.4691i 0.102478 0.581183i
\(804\) 0 0
\(805\) −7.09642 2.58288i −0.250116 0.0910347i
\(806\) 10.1646 + 15.7979i 0.358034 + 0.556458i
\(807\) 0 0
\(808\) 5.48499 2.95011i 0.192961 0.103784i
\(809\) 26.7938i 0.942021i 0.882128 + 0.471010i \(0.156111\pi\)
−0.882128 + 0.471010i \(0.843889\pi\)
\(810\) 0 0
\(811\) 22.6335i 0.794769i 0.917652 + 0.397384i \(0.130082\pi\)
−0.917652 + 0.397384i \(0.869918\pi\)
\(812\) 12.8468 1.24057i 0.450833 0.0435354i
\(813\) 0 0
\(814\) −24.8358 + 15.9798i −0.870494 + 0.560090i
\(815\) −7.00868 2.55095i −0.245503 0.0893559i
\(816\) 0 0
\(817\) −9.29439 + 52.7111i −0.325169 + 1.84413i
\(818\) 26.4359 + 3.35937i 0.924309 + 0.117458i
\(819\) 0 0
\(820\) 17.4749 + 4.51418i 0.610249 + 0.157642i
\(821\) 4.37655 + 12.0245i 0.152743 + 0.419657i 0.992338 0.123556i \(-0.0394298\pi\)
−0.839595 + 0.543213i \(0.817208\pi\)
\(822\) 0 0
\(823\) 16.6888 + 19.8889i 0.581735 + 0.693284i 0.973995 0.226570i \(-0.0727512\pi\)
−0.392260 + 0.919854i \(0.628307\pi\)
\(824\) −1.74454 5.28316i −0.0607741 0.184048i
\(825\) 0 0
\(826\) −15.5915 + 14.4166i −0.542499 + 0.501619i
\(827\) −9.69134 16.7859i −0.337001 0.583703i 0.646866 0.762603i \(-0.276079\pi\)
−0.983867 + 0.178901i \(0.942746\pi\)
\(828\) 0 0
\(829\) −15.3678 + 26.6178i −0.533745 + 0.924474i 0.465478 + 0.885060i \(0.345883\pi\)
−0.999223 + 0.0394143i \(0.987451\pi\)
\(830\) 6.77292 + 29.9129i 0.235091 + 1.03829i
\(831\) 0 0
\(832\) −16.2483 32.5218i −0.563309 1.12749i
\(833\) −25.2801 + 4.45757i −0.875905 + 0.154446i
\(834\) 0 0
\(835\) 27.9642 33.3264i 0.967740 1.15331i
\(836\) 24.2838 + 23.8505i 0.839872 + 0.824886i
\(837\) 0 0
\(838\) 10.4460 + 24.9012i 0.360850 + 0.860199i
\(839\) −8.37643 7.02866i −0.289186 0.242656i 0.486640 0.873603i \(-0.338222\pi\)
−0.775826 + 0.630946i \(0.782667\pi\)
\(840\) 0 0
\(841\) 0.823502 + 4.67031i 0.0283966 + 0.161045i
\(842\) −1.53394 31.8435i −0.0528631 1.09740i
\(843\) 0 0
\(844\) −20.9240 + 14.9336i −0.720234 + 0.514037i
\(845\) 15.0532 + 8.69096i 0.517845 + 0.298978i
\(846\) 0 0
\(847\) 4.18228 2.41464i 0.143705 0.0829680i
\(848\) −14.3473 + 5.51646i −0.492687 + 0.189436i
\(849\) 0 0
\(850\) −0.506508 + 0.983778i −0.0173731 + 0.0337433i
\(851\) −15.0067 + 12.5921i −0.514423 + 0.431652i
\(852\) 0 0
\(853\) −6.04290 + 2.19943i −0.206905 + 0.0753072i −0.443394 0.896327i \(-0.646226\pi\)
0.236489 + 0.971634i \(0.424003\pi\)
\(854\) 0.0580054 + 0.0440958i 0.00198490 + 0.00150893i
\(855\) 0 0
\(856\) −9.03093 + 7.12545i −0.308671 + 0.243543i
\(857\) 3.12650 + 0.551287i 0.106799 + 0.0188316i 0.226792 0.973943i \(-0.427176\pi\)
−0.119993 + 0.992775i \(0.538287\pi\)
\(858\) 0 0
\(859\) −9.69336 + 26.6323i −0.330733 + 0.908682i 0.657188 + 0.753727i \(0.271746\pi\)
−0.987921 + 0.154956i \(0.950477\pi\)
\(860\) −31.8553 21.8807i −1.08626 0.746124i
\(861\) 0 0
\(862\) −4.52968 + 14.5950i −0.154281 + 0.497109i
\(863\) 53.5310 1.82222 0.911108 0.412168i \(-0.135228\pi\)
0.911108 + 0.412168i \(0.135228\pi\)
\(864\) 0 0
\(865\) −19.8602 −0.675267
\(866\) −15.7579 + 50.7732i −0.535474 + 1.72534i
\(867\) 0 0
\(868\) −6.31386 4.33684i −0.214306 0.147202i
\(869\) 5.57172 15.3082i 0.189008 0.519294i
\(870\) 0 0
\(871\) 53.4100 + 9.41763i 1.80973 + 0.319104i
\(872\) 4.01956 3.17145i 0.136119 0.107399i
\(873\) 0 0
\(874\) 17.9741 + 13.6639i 0.607984 + 0.462190i
\(875\) 13.5351 4.92637i 0.457570 0.166542i
\(876\) 0 0
\(877\) −22.8969 + 19.2128i −0.773175 + 0.648770i −0.941520 0.336958i \(-0.890602\pi\)
0.168345 + 0.985728i \(0.446158\pi\)
\(878\) −20.6726 + 40.1520i −0.697668 + 1.35506i
\(879\) 0 0
\(880\) −22.9389 + 8.81990i −0.773270 + 0.297319i
\(881\) 14.9002 8.60262i 0.502000 0.289830i −0.227539 0.973769i \(-0.573068\pi\)
0.729539 + 0.683939i \(0.239735\pi\)
\(882\) 0 0
\(883\) 19.9228 + 11.5024i 0.670455 + 0.387088i 0.796249 0.604969i \(-0.206814\pi\)
−0.125794 + 0.992056i \(0.540148\pi\)
\(884\) −35.9444 + 25.6538i −1.20894 + 0.862830i
\(885\) 0 0
\(886\) −2.55725 53.0866i −0.0859124 1.78348i
\(887\) −4.95616 28.1078i −0.166411 0.943766i −0.947597 0.319468i \(-0.896496\pi\)
0.781186 0.624299i \(-0.214615\pi\)
\(888\) 0 0
\(889\) 11.2606 + 9.44874i 0.377667 + 0.316901i
\(890\) −8.59695 20.4935i −0.288170 0.686944i
\(891\) 0 0
\(892\) 14.7529 + 14.4896i 0.493963 + 0.485149i
\(893\) −48.4340 + 57.7214i −1.62078 + 1.93157i
\(894\) 0 0
\(895\) 13.5745 2.39355i 0.453746 0.0800076i
\(896\) 11.2393 + 9.66557i 0.375479 + 0.322904i
\(897\) 0 0
\(898\) 2.52405 + 11.1476i 0.0842285 + 0.371999i
\(899\) −7.19828 + 12.4678i −0.240076 + 0.415824i
\(900\) 0 0
\(901\) 9.33569 + 16.1699i 0.311017 + 0.538697i
\(902\) 11.1551 10.3145i 0.371425 0.343436i
\(903\) 0 0
\(904\) −3.11326 9.42817i −0.103545 0.313576i
\(905\) −23.4059 27.8941i −0.778039 0.927231i
\(906\) 0 0
\(907\) 19.9408 + 54.7868i 0.662123 + 1.81917i 0.567027 + 0.823699i \(0.308093\pi\)
0.0950957 + 0.995468i \(0.469684\pi\)
\(908\) −0.185983 0.0480439i −0.00617206 0.00159439i
\(909\) 0 0
\(910\) −18.9772 2.41155i −0.629088 0.0799422i
\(911\) −0.684711 + 3.88319i −0.0226855 + 0.128656i −0.994047 0.108949i \(-0.965251\pi\)
0.971362 + 0.237605i \(0.0763625\pi\)
\(912\) 0 0
\(913\) 24.2606 + 8.83014i 0.802909 + 0.292235i
\(914\) −2.94252 + 1.89327i −0.0973300 + 0.0626237i
\(915\) 0 0
\(916\) −53.4969 + 5.16602i −1.76759 + 0.170690i
\(917\) 6.72250i 0.221997i
\(918\) 0 0
\(919\) 6.45794i 0.213028i −0.994311 0.106514i \(-0.966031\pi\)
0.994311 0.106514i \(-0.0339689\pi\)
\(920\) −14.3572 + 7.72203i −0.473342 + 0.254588i
\(921\) 0 0
\(922\) 6.91415 + 10.7460i 0.227705 + 0.353901i
\(923\) 10.4682 + 3.81011i 0.344564 + 0.125411i
\(924\) 0 0
\(925\) −0.215916 + 1.22452i −0.00709928 + 0.0402620i
\(926\) −0.248631 + 1.95655i −0.00817054 + 0.0642963i
\(927\) 0 0
\(928\) 16.4591 22.4798i 0.540297 0.737936i
\(929\) −19.4892 53.5462i −0.639420 1.75679i −0.653539 0.756893i \(-0.726716\pi\)
0.0141186 0.999900i \(-0.495506\pi\)
\(930\) 0 0
\(931\) 21.3703 + 25.4681i 0.700383 + 0.834684i
\(932\) −14.4240 1.13120i −0.472473 0.0370537i
\(933\) 0 0
\(934\) 20.2568 + 21.9076i 0.662823 + 0.716840i
\(935\) 14.9262 + 25.8530i 0.488140 + 0.845483i
\(936\) 0 0
\(937\) 9.57464 16.5838i 0.312790 0.541768i −0.666175 0.745795i \(-0.732070\pi\)
0.978965 + 0.204027i \(0.0654031\pi\)
\(938\) −21.5681 + 4.88348i −0.704224 + 0.159451i
\(939\) 0 0
\(940\) −23.4355 49.0987i −0.764381 1.60142i
\(941\) 18.4077 3.24578i 0.600075 0.105809i 0.134645 0.990894i \(-0.457011\pi\)
0.465430 + 0.885085i \(0.345900\pi\)
\(942\) 0 0
\(943\) 6.47800 7.72018i 0.210953 0.251404i
\(944\) 0.825237 + 45.8329i 0.0268592 + 1.49173i
\(945\) 0 0
\(946\) −29.9991 + 12.5845i −0.975354 + 0.409158i
\(947\) 21.8007 + 18.2930i 0.708428 + 0.594442i 0.924158 0.382011i \(-0.124768\pi\)
−0.215729 + 0.976453i \(0.569213\pi\)
\(948\) 0 0
\(949\) −4.87953 27.6732i −0.158396 0.898309i
\(950\) 1.43142 0.0689535i 0.0464415 0.00223715i
\(951\) 0 0
\(952\) 9.46890 15.3157i 0.306889 0.496385i
\(953\) 39.0891 + 22.5681i 1.26622 + 0.731052i 0.974270 0.225382i \(-0.0723630\pi\)
0.291949 + 0.956434i \(0.405696\pi\)
\(954\) 0 0
\(955\) −23.0134 + 13.2868i −0.744695 + 0.429950i
\(956\) −10.5742 + 23.2199i −0.341994 + 0.750984i
\(957\) 0 0
\(958\) 18.3629 + 9.45431i 0.593278 + 0.305455i
\(959\) 1.81507 1.52303i 0.0586118 0.0491811i
\(960\) 0 0
\(961\) −21.1016 + 7.68035i −0.680697 + 0.247753i
\(962\) −30.0315 + 39.5047i −0.968253 + 1.27368i
\(963\) 0 0
\(964\) 4.05152 + 14.5937i 0.130491 + 0.470032i
\(965\) −39.3121 6.93179i −1.26550 0.223142i
\(966\) 0 0
\(967\) −3.13528 + 8.61412i −0.100824 + 0.277011i −0.979841 0.199779i \(-0.935978\pi\)
0.879017 + 0.476790i \(0.158200\pi\)
\(968\) 2.11874 10.2073i 0.0680988 0.328077i
\(969\) 0 0
\(970\) 26.8659 + 8.33803i 0.862612 + 0.267718i
\(971\) 10.7197 0.344010 0.172005 0.985096i \(-0.444975\pi\)
0.172005 + 0.985096i \(0.444975\pi\)
\(972\) 0 0
\(973\) −17.0344 −0.546098
\(974\) −0.381617 0.118438i −0.0122278 0.00379499i
\(975\) 0 0
\(976\) 0.154383 0.0300972i 0.00494168 0.000963387i
\(977\) −17.0312 + 46.7929i −0.544877 + 1.49704i 0.295665 + 0.955292i \(0.404459\pi\)
−0.840542 + 0.541746i \(0.817763\pi\)
\(978\) 0 0
\(979\) −18.4233 3.24853i −0.588812 0.103823i
\(980\) −23.1300 + 6.42138i −0.738862 + 0.205123i
\(981\) 0 0
\(982\) −13.2649 + 17.4492i −0.423299 + 0.556826i
\(983\) −1.70953 + 0.622218i −0.0545255 + 0.0198457i −0.369139 0.929374i \(-0.620347\pi\)
0.314613 + 0.949220i \(0.398125\pi\)
\(984\) 0 0
\(985\) −40.1114 + 33.6575i −1.27806 + 1.07242i
\(986\) −30.0890 15.4916i −0.958229 0.493353i
\(987\) 0 0
\(988\) 52.0502 + 23.7034i 1.65594 + 0.754104i
\(989\) −18.6883 + 10.7897i −0.594252 + 0.343092i
\(990\) 0 0
\(991\) −48.8792 28.2204i −1.55270 0.896451i −0.997921 0.0644516i \(-0.979470\pi\)
−0.554777 0.831999i \(-0.687196\pi\)
\(992\) −16.0586 + 3.94123i −0.509862 + 0.125134i
\(993\) 0 0
\(994\) −4.53711 + 0.218558i −0.143908 + 0.00693225i
\(995\) −1.23338 6.99485i −0.0391008 0.221752i
\(996\) 0 0
\(997\) 9.04342 + 7.58833i 0.286408 + 0.240325i 0.774660 0.632378i \(-0.217921\pi\)
−0.488252 + 0.872703i \(0.662365\pi\)
\(998\) −53.3333 + 22.3731i −1.68824 + 0.708209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.d.107.10 96
3.2 odd 2 972.2.l.a.107.7 96
4.3 odd 2 inner 972.2.l.d.107.15 96
9.2 odd 6 972.2.l.b.755.15 96
9.4 even 3 108.2.l.a.47.13 yes 96
9.5 odd 6 324.2.l.a.143.4 96
9.7 even 3 972.2.l.c.755.2 96
12.11 even 2 972.2.l.a.107.2 96
27.4 even 9 972.2.l.b.215.13 96
27.5 odd 18 inner 972.2.l.d.863.15 96
27.13 even 9 324.2.l.a.179.9 96
27.14 odd 18 108.2.l.a.23.8 96
27.22 even 9 972.2.l.a.863.2 96
27.23 odd 18 972.2.l.c.215.4 96
36.7 odd 6 972.2.l.c.755.4 96
36.11 even 6 972.2.l.b.755.13 96
36.23 even 6 324.2.l.a.143.9 96
36.31 odd 6 108.2.l.a.47.8 yes 96
108.23 even 18 972.2.l.c.215.2 96
108.31 odd 18 972.2.l.b.215.15 96
108.59 even 18 inner 972.2.l.d.863.10 96
108.67 odd 18 324.2.l.a.179.4 96
108.95 even 18 108.2.l.a.23.13 yes 96
108.103 odd 18 972.2.l.a.863.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.8 96 27.14 odd 18
108.2.l.a.23.13 yes 96 108.95 even 18
108.2.l.a.47.8 yes 96 36.31 odd 6
108.2.l.a.47.13 yes 96 9.4 even 3
324.2.l.a.143.4 96 9.5 odd 6
324.2.l.a.143.9 96 36.23 even 6
324.2.l.a.179.4 96 108.67 odd 18
324.2.l.a.179.9 96 27.13 even 9
972.2.l.a.107.2 96 12.11 even 2
972.2.l.a.107.7 96 3.2 odd 2
972.2.l.a.863.2 96 27.22 even 9
972.2.l.a.863.7 96 108.103 odd 18
972.2.l.b.215.13 96 27.4 even 9
972.2.l.b.215.15 96 108.31 odd 18
972.2.l.b.755.13 96 36.11 even 6
972.2.l.b.755.15 96 9.2 odd 6
972.2.l.c.215.2 96 108.23 even 18
972.2.l.c.215.4 96 27.23 odd 18
972.2.l.c.755.2 96 9.7 even 3
972.2.l.c.755.4 96 36.7 odd 6
972.2.l.d.107.10 96 1.1 even 1 trivial
972.2.l.d.107.15 96 4.3 odd 2 inner
972.2.l.d.863.10 96 108.59 even 18 inner
972.2.l.d.863.15 96 27.5 odd 18 inner