Properties

Label 972.2.l.c.215.4
Level $972$
Weight $2$
Character 972.215
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 215.4
Character \(\chi\) \(=\) 972.215
Dual form 972.2.l.c.755.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18930 + 0.765217i) q^{2} +(0.828886 - 1.82015i) q^{4} +(-1.46028 + 1.74029i) q^{5} +(-0.448132 + 1.23123i) q^{7} +(0.407013 + 2.79899i) q^{8} +(0.405013 - 3.18717i) q^{10} +(2.07176 - 1.73841i) q^{11} +(0.789120 - 4.47532i) q^{13} +(-0.409195 - 1.80723i) q^{14} +(-2.62590 - 3.01739i) q^{16} +(4.20783 + 2.42939i) q^{17} +(5.44971 - 3.14639i) q^{19} +(1.95719 + 4.10043i) q^{20} +(-1.13369 + 3.65284i) q^{22} +(-2.38405 + 0.867725i) q^{23} +(-0.0279630 - 0.158586i) q^{25} +(2.48609 + 5.92636i) q^{26} +(1.86958 + 1.83622i) q^{28} +(-4.85038 + 0.855253i) q^{29} +(-0.999738 - 2.74676i) q^{31} +(5.43195 + 1.57922i) q^{32} +(-6.86340 + 0.330619i) q^{34} +(-1.48831 - 2.57783i) q^{35} +(-3.86074 + 6.68701i) q^{37} +(-4.07369 + 7.91222i) q^{38} +(-5.46541 - 3.37898i) q^{40} +(-3.91196 - 0.689785i) q^{41} +(5.46733 + 6.51571i) q^{43} +(-1.44692 - 5.21185i) q^{44} +(2.17137 - 2.85631i) q^{46} +(11.2519 + 4.09536i) q^{47} +(4.04720 + 3.39600i) q^{49} +(0.154609 + 0.167209i) q^{50} +(-7.49167 - 5.14585i) q^{52} -3.84281i q^{53} +6.14402i q^{55} +(-3.62861 - 0.753189i) q^{56} +(5.11412 - 4.72875i) q^{58} +(8.77893 + 7.36639i) q^{59} +(-0.0369509 - 0.0134490i) q^{61} +(3.29086 + 2.50171i) q^{62} +(-7.66868 + 2.27845i) q^{64} +(6.63603 + 7.90851i) q^{65} +(11.7530 + 2.07238i) q^{67} +(7.90967 - 5.64519i) q^{68} +(3.74265 + 1.92694i) q^{70} +(-1.22570 + 2.12297i) q^{71} +(3.09175 + 5.35507i) q^{73} +(-0.525413 - 10.9072i) q^{74} +(-1.20972 - 12.5273i) q^{76} +(1.21197 + 3.32985i) q^{77} +(5.93205 - 1.04598i) q^{79} +(9.08569 - 0.163591i) q^{80} +(5.18035 - 2.17314i) q^{82} +(-1.65768 - 9.40119i) q^{83} +(-10.3725 + 3.77526i) q^{85} +(-11.4882 - 3.56546i) q^{86} +(5.70902 + 5.09126i) q^{88} +(-5.99050 + 3.45862i) q^{89} +(5.15653 + 2.97713i) q^{91} +(-0.396719 + 5.05858i) q^{92} +(-16.5158 + 3.73953i) q^{94} +(-2.48245 + 14.0787i) q^{95} +(-6.70720 + 5.62801i) q^{97} +(-7.41203 - 0.941893i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} - 12 q^{14} + 3 q^{16} - 18 q^{17} + 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} - 6 q^{29} - 57 q^{32} - 3 q^{34} - 6 q^{37} + 45 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18930 + 0.765217i −0.840965 + 0.541090i
\(3\) 0 0
\(4\) 0.828886 1.82015i 0.414443 0.910075i
\(5\) −1.46028 + 1.74029i −0.653057 + 0.778282i −0.986372 0.164533i \(-0.947388\pi\)
0.333315 + 0.942816i \(0.391833\pi\)
\(6\) 0 0
\(7\) −0.448132 + 1.23123i −0.169378 + 0.465363i −0.995118 0.0986879i \(-0.968535\pi\)
0.825740 + 0.564050i \(0.190758\pi\)
\(8\) 0.407013 + 2.79899i 0.143901 + 0.989592i
\(9\) 0 0
\(10\) 0.405013 3.18717i 0.128076 1.00787i
\(11\) 2.07176 1.73841i 0.624658 0.524150i −0.274606 0.961557i \(-0.588547\pi\)
0.899264 + 0.437407i \(0.144103\pi\)
\(12\) 0 0
\(13\) 0.789120 4.47532i 0.218862 1.24123i −0.655215 0.755443i \(-0.727422\pi\)
0.874077 0.485788i \(-0.161467\pi\)
\(14\) −0.409195 1.80723i −0.109362 0.483002i
\(15\) 0 0
\(16\) −2.62590 3.01739i −0.656474 0.754349i
\(17\) 4.20783 + 2.42939i 1.02055 + 0.589214i 0.914263 0.405122i \(-0.132771\pi\)
0.106286 + 0.994336i \(0.466104\pi\)
\(18\) 0 0
\(19\) 5.44971 3.14639i 1.25025 0.721832i 0.279090 0.960265i \(-0.409967\pi\)
0.971159 + 0.238433i \(0.0766339\pi\)
\(20\) 1.95719 + 4.10043i 0.437641 + 0.916884i
\(21\) 0 0
\(22\) −1.13369 + 3.65284i −0.241703 + 0.778788i
\(23\) −2.38405 + 0.867725i −0.497110 + 0.180933i −0.578394 0.815758i \(-0.696320\pi\)
0.0812839 + 0.996691i \(0.474098\pi\)
\(24\) 0 0
\(25\) −0.0279630 0.158586i −0.00559260 0.0317172i
\(26\) 2.48609 + 5.92636i 0.487562 + 1.16226i
\(27\) 0 0
\(28\) 1.86958 + 1.83622i 0.353317 + 0.347013i
\(29\) −4.85038 + 0.855253i −0.900693 + 0.158816i −0.604775 0.796397i \(-0.706737\pi\)
−0.295918 + 0.955213i \(0.595626\pi\)
\(30\) 0 0
\(31\) −0.999738 2.74676i −0.179558 0.493332i 0.816961 0.576693i \(-0.195657\pi\)
−0.996519 + 0.0833604i \(0.973435\pi\)
\(32\) 5.43195 + 1.57922i 0.960242 + 0.279169i
\(33\) 0 0
\(34\) −6.86340 + 0.330619i −1.17706 + 0.0567006i
\(35\) −1.48831 2.57783i −0.251570 0.435732i
\(36\) 0 0
\(37\) −3.86074 + 6.68701i −0.634703 + 1.09934i 0.351876 + 0.936047i \(0.385544\pi\)
−0.986578 + 0.163290i \(0.947789\pi\)
\(38\) −4.07369 + 7.91222i −0.660839 + 1.28353i
\(39\) 0 0
\(40\) −5.46541 3.37898i −0.864158 0.534264i
\(41\) −3.91196 0.689785i −0.610946 0.107726i −0.140390 0.990096i \(-0.544836\pi\)
−0.470556 + 0.882370i \(0.655947\pi\)
\(42\) 0 0
\(43\) 5.46733 + 6.51571i 0.833760 + 0.993637i 0.999972 + 0.00754644i \(0.00240213\pi\)
−0.166211 + 0.986090i \(0.553153\pi\)
\(44\) −1.44692 5.21185i −0.218131 0.785716i
\(45\) 0 0
\(46\) 2.17137 2.85631i 0.320151 0.421140i
\(47\) 11.2519 + 4.09536i 1.64126 + 0.597370i 0.987259 0.159123i \(-0.0508668\pi\)
0.654001 + 0.756493i \(0.273089\pi\)
\(48\) 0 0
\(49\) 4.04720 + 3.39600i 0.578171 + 0.485143i
\(50\) 0.154609 + 0.167209i 0.0218651 + 0.0236470i
\(51\) 0 0
\(52\) −7.49167 5.14585i −1.03891 0.713600i
\(53\) 3.84281i 0.527851i −0.964543 0.263925i \(-0.914983\pi\)
0.964543 0.263925i \(-0.0850173\pi\)
\(54\) 0 0
\(55\) 6.14402i 0.828460i
\(56\) −3.62861 0.753189i −0.484893 0.100649i
\(57\) 0 0
\(58\) 5.11412 4.72875i 0.671517 0.620915i
\(59\) 8.77893 + 7.36639i 1.14292 + 0.959023i 0.999530 0.0306438i \(-0.00975574\pi\)
0.143388 + 0.989666i \(0.454200\pi\)
\(60\) 0 0
\(61\) −0.0369509 0.0134490i −0.00473108 0.00172197i 0.339654 0.940551i \(-0.389690\pi\)
−0.344385 + 0.938829i \(0.611912\pi\)
\(62\) 3.29086 + 2.50171i 0.417939 + 0.317718i
\(63\) 0 0
\(64\) −7.66868 + 2.27845i −0.958585 + 0.284806i
\(65\) 6.63603 + 7.90851i 0.823098 + 0.980930i
\(66\) 0 0
\(67\) 11.7530 + 2.07238i 1.43586 + 0.253181i 0.836795 0.547517i \(-0.184427\pi\)
0.599068 + 0.800698i \(0.295538\pi\)
\(68\) 7.90967 5.64519i 0.959188 0.684580i
\(69\) 0 0
\(70\) 3.74265 + 1.92694i 0.447332 + 0.230313i
\(71\) −1.22570 + 2.12297i −0.145463 + 0.251950i −0.929546 0.368707i \(-0.879801\pi\)
0.784082 + 0.620657i \(0.213134\pi\)
\(72\) 0 0
\(73\) 3.09175 + 5.35507i 0.361862 + 0.626764i 0.988267 0.152734i \(-0.0488077\pi\)
−0.626405 + 0.779498i \(0.715474\pi\)
\(74\) −0.525413 10.9072i −0.0610781 1.26793i
\(75\) 0 0
\(76\) −1.20972 12.5273i −0.138764 1.43698i
\(77\) 1.21197 + 3.32985i 0.138116 + 0.379472i
\(78\) 0 0
\(79\) 5.93205 1.04598i 0.667408 0.117682i 0.170329 0.985387i \(-0.445517\pi\)
0.497079 + 0.867705i \(0.334406\pi\)
\(80\) 9.08569 0.163591i 1.01581 0.0182900i
\(81\) 0 0
\(82\) 5.18035 2.17314i 0.572074 0.239983i
\(83\) −1.65768 9.40119i −0.181954 1.03191i −0.929806 0.368049i \(-0.880026\pi\)
0.747852 0.663865i \(-0.231085\pi\)
\(84\) 0 0
\(85\) −10.3725 + 3.77526i −1.12505 + 0.409485i
\(86\) −11.4882 3.56546i −1.23881 0.384474i
\(87\) 0 0
\(88\) 5.70902 + 5.09126i 0.608584 + 0.542731i
\(89\) −5.99050 + 3.45862i −0.634991 + 0.366613i −0.782683 0.622421i \(-0.786149\pi\)
0.147691 + 0.989034i \(0.452816\pi\)
\(90\) 0 0
\(91\) 5.15653 + 2.97713i 0.540552 + 0.312088i
\(92\) −0.396719 + 5.05858i −0.0413608 + 0.527394i
\(93\) 0 0
\(94\) −16.5158 + 3.73953i −1.70347 + 0.385703i
\(95\) −2.48245 + 14.0787i −0.254694 + 1.44444i
\(96\) 0 0
\(97\) −6.70720 + 5.62801i −0.681012 + 0.571437i −0.916302 0.400488i \(-0.868841\pi\)
0.235290 + 0.971925i \(0.424396\pi\)
\(98\) −7.41203 0.941893i −0.748728 0.0951455i
\(99\) 0 0
\(100\) −0.311829 0.0805529i −0.0311829 0.00805529i
\(101\) 0.753107 2.06914i 0.0749369 0.205888i −0.896568 0.442905i \(-0.853948\pi\)
0.971505 + 0.237018i \(0.0761700\pi\)
\(102\) 0 0
\(103\) 1.26442 1.50687i 0.124587 0.148476i −0.700145 0.714000i \(-0.746882\pi\)
0.824732 + 0.565524i \(0.191326\pi\)
\(104\) 12.8476 + 0.387223i 1.25981 + 0.0379703i
\(105\) 0 0
\(106\) 2.94059 + 4.57027i 0.285615 + 0.443904i
\(107\) −4.06709 −0.393180 −0.196590 0.980486i \(-0.562987\pi\)
−0.196590 + 0.980486i \(0.562987\pi\)
\(108\) 0 0
\(109\) −1.81021 −0.173387 −0.0866934 0.996235i \(-0.527630\pi\)
−0.0866934 + 0.996235i \(0.527630\pi\)
\(110\) −4.70151 7.30711i −0.448271 0.696705i
\(111\) 0 0
\(112\) 4.89187 1.88090i 0.462238 0.177728i
\(113\) −2.25644 + 2.68911i −0.212268 + 0.252971i −0.861664 0.507480i \(-0.830577\pi\)
0.649396 + 0.760450i \(0.275022\pi\)
\(114\) 0 0
\(115\) 1.97129 5.41607i 0.183824 0.505051i
\(116\) −2.46372 + 9.53733i −0.228751 + 0.885519i
\(117\) 0 0
\(118\) −16.0777 2.04309i −1.48007 0.188082i
\(119\) −4.87681 + 4.09213i −0.447057 + 0.375125i
\(120\) 0 0
\(121\) −0.640026 + 3.62977i −0.0581842 + 0.329979i
\(122\) 0.0542373 0.0122805i 0.00491041 0.00111182i
\(123\) 0 0
\(124\) −5.82818 0.457075i −0.523386 0.0410465i
\(125\) −9.52032 5.49656i −0.851523 0.491627i
\(126\) 0 0
\(127\) 9.71588 5.60947i 0.862145 0.497760i −0.00258477 0.999997i \(-0.500823\pi\)
0.864730 + 0.502237i \(0.167489\pi\)
\(128\) 7.37688 8.57798i 0.652030 0.758193i
\(129\) 0 0
\(130\) −13.9440 4.32762i −1.22297 0.379557i
\(131\) 4.82128 1.75480i 0.421237 0.153318i −0.122700 0.992444i \(-0.539155\pi\)
0.543937 + 0.839126i \(0.316933\pi\)
\(132\) 0 0
\(133\) 1.43175 + 8.11986i 0.124149 + 0.704081i
\(134\) −15.5638 + 6.52894i −1.34450 + 0.564015i
\(135\) 0 0
\(136\) −5.08720 + 12.7665i −0.436224 + 1.09472i
\(137\) 1.78089 0.314019i 0.152152 0.0268285i −0.0970534 0.995279i \(-0.530942\pi\)
0.249205 + 0.968451i \(0.419831\pi\)
\(138\) 0 0
\(139\) 4.44656 + 12.2168i 0.377152 + 1.03622i 0.972531 + 0.232772i \(0.0747796\pi\)
−0.595379 + 0.803445i \(0.702998\pi\)
\(140\) −5.92567 + 0.572222i −0.500810 + 0.0483616i
\(141\) 0 0
\(142\) −0.166806 3.46278i −0.0139981 0.290590i
\(143\) −6.14507 10.6436i −0.513877 0.890061i
\(144\) 0 0
\(145\) 5.59452 9.68999i 0.464599 0.804710i
\(146\) −7.77483 4.00295i −0.643449 0.331286i
\(147\) 0 0
\(148\) 8.97124 + 12.5699i 0.737431 + 1.03324i
\(149\) 2.53451 + 0.446902i 0.207635 + 0.0366116i 0.276498 0.961014i \(-0.410826\pi\)
−0.0688632 + 0.997626i \(0.521937\pi\)
\(150\) 0 0
\(151\) −3.37473 4.02185i −0.274632 0.327293i 0.611045 0.791596i \(-0.290749\pi\)
−0.885677 + 0.464303i \(0.846305\pi\)
\(152\) 11.0248 + 13.9731i 0.894231 + 1.13336i
\(153\) 0 0
\(154\) −3.98946 3.03279i −0.321479 0.244389i
\(155\) 6.24006 + 2.27120i 0.501214 + 0.182427i
\(156\) 0 0
\(157\) 16.0051 + 13.4298i 1.27734 + 1.07182i 0.993605 + 0.112916i \(0.0360190\pi\)
0.283738 + 0.958902i \(0.408425\pi\)
\(158\) −6.25460 + 5.78329i −0.497590 + 0.460094i
\(159\) 0 0
\(160\) −10.6805 + 7.14708i −0.844365 + 0.565027i
\(161\) 3.32418i 0.261982i
\(162\) 0 0
\(163\) 3.28308i 0.257151i 0.991700 + 0.128575i \(0.0410404\pi\)
−0.991700 + 0.128575i \(0.958960\pi\)
\(164\) −4.49808 + 6.54861i −0.351241 + 0.511361i
\(165\) 0 0
\(166\) 9.16544 + 9.91238i 0.711376 + 0.769350i
\(167\) −14.6697 12.3093i −1.13517 0.952523i −0.135902 0.990722i \(-0.543393\pi\)
−0.999270 + 0.0381993i \(0.987838\pi\)
\(168\) 0 0
\(169\) −7.18977 2.61686i −0.553059 0.201297i
\(170\) 9.44710 12.4271i 0.724560 0.953116i
\(171\) 0 0
\(172\) 16.3914 4.55058i 1.24983 0.346979i
\(173\) 5.61931 + 6.69683i 0.427228 + 0.509150i 0.936120 0.351680i \(-0.114389\pi\)
−0.508892 + 0.860830i \(0.669945\pi\)
\(174\) 0 0
\(175\) 0.207788 + 0.0366386i 0.0157073 + 0.00276962i
\(176\) −10.6857 1.68642i −0.805463 0.127119i
\(177\) 0 0
\(178\) 4.47793 8.69737i 0.335635 0.651896i
\(179\) 3.03371 5.25454i 0.226750 0.392743i −0.730093 0.683348i \(-0.760523\pi\)
0.956843 + 0.290605i \(0.0938565\pi\)
\(180\) 0 0
\(181\) −8.01419 13.8810i −0.595690 1.03177i −0.993449 0.114276i \(-0.963545\pi\)
0.397759 0.917490i \(-0.369788\pi\)
\(182\) −8.41083 + 0.405161i −0.623452 + 0.0300325i
\(183\) 0 0
\(184\) −3.39909 6.31977i −0.250585 0.465899i
\(185\) −5.99958 16.4837i −0.441098 1.21191i
\(186\) 0 0
\(187\) 12.9409 2.28182i 0.946330 0.166863i
\(188\) 16.7807 17.0856i 1.22386 1.24609i
\(189\) 0 0
\(190\) −7.82087 18.6435i −0.567385 1.35254i
\(191\) −2.03119 11.5195i −0.146972 0.833520i −0.965763 0.259428i \(-0.916466\pi\)
0.818791 0.574092i \(-0.194645\pi\)
\(192\) 0 0
\(193\) −16.5117 + 6.00978i −1.18854 + 0.432593i −0.859211 0.511622i \(-0.829045\pi\)
−0.329330 + 0.944215i \(0.606823\pi\)
\(194\) 3.67025 11.8259i 0.263508 0.849048i
\(195\) 0 0
\(196\) 9.53590 4.55161i 0.681136 0.325115i
\(197\) 19.9607 11.5243i 1.42214 0.821074i 0.425660 0.904883i \(-0.360042\pi\)
0.996482 + 0.0838089i \(0.0267085\pi\)
\(198\) 0 0
\(199\) 2.70763 + 1.56325i 0.191939 + 0.110816i 0.592890 0.805284i \(-0.297987\pi\)
−0.400951 + 0.916099i \(0.631320\pi\)
\(200\) 0.432499 0.142815i 0.0305823 0.0100985i
\(201\) 0 0
\(202\) 0.687672 + 3.03713i 0.0483844 + 0.213692i
\(203\) 1.12060 6.35522i 0.0786504 0.446049i
\(204\) 0 0
\(205\) 6.91298 5.80068i 0.482824 0.405137i
\(206\) −0.350690 + 2.75968i −0.0244337 + 0.192276i
\(207\) 0 0
\(208\) −15.5760 + 9.37064i −1.08000 + 0.649737i
\(209\) 5.82075 15.9924i 0.402630 1.10622i
\(210\) 0 0
\(211\) −8.26193 + 9.84619i −0.568775 + 0.677839i −0.971379 0.237535i \(-0.923661\pi\)
0.402604 + 0.915374i \(0.368105\pi\)
\(212\) −6.99450 3.18525i −0.480384 0.218764i
\(213\) 0 0
\(214\) 4.83701 3.11221i 0.330651 0.212746i
\(215\) −19.3231 −1.31782
\(216\) 0 0
\(217\) 3.82992 0.259992
\(218\) 2.15289 1.38520i 0.145812 0.0938179i
\(219\) 0 0
\(220\) 11.1830 + 5.09269i 0.753961 + 0.343349i
\(221\) 14.1928 16.9143i 0.954710 1.13778i
\(222\) 0 0
\(223\) −3.53622 + 9.71568i −0.236803 + 0.650610i 0.763187 + 0.646177i \(0.223633\pi\)
−0.999990 + 0.00443299i \(0.998589\pi\)
\(224\) −4.37862 + 5.98030i −0.292559 + 0.399576i
\(225\) 0 0
\(226\) 0.625830 4.92484i 0.0416296 0.327595i
\(227\) 0.0735740 0.0617359i 0.00488328 0.00409756i −0.640343 0.768089i \(-0.721208\pi\)
0.645226 + 0.763992i \(0.276763\pi\)
\(228\) 0 0
\(229\) 4.66642 26.4646i 0.308366 1.74883i −0.298856 0.954298i \(-0.596605\pi\)
0.607222 0.794532i \(-0.292284\pi\)
\(230\) 1.80001 + 7.94982i 0.118689 + 0.524195i
\(231\) 0 0
\(232\) −4.36801 13.2281i −0.286774 0.868465i
\(233\) 6.26494 + 3.61706i 0.410430 + 0.236962i 0.690974 0.722879i \(-0.257182\pi\)
−0.280545 + 0.959841i \(0.590515\pi\)
\(234\) 0 0
\(235\) −23.5581 + 13.6013i −1.53676 + 0.887248i
\(236\) 20.6847 9.87307i 1.34646 0.642682i
\(237\) 0 0
\(238\) 2.66864 8.59861i 0.172982 0.557365i
\(239\) −11.9878 + 4.36319i −0.775424 + 0.282231i −0.699263 0.714864i \(-0.746488\pi\)
−0.0761609 + 0.997096i \(0.524266\pi\)
\(240\) 0 0
\(241\) −1.31501 7.45780i −0.0847073 0.480399i −0.997419 0.0717956i \(-0.977127\pi\)
0.912712 0.408603i \(-0.133984\pi\)
\(242\) −2.01638 4.80666i −0.129618 0.308984i
\(243\) 0 0
\(244\) −0.0551074 + 0.0561085i −0.00352789 + 0.00359198i
\(245\) −11.8201 + 2.08420i −0.755157 + 0.133155i
\(246\) 0 0
\(247\) −9.78063 26.8721i −0.622327 1.70983i
\(248\) 7.28124 3.91622i 0.462359 0.248680i
\(249\) 0 0
\(250\) 15.5286 0.748033i 0.982116 0.0473098i
\(251\) 5.95007 + 10.3058i 0.375565 + 0.650498i 0.990411 0.138149i \(-0.0441153\pi\)
−0.614846 + 0.788647i \(0.710782\pi\)
\(252\) 0 0
\(253\) −3.43072 + 5.94217i −0.215687 + 0.373581i
\(254\) −7.26268 + 14.1061i −0.455701 + 0.885097i
\(255\) 0 0
\(256\) −2.20934 + 15.8467i −0.138084 + 0.990421i
\(257\) 5.37613 + 0.947957i 0.335354 + 0.0591320i 0.338790 0.940862i \(-0.389982\pi\)
−0.00343564 + 0.999994i \(0.501094\pi\)
\(258\) 0 0
\(259\) −6.50314 7.75014i −0.404086 0.481570i
\(260\) 19.8952 5.52332i 1.23385 0.342542i
\(261\) 0 0
\(262\) −4.39116 + 5.77632i −0.271287 + 0.356862i
\(263\) −19.1400 6.96640i −1.18022 0.429566i −0.323943 0.946077i \(-0.605009\pi\)
−0.856281 + 0.516510i \(0.827231\pi\)
\(264\) 0 0
\(265\) 6.68762 + 5.61158i 0.410817 + 0.344716i
\(266\) −7.91624 8.56138i −0.485376 0.524932i
\(267\) 0 0
\(268\) 13.5140 19.6745i 0.825497 1.20181i
\(269\) 9.12305i 0.556242i 0.960546 + 0.278121i \(0.0897116\pi\)
−0.960546 + 0.278121i \(0.910288\pi\)
\(270\) 0 0
\(271\) 21.2629i 1.29163i −0.763495 0.645813i \(-0.776518\pi\)
0.763495 0.645813i \(-0.223482\pi\)
\(272\) −3.71889 19.0760i −0.225491 1.15665i
\(273\) 0 0
\(274\) −1.87773 + 1.73623i −0.113438 + 0.104890i
\(275\) −0.333620 0.279940i −0.0201180 0.0168810i
\(276\) 0 0
\(277\) 23.9850 + 8.72982i 1.44112 + 0.524524i 0.940096 0.340911i \(-0.110735\pi\)
0.501022 + 0.865435i \(0.332958\pi\)
\(278\) −14.6368 11.1269i −0.877858 0.667348i
\(279\) 0 0
\(280\) 6.60954 5.21497i 0.394996 0.311654i
\(281\) −7.92327 9.44259i −0.472663 0.563298i 0.476057 0.879414i \(-0.342065\pi\)
−0.948720 + 0.316116i \(0.897621\pi\)
\(282\) 0 0
\(283\) 16.4533 + 2.90116i 0.978045 + 0.172456i 0.639749 0.768584i \(-0.279038\pi\)
0.338296 + 0.941040i \(0.390149\pi\)
\(284\) 2.84816 + 3.99065i 0.169007 + 0.236801i
\(285\) 0 0
\(286\) 15.4530 + 7.95613i 0.913755 + 0.470456i
\(287\) 2.60236 4.50743i 0.153613 0.266065i
\(288\) 0 0
\(289\) 3.30388 + 5.72249i 0.194346 + 0.336617i
\(290\) 0.761364 + 15.8054i 0.0447089 + 0.928122i
\(291\) 0 0
\(292\) 12.3098 1.18871i 0.720374 0.0695641i
\(293\) 4.55894 + 12.5256i 0.266336 + 0.731752i 0.998707 + 0.0508459i \(0.0161917\pi\)
−0.732370 + 0.680906i \(0.761586\pi\)
\(294\) 0 0
\(295\) −25.6394 + 4.52091i −1.49278 + 0.263218i
\(296\) −20.2882 8.08448i −1.17923 0.469901i
\(297\) 0 0
\(298\) −3.35627 + 1.40794i −0.194424 + 0.0815601i
\(299\) 2.00204 + 11.3541i 0.115781 + 0.656627i
\(300\) 0 0
\(301\) −10.4724 + 3.81166i −0.603622 + 0.219700i
\(302\) 7.09117 + 2.20080i 0.408051 + 0.126642i
\(303\) 0 0
\(304\) −23.8043 8.18182i −1.36527 0.469260i
\(305\) 0.0773639 0.0446661i 0.00442984 0.00255757i
\(306\) 0 0
\(307\) −18.8505 10.8833i −1.07585 0.621144i −0.146078 0.989273i \(-0.546665\pi\)
−0.929775 + 0.368129i \(0.879998\pi\)
\(308\) 7.06541 + 0.554105i 0.402589 + 0.0315730i
\(309\) 0 0
\(310\) −9.15928 + 2.07386i −0.520212 + 0.117787i
\(311\) 2.47718 14.0488i 0.140468 0.796633i −0.830427 0.557128i \(-0.811903\pi\)
0.970895 0.239506i \(-0.0769854\pi\)
\(312\) 0 0
\(313\) 16.2981 13.6758i 0.921225 0.772999i −0.0529965 0.998595i \(-0.516877\pi\)
0.974221 + 0.225596i \(0.0724328\pi\)
\(314\) −29.3116 3.72481i −1.65415 0.210203i
\(315\) 0 0
\(316\) 3.01315 11.6642i 0.169503 0.656164i
\(317\) −2.30546 + 6.33420i −0.129488 + 0.355764i −0.987446 0.157954i \(-0.949510\pi\)
0.857959 + 0.513718i \(0.171732\pi\)
\(318\) 0 0
\(319\) −8.56202 + 10.2038i −0.479381 + 0.571304i
\(320\) 7.23324 16.6729i 0.404350 0.932045i
\(321\) 0 0
\(322\) 2.54372 + 3.95346i 0.141756 + 0.220318i
\(323\) 30.5753 1.70125
\(324\) 0 0
\(325\) −0.731790 −0.0405924
\(326\) −2.51227 3.90458i −0.139142 0.216255i
\(327\) 0 0
\(328\) 0.338479 11.2303i 0.0186894 0.620089i
\(329\) −10.0847 + 12.0185i −0.555987 + 0.662600i
\(330\) 0 0
\(331\) 8.27597 22.7380i 0.454888 1.24980i −0.474357 0.880333i \(-0.657319\pi\)
0.929245 0.369463i \(-0.120458\pi\)
\(332\) −18.4856 4.77528i −1.01453 0.262077i
\(333\) 0 0
\(334\) 26.8660 + 3.41403i 1.47004 + 0.186807i
\(335\) −20.7693 + 17.4275i −1.13475 + 0.952165i
\(336\) 0 0
\(337\) 3.79458 21.5201i 0.206704 1.17228i −0.688032 0.725681i \(-0.741525\pi\)
0.894736 0.446596i \(-0.147364\pi\)
\(338\) 10.5533 2.38949i 0.574023 0.129971i
\(339\) 0 0
\(340\) −1.72603 + 22.0087i −0.0936072 + 1.19359i
\(341\) −6.84620 3.95266i −0.370743 0.214048i
\(342\) 0 0
\(343\) −13.9379 + 8.04707i −0.752577 + 0.434501i
\(344\) −16.0121 + 17.9550i −0.863316 + 0.968068i
\(345\) 0 0
\(346\) −11.8076 3.66457i −0.634780 0.197009i
\(347\) 12.1710 4.42990i 0.653376 0.237809i 0.00600211 0.999982i \(-0.498089\pi\)
0.647374 + 0.762173i \(0.275867\pi\)
\(348\) 0 0
\(349\) −0.671596 3.80881i −0.0359497 0.203881i 0.961543 0.274656i \(-0.0885639\pi\)
−0.997492 + 0.0707748i \(0.977453\pi\)
\(350\) −0.275159 + 0.115428i −0.0147079 + 0.00616990i
\(351\) 0 0
\(352\) 13.9990 6.17120i 0.746149 0.328926i
\(353\) 2.99642 0.528350i 0.159483 0.0281212i −0.0933363 0.995635i \(-0.529753\pi\)
0.252820 + 0.967513i \(0.418642\pi\)
\(354\) 0 0
\(355\) −1.90473 5.23319i −0.101092 0.277749i
\(356\) 1.32976 + 13.7704i 0.0704772 + 0.729830i
\(357\) 0 0
\(358\) 0.412862 + 8.57070i 0.0218204 + 0.452975i
\(359\) 8.27544 + 14.3335i 0.436761 + 0.756492i 0.997438 0.0715425i \(-0.0227922\pi\)
−0.560676 + 0.828035i \(0.689459\pi\)
\(360\) 0 0
\(361\) 10.2995 17.8393i 0.542082 0.938913i
\(362\) 20.1533 + 10.3761i 1.05923 + 0.545356i
\(363\) 0 0
\(364\) 9.69300 6.91797i 0.508051 0.362600i
\(365\) −13.8342 2.43935i −0.724116 0.127681i
\(366\) 0 0
\(367\) 1.41856 + 1.69058i 0.0740484 + 0.0882474i 0.801797 0.597597i \(-0.203878\pi\)
−0.727748 + 0.685844i \(0.759433\pi\)
\(368\) 8.87855 + 4.91508i 0.462826 + 0.256216i
\(369\) 0 0
\(370\) 19.7489 + 15.0132i 1.02670 + 0.780497i
\(371\) 4.73140 + 1.72209i 0.245642 + 0.0894064i
\(372\) 0 0
\(373\) −8.03381 6.74117i −0.415975 0.349044i 0.410655 0.911791i \(-0.365300\pi\)
−0.826629 + 0.562747i \(0.809745\pi\)
\(374\) −13.6445 + 12.6164i −0.705542 + 0.652376i
\(375\) 0 0
\(376\) −6.88319 + 33.1608i −0.354974 + 1.71014i
\(377\) 22.3819i 1.15273i
\(378\) 0 0
\(379\) 3.08694i 0.158565i −0.996852 0.0792826i \(-0.974737\pi\)
0.996852 0.0792826i \(-0.0252630\pi\)
\(380\) 23.5677 + 16.1881i 1.20900 + 0.830431i
\(381\) 0 0
\(382\) 11.2306 + 12.1458i 0.574608 + 0.621436i
\(383\) 12.3070 + 10.3268i 0.628856 + 0.527673i 0.900573 0.434704i \(-0.143147\pi\)
−0.271717 + 0.962377i \(0.587592\pi\)
\(384\) 0 0
\(385\) −7.56473 2.75333i −0.385534 0.140323i
\(386\) 15.0387 19.7825i 0.765449 1.00690i
\(387\) 0 0
\(388\) 4.68432 + 16.8731i 0.237810 + 0.856601i
\(389\) −11.3463 13.5220i −0.575280 0.685593i 0.397425 0.917635i \(-0.369904\pi\)
−0.972706 + 0.232042i \(0.925459\pi\)
\(390\) 0 0
\(391\) −12.1397 2.14056i −0.613933 0.108253i
\(392\) −7.85811 + 12.7103i −0.396894 + 0.641966i
\(393\) 0 0
\(394\) −14.9207 + 28.9802i −0.751696 + 1.46000i
\(395\) −6.84213 + 11.8509i −0.344265 + 0.596285i
\(396\) 0 0
\(397\) 6.73828 + 11.6710i 0.338185 + 0.585753i 0.984091 0.177663i \(-0.0568538\pi\)
−0.645907 + 0.763416i \(0.723520\pi\)
\(398\) −4.41642 + 0.212745i −0.221375 + 0.0106639i
\(399\) 0 0
\(400\) −0.405089 + 0.500806i −0.0202544 + 0.0250403i
\(401\) 2.31159 + 6.35103i 0.115435 + 0.317155i 0.983933 0.178537i \(-0.0571365\pi\)
−0.868498 + 0.495693i \(0.834914\pi\)
\(402\) 0 0
\(403\) −13.0815 + 2.30663i −0.651638 + 0.114901i
\(404\) −3.14191 3.08585i −0.156316 0.153527i
\(405\) 0 0
\(406\) 3.53039 + 8.41578i 0.175210 + 0.417668i
\(407\) 3.62623 + 20.5654i 0.179746 + 1.01939i
\(408\) 0 0
\(409\) −17.7069 + 6.44479i −0.875551 + 0.318674i −0.740413 0.672152i \(-0.765370\pi\)
−0.135138 + 0.990827i \(0.543148\pi\)
\(410\) −3.78286 + 12.1887i −0.186822 + 0.601957i
\(411\) 0 0
\(412\) −1.69468 3.55045i −0.0834907 0.174918i
\(413\) −13.0039 + 7.50779i −0.639879 + 0.369434i
\(414\) 0 0
\(415\) 18.7815 + 10.8435i 0.921947 + 0.532287i
\(416\) 11.3540 23.0635i 0.556674 1.13078i
\(417\) 0 0
\(418\) 5.31500 + 23.4739i 0.259965 + 1.14815i
\(419\) 3.31570 18.8043i 0.161983 0.918649i −0.790139 0.612928i \(-0.789991\pi\)
0.952121 0.305721i \(-0.0988974\pi\)
\(420\) 0 0
\(421\) −17.2688 + 14.4903i −0.841631 + 0.706212i −0.957930 0.287002i \(-0.907341\pi\)
0.116299 + 0.993214i \(0.462897\pi\)
\(422\) 2.29148 18.0323i 0.111547 0.877797i
\(423\) 0 0
\(424\) 10.7560 1.56408i 0.522357 0.0759582i
\(425\) 0.267604 0.735236i 0.0129807 0.0356642i
\(426\) 0 0
\(427\) 0.0331178 0.0394683i 0.00160268 0.00191000i
\(428\) −3.37115 + 7.40272i −0.162951 + 0.357824i
\(429\) 0 0
\(430\) 22.9810 14.7863i 1.10824 0.713061i
\(431\) 10.8059 0.520500 0.260250 0.965541i \(-0.416195\pi\)
0.260250 + 0.965541i \(0.416195\pi\)
\(432\) 0 0
\(433\) −37.5914 −1.80653 −0.903264 0.429084i \(-0.858836\pi\)
−0.903264 + 0.429084i \(0.858836\pi\)
\(434\) −4.55493 + 2.93072i −0.218644 + 0.140679i
\(435\) 0 0
\(436\) −1.50046 + 3.29486i −0.0718589 + 0.157795i
\(437\) −10.2622 + 12.2300i −0.490908 + 0.585041i
\(438\) 0 0
\(439\) −10.9220 + 30.0080i −0.521279 + 1.43220i 0.347818 + 0.937562i \(0.386923\pi\)
−0.869097 + 0.494641i \(0.835300\pi\)
\(440\) −17.1970 + 2.50070i −0.819837 + 0.119216i
\(441\) 0 0
\(442\) −3.93642 + 30.9768i −0.187236 + 1.47342i
\(443\) 28.7890 24.1569i 1.36781 1.14773i 0.394324 0.918972i \(-0.370979\pi\)
0.973484 0.228755i \(-0.0734655\pi\)
\(444\) 0 0
\(445\) 2.72879 15.4758i 0.129357 0.733621i
\(446\) −3.22897 14.2609i −0.152896 0.675272i
\(447\) 0 0
\(448\) 0.631278 10.4630i 0.0298251 0.494330i
\(449\) −6.99926 4.04102i −0.330315 0.190708i 0.325666 0.945485i \(-0.394412\pi\)
−0.655981 + 0.754777i \(0.727745\pi\)
\(450\) 0 0
\(451\) −9.30376 + 5.37153i −0.438097 + 0.252935i
\(452\) 3.02427 + 6.33602i 0.142250 + 0.298021i
\(453\) 0 0
\(454\) −0.0402605 + 0.129723i −0.00188952 + 0.00608820i
\(455\) −12.7110 + 4.62644i −0.595903 + 0.216891i
\(456\) 0 0
\(457\) −0.429633 2.43657i −0.0200974 0.113978i 0.973109 0.230346i \(-0.0739858\pi\)
−0.993206 + 0.116368i \(0.962875\pi\)
\(458\) 14.7014 + 35.0453i 0.686950 + 1.63756i
\(459\) 0 0
\(460\) −8.22409 8.07735i −0.383450 0.376608i
\(461\) 8.89827 1.56901i 0.414434 0.0730759i 0.0374563 0.999298i \(-0.488075\pi\)
0.376978 + 0.926222i \(0.376963\pi\)
\(462\) 0 0
\(463\) −0.476987 1.31051i −0.0221675 0.0609046i 0.928115 0.372293i \(-0.121428\pi\)
−0.950283 + 0.311388i \(0.899206\pi\)
\(464\) 15.3172 + 12.3897i 0.711085 + 0.575178i
\(465\) 0 0
\(466\) −10.2188 + 0.492251i −0.473375 + 0.0228031i
\(467\) 10.5492 + 18.2717i 0.488158 + 0.845515i 0.999907 0.0136203i \(-0.00433561\pi\)
−0.511749 + 0.859135i \(0.671002\pi\)
\(468\) 0 0
\(469\) −7.81850 + 13.5420i −0.361025 + 0.625313i
\(470\) 17.6098 34.2030i 0.812278 1.57767i
\(471\) 0 0
\(472\) −17.0453 + 27.5703i −0.784574 + 1.26903i
\(473\) 22.6539 + 3.99450i 1.04163 + 0.183667i
\(474\) 0 0
\(475\) −0.651364 0.776265i −0.0298866 0.0356175i
\(476\) 3.40597 + 12.2684i 0.156113 + 0.562323i
\(477\) 0 0
\(478\) 10.9183 14.3624i 0.499392 0.656921i
\(479\) −13.7237 4.99501i −0.627051 0.228228i 0.00889607 0.999960i \(-0.497168\pi\)
−0.635947 + 0.771732i \(0.719390\pi\)
\(480\) 0 0
\(481\) 26.8799 + 22.5549i 1.22562 + 1.02842i
\(482\) 7.27078 + 7.86331i 0.331175 + 0.358164i
\(483\) 0 0
\(484\) 6.07622 + 4.17361i 0.276192 + 0.189710i
\(485\) 19.8909i 0.903201i
\(486\) 0 0
\(487\) 0.282541i 0.0128032i −0.999980 0.00640158i \(-0.997962\pi\)
0.999980 0.00640158i \(-0.00203770\pi\)
\(488\) 0.0226042 0.108899i 0.00102324 0.00492963i
\(489\) 0 0
\(490\) 12.4628 11.5237i 0.563012 0.520586i
\(491\) −11.8728 9.96249i −0.535814 0.449601i 0.334290 0.942470i \(-0.391504\pi\)
−0.870103 + 0.492869i \(0.835948\pi\)
\(492\) 0 0
\(493\) −22.4873 8.18471i −1.01278 0.368621i
\(494\) 32.1951 + 24.4747i 1.44853 + 1.10117i
\(495\) 0 0
\(496\) −5.66284 + 10.2293i −0.254269 + 0.459309i
\(497\) −2.06459 2.46049i −0.0926097 0.110368i
\(498\) 0 0
\(499\) −40.2749 7.10155i −1.80295 0.317909i −0.831568 0.555423i \(-0.812557\pi\)
−0.971384 + 0.237513i \(0.923668\pi\)
\(500\) −17.8958 + 12.7724i −0.800326 + 0.571199i
\(501\) 0 0
\(502\) −14.9626 7.70366i −0.667815 0.343831i
\(503\) −9.96192 + 17.2546i −0.444180 + 0.769343i −0.997995 0.0632975i \(-0.979838\pi\)
0.553815 + 0.832640i \(0.313172\pi\)
\(504\) 0 0
\(505\) 2.50117 + 4.33215i 0.111301 + 0.192778i
\(506\) −0.466890 9.69229i −0.0207558 0.430875i
\(507\) 0 0
\(508\) −2.15672 22.3340i −0.0956889 0.990910i
\(509\) 9.68384 + 26.6061i 0.429229 + 1.17930i 0.946282 + 0.323343i \(0.104807\pi\)
−0.517053 + 0.855953i \(0.672971\pi\)
\(510\) 0 0
\(511\) −7.97886 + 1.40689i −0.352964 + 0.0622371i
\(512\) −9.49862 20.5372i −0.419783 0.907624i
\(513\) 0 0
\(514\) −7.11925 + 2.98650i −0.314017 + 0.131729i
\(515\) 0.775998 + 4.40091i 0.0341946 + 0.193927i
\(516\) 0 0
\(517\) 30.4306 11.0758i 1.33834 0.487115i
\(518\) 13.6647 + 4.24096i 0.600395 + 0.186337i
\(519\) 0 0
\(520\) −19.4349 + 21.7930i −0.852276 + 0.955688i
\(521\) −18.4642 + 10.6603i −0.808931 + 0.467036i −0.846584 0.532255i \(-0.821345\pi\)
0.0376537 + 0.999291i \(0.488012\pi\)
\(522\) 0 0
\(523\) −17.0213 9.82725i −0.744289 0.429716i 0.0793376 0.996848i \(-0.474719\pi\)
−0.823627 + 0.567132i \(0.808053\pi\)
\(524\) 0.802286 10.2300i 0.0350480 0.446899i
\(525\) 0 0
\(526\) 28.0941 6.36111i 1.22496 0.277357i
\(527\) 2.46622 13.9866i 0.107430 0.609268i
\(528\) 0 0
\(529\) −12.6883 + 10.6467i −0.551663 + 0.462900i
\(530\) −12.2477 1.55639i −0.532005 0.0676053i
\(531\) 0 0
\(532\) 15.9661 + 4.12444i 0.692220 + 0.178817i
\(533\) −6.17401 + 16.9630i −0.267426 + 0.734748i
\(534\) 0 0
\(535\) 5.93909 7.07793i 0.256769 0.306005i
\(536\) −1.01692 + 33.7401i −0.0439243 + 1.45735i
\(537\) 0 0
\(538\) −6.98111 10.8501i −0.300977 0.467780i
\(539\) 14.2884 0.615447
\(540\) 0 0
\(541\) 41.1619 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(542\) 16.2707 + 25.2880i 0.698887 + 1.08621i
\(543\) 0 0
\(544\) 19.0202 + 19.8414i 0.815483 + 0.850693i
\(545\) 2.64341 3.15030i 0.113231 0.134944i
\(546\) 0 0
\(547\) 2.48445 6.82596i 0.106227 0.291857i −0.875179 0.483799i \(-0.839256\pi\)
0.981406 + 0.191942i \(0.0614786\pi\)
\(548\) 0.904593 3.50178i 0.0386423 0.149588i
\(549\) 0 0
\(550\) 0.610991 + 0.0776424i 0.0260527 + 0.00331068i
\(551\) −23.7422 + 19.9221i −1.01145 + 0.848709i
\(552\) 0 0
\(553\) −1.37050 + 7.77247i −0.0582795 + 0.330519i
\(554\) −35.2056 + 7.97131i −1.49574 + 0.338668i
\(555\) 0 0
\(556\) 25.9221 + 2.03294i 1.09934 + 0.0862159i
\(557\) 32.2123 + 18.5978i 1.36488 + 0.788012i 0.990268 0.139170i \(-0.0444436\pi\)
0.374609 + 0.927183i \(0.377777\pi\)
\(558\) 0 0
\(559\) 33.4743 19.3264i 1.41581 0.817419i
\(560\) −3.87017 + 11.2599i −0.163545 + 0.475818i
\(561\) 0 0
\(562\) 16.6488 + 5.16708i 0.702288 + 0.217960i
\(563\) 41.7085 15.1806i 1.75780 0.639788i 0.757881 0.652392i \(-0.226235\pi\)
0.999921 + 0.0126049i \(0.00401237\pi\)
\(564\) 0 0
\(565\) −1.38482 7.85371i −0.0582599 0.330408i
\(566\) −21.7879 + 9.13997i −0.915816 + 0.384181i
\(567\) 0 0
\(568\) −6.44104 2.56663i −0.270260 0.107694i
\(569\) 29.0449 5.12140i 1.21763 0.214700i 0.472322 0.881426i \(-0.343416\pi\)
0.745303 + 0.666726i \(0.232305\pi\)
\(570\) 0 0
\(571\) −4.48049 12.3101i −0.187503 0.515160i 0.809949 0.586500i \(-0.199495\pi\)
−0.997452 + 0.0713402i \(0.977272\pi\)
\(572\) −24.4665 + 2.36265i −1.02299 + 0.0987872i
\(573\) 0 0
\(574\) 0.354159 + 7.35207i 0.0147823 + 0.306869i
\(575\) 0.204274 + 0.353814i 0.00851883 + 0.0147550i
\(576\) 0 0
\(577\) 2.02124 3.50090i 0.0841455 0.145744i −0.820881 0.571099i \(-0.806517\pi\)
0.905027 + 0.425355i \(0.139851\pi\)
\(578\) −8.30827 4.27759i −0.345578 0.177924i
\(579\) 0 0
\(580\) −13.0000 18.2148i −0.539796 0.756327i
\(581\) 12.3179 + 2.17198i 0.511033 + 0.0901090i
\(582\) 0 0
\(583\) −6.68038 7.96137i −0.276673 0.329726i
\(584\) −13.7304 + 10.8334i −0.568168 + 0.448288i
\(585\) 0 0
\(586\) −15.0068 11.4081i −0.619923 0.471266i
\(587\) −6.83715 2.48852i −0.282199 0.102712i 0.197043 0.980395i \(-0.436866\pi\)
−0.479242 + 0.877683i \(0.659088\pi\)
\(588\) 0 0
\(589\) −14.0907 11.8235i −0.580595 0.487177i
\(590\) 27.0335 24.9964i 1.11295 1.02909i
\(591\) 0 0
\(592\) 30.3152 5.91000i 1.24595 0.242899i
\(593\) 2.93118i 0.120369i −0.998187 0.0601846i \(-0.980831\pi\)
0.998187 0.0601846i \(-0.0191689\pi\)
\(594\) 0 0
\(595\) 14.4627i 0.592914i
\(596\) 2.91424 4.24275i 0.119372 0.173790i
\(597\) 0 0
\(598\) −11.0694 11.9715i −0.452662 0.489552i
\(599\) −1.03995 0.872619i −0.0424911 0.0356543i 0.621295 0.783577i \(-0.286607\pi\)
−0.663786 + 0.747923i \(0.731051\pi\)
\(600\) 0 0
\(601\) −7.27189 2.64675i −0.296626 0.107963i 0.189420 0.981896i \(-0.439339\pi\)
−0.486047 + 0.873933i \(0.661561\pi\)
\(602\) 9.53817 12.5469i 0.388747 0.511374i
\(603\) 0 0
\(604\) −10.1176 + 2.80887i −0.411681 + 0.114291i
\(605\) −5.38225 6.41431i −0.218819 0.260779i
\(606\) 0 0
\(607\) −11.2517 1.98398i −0.456692 0.0805271i −0.0594302 0.998232i \(-0.518928\pi\)
−0.397262 + 0.917705i \(0.630039\pi\)
\(608\) 34.5714 8.48476i 1.40205 0.344103i
\(609\) 0 0
\(610\) −0.0578299 + 0.112322i −0.00234146 + 0.00454777i
\(611\) 27.2072 47.1242i 1.10068 1.90644i
\(612\) 0 0
\(613\) −12.0261 20.8298i −0.485729 0.841307i 0.514137 0.857708i \(-0.328112\pi\)
−0.999865 + 0.0164015i \(0.994779\pi\)
\(614\) 30.7470 1.48112i 1.24085 0.0597733i
\(615\) 0 0
\(616\) −8.82693 + 4.74758i −0.355647 + 0.191285i
\(617\) −16.5026 45.3406i −0.664371 1.82534i −0.555909 0.831243i \(-0.687630\pi\)
−0.108462 0.994101i \(-0.534593\pi\)
\(618\) 0 0
\(619\) 4.44121 0.783104i 0.178507 0.0314756i −0.0836800 0.996493i \(-0.526667\pi\)
0.262187 + 0.965017i \(0.415556\pi\)
\(620\) 9.30621 9.47528i 0.373747 0.380537i
\(621\) 0 0
\(622\) 7.80425 + 18.6038i 0.312922 + 0.745946i
\(623\) −1.57383 8.92562i −0.0630541 0.357597i
\(624\) 0 0
\(625\) 24.2246 8.81702i 0.968982 0.352681i
\(626\) −8.91850 + 28.7362i −0.356455 + 1.14853i
\(627\) 0 0
\(628\) 37.7107 17.9998i 1.50482 0.718271i
\(629\) −32.4907 + 18.7585i −1.29549 + 0.747951i
\(630\) 0 0
\(631\) 9.73065 + 5.61799i 0.387371 + 0.223649i 0.681020 0.732264i \(-0.261536\pi\)
−0.293649 + 0.955913i \(0.594870\pi\)
\(632\) 5.34211 + 16.1780i 0.212498 + 0.643527i
\(633\) 0 0
\(634\) −2.10515 9.29747i −0.0836061 0.369250i
\(635\) −4.42578 + 25.0999i −0.175632 + 0.996058i
\(636\) 0 0
\(637\) 18.3919 15.4327i 0.728714 0.611464i
\(638\) 2.37471 18.6872i 0.0940155 0.739835i
\(639\) 0 0
\(640\) 4.15589 + 25.3642i 0.164276 + 1.00261i
\(641\) −13.8530 + 38.0609i −0.547163 + 1.50332i 0.290362 + 0.956917i \(0.406224\pi\)
−0.837524 + 0.546400i \(0.815998\pi\)
\(642\) 0 0
\(643\) −20.7380 + 24.7146i −0.817827 + 0.974648i −0.999963 0.00862524i \(-0.997254\pi\)
0.182136 + 0.983273i \(0.441699\pi\)
\(644\) −6.05051 2.75537i −0.238424 0.108577i
\(645\) 0 0
\(646\) −36.3633 + 23.3967i −1.43069 + 0.920531i
\(647\) −7.00490 −0.275391 −0.137696 0.990475i \(-0.543970\pi\)
−0.137696 + 0.990475i \(0.543970\pi\)
\(648\) 0 0
\(649\) 30.9936 1.21660
\(650\) 0.870320 0.559978i 0.0341368 0.0219641i
\(651\) 0 0
\(652\) 5.97570 + 2.72130i 0.234027 + 0.106574i
\(653\) 22.5667 26.8939i 0.883102 1.05244i −0.115150 0.993348i \(-0.536735\pi\)
0.998253 0.0590921i \(-0.0188206\pi\)
\(654\) 0 0
\(655\) −3.98654 + 10.9529i −0.155767 + 0.427967i
\(656\) 8.19106 + 13.6152i 0.319807 + 0.531586i
\(657\) 0 0
\(658\) 2.79702 22.0106i 0.109039 0.858062i
\(659\) 6.86177 5.75771i 0.267297 0.224289i −0.499281 0.866440i \(-0.666402\pi\)
0.766578 + 0.642152i \(0.221958\pi\)
\(660\) 0 0
\(661\) −6.18560 + 35.0803i −0.240592 + 1.36447i 0.589919 + 0.807463i \(0.299160\pi\)
−0.830511 + 0.557003i \(0.811951\pi\)
\(662\) 7.55689 + 33.3753i 0.293707 + 1.29717i
\(663\) 0 0
\(664\) 25.6391 8.46625i 0.994991 0.328554i
\(665\) −16.2217 9.36560i −0.629050 0.363182i
\(666\) 0 0
\(667\) 10.8214 6.24776i 0.419008 0.241914i
\(668\) −34.5643 + 16.4980i −1.33733 + 0.638326i
\(669\) 0 0
\(670\) 11.3652 36.6196i 0.439074 1.41474i
\(671\) −0.0999332 + 0.0363727i −0.00385788 + 0.00140415i
\(672\) 0 0
\(673\) −0.586335 3.32527i −0.0226015 0.128180i 0.971419 0.237370i \(-0.0762854\pi\)
−0.994021 + 0.109190i \(0.965174\pi\)
\(674\) 11.9547 + 28.4977i 0.460477 + 1.09769i
\(675\) 0 0
\(676\) −10.7226 + 10.9174i −0.412407 + 0.419900i
\(677\) −1.13808 + 0.200675i −0.0437401 + 0.00771256i −0.195475 0.980709i \(-0.562625\pi\)
0.151735 + 0.988421i \(0.451514\pi\)
\(678\) 0 0
\(679\) −3.92368 10.7802i −0.150577 0.413707i
\(680\) −14.7887 27.4958i −0.567119 1.05442i
\(681\) 0 0
\(682\) 11.1669 0.537922i 0.427601 0.0205981i
\(683\) −21.5897 37.3945i −0.826107 1.43086i −0.901070 0.433673i \(-0.857217\pi\)
0.0749630 0.997186i \(-0.476116\pi\)
\(684\) 0 0
\(685\) −2.05411 + 3.55783i −0.0784836 + 0.135938i
\(686\) 10.4187 20.2359i 0.397787 0.772612i
\(687\) 0 0
\(688\) 5.30382 33.6067i 0.202206 1.28124i
\(689\) −17.1978 3.03244i −0.655184 0.115527i
\(690\) 0 0
\(691\) −8.25397 9.83670i −0.313996 0.374206i 0.585846 0.810423i \(-0.300762\pi\)
−0.899842 + 0.436217i \(0.856318\pi\)
\(692\) 16.8470 4.67708i 0.640427 0.177796i
\(693\) 0 0
\(694\) −11.0852 + 14.5820i −0.420790 + 0.553525i
\(695\) −27.7540 10.1016i −1.05277 0.383177i
\(696\) 0 0
\(697\) −14.7851 12.4062i −0.560026 0.469918i
\(698\) 3.71330 + 4.01592i 0.140550 + 0.152005i
\(699\) 0 0
\(700\) 0.238920 0.347836i 0.00903032 0.0131469i
\(701\) 3.10248i 0.117179i 0.998282 + 0.0585896i \(0.0186603\pi\)
−0.998282 + 0.0585896i \(0.981340\pi\)
\(702\) 0 0
\(703\) 48.5896i 1.83259i
\(704\) −11.9267 + 18.0517i −0.449506 + 0.680349i
\(705\) 0 0
\(706\) −3.15935 + 2.92128i −0.118904 + 0.109944i
\(707\) 2.21011 + 1.85450i 0.0831197 + 0.0697457i
\(708\) 0 0
\(709\) −9.07129 3.30168i −0.340680 0.123997i 0.166014 0.986123i \(-0.446910\pi\)
−0.506694 + 0.862126i \(0.669132\pi\)
\(710\) 6.26983 + 4.76633i 0.235302 + 0.178877i
\(711\) 0 0
\(712\) −12.1188 15.3596i −0.454173 0.575627i
\(713\) 4.76686 + 5.68092i 0.178520 + 0.212752i
\(714\) 0 0
\(715\) 27.4965 + 4.84837i 1.02831 + 0.181319i
\(716\) −7.04946 9.87723i −0.263451 0.369129i
\(717\) 0 0
\(718\) −20.8102 10.7144i −0.776631 0.399856i
\(719\) −20.9190 + 36.2327i −0.780146 + 1.35125i 0.151711 + 0.988425i \(0.451522\pi\)
−0.931856 + 0.362827i \(0.881812\pi\)
\(720\) 0 0
\(721\) 1.28869 + 2.23207i 0.0479931 + 0.0831266i
\(722\) 1.40168 + 29.0978i 0.0521650 + 1.08291i
\(723\) 0 0
\(724\) −31.9083 + 3.08128i −1.18586 + 0.114515i
\(725\) 0.271262 + 0.745287i 0.0100744 + 0.0276793i
\(726\) 0 0
\(727\) −0.483085 + 0.0851808i −0.0179166 + 0.00315918i −0.182599 0.983187i \(-0.558451\pi\)
0.164683 + 0.986347i \(0.447340\pi\)
\(728\) −6.23417 + 15.6448i −0.231054 + 0.579835i
\(729\) 0 0
\(730\) 18.3197 7.68506i 0.678043 0.284437i
\(731\) 7.17638 + 40.6993i 0.265428 + 1.50532i
\(732\) 0 0
\(733\) −27.5380 + 10.0230i −1.01714 + 0.370208i −0.796170 0.605073i \(-0.793144\pi\)
−0.220969 + 0.975281i \(0.570922\pi\)
\(734\) −2.98076 0.925101i −0.110022 0.0341461i
\(735\) 0 0
\(736\) −14.3204 + 0.948498i −0.527857 + 0.0349621i
\(737\) 27.9521 16.1381i 1.02963 0.594456i
\(738\) 0 0
\(739\) −34.8536 20.1228i −1.28211 0.740227i −0.304877 0.952392i \(-0.598616\pi\)
−0.977234 + 0.212164i \(0.931949\pi\)
\(740\) −34.9758 2.74298i −1.28574 0.100834i
\(741\) 0 0
\(742\) −6.94484 + 1.57246i −0.254953 + 0.0577269i
\(743\) −6.83166 + 38.7443i −0.250629 + 1.42139i 0.556418 + 0.830902i \(0.312175\pi\)
−0.807047 + 0.590487i \(0.798936\pi\)
\(744\) 0 0
\(745\) −4.47882 + 3.75818i −0.164091 + 0.137689i
\(746\) 14.7131 + 1.86969i 0.538685 + 0.0684541i
\(747\) 0 0
\(748\) 6.57324 25.4457i 0.240341 0.930387i
\(749\) 1.82259 5.00754i 0.0665962 0.182971i
\(750\) 0 0
\(751\) 17.6268 21.0068i 0.643211 0.766549i −0.341663 0.939823i \(-0.610990\pi\)
0.984874 + 0.173273i \(0.0554344\pi\)
\(752\) −17.1890 44.7055i −0.626820 1.63024i
\(753\) 0 0
\(754\) −17.1270 26.6189i −0.623729 0.969402i
\(755\) 11.9272 0.434077
\(756\) 0 0
\(757\) −13.2822 −0.482750 −0.241375 0.970432i \(-0.577598\pi\)
−0.241375 + 0.970432i \(0.577598\pi\)
\(758\) 2.36218 + 3.67130i 0.0857981 + 0.133348i
\(759\) 0 0
\(760\) −40.4165 1.21815i −1.46606 0.0441868i
\(761\) −8.27376 + 9.86029i −0.299924 + 0.357435i −0.894867 0.446332i \(-0.852730\pi\)
0.594944 + 0.803767i \(0.297174\pi\)
\(762\) 0 0
\(763\) 0.811214 2.22879i 0.0293679 0.0806877i
\(764\) −22.6508 5.85125i −0.819477 0.211691i
\(765\) 0 0
\(766\) −22.5389 2.86416i −0.814364 0.103486i
\(767\) 39.8946 33.4755i 1.44051 1.20873i
\(768\) 0 0
\(769\) 5.04800 28.6286i 0.182036 1.03237i −0.747670 0.664071i \(-0.768827\pi\)
0.929705 0.368304i \(-0.120061\pi\)
\(770\) 11.1037 2.51411i 0.400148 0.0906021i
\(771\) 0 0
\(772\) −2.74764 + 35.0353i −0.0988897 + 1.26095i
\(773\) 4.16046 + 2.40204i 0.149641 + 0.0863954i 0.572951 0.819590i \(-0.305798\pi\)
−0.423310 + 0.905985i \(0.639132\pi\)
\(774\) 0 0
\(775\) −0.407642 + 0.235352i −0.0146429 + 0.00845410i
\(776\) −18.4826 16.4827i −0.663488 0.591694i
\(777\) 0 0
\(778\) 23.8415 + 7.39938i 0.854758 + 0.265280i
\(779\) −23.4894 + 8.54944i −0.841595 + 0.306315i
\(780\) 0 0
\(781\) 1.15124 + 6.52903i 0.0411948 + 0.233627i
\(782\) 16.0758 6.74375i 0.574870 0.241156i
\(783\) 0 0
\(784\) −0.380445 21.1295i −0.0135873 0.754626i
\(785\) −46.7437 + 8.24217i −1.66835 + 0.294176i
\(786\) 0 0
\(787\) 13.7229 + 37.7035i 0.489170 + 1.34398i 0.901433 + 0.432919i \(0.142516\pi\)
−0.412263 + 0.911065i \(0.635261\pi\)
\(788\) −4.43085 45.8839i −0.157843 1.63454i
\(789\) 0 0
\(790\) −0.931154 19.3301i −0.0331290 0.687733i
\(791\) −2.29975 3.98328i −0.0817696 0.141629i
\(792\) 0 0
\(793\) −0.0893474 + 0.154754i −0.00317282 + 0.00549548i
\(794\) −16.9447 8.72417i −0.601347 0.309609i
\(795\) 0 0
\(796\) 5.08967 3.63254i 0.180398 0.128752i
\(797\) −30.6136 5.39800i −1.08439 0.191207i −0.397234 0.917717i \(-0.630030\pi\)
−0.687156 + 0.726510i \(0.741141\pi\)
\(798\) 0 0
\(799\) 37.3969 + 44.5679i 1.32301 + 1.57670i
\(800\) 0.0985482 0.905591i 0.00348421 0.0320175i
\(801\) 0 0
\(802\) −7.60909 5.78444i −0.268686 0.204256i
\(803\) 15.7147 + 5.71967i 0.554559 + 0.201843i
\(804\) 0 0
\(805\) 5.78505 + 4.85423i 0.203896 + 0.171089i
\(806\) 13.7928 12.7535i 0.485832 0.449223i
\(807\) 0 0
\(808\) 6.09804 + 1.26577i 0.214528 + 0.0445296i
\(809\) 26.7938i 0.942021i −0.882128 0.471010i \(-0.843889\pi\)
0.882128 0.471010i \(-0.156111\pi\)
\(810\) 0 0
\(811\) 22.6335i 0.794769i 0.917652 + 0.397384i \(0.130082\pi\)
−0.917652 + 0.397384i \(0.869918\pi\)
\(812\) −10.6386 7.30740i −0.373342 0.256440i
\(813\) 0 0
\(814\) −20.0497 21.6836i −0.702741 0.760011i
\(815\) −5.71352 4.79422i −0.200136 0.167934i
\(816\) 0 0
\(817\) 50.2963 + 18.3064i 1.75965 + 0.640459i
\(818\) 16.1272 21.2144i 0.563876 0.741746i
\(819\) 0 0
\(820\) −4.82804 17.3908i −0.168603 0.607312i
\(821\) 8.22523 + 9.80244i 0.287062 + 0.342108i 0.890234 0.455504i \(-0.150541\pi\)
−0.603171 + 0.797612i \(0.706097\pi\)
\(822\) 0 0
\(823\) 25.5687 + 4.50845i 0.891269 + 0.157155i 0.600487 0.799635i \(-0.294973\pi\)
0.290782 + 0.956789i \(0.406085\pi\)
\(824\) 4.73235 + 2.92577i 0.164859 + 0.101924i
\(825\) 0 0
\(826\) 9.72046 18.8798i 0.338218 0.656913i
\(827\) 9.69134 16.7859i 0.337001 0.583703i −0.646866 0.762603i \(-0.723921\pi\)
0.983867 + 0.178901i \(0.0572542\pi\)
\(828\) 0 0
\(829\) −15.3678 26.6178i −0.533745 0.924474i −0.999223 0.0394143i \(-0.987451\pi\)
0.465478 0.885060i \(-0.345883\pi\)
\(830\) −30.6345 + 1.47570i −1.06334 + 0.0512225i
\(831\) 0 0
\(832\) 4.14529 + 36.1178i 0.143712 + 1.25216i
\(833\) 8.77970 + 24.1220i 0.304199 + 0.835779i
\(834\) 0 0
\(835\) 42.8436 7.55448i 1.48266 0.261434i
\(836\) −24.2838 23.8505i −0.839872 0.824886i
\(837\) 0 0
\(838\) 10.4460 + 24.9012i 0.360850 + 0.860199i
\(839\) 1.89878 + 10.7685i 0.0655533 + 0.371771i 0.999882 + 0.0153587i \(0.00488902\pi\)
−0.934329 + 0.356412i \(0.884000\pi\)
\(840\) 0 0
\(841\) −4.45636 + 1.62198i −0.153668 + 0.0559304i
\(842\) 9.44968 30.4477i 0.325657 1.04930i
\(843\) 0 0
\(844\) 11.0733 + 23.1993i 0.381160 + 0.798554i
\(845\) 15.0532 8.69096i 0.517845 0.298978i
\(846\) 0 0
\(847\) −4.18228 2.41464i −0.143705 0.0829680i
\(848\) −11.5953 + 10.0908i −0.398184 + 0.346520i
\(849\) 0 0
\(850\) 0.244353 + 1.07919i 0.00838123 + 0.0370161i
\(851\) 3.40174 19.2923i 0.116610 0.661330i
\(852\) 0 0
\(853\) 4.92621 4.13359i 0.168670 0.141531i −0.554545 0.832154i \(-0.687108\pi\)
0.723216 + 0.690622i \(0.242663\pi\)
\(854\) −0.00918534 + 0.0722820i −0.000314316 + 0.00247344i
\(855\) 0 0
\(856\) −1.65536 11.3837i −0.0565790 0.389088i
\(857\) −1.08582 + 2.98327i −0.0370910 + 0.101907i −0.956856 0.290564i \(-0.906157\pi\)
0.919765 + 0.392470i \(0.128379\pi\)
\(858\) 0 0
\(859\) 18.2176 21.7108i 0.621575 0.740765i −0.359765 0.933043i \(-0.617143\pi\)
0.981340 + 0.192278i \(0.0615876\pi\)
\(860\) −16.0166 + 35.1709i −0.546162 + 1.19932i
\(861\) 0 0
\(862\) −12.8514 + 8.26882i −0.437722 + 0.281637i
\(863\) −53.5310 −1.82222 −0.911108 0.412168i \(-0.864772\pi\)
−0.911108 + 0.412168i \(0.864772\pi\)
\(864\) 0 0
\(865\) −19.8602 −0.675267
\(866\) 44.7076 28.7656i 1.51923 0.977495i
\(867\) 0 0
\(868\) 3.17456 6.97102i 0.107752 0.236612i
\(869\) 10.4714 12.4793i 0.355218 0.423333i
\(870\) 0 0
\(871\) 18.5491 50.9633i 0.628513 1.72682i
\(872\) −0.736780 5.06676i −0.0249505 0.171582i
\(873\) 0 0
\(874\) 2.84626 22.3980i 0.0962761 0.757624i
\(875\) 11.0339 9.25855i 0.373014 0.312996i
\(876\) 0 0
\(877\) −5.19031 + 29.4357i −0.175264 + 0.993974i 0.762574 + 0.646901i \(0.223935\pi\)
−0.937838 + 0.347073i \(0.887176\pi\)
\(878\) −9.97303 44.0463i −0.336574 1.48649i
\(879\) 0 0
\(880\) 18.5389 16.1336i 0.624947 0.543862i
\(881\) 14.9002 + 8.60262i 0.502000 + 0.289830i 0.729539 0.683939i \(-0.239735\pi\)
−0.227539 + 0.973769i \(0.573068\pi\)
\(882\) 0 0
\(883\) −19.9228 + 11.5024i −0.670455 + 0.387088i −0.796249 0.604969i \(-0.793186\pi\)
0.125794 + 0.992056i \(0.459852\pi\)
\(884\) −19.0224 39.8530i −0.639792 1.34040i
\(885\) 0 0
\(886\) −15.7536 + 50.7597i −0.529254 + 1.70530i
\(887\) −26.8201 + 9.76172i −0.900531 + 0.327767i −0.750466 0.660909i \(-0.770171\pi\)
−0.150066 + 0.988676i \(0.547948\pi\)
\(888\) 0 0
\(889\) 2.55256 + 14.4763i 0.0856102 + 0.485520i
\(890\) 8.59695 + 20.4935i 0.288170 + 0.686944i
\(891\) 0 0
\(892\) 14.7529 + 14.4896i 0.493963 + 0.485149i
\(893\) 74.2053 13.0844i 2.48318 0.437852i
\(894\) 0 0
\(895\) 4.71438 + 12.9526i 0.157584 + 0.432959i
\(896\) 7.25567 + 12.9267i 0.242395 + 0.431852i
\(897\) 0 0
\(898\) 11.4165 0.549947i 0.380974 0.0183520i
\(899\) 7.19828 + 12.4678i 0.240076 + 0.415824i
\(900\) 0 0
\(901\) 9.33569 16.1699i 0.311017 0.538697i
\(902\) 6.95461 13.5078i 0.231563 0.449760i
\(903\) 0 0
\(904\) −8.44520 5.22123i −0.280883 0.173656i
\(905\) 35.8599 + 6.32307i 1.19202 + 0.210186i
\(906\) 0 0
\(907\) −37.4764 44.6626i −1.24438 1.48300i −0.814553 0.580089i \(-0.803018\pi\)
−0.429831 0.902909i \(-0.641427\pi\)
\(908\) −0.0513842 0.185088i −0.00170525 0.00614236i
\(909\) 0 0
\(910\) 11.5771 15.2290i 0.383776 0.504835i
\(911\) −3.70530 1.34862i −0.122762 0.0446817i 0.279909 0.960027i \(-0.409696\pi\)
−0.402671 + 0.915345i \(0.631918\pi\)
\(912\) 0 0
\(913\) −19.7774 16.5952i −0.654537 0.549222i
\(914\) 2.37547 + 2.56906i 0.0785734 + 0.0849768i
\(915\) 0 0
\(916\) −44.3016 30.4297i −1.46377 1.00543i
\(917\) 6.72250i 0.221997i
\(918\) 0 0
\(919\) 6.45794i 0.213028i −0.994311 0.106514i \(-0.966031\pi\)
0.994311 0.106514i \(-0.0339689\pi\)
\(920\) 15.9619 + 3.31320i 0.526247 + 0.109233i
\(921\) 0 0
\(922\) −9.38212 + 8.67513i −0.308984 + 0.285700i
\(923\) 8.53374 + 7.16066i 0.280891 + 0.235696i
\(924\) 0 0
\(925\) 1.16842 + 0.425272i 0.0384175 + 0.0139828i
\(926\) 1.57011 + 1.19360i 0.0515970 + 0.0392240i
\(927\) 0 0
\(928\) −27.6976 3.01411i −0.909220 0.0989431i
\(929\) −36.6277 43.6512i −1.20172 1.43215i −0.872998 0.487723i \(-0.837828\pi\)
−0.328719 0.944428i \(-0.606617\pi\)
\(930\) 0 0
\(931\) 32.7412 + 5.77316i 1.07305 + 0.189208i
\(932\) 11.7765 8.40500i 0.385753 0.275315i
\(933\) 0 0
\(934\) −26.5280 13.6582i −0.868023 0.446910i
\(935\) −14.9262 + 25.8530i −0.488140 + 0.845483i
\(936\) 0 0
\(937\) 9.57464 + 16.5838i 0.312790 + 0.541768i 0.978965 0.204027i \(-0.0654031\pi\)
−0.666175 + 0.745795i \(0.732070\pi\)
\(938\) −1.06403 22.0884i −0.0347418 0.721213i
\(939\) 0 0
\(940\) 5.22938 + 54.1531i 0.170564 + 1.76628i
\(941\) −6.39294 17.5645i −0.208404 0.572585i 0.790817 0.612053i \(-0.209656\pi\)
−0.999221 + 0.0394679i \(0.987434\pi\)
\(942\) 0 0
\(943\) 9.92488 1.75002i 0.323198 0.0569886i
\(944\) −0.825237 45.8329i −0.0268592 1.49173i
\(945\) 0 0
\(946\) −29.9991 + 12.5845i −0.975354 + 0.409158i
\(947\) −4.94182 28.0265i −0.160588 0.910738i −0.953498 0.301400i \(-0.902546\pi\)
0.792910 0.609338i \(-0.208565\pi\)
\(948\) 0 0
\(949\) 26.4054 9.61079i 0.857157 0.311980i
\(950\) 1.36868 + 0.424780i 0.0444059 + 0.0137817i
\(951\) 0 0
\(952\) −13.4388 11.9846i −0.435553 0.388423i
\(953\) 39.0891 22.5681i 1.26622 0.731052i 0.291949 0.956434i \(-0.405696\pi\)
0.974270 + 0.225382i \(0.0723630\pi\)
\(954\) 0 0
\(955\) 23.0134 + 13.2868i 0.744695 + 0.429950i
\(956\) −1.99483 + 25.4361i −0.0645173 + 0.822663i
\(957\) 0 0
\(958\) 20.1439 4.56101i 0.650820 0.147360i
\(959\) −0.411444 + 2.33341i −0.0132862 + 0.0753499i
\(960\) 0 0
\(961\) 17.2022 14.4343i 0.554909 0.465624i
\(962\) −49.2278 6.25568i −1.58717 0.201691i
\(963\) 0 0
\(964\) −14.6643 3.78814i −0.472305 0.122008i
\(965\) 13.6530 37.5112i 0.439504 1.20753i
\(966\) 0 0
\(967\) 5.89240 7.02229i 0.189487 0.225822i −0.662934 0.748678i \(-0.730689\pi\)
0.852421 + 0.522856i \(0.175133\pi\)
\(968\) −10.4202 0.314062i −0.334918 0.0100943i
\(969\) 0 0
\(970\) 15.2209 + 23.6564i 0.488713 + 0.759560i
\(971\) −10.7197 −0.344010 −0.172005 0.985096i \(-0.555025\pi\)
−0.172005 + 0.985096i \(0.555025\pi\)
\(972\) 0 0
\(973\) −17.0344 −0.546098
\(974\) 0.216205 + 0.336027i 0.00692767 + 0.0107670i
\(975\) 0 0
\(976\) 0.0564482 + 0.146811i 0.00180686 + 0.00469931i
\(977\) −32.0082 + 38.1459i −1.02403 + 1.22040i −0.0488952 + 0.998804i \(0.515570\pi\)
−0.975139 + 0.221593i \(0.928874\pi\)
\(978\) 0 0
\(979\) −6.39836 + 17.5793i −0.204492 + 0.561838i
\(980\) −6.00394 + 23.2419i −0.191789 + 0.742435i
\(981\) 0 0
\(982\) 21.7439 + 2.76313i 0.693875 + 0.0881751i
\(983\) −1.39362 + 1.16939i −0.0444496 + 0.0372976i −0.664742 0.747073i \(-0.731458\pi\)
0.620292 + 0.784371i \(0.287014\pi\)
\(984\) 0 0
\(985\) −9.09251 + 51.5662i −0.289712 + 1.64304i
\(986\) 33.0073 7.47357i 1.05117 0.238007i
\(987\) 0 0
\(988\) −57.0182 4.47165i −1.81399 0.142262i
\(989\) −18.6883 10.7897i −0.594252 0.343092i
\(990\) 0 0
\(991\) 48.8792 28.2204i 1.55270 0.896451i 0.554777 0.831999i \(-0.312804\pi\)
0.997921 0.0644516i \(-0.0205298\pi\)
\(992\) −1.09280 16.4991i −0.0346964 0.523845i
\(993\) 0 0
\(994\) 4.33824 + 1.34640i 0.137601 + 0.0427054i
\(995\) −6.67441 + 2.42928i −0.211593 + 0.0770135i
\(996\) 0 0
\(997\) 2.04998 + 11.6260i 0.0649234 + 0.368199i 0.999909 + 0.0135125i \(0.00430130\pi\)
−0.934985 + 0.354687i \(0.884588\pi\)
\(998\) 53.3333 22.3731i 1.68824 0.708209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.c.215.4 96
3.2 odd 2 972.2.l.b.215.13 96
4.3 odd 2 inner 972.2.l.c.215.2 96
9.2 odd 6 972.2.l.a.863.2 96
9.4 even 3 108.2.l.a.23.8 96
9.5 odd 6 324.2.l.a.179.9 96
9.7 even 3 972.2.l.d.863.15 96
12.11 even 2 972.2.l.b.215.15 96
27.2 odd 18 inner 972.2.l.c.755.2 96
27.7 even 9 972.2.l.a.107.7 96
27.11 odd 18 108.2.l.a.47.13 yes 96
27.16 even 9 324.2.l.a.143.4 96
27.20 odd 18 972.2.l.d.107.10 96
27.25 even 9 972.2.l.b.755.15 96
36.7 odd 6 972.2.l.d.863.10 96
36.11 even 6 972.2.l.a.863.7 96
36.23 even 6 324.2.l.a.179.4 96
36.31 odd 6 108.2.l.a.23.13 yes 96
108.7 odd 18 972.2.l.a.107.2 96
108.11 even 18 108.2.l.a.47.8 yes 96
108.43 odd 18 324.2.l.a.143.9 96
108.47 even 18 972.2.l.d.107.15 96
108.79 odd 18 972.2.l.b.755.13 96
108.83 even 18 inner 972.2.l.c.755.4 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.8 96 9.4 even 3
108.2.l.a.23.13 yes 96 36.31 odd 6
108.2.l.a.47.8 yes 96 108.11 even 18
108.2.l.a.47.13 yes 96 27.11 odd 18
324.2.l.a.143.4 96 27.16 even 9
324.2.l.a.143.9 96 108.43 odd 18
324.2.l.a.179.4 96 36.23 even 6
324.2.l.a.179.9 96 9.5 odd 6
972.2.l.a.107.2 96 108.7 odd 18
972.2.l.a.107.7 96 27.7 even 9
972.2.l.a.863.2 96 9.2 odd 6
972.2.l.a.863.7 96 36.11 even 6
972.2.l.b.215.13 96 3.2 odd 2
972.2.l.b.215.15 96 12.11 even 2
972.2.l.b.755.13 96 108.79 odd 18
972.2.l.b.755.15 96 27.25 even 9
972.2.l.c.215.2 96 4.3 odd 2 inner
972.2.l.c.215.4 96 1.1 even 1 trivial
972.2.l.c.755.2 96 27.2 odd 18 inner
972.2.l.c.755.4 96 108.83 even 18 inner
972.2.l.d.107.10 96 27.20 odd 18
972.2.l.d.107.15 96 108.47 even 18
972.2.l.d.863.10 96 36.7 odd 6
972.2.l.d.863.15 96 9.7 even 3