Properties

Label 972.2.l.d.863.15
Level $972$
Weight $2$
Character 972.863
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 863.15
Character \(\chi\) \(=\) 972.863
Dual form 972.2.l.d.107.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25735 + 0.647359i) q^{2} +(1.16185 + 1.62791i) q^{4} +(-0.776998 - 2.13478i) q^{5} +(1.29035 - 0.227523i) q^{7} +(0.407013 + 2.79899i) q^{8} +(0.405013 - 3.18717i) q^{10} +(-2.54138 - 0.924988i) q^{11} +(3.48118 + 2.92106i) q^{13} +(1.76970 + 0.549241i) q^{14} +(-1.30019 + 3.78279i) q^{16} +(4.20783 + 2.42939i) q^{17} +(5.44971 - 3.14639i) q^{19} +(2.57248 - 3.74519i) q^{20} +(-2.59661 - 2.80822i) q^{22} +(0.440555 - 2.49851i) q^{23} +(-0.123358 + 0.103510i) q^{25} +(2.48609 + 5.92636i) q^{26} +(1.86958 + 1.83622i) q^{28} +(3.16586 + 3.77293i) q^{29} +(2.87863 + 0.507580i) q^{31} +(-4.08362 + 3.91460i) q^{32} +(3.71802 + 5.77857i) q^{34} +(-1.48831 - 2.57783i) q^{35} +(-3.86074 + 6.68701i) q^{37} +(8.88903 - 0.428196i) q^{38} +(5.65899 - 3.04370i) q^{40} +(2.55335 - 3.04297i) q^{41} +(2.90911 - 7.99270i) q^{43} +(-1.44692 - 5.21185i) q^{44} +(2.17137 - 2.85631i) q^{46} +(-2.07927 - 11.7921i) q^{47} +(-4.96462 + 1.80697i) q^{49} +(-0.222112 + 0.0502909i) q^{50} +(-0.710600 + 9.06090i) q^{52} -3.84281i q^{53} +6.14402i q^{55} +(1.16202 + 3.51906i) q^{56} +(1.53816 + 6.79333i) q^{58} +(-10.7689 + 3.91958i) q^{59} +(0.00682825 + 0.0387249i) q^{61} +(3.29086 + 2.50171i) q^{62} +(-7.66868 + 2.27845i) q^{64} +(3.53096 - 9.70123i) q^{65} +(-7.67125 + 9.14224i) q^{67} +(0.934048 + 9.67257i) q^{68} +(-0.202546 - 4.20470i) q^{70} +(-1.22570 + 2.12297i) q^{71} +(3.09175 + 5.35507i) q^{73} +(-9.18319 + 5.90861i) q^{74} +(11.4538 + 5.21600i) q^{76} +(-3.48972 - 0.615332i) q^{77} +(-3.87187 - 4.61431i) q^{79} +(9.08569 - 0.163591i) q^{80} +(5.18035 - 2.17314i) q^{82} +(-7.31283 + 6.13619i) q^{83} +(1.91675 - 10.8704i) q^{85} +(8.83191 - 8.16638i) q^{86} +(1.55465 - 7.48979i) q^{88} +(-5.99050 + 3.45862i) q^{89} +(5.15653 + 2.97713i) q^{91} +(4.57922 - 2.18572i) q^{92} +(5.01936 - 16.1728i) q^{94} +(-10.9513 - 9.18922i) q^{95} +(8.22759 + 2.99460i) q^{97} +(-7.41203 - 0.941893i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} + 33 q^{14} + 3 q^{16} - 18 q^{17} - 18 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 30 q^{29} + 33 q^{32} + 15 q^{34} - 6 q^{37} - 63 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25735 + 0.647359i 0.889080 + 0.457752i
\(3\) 0 0
\(4\) 1.16185 + 1.62791i 0.580927 + 0.813956i
\(5\) −0.776998 2.13478i −0.347484 0.954705i −0.983160 0.182748i \(-0.941501\pi\)
0.635676 0.771956i \(-0.280722\pi\)
\(6\) 0 0
\(7\) 1.29035 0.227523i 0.487705 0.0859955i 0.0756119 0.997137i \(-0.475909\pi\)
0.412093 + 0.911142i \(0.364798\pi\)
\(8\) 0.407013 + 2.79899i 0.143901 + 0.989592i
\(9\) 0 0
\(10\) 0.405013 3.18717i 0.128076 1.00787i
\(11\) −2.54138 0.924988i −0.766256 0.278894i −0.0708265 0.997489i \(-0.522564\pi\)
−0.695430 + 0.718594i \(0.744786\pi\)
\(12\) 0 0
\(13\) 3.48118 + 2.92106i 0.965506 + 0.810156i 0.981840 0.189711i \(-0.0607551\pi\)
−0.0163342 + 0.999867i \(0.505200\pi\)
\(14\) 1.76970 + 0.549241i 0.472973 + 0.146791i
\(15\) 0 0
\(16\) −1.30019 + 3.78279i −0.325048 + 0.945698i
\(17\) 4.20783 + 2.42939i 1.02055 + 0.589214i 0.914263 0.405122i \(-0.132771\pi\)
0.106286 + 0.994336i \(0.466104\pi\)
\(18\) 0 0
\(19\) 5.44971 3.14639i 1.25025 0.721832i 0.279090 0.960265i \(-0.409967\pi\)
0.971159 + 0.238433i \(0.0766339\pi\)
\(20\) 2.57248 3.74519i 0.575225 0.837450i
\(21\) 0 0
\(22\) −2.59661 2.80822i −0.553599 0.598714i
\(23\) 0.440555 2.49851i 0.0918622 0.520976i −0.903802 0.427952i \(-0.859235\pi\)
0.995664 0.0930246i \(-0.0296535\pi\)
\(24\) 0 0
\(25\) −0.123358 + 0.103510i −0.0246716 + 0.0207019i
\(26\) 2.48609 + 5.92636i 0.487562 + 1.16226i
\(27\) 0 0
\(28\) 1.86958 + 1.83622i 0.353317 + 0.347013i
\(29\) 3.16586 + 3.77293i 0.587886 + 0.700615i 0.975198 0.221334i \(-0.0710410\pi\)
−0.387313 + 0.921948i \(0.626597\pi\)
\(30\) 0 0
\(31\) 2.87863 + 0.507580i 0.517017 + 0.0911641i 0.426068 0.904691i \(-0.359899\pi\)
0.0909499 + 0.995855i \(0.471010\pi\)
\(32\) −4.08362 + 3.91460i −0.721888 + 0.692010i
\(33\) 0 0
\(34\) 3.71802 + 5.77857i 0.637636 + 0.991016i
\(35\) −1.48831 2.57783i −0.251570 0.435732i
\(36\) 0 0
\(37\) −3.86074 + 6.68701i −0.634703 + 1.09934i 0.351876 + 0.936047i \(0.385544\pi\)
−0.986578 + 0.163290i \(0.947789\pi\)
\(38\) 8.88903 0.428196i 1.44199 0.0694626i
\(39\) 0 0
\(40\) 5.65899 3.04370i 0.894765 0.481250i
\(41\) 2.55335 3.04297i 0.398767 0.475232i −0.528877 0.848699i \(-0.677387\pi\)
0.927643 + 0.373467i \(0.121831\pi\)
\(42\) 0 0
\(43\) 2.90911 7.99270i 0.443634 1.21888i −0.493450 0.869774i \(-0.664265\pi\)
0.937085 0.349102i \(-0.113513\pi\)
\(44\) −1.44692 5.21185i −0.218131 0.785716i
\(45\) 0 0
\(46\) 2.17137 2.85631i 0.320151 0.421140i
\(47\) −2.07927 11.7921i −0.303293 1.72006i −0.631434 0.775429i \(-0.717533\pi\)
0.328142 0.944629i \(-0.393578\pi\)
\(48\) 0 0
\(49\) −4.96462 + 1.80697i −0.709232 + 0.258139i
\(50\) −0.222112 + 0.0502909i −0.0314114 + 0.00711221i
\(51\) 0 0
\(52\) −0.710600 + 9.06090i −0.0985425 + 1.25652i
\(53\) 3.84281i 0.527851i −0.964543 0.263925i \(-0.914983\pi\)
0.964543 0.263925i \(-0.0850173\pi\)
\(54\) 0 0
\(55\) 6.14402i 0.828460i
\(56\) 1.16202 + 3.51906i 0.155282 + 0.470254i
\(57\) 0 0
\(58\) 1.53816 + 6.79333i 0.201970 + 0.892008i
\(59\) −10.7689 + 3.91958i −1.40200 + 0.510285i −0.928771 0.370655i \(-0.879133\pi\)
−0.473227 + 0.880941i \(0.656911\pi\)
\(60\) 0 0
\(61\) 0.00682825 + 0.0387249i 0.000874268 + 0.00495822i 0.985242 0.171169i \(-0.0547543\pi\)
−0.984367 + 0.176127i \(0.943643\pi\)
\(62\) 3.29086 + 2.50171i 0.417939 + 0.317718i
\(63\) 0 0
\(64\) −7.66868 + 2.27845i −0.958585 + 0.284806i
\(65\) 3.53096 9.70123i 0.437961 1.20329i
\(66\) 0 0
\(67\) −7.67125 + 9.14224i −0.937193 + 1.11690i 0.0557663 + 0.998444i \(0.482240\pi\)
−0.992959 + 0.118459i \(0.962205\pi\)
\(68\) 0.934048 + 9.67257i 0.113270 + 1.17297i
\(69\) 0 0
\(70\) −0.202546 4.20470i −0.0242088 0.502557i
\(71\) −1.22570 + 2.12297i −0.145463 + 0.251950i −0.929546 0.368707i \(-0.879801\pi\)
0.784082 + 0.620657i \(0.213134\pi\)
\(72\) 0 0
\(73\) 3.09175 + 5.35507i 0.361862 + 0.626764i 0.988267 0.152734i \(-0.0488077\pi\)
−0.626405 + 0.779498i \(0.715474\pi\)
\(74\) −9.18319 + 5.90861i −1.06752 + 0.686863i
\(75\) 0 0
\(76\) 11.4538 + 5.21600i 1.31384 + 0.598316i
\(77\) −3.48972 0.615332i −0.397690 0.0701236i
\(78\) 0 0
\(79\) −3.87187 4.61431i −0.435619 0.519151i 0.502915 0.864336i \(-0.332261\pi\)
−0.938535 + 0.345185i \(0.887816\pi\)
\(80\) 9.08569 0.163591i 1.01581 0.0182900i
\(81\) 0 0
\(82\) 5.18035 2.17314i 0.572074 0.239983i
\(83\) −7.31283 + 6.13619i −0.802687 + 0.673534i −0.948850 0.315726i \(-0.897752\pi\)
0.146163 + 0.989260i \(0.453307\pi\)
\(84\) 0 0
\(85\) 1.91675 10.8704i 0.207901 1.17906i
\(86\) 8.83191 8.16638i 0.952369 0.880604i
\(87\) 0 0
\(88\) 1.55465 7.48979i 0.165727 0.798414i
\(89\) −5.99050 + 3.45862i −0.634991 + 0.366613i −0.782683 0.622421i \(-0.786149\pi\)
0.147691 + 0.989034i \(0.452816\pi\)
\(90\) 0 0
\(91\) 5.15653 + 2.97713i 0.540552 + 0.312088i
\(92\) 4.57922 2.18572i 0.477417 0.227877i
\(93\) 0 0
\(94\) 5.01936 16.1728i 0.517708 1.66810i
\(95\) −10.9513 9.18922i −1.12358 0.942794i
\(96\) 0 0
\(97\) 8.22759 + 2.99460i 0.835385 + 0.304055i 0.724067 0.689729i \(-0.242270\pi\)
0.111318 + 0.993785i \(0.464493\pi\)
\(98\) −7.41203 0.941893i −0.748728 0.0951455i
\(99\) 0 0
\(100\) −0.311829 0.0805529i −0.0311829 0.00805529i
\(101\) −2.16848 + 0.382362i −0.215772 + 0.0380465i −0.280489 0.959857i \(-0.590497\pi\)
0.0647169 + 0.997904i \(0.479386\pi\)
\(102\) 0 0
\(103\) 0.672781 + 1.84845i 0.0662911 + 0.182133i 0.968415 0.249344i \(-0.0802149\pi\)
−0.902124 + 0.431477i \(0.857993\pi\)
\(104\) −6.75912 + 10.9327i −0.662786 + 1.07204i
\(105\) 0 0
\(106\) 2.48768 4.83176i 0.241625 0.469302i
\(107\) −4.06709 −0.393180 −0.196590 0.980486i \(-0.562987\pi\)
−0.196590 + 0.980486i \(0.562987\pi\)
\(108\) 0 0
\(109\) −1.81021 −0.173387 −0.0866934 0.996235i \(-0.527630\pi\)
−0.0866934 + 0.996235i \(0.527630\pi\)
\(110\) −3.97739 + 7.72518i −0.379229 + 0.736567i
\(111\) 0 0
\(112\) −0.817026 + 5.17693i −0.0772017 + 0.489174i
\(113\) −1.20062 3.29869i −0.112945 0.310314i 0.870322 0.492483i \(-0.163911\pi\)
−0.983267 + 0.182168i \(0.941688\pi\)
\(114\) 0 0
\(115\) −5.67610 + 1.00085i −0.529299 + 0.0933297i
\(116\) −2.46372 + 9.53733i −0.228751 + 0.885519i
\(117\) 0 0
\(118\) −16.0777 2.04309i −1.48007 0.188082i
\(119\) 5.98230 + 2.17738i 0.548396 + 0.199600i
\(120\) 0 0
\(121\) −2.82346 2.36916i −0.256678 0.215379i
\(122\) −0.0164834 + 0.0531111i −0.00149234 + 0.00480845i
\(123\) 0 0
\(124\) 2.51825 + 5.27589i 0.226146 + 0.473789i
\(125\) −9.52032 5.49656i −0.851523 0.491627i
\(126\) 0 0
\(127\) 9.71588 5.60947i 0.862145 0.497760i −0.00258477 0.999997i \(-0.500823\pi\)
0.864730 + 0.502237i \(0.167489\pi\)
\(128\) −11.1172 2.09958i −0.982630 0.185578i
\(129\) 0 0
\(130\) 10.7198 9.91203i 0.940190 0.869343i
\(131\) −0.890936 + 5.05275i −0.0778415 + 0.441461i 0.920832 + 0.389961i \(0.127511\pi\)
−0.998673 + 0.0515002i \(0.983600\pi\)
\(132\) 0 0
\(133\) 6.31613 5.29986i 0.547678 0.459557i
\(134\) −15.5638 + 6.52894i −1.34450 + 0.564015i
\(135\) 0 0
\(136\) −5.08720 + 12.7665i −0.436224 + 1.09472i
\(137\) −1.16239 1.38529i −0.0993100 0.118353i 0.714100 0.700043i \(-0.246836\pi\)
−0.813410 + 0.581690i \(0.802392\pi\)
\(138\) 0 0
\(139\) −12.8033 2.25758i −1.08597 0.191485i −0.398114 0.917336i \(-0.630335\pi\)
−0.687852 + 0.725851i \(0.741446\pi\)
\(140\) 2.46728 5.41789i 0.208523 0.457895i
\(141\) 0 0
\(142\) −2.91545 + 1.87585i −0.244659 + 0.157418i
\(143\) −6.14507 10.6436i −0.513877 0.890061i
\(144\) 0 0
\(145\) 5.59452 9.68999i 0.464599 0.804710i
\(146\) 0.420760 + 8.73467i 0.0348224 + 0.722887i
\(147\) 0 0
\(148\) −15.3715 + 1.48437i −1.26353 + 0.122015i
\(149\) −1.65428 + 1.97150i −0.135524 + 0.161511i −0.829538 0.558450i \(-0.811396\pi\)
0.694014 + 0.719962i \(0.255841\pi\)
\(150\) 0 0
\(151\) −1.79566 + 4.93353i −0.146128 + 0.401485i −0.991065 0.133382i \(-0.957416\pi\)
0.844936 + 0.534867i \(0.179638\pi\)
\(152\) 11.0248 + 13.9731i 0.894231 + 1.13336i
\(153\) 0 0
\(154\) −3.98946 3.03279i −0.321479 0.244389i
\(155\) −1.15312 6.53965i −0.0926205 0.525277i
\(156\) 0 0
\(157\) −19.6331 + 7.14587i −1.56689 + 0.570302i −0.972302 0.233727i \(-0.924908\pi\)
−0.594590 + 0.804029i \(0.702686\pi\)
\(158\) −1.88118 8.30829i −0.149658 0.660972i
\(159\) 0 0
\(160\) 11.5298 + 5.67601i 0.911510 + 0.448728i
\(161\) 3.32418i 0.261982i
\(162\) 0 0
\(163\) 3.28308i 0.257151i 0.991700 + 0.128575i \(0.0410404\pi\)
−0.991700 + 0.128575i \(0.958960\pi\)
\(164\) 7.92030 + 0.621150i 0.618472 + 0.0485036i
\(165\) 0 0
\(166\) −13.1671 + 2.98131i −1.02196 + 0.231395i
\(167\) 17.9950 6.54965i 1.39250 0.506827i 0.466553 0.884493i \(-0.345496\pi\)
0.925942 + 0.377666i \(0.123273\pi\)
\(168\) 0 0
\(169\) 1.32862 + 7.53496i 0.102201 + 0.579612i
\(170\) 9.44710 12.4271i 0.724560 0.953116i
\(171\) 0 0
\(172\) 16.3914 4.55058i 1.24983 0.346979i
\(173\) 2.98997 8.21488i 0.227323 0.624566i −0.772624 0.634864i \(-0.781056\pi\)
0.999947 + 0.0102987i \(0.00327824\pi\)
\(174\) 0 0
\(175\) −0.135624 + 0.161630i −0.0102522 + 0.0122181i
\(176\) 6.80332 8.41086i 0.512820 0.633992i
\(177\) 0 0
\(178\) −9.77111 + 0.470687i −0.732376 + 0.0352795i
\(179\) 3.03371 5.25454i 0.226750 0.392743i −0.730093 0.683348i \(-0.760523\pi\)
0.956843 + 0.290605i \(0.0938565\pi\)
\(180\) 0 0
\(181\) −8.01419 13.8810i −0.595690 1.03177i −0.993449 0.114276i \(-0.963545\pi\)
0.397759 0.917490i \(-0.369788\pi\)
\(182\) 4.55629 + 7.08141i 0.337735 + 0.524909i
\(183\) 0 0
\(184\) 7.17263 + 0.216182i 0.528773 + 0.0159371i
\(185\) 17.2751 + 3.04607i 1.27009 + 0.223951i
\(186\) 0 0
\(187\) −8.44655 10.0662i −0.617673 0.736114i
\(188\) 16.7807 17.0856i 1.22386 1.24609i
\(189\) 0 0
\(190\) −7.82087 18.6435i −0.567385 1.35254i
\(191\) −8.96056 + 7.51880i −0.648363 + 0.544042i −0.906574 0.422047i \(-0.861312\pi\)
0.258210 + 0.966089i \(0.416867\pi\)
\(192\) 0 0
\(193\) 3.05125 17.3045i 0.219633 1.24560i −0.653049 0.757315i \(-0.726511\pi\)
0.872683 0.488288i \(-0.162378\pi\)
\(194\) 8.40638 + 9.09146i 0.603543 + 0.652729i
\(195\) 0 0
\(196\) −8.70976 5.98253i −0.622126 0.427323i
\(197\) 19.9607 11.5243i 1.42214 0.821074i 0.425660 0.904883i \(-0.360042\pi\)
0.996482 + 0.0838089i \(0.0267085\pi\)
\(198\) 0 0
\(199\) 2.70763 + 1.56325i 0.191939 + 0.110816i 0.592890 0.805284i \(-0.297987\pi\)
−0.400951 + 0.916099i \(0.631320\pi\)
\(200\) −0.339931 0.303148i −0.0240367 0.0214358i
\(201\) 0 0
\(202\) −2.97407 0.923024i −0.209255 0.0649438i
\(203\) 4.94348 + 4.14807i 0.346964 + 0.291138i
\(204\) 0 0
\(205\) −8.48003 3.08648i −0.592271 0.215569i
\(206\) −0.350690 + 2.75968i −0.0244337 + 0.192276i
\(207\) 0 0
\(208\) −15.5760 + 9.37064i −1.08000 + 0.649737i
\(209\) −16.7602 + 2.95527i −1.15933 + 0.204420i
\(210\) 0 0
\(211\) −4.39608 12.0781i −0.302639 0.831493i −0.994039 0.109022i \(-0.965228\pi\)
0.691401 0.722472i \(-0.256994\pi\)
\(212\) 6.25576 4.46479i 0.429647 0.306643i
\(213\) 0 0
\(214\) −5.11375 2.63287i −0.349569 0.179979i
\(215\) −19.3231 −1.31782
\(216\) 0 0
\(217\) 3.82992 0.259992
\(218\) −2.27607 1.17186i −0.154155 0.0793681i
\(219\) 0 0
\(220\) −10.0019 + 7.13845i −0.674330 + 0.481274i
\(221\) 7.55182 + 20.7485i 0.507991 + 1.39569i
\(222\) 0 0
\(223\) 10.1821 1.79539i 0.681846 0.120228i 0.178012 0.984028i \(-0.443033\pi\)
0.503834 + 0.863800i \(0.331922\pi\)
\(224\) −4.37862 + 5.98030i −0.292559 + 0.399576i
\(225\) 0 0
\(226\) 0.625830 4.92484i 0.0416296 0.327595i
\(227\) −0.0902519 0.0328490i −0.00599023 0.00218027i 0.339023 0.940778i \(-0.389903\pi\)
−0.345014 + 0.938598i \(0.612126\pi\)
\(228\) 0 0
\(229\) 20.5858 + 17.2735i 1.36035 + 1.14147i 0.975874 + 0.218332i \(0.0700617\pi\)
0.384474 + 0.923136i \(0.374383\pi\)
\(230\) −7.78475 2.41606i −0.513311 0.159310i
\(231\) 0 0
\(232\) −9.27183 + 10.3968i −0.608726 + 0.682586i
\(233\) 6.26494 + 3.61706i 0.410430 + 0.236962i 0.690974 0.722879i \(-0.257182\pi\)
−0.280545 + 0.959841i \(0.590515\pi\)
\(234\) 0 0
\(235\) −23.5581 + 13.6013i −1.53676 + 0.887248i
\(236\) −18.8927 12.9769i −1.22981 0.844725i
\(237\) 0 0
\(238\) 6.11229 + 6.61041i 0.396201 + 0.428490i
\(239\) 2.21525 12.5633i 0.143293 0.812653i −0.825430 0.564505i \(-0.809067\pi\)
0.968722 0.248148i \(-0.0798218\pi\)
\(240\) 0 0
\(241\) −5.80114 + 4.86773i −0.373684 + 0.313558i −0.810217 0.586130i \(-0.800651\pi\)
0.436533 + 0.899688i \(0.356206\pi\)
\(242\) −2.01638 4.80666i −0.129618 0.308984i
\(243\) 0 0
\(244\) −0.0551074 + 0.0561085i −0.00352789 + 0.00359198i
\(245\) 7.71501 + 9.19439i 0.492894 + 0.587408i
\(246\) 0 0
\(247\) 28.1622 + 4.96576i 1.79192 + 0.315964i
\(248\) −0.249071 + 8.26385i −0.0158160 + 0.524755i
\(249\) 0 0
\(250\) −8.41212 13.0742i −0.532029 0.826882i
\(251\) 5.95007 + 10.3058i 0.375565 + 0.650498i 0.990411 0.138149i \(-0.0441153\pi\)
−0.614846 + 0.788647i \(0.710782\pi\)
\(252\) 0 0
\(253\) −3.43072 + 5.94217i −0.215687 + 0.373581i
\(254\) 15.8476 0.763399i 0.994367 0.0478999i
\(255\) 0 0
\(256\) −12.6190 9.83671i −0.788688 0.614794i
\(257\) −3.50902 + 4.18189i −0.218887 + 0.260859i −0.864302 0.502972i \(-0.832240\pi\)
0.645416 + 0.763832i \(0.276684\pi\)
\(258\) 0 0
\(259\) −3.46025 + 9.50696i −0.215009 + 0.590734i
\(260\) 19.8952 5.52332i 1.23385 0.342542i
\(261\) 0 0
\(262\) −4.39116 + 5.77632i −0.271287 + 0.356862i
\(263\) 3.53693 + 20.0589i 0.218097 + 1.23689i 0.875451 + 0.483306i \(0.160564\pi\)
−0.657355 + 0.753581i \(0.728325\pi\)
\(264\) 0 0
\(265\) −8.20358 + 2.98586i −0.503942 + 0.183420i
\(266\) 11.3725 2.57498i 0.697292 0.157882i
\(267\) 0 0
\(268\) −23.7956 1.86617i −1.45355 0.113995i
\(269\) 9.12305i 0.556242i 0.960546 + 0.278121i \(0.0897116\pi\)
−0.960546 + 0.278121i \(0.910288\pi\)
\(270\) 0 0
\(271\) 21.2629i 1.29163i −0.763495 0.645813i \(-0.776518\pi\)
0.763495 0.645813i \(-0.223482\pi\)
\(272\) −14.6609 + 12.7587i −0.888945 + 0.773607i
\(273\) 0 0
\(274\) −0.564757 2.49428i −0.0341182 0.150685i
\(275\) 0.409245 0.148953i 0.0246784 0.00898221i
\(276\) 0 0
\(277\) −4.43224 25.1365i −0.266308 1.51031i −0.765285 0.643691i \(-0.777402\pi\)
0.498977 0.866615i \(-0.333709\pi\)
\(278\) −14.6368 11.1269i −0.877858 0.667348i
\(279\) 0 0
\(280\) 6.60954 5.21497i 0.394996 0.311654i
\(281\) −4.21589 + 11.5831i −0.251499 + 0.690987i 0.748125 + 0.663558i \(0.230954\pi\)
−0.999624 + 0.0274292i \(0.991268\pi\)
\(282\) 0 0
\(283\) −10.7391 + 12.7984i −0.638374 + 0.760784i −0.984112 0.177547i \(-0.943184\pi\)
0.345739 + 0.938331i \(0.387628\pi\)
\(284\) −4.88008 + 0.471253i −0.289580 + 0.0279637i
\(285\) 0 0
\(286\) −0.836290 17.3608i −0.0494509 1.02656i
\(287\) 2.60236 4.50743i 0.153613 0.266065i
\(288\) 0 0
\(289\) 3.30388 + 5.72249i 0.194346 + 0.336617i
\(290\) 13.3072 8.56204i 0.781423 0.502780i
\(291\) 0 0
\(292\) −5.12542 + 11.2549i −0.299943 + 0.658644i
\(293\) −13.1269 2.31463i −0.766884 0.135222i −0.223497 0.974705i \(-0.571747\pi\)
−0.543387 + 0.839482i \(0.682858\pi\)
\(294\) 0 0
\(295\) 16.7349 + 19.9439i 0.974344 + 1.16118i
\(296\) −20.2882 8.08448i −1.17923 0.469901i
\(297\) 0 0
\(298\) −3.35627 + 1.40794i −0.194424 + 0.0815601i
\(299\) 8.83196 7.41089i 0.510765 0.428583i
\(300\) 0 0
\(301\) 1.93523 10.9752i 0.111545 0.632602i
\(302\) −5.45153 + 5.04073i −0.313700 + 0.290061i
\(303\) 0 0
\(304\) 4.81647 + 24.7060i 0.276243 + 1.41699i
\(305\) 0.0773639 0.0446661i 0.00442984 0.00255757i
\(306\) 0 0
\(307\) −18.8505 10.8833i −1.07585 0.621144i −0.146078 0.989273i \(-0.546665\pi\)
−0.929775 + 0.368129i \(0.879998\pi\)
\(308\) −3.05284 6.39588i −0.173952 0.364439i
\(309\) 0 0
\(310\) 2.78363 8.96910i 0.158099 0.509411i
\(311\) 10.9280 + 9.16969i 0.619671 + 0.519966i 0.897700 0.440607i \(-0.145237\pi\)
−0.278029 + 0.960573i \(0.589681\pi\)
\(312\) 0 0
\(313\) −19.9926 7.27672i −1.13005 0.411304i −0.291739 0.956498i \(-0.594234\pi\)
−0.838310 + 0.545194i \(0.816456\pi\)
\(314\) −29.3116 3.72481i −1.65415 0.210203i
\(315\) 0 0
\(316\) 3.01315 11.6642i 0.169503 0.656164i
\(317\) 6.63831 1.17051i 0.372845 0.0657426i 0.0159138 0.999873i \(-0.494934\pi\)
0.356931 + 0.934131i \(0.383823\pi\)
\(318\) 0 0
\(319\) −4.55576 12.5168i −0.255073 0.700808i
\(320\) 10.8226 + 14.6006i 0.604999 + 0.816200i
\(321\) 0 0
\(322\) 2.15194 4.17966i 0.119923 0.232923i
\(323\) 30.5753 1.70125
\(324\) 0 0
\(325\) −0.731790 −0.0405924
\(326\) −2.12533 + 4.12798i −0.117711 + 0.228628i
\(327\) 0 0
\(328\) 9.55648 + 5.90828i 0.527668 + 0.326230i
\(329\) −5.36595 14.7428i −0.295835 0.812799i
\(330\) 0 0
\(331\) −23.8297 + 4.20182i −1.30980 + 0.230953i −0.784587 0.620019i \(-0.787125\pi\)
−0.525212 + 0.850972i \(0.676014\pi\)
\(332\) −18.4856 4.77528i −1.01453 0.262077i
\(333\) 0 0
\(334\) 26.8660 + 3.41403i 1.47004 + 0.186807i
\(335\) 25.4773 + 9.27297i 1.39197 + 0.506636i
\(336\) 0 0
\(337\) 16.7397 + 14.0463i 0.911869 + 0.765149i 0.972474 0.233013i \(-0.0748583\pi\)
−0.0606043 + 0.998162i \(0.519303\pi\)
\(338\) −3.20728 + 10.3342i −0.174453 + 0.562104i
\(339\) 0 0
\(340\) 19.9231 9.50956i 1.08048 0.515728i
\(341\) −6.84620 3.95266i −0.370743 0.214048i
\(342\) 0 0
\(343\) −13.9379 + 8.04707i −0.752577 + 0.434501i
\(344\) 23.5555 + 4.88942i 1.27003 + 0.263620i
\(345\) 0 0
\(346\) 9.07741 8.39338i 0.488004 0.451231i
\(347\) −2.24912 + 12.7554i −0.120739 + 0.684745i 0.863009 + 0.505189i \(0.168577\pi\)
−0.983748 + 0.179556i \(0.942534\pi\)
\(348\) 0 0
\(349\) −2.96273 + 2.48603i −0.158591 + 0.133074i −0.718630 0.695392i \(-0.755231\pi\)
0.560039 + 0.828466i \(0.310786\pi\)
\(350\) −0.275159 + 0.115428i −0.0147079 + 0.00616990i
\(351\) 0 0
\(352\) 13.9990 6.17120i 0.746149 0.328926i
\(353\) −1.95578 2.33080i −0.104095 0.124056i 0.711481 0.702705i \(-0.248025\pi\)
−0.815577 + 0.578649i \(0.803580\pi\)
\(354\) 0 0
\(355\) 5.48444 + 0.967055i 0.291084 + 0.0513260i
\(356\) −12.5904 5.73359i −0.667290 0.303880i
\(357\) 0 0
\(358\) 7.21601 4.64290i 0.381378 0.245385i
\(359\) 8.27544 + 14.3335i 0.436761 + 0.756492i 0.997438 0.0715425i \(-0.0227922\pi\)
−0.560676 + 0.828035i \(0.689459\pi\)
\(360\) 0 0
\(361\) 10.2995 17.8393i 0.542082 0.938913i
\(362\) −1.09066 22.6413i −0.0573239 1.19000i
\(363\) 0 0
\(364\) 1.14464 + 11.8534i 0.0599954 + 0.621285i
\(365\) 9.02965 10.7611i 0.472633 0.563262i
\(366\) 0 0
\(367\) 0.754802 2.07380i 0.0394003 0.108252i −0.918432 0.395578i \(-0.870544\pi\)
0.957833 + 0.287327i \(0.0927665\pi\)
\(368\) 8.87855 + 4.91508i 0.462826 + 0.256216i
\(369\) 0 0
\(370\) 19.7489 + 15.0132i 1.02670 + 0.780497i
\(371\) −0.874327 4.95856i −0.0453928 0.257435i
\(372\) 0 0
\(373\) 9.85493 3.58690i 0.510269 0.185723i −0.0740382 0.997255i \(-0.523589\pi\)
0.584307 + 0.811533i \(0.301366\pi\)
\(374\) −4.10382 18.1247i −0.212203 0.937205i
\(375\) 0 0
\(376\) 32.1597 10.6194i 1.65851 0.547654i
\(377\) 22.3819i 1.15273i
\(378\) 0 0
\(379\) 3.08694i 0.158565i −0.996852 0.0792826i \(-0.974737\pi\)
0.996852 0.0792826i \(-0.0252630\pi\)
\(380\) 2.23544 28.5042i 0.114676 1.46224i
\(381\) 0 0
\(382\) −16.1339 + 3.65306i −0.825483 + 0.186907i
\(383\) −15.0967 + 5.49476i −0.771406 + 0.280769i −0.697585 0.716503i \(-0.745742\pi\)
−0.0738218 + 0.997271i \(0.523520\pi\)
\(384\) 0 0
\(385\) 1.39790 + 7.92791i 0.0712438 + 0.404044i
\(386\) 15.0387 19.7825i 0.765449 1.00690i
\(387\) 0 0
\(388\) 4.68432 + 16.8731i 0.237810 + 0.856601i
\(389\) −6.03724 + 16.5872i −0.306100 + 0.841004i 0.687307 + 0.726367i \(0.258793\pi\)
−0.993407 + 0.114637i \(0.963430\pi\)
\(390\) 0 0
\(391\) 7.92365 9.44304i 0.400716 0.477555i
\(392\) −7.07837 13.1605i −0.357512 0.664704i
\(393\) 0 0
\(394\) 32.5580 1.56836i 1.64025 0.0790128i
\(395\) −6.84213 + 11.8509i −0.344265 + 0.596285i
\(396\) 0 0
\(397\) 6.73828 + 11.6710i 0.338185 + 0.585753i 0.984091 0.177663i \(-0.0568538\pi\)
−0.645907 + 0.763416i \(0.723520\pi\)
\(398\) 2.39245 + 3.71836i 0.119923 + 0.186384i
\(399\) 0 0
\(400\) −0.231166 0.601220i −0.0115583 0.0300610i
\(401\) −6.65594 1.17362i −0.332382 0.0586079i 0.00496671 0.999988i \(-0.498419\pi\)
−0.337349 + 0.941380i \(0.609530\pi\)
\(402\) 0 0
\(403\) 8.53836 + 10.1756i 0.425326 + 0.506884i
\(404\) −3.14191 3.08585i −0.156316 0.153527i
\(405\) 0 0
\(406\) 3.53039 + 8.41578i 0.175210 + 0.417668i
\(407\) 15.9970 13.4231i 0.792944 0.665359i
\(408\) 0 0
\(409\) 3.27211 18.5570i 0.161795 0.917586i −0.790512 0.612446i \(-0.790186\pi\)
0.952307 0.305140i \(-0.0987033\pi\)
\(410\) −8.66430 9.37040i −0.427899 0.462771i
\(411\) 0 0
\(412\) −2.22744 + 3.24286i −0.109738 + 0.159764i
\(413\) −13.0039 + 7.50779i −0.639879 + 0.369434i
\(414\) 0 0
\(415\) 18.7815 + 10.8435i 0.921947 + 0.532287i
\(416\) −25.6506 + 1.69894i −1.25762 + 0.0832975i
\(417\) 0 0
\(418\) −22.9865 7.13404i −1.12431 0.348937i
\(419\) 14.6271 + 12.2736i 0.714582 + 0.599606i 0.925881 0.377816i \(-0.123325\pi\)
−0.211299 + 0.977422i \(0.567769\pi\)
\(420\) 0 0
\(421\) 21.1833 + 7.71011i 1.03241 + 0.375768i 0.801999 0.597325i \(-0.203770\pi\)
0.230414 + 0.973093i \(0.425992\pi\)
\(422\) 2.29148 18.0323i 0.111547 0.877797i
\(423\) 0 0
\(424\) 10.7560 1.56408i 0.522357 0.0759582i
\(425\) −0.770535 + 0.135866i −0.0373765 + 0.00659048i
\(426\) 0 0
\(427\) 0.0176216 + 0.0484150i 0.000852770 + 0.00234297i
\(428\) −4.72536 6.62086i −0.228409 0.320032i
\(429\) 0 0
\(430\) −24.2958 12.5090i −1.17165 0.603235i
\(431\) 10.8059 0.520500 0.260250 0.965541i \(-0.416195\pi\)
0.260250 + 0.965541i \(0.416195\pi\)
\(432\) 0 0
\(433\) −37.5914 −1.80653 −0.903264 0.429084i \(-0.858836\pi\)
−0.903264 + 0.429084i \(0.858836\pi\)
\(434\) 4.81554 + 2.47933i 0.231153 + 0.119012i
\(435\) 0 0
\(436\) −2.10320 2.94686i −0.100725 0.141129i
\(437\) −5.46040 15.0023i −0.261206 0.717659i
\(438\) 0 0
\(439\) 31.4487 5.54525i 1.50096 0.264660i 0.638043 0.770000i \(-0.279744\pi\)
0.862920 + 0.505340i \(0.168633\pi\)
\(440\) −17.1970 + 2.50070i −0.819837 + 0.119216i
\(441\) 0 0
\(442\) −3.93642 + 30.9768i −0.187236 + 1.47342i
\(443\) −35.3150 12.8536i −1.67786 0.610693i −0.684850 0.728684i \(-0.740132\pi\)
−0.993015 + 0.117992i \(0.962354\pi\)
\(444\) 0 0
\(445\) 12.0380 + 10.1011i 0.570656 + 0.478837i
\(446\) 13.9648 + 4.33407i 0.661250 + 0.205224i
\(447\) 0 0
\(448\) −9.37685 + 4.68479i −0.443014 + 0.221335i
\(449\) −6.99926 4.04102i −0.330315 0.190708i 0.325666 0.945485i \(-0.394412\pi\)
−0.655981 + 0.754777i \(0.727745\pi\)
\(450\) 0 0
\(451\) −9.30376 + 5.37153i −0.438097 + 0.252935i
\(452\) 3.97502 5.78710i 0.186969 0.272202i
\(453\) 0 0
\(454\) −0.0922131 0.0997280i −0.00432777 0.00468047i
\(455\) 2.34891 13.3213i 0.110118 0.624513i
\(456\) 0 0
\(457\) −1.89531 + 1.59036i −0.0886590 + 0.0743937i −0.686040 0.727564i \(-0.740652\pi\)
0.597381 + 0.801958i \(0.296208\pi\)
\(458\) 14.7014 + 35.0453i 0.686950 + 1.63756i
\(459\) 0 0
\(460\) −8.22409 8.07735i −0.383450 0.376608i
\(461\) −5.80793 6.92163i −0.270502 0.322372i 0.613643 0.789583i \(-0.289703\pi\)
−0.884146 + 0.467211i \(0.845259\pi\)
\(462\) 0 0
\(463\) 1.37343 + 0.242173i 0.0638287 + 0.0112547i 0.205471 0.978663i \(-0.434127\pi\)
−0.141643 + 0.989918i \(0.545238\pi\)
\(464\) −18.3884 + 7.07026i −0.853661 + 0.328229i
\(465\) 0 0
\(466\) 5.53568 + 8.60357i 0.256435 + 0.398553i
\(467\) 10.5492 + 18.2717i 0.488158 + 0.845515i 0.999907 0.0136203i \(-0.00433561\pi\)
−0.511749 + 0.859135i \(0.671002\pi\)
\(468\) 0 0
\(469\) −7.81850 + 13.5420i −0.361025 + 0.625313i
\(470\) −38.4256 + 1.85101i −1.77244 + 0.0853807i
\(471\) 0 0
\(472\) −15.3540 28.5468i −0.706723 1.31398i
\(473\) −14.7863 + 17.6216i −0.679875 + 0.810244i
\(474\) 0 0
\(475\) −0.346584 + 0.952230i −0.0159023 + 0.0436913i
\(476\) 3.40597 + 12.2684i 0.156113 + 0.562323i
\(477\) 0 0
\(478\) 10.9183 14.3624i 0.499392 0.656921i
\(479\) 2.53604 + 14.3826i 0.115874 + 0.657156i 0.986314 + 0.164880i \(0.0527238\pi\)
−0.870439 + 0.492276i \(0.836165\pi\)
\(480\) 0 0
\(481\) −32.9731 + 12.0012i −1.50344 + 0.547208i
\(482\) −10.4452 + 2.36502i −0.475767 + 0.107724i
\(483\) 0 0
\(484\) 0.576342 7.34897i 0.0261974 0.334044i
\(485\) 19.8909i 0.903201i
\(486\) 0 0
\(487\) 0.282541i 0.0128032i −0.999980 0.00640158i \(-0.997962\pi\)
0.999980 0.00640158i \(-0.00203770\pi\)
\(488\) −0.105612 + 0.0348738i −0.00478081 + 0.00157866i
\(489\) 0 0
\(490\) 3.74839 + 16.5549i 0.169335 + 0.747875i
\(491\) 14.5642 5.30093i 0.657273 0.239228i 0.00821432 0.999966i \(-0.497385\pi\)
0.649058 + 0.760739i \(0.275163\pi\)
\(492\) 0 0
\(493\) 4.15549 + 23.5669i 0.187154 + 1.06140i
\(494\) 32.1951 + 24.4747i 1.44853 + 1.10117i
\(495\) 0 0
\(496\) −5.66284 + 10.2293i −0.254269 + 0.459309i
\(497\) −1.09855 + 3.01824i −0.0492766 + 0.135386i
\(498\) 0 0
\(499\) 26.2876 31.3283i 1.17679 1.40245i 0.279999 0.960000i \(-0.409666\pi\)
0.896794 0.442448i \(-0.145890\pi\)
\(500\) −2.11331 21.8844i −0.0945100 0.978702i
\(501\) 0 0
\(502\) 0.809752 + 16.8099i 0.0361410 + 0.750260i
\(503\) −9.96192 + 17.2546i −0.444180 + 0.769343i −0.997995 0.0632975i \(-0.979838\pi\)
0.553815 + 0.832640i \(0.313172\pi\)
\(504\) 0 0
\(505\) 2.50117 + 4.33215i 0.111301 + 0.192778i
\(506\) −8.16033 + 5.25048i −0.362771 + 0.233413i
\(507\) 0 0
\(508\) 20.4202 + 9.29922i 0.905998 + 0.412586i
\(509\) −27.8835 4.91661i −1.23591 0.217925i −0.482750 0.875758i \(-0.660362\pi\)
−0.753164 + 0.657833i \(0.771473\pi\)
\(510\) 0 0
\(511\) 5.20783 + 6.20645i 0.230381 + 0.274557i
\(512\) −9.49862 20.5372i −0.419783 0.907624i
\(513\) 0 0
\(514\) −7.11925 + 2.98650i −0.314017 + 0.131729i
\(515\) 3.42330 2.87249i 0.150848 0.126577i
\(516\) 0 0
\(517\) −5.62335 + 31.8916i −0.247315 + 1.40259i
\(518\) −10.5052 + 9.71354i −0.461570 + 0.426789i
\(519\) 0 0
\(520\) 28.5908 + 5.93459i 1.25379 + 0.260249i
\(521\) −18.4642 + 10.6603i −0.808931 + 0.467036i −0.846584 0.532255i \(-0.821345\pi\)
0.0376537 + 0.999291i \(0.488012\pi\)
\(522\) 0 0
\(523\) −17.0213 9.82725i −0.744289 0.429716i 0.0793376 0.996848i \(-0.474719\pi\)
−0.823627 + 0.567132i \(0.808053\pi\)
\(524\) −9.26057 + 4.42019i −0.404550 + 0.193097i
\(525\) 0 0
\(526\) −8.53817 + 27.5108i −0.372282 + 1.19953i
\(527\) 10.8797 + 9.12913i 0.473926 + 0.397671i
\(528\) 0 0
\(529\) 15.5644 + 5.66500i 0.676715 + 0.246304i
\(530\) −12.2477 1.55639i −0.532005 0.0676053i
\(531\) 0 0
\(532\) 15.9661 + 4.12444i 0.692220 + 0.178817i
\(533\) 17.7774 3.13463i 0.770023 0.135776i
\(534\) 0 0
\(535\) 3.16012 + 8.68236i 0.136624 + 0.375371i
\(536\) −28.7113 17.7507i −1.24014 0.766715i
\(537\) 0 0
\(538\) −5.90588 + 11.4709i −0.254621 + 0.494544i
\(539\) 14.2884 0.615447
\(540\) 0 0
\(541\) 41.1619 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(542\) 13.7647 26.7348i 0.591244 1.14836i
\(543\) 0 0
\(544\) −26.6933 + 6.55125i −1.14446 + 0.280883i
\(545\) 1.40653 + 3.86441i 0.0602492 + 0.165533i
\(546\) 0 0
\(547\) −7.15368 + 1.26139i −0.305869 + 0.0539330i −0.324476 0.945894i \(-0.605188\pi\)
0.0186069 + 0.999827i \(0.494077\pi\)
\(548\) 0.904593 3.50178i 0.0386423 0.149588i
\(549\) 0 0
\(550\) 0.610991 + 0.0776424i 0.0260527 + 0.00331068i
\(551\) 29.1241 + 10.6003i 1.24073 + 0.451588i
\(552\) 0 0
\(553\) −6.04591 5.07312i −0.257098 0.215731i
\(554\) 10.6995 34.4746i 0.454576 1.46469i
\(555\) 0 0
\(556\) −11.2005 23.4657i −0.475006 0.995167i
\(557\) 32.2123 + 18.5978i 1.36488 + 0.788012i 0.990268 0.139170i \(-0.0444436\pi\)
0.374609 + 0.927183i \(0.377777\pi\)
\(558\) 0 0
\(559\) 33.4743 19.3264i 1.41581 0.817419i
\(560\) 11.6865 2.27829i 0.493843 0.0962753i
\(561\) 0 0
\(562\) −12.7992 + 11.8348i −0.539903 + 0.499219i
\(563\) −7.70741 + 43.7109i −0.324829 + 1.84219i 0.186048 + 0.982541i \(0.440432\pi\)
−0.510876 + 0.859654i \(0.670679\pi\)
\(564\) 0 0
\(565\) −6.10911 + 5.12615i −0.257012 + 0.215659i
\(566\) −21.7879 + 9.13997i −0.915816 + 0.384181i
\(567\) 0 0
\(568\) −6.44104 2.56663i −0.270260 0.107694i
\(569\) −18.9577 22.5929i −0.794749 0.947144i 0.204750 0.978814i \(-0.434362\pi\)
−0.999498 + 0.0316699i \(0.989917\pi\)
\(570\) 0 0
\(571\) 12.9011 + 2.27481i 0.539893 + 0.0951977i 0.436944 0.899489i \(-0.356061\pi\)
0.102949 + 0.994687i \(0.467172\pi\)
\(572\) 10.1871 22.3699i 0.425945 0.935333i
\(573\) 0 0
\(574\) 6.19000 3.98275i 0.258366 0.166237i
\(575\) 0.204274 + 0.353814i 0.00851883 + 0.0147550i
\(576\) 0 0
\(577\) 2.02124 3.50090i 0.0841455 0.145744i −0.820881 0.571099i \(-0.806517\pi\)
0.905027 + 0.425355i \(0.139851\pi\)
\(578\) 0.449629 + 9.33397i 0.0187021 + 0.388242i
\(579\) 0 0
\(580\) 22.2745 2.15097i 0.924896 0.0893141i
\(581\) −8.03995 + 9.58164i −0.333553 + 0.397513i
\(582\) 0 0
\(583\) −3.55456 + 9.76606i −0.147215 + 0.404469i
\(584\) −13.7304 + 10.8334i −0.568168 + 0.448288i
\(585\) 0 0
\(586\) −15.0068 11.4081i −0.619923 0.471266i
\(587\) 1.26345 + 7.16540i 0.0521483 + 0.295748i 0.999717 0.0238055i \(-0.00757823\pi\)
−0.947568 + 0.319553i \(0.896467\pi\)
\(588\) 0 0
\(589\) 17.2847 6.29113i 0.712206 0.259222i
\(590\) 8.13077 + 35.9099i 0.334739 + 1.47839i
\(591\) 0 0
\(592\) −20.2758 23.2988i −0.833332 0.957574i
\(593\) 2.93118i 0.120369i −0.998187 0.0601846i \(-0.980831\pi\)
0.998187 0.0601846i \(-0.0191689\pi\)
\(594\) 0 0
\(595\) 14.4627i 0.592914i
\(596\) −5.13145 0.402434i −0.210192 0.0164843i
\(597\) 0 0
\(598\) 15.9024 3.60064i 0.650296 0.147241i
\(599\) 1.27568 0.464311i 0.0521230 0.0189712i −0.315827 0.948817i \(-0.602282\pi\)
0.367950 + 0.929846i \(0.380060\pi\)
\(600\) 0 0
\(601\) 1.34379 + 7.62101i 0.0548144 + 0.310868i 0.999871 0.0160378i \(-0.00510522\pi\)
−0.945057 + 0.326906i \(0.893994\pi\)
\(602\) 9.53817 12.5469i 0.388747 0.511374i
\(603\) 0 0
\(604\) −10.1176 + 2.80887i −0.411681 + 0.114291i
\(605\) −2.86383 + 7.86832i −0.116431 + 0.319893i
\(606\) 0 0
\(607\) 7.34402 8.75226i 0.298085 0.355243i −0.596125 0.802891i \(-0.703294\pi\)
0.894210 + 0.447648i \(0.147738\pi\)
\(608\) −9.93767 + 34.1821i −0.403026 + 1.38627i
\(609\) 0 0
\(610\) 0.126188 0.00607866i 0.00510922 0.000246118i
\(611\) 27.2072 47.1242i 1.10068 1.90644i
\(612\) 0 0
\(613\) −12.0261 20.8298i −0.485729 0.841307i 0.514137 0.857708i \(-0.328112\pi\)
−0.999865 + 0.0164015i \(0.994779\pi\)
\(614\) −16.6562 25.8871i −0.672190 1.04472i
\(615\) 0 0
\(616\) 0.301945 10.0181i 0.0121657 0.403642i
\(617\) 47.5174 + 8.37860i 1.91298 + 0.337310i 0.997832 0.0658095i \(-0.0209630\pi\)
0.915147 + 0.403119i \(0.132074\pi\)
\(618\) 0 0
\(619\) −2.89879 3.45464i −0.116512 0.138854i 0.704636 0.709569i \(-0.251110\pi\)
−0.821148 + 0.570715i \(0.806666\pi\)
\(620\) 9.30621 9.47528i 0.373747 0.380537i
\(621\) 0 0
\(622\) 7.80425 + 18.6038i 0.312922 + 0.745946i
\(623\) −6.94290 + 5.82578i −0.278161 + 0.233405i
\(624\) 0 0
\(625\) −4.47652 + 25.3876i −0.179061 + 1.01550i
\(626\) −20.4270 22.0918i −0.816429 0.882964i
\(627\) 0 0
\(628\) −34.4436 23.6585i −1.37445 0.944077i
\(629\) −32.4907 + 18.7585i −1.29549 + 0.747951i
\(630\) 0 0
\(631\) 9.73065 + 5.61799i 0.387371 + 0.223649i 0.681020 0.732264i \(-0.261536\pi\)
−0.293649 + 0.955913i \(0.594870\pi\)
\(632\) 11.3395 12.7154i 0.451062 0.505792i
\(633\) 0 0
\(634\) 9.10442 + 2.82562i 0.361583 + 0.112220i
\(635\) −19.5242 16.3828i −0.774796 0.650131i
\(636\) 0 0
\(637\) −22.5610 8.21154i −0.893900 0.325353i
\(638\) 2.37471 18.6872i 0.0940155 0.739835i
\(639\) 0 0
\(640\) 4.15589 + 25.3642i 0.164276 + 1.00261i
\(641\) 39.8883 7.03338i 1.57549 0.277802i 0.683533 0.729919i \(-0.260442\pi\)
0.891958 + 0.452118i \(0.149331\pi\)
\(642\) 0 0
\(643\) −11.0345 30.3169i −0.435157 1.19558i −0.942608 0.333902i \(-0.891634\pi\)
0.507451 0.861681i \(-0.330588\pi\)
\(644\) 5.41148 3.86221i 0.213242 0.152193i
\(645\) 0 0
\(646\) 38.4438 + 19.7932i 1.51255 + 0.778751i
\(647\) −7.00490 −0.275391 −0.137696 0.990475i \(-0.543970\pi\)
−0.137696 + 0.990475i \(0.543970\pi\)
\(648\) 0 0
\(649\) 30.9936 1.21660
\(650\) −0.920115 0.473730i −0.0360899 0.0185812i
\(651\) 0 0
\(652\) −5.34457 + 3.81446i −0.209309 + 0.149386i
\(653\) 12.0075 + 32.9903i 0.469889 + 1.29101i 0.917840 + 0.396951i \(0.129932\pi\)
−0.447951 + 0.894058i \(0.647846\pi\)
\(654\) 0 0
\(655\) 11.4788 2.02402i 0.448514 0.0790850i
\(656\) 8.19106 + 13.6152i 0.319807 + 0.531586i
\(657\) 0 0
\(658\) 2.79702 22.0106i 0.109039 0.858062i
\(659\) −8.41721 3.06361i −0.327888 0.119341i 0.172831 0.984952i \(-0.444709\pi\)
−0.500719 + 0.865610i \(0.666931\pi\)
\(660\) 0 0
\(661\) −27.2876 22.8970i −1.06137 0.890592i −0.0671232 0.997745i \(-0.521382\pi\)
−0.994243 + 0.107153i \(0.965826\pi\)
\(662\) −32.6823 10.1432i −1.27024 0.394227i
\(663\) 0 0
\(664\) −20.1515 17.9710i −0.782032 0.697410i
\(665\) −16.2217 9.36560i −0.629050 0.363182i
\(666\) 0 0
\(667\) 10.8214 6.24776i 0.419008 0.241914i
\(668\) 31.5698 + 21.6845i 1.22147 + 0.839000i
\(669\) 0 0
\(670\) 26.0309 + 28.1523i 1.00566 + 1.08762i
\(671\) 0.0184669 0.104731i 0.000712907 0.00404310i
\(672\) 0 0
\(673\) −2.58660 + 2.17042i −0.0997062 + 0.0836634i −0.691278 0.722589i \(-0.742952\pi\)
0.591572 + 0.806252i \(0.298508\pi\)
\(674\) 11.9547 + 28.4977i 0.460477 + 1.09769i
\(675\) 0 0
\(676\) −10.7226 + 10.9174i −0.412407 + 0.419900i
\(677\) 0.742831 + 0.885272i 0.0285493 + 0.0340238i 0.780130 0.625617i \(-0.215153\pi\)
−0.751581 + 0.659641i \(0.770708\pi\)
\(678\) 0 0
\(679\) 11.2978 + 1.99210i 0.433569 + 0.0764499i
\(680\) 31.2064 + 0.940555i 1.19671 + 0.0360686i
\(681\) 0 0
\(682\) −6.04928 9.40182i −0.231639 0.360014i
\(683\) −21.5897 37.3945i −0.826107 1.43086i −0.901070 0.433673i \(-0.857217\pi\)
0.0749630 0.997186i \(-0.476116\pi\)
\(684\) 0 0
\(685\) −2.05411 + 3.55783i −0.0784836 + 0.135938i
\(686\) −22.7342 + 1.09513i −0.867995 + 0.0418124i
\(687\) 0 0
\(688\) 26.4523 + 21.3966i 1.00849 + 0.815737i
\(689\) 11.2251 13.3775i 0.427641 0.509643i
\(690\) 0 0
\(691\) −4.39185 + 12.0665i −0.167074 + 0.459031i −0.994769 0.102146i \(-0.967429\pi\)
0.827696 + 0.561177i \(0.189651\pi\)
\(692\) 16.8470 4.67708i 0.640427 0.177796i
\(693\) 0 0
\(694\) −11.0852 + 14.5820i −0.420790 + 0.553525i
\(695\) 5.12874 + 29.0865i 0.194544 + 1.10331i
\(696\) 0 0
\(697\) 18.1366 6.60119i 0.686974 0.250038i
\(698\) −5.33454 + 1.20785i −0.201915 + 0.0457179i
\(699\) 0 0
\(700\) −0.420694 0.0329929i −0.0159008 0.00124702i
\(701\) 3.10248i 0.117179i 0.998282 + 0.0585896i \(0.0186603\pi\)
−0.998282 + 0.0585896i \(0.981340\pi\)
\(702\) 0 0
\(703\) 48.5896i 1.83259i
\(704\) 21.5966 + 1.30302i 0.813952 + 0.0491093i
\(705\) 0 0
\(706\) −0.950228 4.19672i −0.0357623 0.157946i
\(707\) −2.71110 + 0.986759i −0.101961 + 0.0371109i
\(708\) 0 0
\(709\) 1.67631 + 9.50681i 0.0629550 + 0.357036i 0.999970 + 0.00774652i \(0.00246582\pi\)
−0.937015 + 0.349289i \(0.886423\pi\)
\(710\) 6.26983 + 4.76633i 0.235302 + 0.178877i
\(711\) 0 0
\(712\) −12.1188 15.3596i −0.454173 0.575627i
\(713\) 2.53639 6.96868i 0.0949887 0.260979i
\(714\) 0 0
\(715\) −17.9470 + 21.3884i −0.671181 + 0.799883i
\(716\) 12.0787 1.16640i 0.451401 0.0435903i
\(717\) 0 0
\(718\) 1.12621 + 23.3794i 0.0420300 + 0.872510i
\(719\) −20.9190 + 36.2327i −0.780146 + 1.35125i 0.151711 + 0.988425i \(0.451522\pi\)
−0.931856 + 0.362827i \(0.881812\pi\)
\(720\) 0 0
\(721\) 1.28869 + 2.23207i 0.0479931 + 0.0831266i
\(722\) 24.4986 15.7628i 0.911743 0.586630i
\(723\) 0 0
\(724\) 13.2857 29.1741i 0.493759 1.08425i
\(725\) −0.781069 0.137724i −0.0290082 0.00511492i
\(726\) 0 0
\(727\) 0.315311 + 0.375773i 0.0116942 + 0.0139367i 0.771860 0.635793i \(-0.219327\pi\)
−0.760166 + 0.649729i \(0.774882\pi\)
\(728\) −6.23417 + 15.6448i −0.231054 + 0.579835i
\(729\) 0 0
\(730\) 18.3197 7.68506i 0.678043 0.284437i
\(731\) 31.6584 26.5646i 1.17093 0.982526i
\(732\) 0 0
\(733\) 5.08882 28.8601i 0.187960 1.06597i −0.734134 0.679005i \(-0.762411\pi\)
0.922093 0.386967i \(-0.126477\pi\)
\(734\) 2.29154 2.11886i 0.0845823 0.0782087i
\(735\) 0 0
\(736\) 7.98162 + 11.9276i 0.294206 + 0.439656i
\(737\) 27.9521 16.1381i 1.02963 0.594456i
\(738\) 0 0
\(739\) −34.8536 20.1228i −1.28211 0.740227i −0.304877 0.952392i \(-0.598616\pi\)
−0.977234 + 0.212164i \(0.931949\pi\)
\(740\) 15.1124 + 31.6614i 0.555544 + 1.16390i
\(741\) 0 0
\(742\) 2.11063 6.80064i 0.0774836 0.249659i
\(743\) −30.1377 25.2885i −1.10564 0.927746i −0.107853 0.994167i \(-0.534397\pi\)
−0.997792 + 0.0664212i \(0.978842\pi\)
\(744\) 0 0
\(745\) 5.49409 + 1.99969i 0.201288 + 0.0732628i
\(746\) 14.7131 + 1.86969i 0.538685 + 0.0684541i
\(747\) 0 0
\(748\) 6.57324 25.4457i 0.240341 0.930387i
\(749\) −5.24795 + 0.925356i −0.191756 + 0.0338118i
\(750\) 0 0
\(751\) 9.37903 + 25.7687i 0.342246 + 0.940312i 0.984742 + 0.174023i \(0.0556767\pi\)
−0.642496 + 0.766289i \(0.722101\pi\)
\(752\) 47.3106 + 7.46658i 1.72524 + 0.272278i
\(753\) 0 0
\(754\) −14.4891 + 28.1419i −0.527662 + 1.02487i
\(755\) 11.9272 0.434077
\(756\) 0 0
\(757\) −13.2822 −0.482750 −0.241375 0.970432i \(-0.577598\pi\)
−0.241375 + 0.970432i \(0.577598\pi\)
\(758\) 1.99835 3.88136i 0.0725835 0.140977i
\(759\) 0 0
\(760\) 21.2632 34.3926i 0.771297 1.24755i
\(761\) −4.40238 12.0954i −0.159586 0.438459i 0.833969 0.551812i \(-0.186063\pi\)
−0.993555 + 0.113353i \(0.963841\pi\)
\(762\) 0 0
\(763\) −2.33580 + 0.411864i −0.0845616 + 0.0149105i
\(764\) −22.6508 5.85125i −0.819477 0.211691i
\(765\) 0 0
\(766\) −22.5389 2.86416i −0.814364 0.103486i
\(767\) −48.9380 17.8120i −1.76705 0.643153i
\(768\) 0 0
\(769\) 22.2691 + 18.6860i 0.803045 + 0.673835i 0.948937 0.315466i \(-0.102161\pi\)
−0.145892 + 0.989301i \(0.546605\pi\)
\(770\) −3.37455 + 10.8731i −0.121610 + 0.391839i
\(771\) 0 0
\(772\) 31.7153 15.1381i 1.14146 0.544832i
\(773\) 4.16046 + 2.40204i 0.149641 + 0.0863954i 0.572951 0.819590i \(-0.305798\pi\)
−0.423310 + 0.905985i \(0.639132\pi\)
\(774\) 0 0
\(775\) −0.407642 + 0.235352i −0.0146429 + 0.00845410i
\(776\) −5.03311 + 24.2478i −0.180678 + 0.870445i
\(777\) 0 0
\(778\) −18.3288 + 16.9476i −0.657119 + 0.607602i
\(779\) 4.34066 24.6171i 0.155520 0.882000i
\(780\) 0 0
\(781\) 5.07868 4.26152i 0.181730 0.152489i
\(782\) 16.0758 6.74375i 0.574870 0.241156i
\(783\) 0 0
\(784\) −0.380445 21.1295i −0.0135873 0.754626i
\(785\) 30.5098 + 36.3601i 1.08894 + 1.29775i
\(786\) 0 0
\(787\) −39.5137 6.96732i −1.40851 0.248358i −0.582874 0.812562i \(-0.698072\pi\)
−0.825635 + 0.564204i \(0.809183\pi\)
\(788\) 41.9520 + 19.1047i 1.49448 + 0.680577i
\(789\) 0 0
\(790\) −16.2747 + 10.4714i −0.579030 + 0.372557i
\(791\) −2.29975 3.98328i −0.0817696 0.141629i
\(792\) 0 0
\(793\) −0.0893474 + 0.154754i −0.00317282 + 0.00549548i
\(794\) 0.917021 + 19.0367i 0.0325438 + 0.675586i
\(795\) 0 0
\(796\) 0.601035 + 6.22405i 0.0213031 + 0.220606i
\(797\) 19.9816 23.8132i 0.707785 0.843505i −0.285599 0.958349i \(-0.592192\pi\)
0.993384 + 0.114844i \(0.0366368\pi\)
\(798\) 0 0
\(799\) 19.8985 54.6706i 0.703957 1.93411i
\(800\) 0.0985482 0.905591i 0.00348421 0.0320175i
\(801\) 0 0
\(802\) −7.60909 5.78444i −0.268686 0.204256i
\(803\) −2.90395 16.4691i −0.102478 0.581183i
\(804\) 0 0
\(805\) −7.09642 + 2.58288i −0.250116 + 0.0910347i
\(806\) 4.14843 + 18.3217i 0.146122 + 0.645354i
\(807\) 0 0
\(808\) −1.95283 5.91394i −0.0687003 0.208052i
\(809\) 26.7938i 0.942021i −0.882128 0.471010i \(-0.843889\pi\)
0.882128 0.471010i \(-0.156111\pi\)
\(810\) 0 0
\(811\) 22.6335i 0.794769i 0.917652 + 0.397384i \(0.130082\pi\)
−0.917652 + 0.397384i \(0.869918\pi\)
\(812\) −1.00909 + 12.8670i −0.0354123 + 0.451543i
\(813\) 0 0
\(814\) 28.8034 6.52171i 1.00956 0.228586i
\(815\) 7.00868 2.55095i 0.245503 0.0893559i
\(816\) 0 0
\(817\) −9.29439 52.7111i −0.325169 1.84413i
\(818\) 16.1272 21.2144i 0.563876 0.741746i
\(819\) 0 0
\(820\) −4.82804 17.3908i −0.168603 0.607312i
\(821\) 4.37655 12.0245i 0.152743 0.419657i −0.839595 0.543213i \(-0.817208\pi\)
0.992338 + 0.123556i \(0.0394298\pi\)
\(822\) 0 0
\(823\) −16.6888 + 19.8889i −0.581735 + 0.693284i −0.973995 0.226570i \(-0.927249\pi\)
0.392260 + 0.919854i \(0.371693\pi\)
\(824\) −4.89996 + 2.63545i −0.170698 + 0.0918103i
\(825\) 0 0
\(826\) −21.2106 + 1.02174i −0.738012 + 0.0355510i
\(827\) 9.69134 16.7859i 0.337001 0.583703i −0.646866 0.762603i \(-0.723921\pi\)
0.983867 + 0.178901i \(0.0572542\pi\)
\(828\) 0 0
\(829\) −15.3678 26.6178i −0.533745 0.924474i −0.999223 0.0394143i \(-0.987451\pi\)
0.465478 0.885060i \(-0.345883\pi\)
\(830\) 16.5953 + 25.7924i 0.576030 + 0.895268i
\(831\) 0 0
\(832\) −33.3516 14.4690i −1.15626 0.501621i
\(833\) −25.2801 4.45757i −0.875905 0.154446i
\(834\) 0 0
\(835\) −27.9642 33.3264i −0.967740 1.15331i
\(836\) −24.2838 23.8505i −0.839872 0.824886i
\(837\) 0 0
\(838\) 10.4460 + 24.9012i 0.360850 + 0.860199i
\(839\) 8.37643 7.02866i 0.289186 0.242656i −0.486640 0.873603i \(-0.661778\pi\)
0.775826 + 0.630946i \(0.217333\pi\)
\(840\) 0 0
\(841\) 0.823502 4.67031i 0.0283966 0.161045i
\(842\) 21.6437 + 23.4075i 0.745890 + 0.806676i
\(843\) 0 0
\(844\) 14.5545 21.1895i 0.500988 0.729371i
\(845\) 15.0532 8.69096i 0.517845 0.298978i
\(846\) 0 0
\(847\) −4.18228 2.41464i −0.143705 0.0829680i
\(848\) 14.5366 + 4.99639i 0.499187 + 0.171577i
\(849\) 0 0
\(850\) −1.05679 0.327981i −0.0362475 0.0112497i
\(851\) 15.0067 + 12.5921i 0.514423 + 0.431652i
\(852\) 0 0
\(853\) −6.04290 2.19943i −0.206905 0.0753072i 0.236489 0.971634i \(-0.424003\pi\)
−0.443394 + 0.896327i \(0.646226\pi\)
\(854\) −0.00918534 + 0.0722820i −0.000314316 + 0.00247344i
\(855\) 0 0
\(856\) −1.65536 11.3837i −0.0565790 0.389088i
\(857\) 3.12650 0.551287i 0.106799 0.0188316i −0.119993 0.992775i \(-0.538287\pi\)
0.226792 + 0.973943i \(0.427176\pi\)
\(858\) 0 0
\(859\) 9.69336 + 26.6323i 0.330733 + 0.908682i 0.987921 + 0.154956i \(0.0495235\pi\)
−0.657188 + 0.753727i \(0.728254\pi\)
\(860\) −22.4506 31.4562i −0.765558 1.07265i
\(861\) 0 0
\(862\) 13.5867 + 6.99526i 0.462766 + 0.238260i
\(863\) −53.5310 −1.82222 −0.911108 0.412168i \(-0.864772\pi\)
−0.911108 + 0.412168i \(0.864772\pi\)
\(864\) 0 0
\(865\) −19.8602 −0.675267
\(866\) −47.2656 24.3351i −1.60615 0.826942i
\(867\) 0 0
\(868\) 4.44980 + 6.23476i 0.151036 + 0.211622i
\(869\) 5.57172 + 15.3082i 0.189008 + 0.519294i
\(870\) 0 0
\(871\) −53.4100 + 9.41763i −1.80973 + 0.319104i
\(872\) −0.736780 5.06676i −0.0249505 0.171582i
\(873\) 0 0
\(874\) 2.84626 22.3980i 0.0962761 0.757624i
\(875\) −13.5351 4.92637i −0.457570 0.166542i
\(876\) 0 0
\(877\) −22.8969 19.2128i −0.773175 0.648770i 0.168345 0.985728i \(-0.446158\pi\)
−0.941520 + 0.336958i \(0.890602\pi\)
\(878\) 43.1317 + 13.3863i 1.45563 + 0.451764i
\(879\) 0 0
\(880\) −23.2415 7.98841i −0.783472 0.269289i
\(881\) 14.9002 + 8.60262i 0.502000 + 0.289830i 0.729539 0.683939i \(-0.239735\pi\)
−0.227539 + 0.973769i \(0.573068\pi\)
\(882\) 0 0
\(883\) −19.9228 + 11.5024i −0.670455 + 0.387088i −0.796249 0.604969i \(-0.793186\pi\)
0.125794 + 0.992056i \(0.459852\pi\)
\(884\) −25.0025 + 36.4004i −0.840927 + 1.22428i
\(885\) 0 0
\(886\) −36.0823 39.0229i −1.21221 1.31100i
\(887\) 4.95616 28.1078i 0.166411 0.943766i −0.781186 0.624299i \(-0.785385\pi\)
0.947597 0.319468i \(-0.103504\pi\)
\(888\) 0 0
\(889\) 11.2606 9.44874i 0.377667 0.316901i
\(890\) 8.59695 + 20.4935i 0.288170 + 0.686944i
\(891\) 0 0
\(892\) 14.7529 + 14.4896i 0.493963 + 0.485149i
\(893\) −48.4340 57.7214i −1.62078 1.93157i
\(894\) 0 0
\(895\) −13.5745 2.39355i −0.453746 0.0800076i
\(896\) −14.8227 0.179768i −0.495192 0.00600563i
\(897\) 0 0
\(898\) −6.18452 9.61200i −0.206380 0.320757i
\(899\) 7.19828 + 12.4678i 0.240076 + 0.415824i
\(900\) 0 0
\(901\) 9.33569 16.1699i 0.311017 0.538697i
\(902\) −15.1754 + 0.731017i −0.505285 + 0.0243402i
\(903\) 0 0
\(904\) 8.74432 4.70314i 0.290832 0.156424i
\(905\) −23.4059 + 27.8941i −0.778039 + 0.927231i
\(906\) 0 0
\(907\) −19.9408 + 54.7868i −0.662123 + 1.81917i −0.0950957 + 0.995468i \(0.530316\pi\)
−0.567027 + 0.823699i \(0.691907\pi\)
\(908\) −0.0513842 0.185088i −0.00170525 0.00614236i
\(909\) 0 0
\(910\) 11.5771 15.2290i 0.383776 0.504835i
\(911\) 0.684711 + 3.88319i 0.0226855 + 0.128656i 0.994047 0.108949i \(-0.0347487\pi\)
−0.971362 + 0.237605i \(0.923638\pi\)
\(912\) 0 0
\(913\) 24.2606 8.83014i 0.802909 0.292235i
\(914\) −3.41260 + 0.772686i −0.112879 + 0.0255582i
\(915\) 0 0
\(916\) −4.20210 + 53.5812i −0.138841 + 1.77037i
\(917\) 6.72250i 0.221997i
\(918\) 0 0
\(919\) 6.45794i 0.213028i −0.994311 0.106514i \(-0.966031\pi\)
0.994311 0.106514i \(-0.0339689\pi\)
\(920\) −5.11162 15.4800i −0.168525 0.510360i
\(921\) 0 0
\(922\) −2.82183 12.4627i −0.0929319 0.410438i
\(923\) −10.4682 + 3.81011i −0.344564 + 0.125411i
\(924\) 0 0
\(925\) −0.215916 1.22452i −0.00709928 0.0402620i
\(926\) 1.57011 + 1.19360i 0.0515970 + 0.0392240i
\(927\) 0 0
\(928\) −27.6976 3.01411i −0.909220 0.0989431i
\(929\) −19.4892 + 53.5462i −0.639420 + 1.75679i 0.0141186 + 0.999900i \(0.495506\pi\)
−0.653539 + 0.756893i \(0.726716\pi\)
\(930\) 0 0
\(931\) −21.3703 + 25.4681i −0.700383 + 0.834684i
\(932\) 1.39068 + 14.4013i 0.0455533 + 0.471729i
\(933\) 0 0
\(934\) 1.43565 + 29.8030i 0.0469759 + 0.975185i
\(935\) −14.9262 + 25.8530i −0.488140 + 0.845483i
\(936\) 0 0
\(937\) 9.57464 + 16.5838i 0.312790 + 0.541768i 0.978965 0.204027i \(-0.0654031\pi\)
−0.666175 + 0.745795i \(0.732070\pi\)
\(938\) −18.5971 + 11.9657i −0.607218 + 0.390694i
\(939\) 0 0
\(940\) −49.5126 22.5478i −1.61492 0.735427i
\(941\) 18.4077 + 3.24578i 0.600075 + 0.105809i 0.465430 0.885085i \(-0.345900\pi\)
0.134645 + 0.990894i \(0.457011\pi\)
\(942\) 0 0
\(943\) −6.47800 7.72018i −0.210953 0.251404i
\(944\) −0.825237 45.8329i −0.0268592 1.49173i
\(945\) 0 0
\(946\) −29.9991 + 12.5845i −0.975354 + 0.409158i
\(947\) −21.8007 + 18.2930i −0.708428 + 0.594442i −0.924158 0.382011i \(-0.875232\pi\)
0.215729 + 0.976453i \(0.430787\pi\)
\(948\) 0 0
\(949\) −4.87953 + 27.6732i −0.158396 + 0.898309i
\(950\) −1.05221 + 0.972922i −0.0341382 + 0.0315658i
\(951\) 0 0
\(952\) −3.65958 + 17.6306i −0.118608 + 0.571411i
\(953\) 39.0891 22.5681i 1.26622 0.731052i 0.291949 0.956434i \(-0.405696\pi\)
0.974270 + 0.225382i \(0.0723630\pi\)
\(954\) 0 0
\(955\) 23.0134 + 13.2868i 0.744695 + 0.429950i
\(956\) 23.0257 10.9905i 0.744706 0.355458i
\(957\) 0 0
\(958\) −6.12200 + 19.7256i −0.197793 + 0.637306i
\(959\) −1.81507 1.52303i −0.0586118 0.0491811i
\(960\) 0 0
\(961\) −21.1016 7.68035i −0.680697 0.247753i
\(962\) −49.2278 6.25568i −1.58717 0.201691i
\(963\) 0 0
\(964\) −14.6643 3.78814i −0.472305 0.122008i
\(965\) −39.3121 + 6.93179i −1.26550 + 0.223142i
\(966\) 0 0
\(967\) 3.13528 + 8.61412i 0.100824 + 0.277011i 0.979841 0.199779i \(-0.0640224\pi\)
−0.879017 + 0.476790i \(0.841800\pi\)
\(968\) 5.48208 8.86712i 0.176201 0.285000i
\(969\) 0 0
\(970\) 12.8766 25.0099i 0.413442 0.803018i
\(971\) −10.7197 −0.344010 −0.172005 0.985096i \(-0.555025\pi\)
−0.172005 + 0.985096i \(0.555025\pi\)
\(972\) 0 0
\(973\) −17.0344 −0.546098
\(974\) 0.182905 0.355253i 0.00586067 0.0113830i
\(975\) 0 0
\(976\) −0.155366 0.0245200i −0.00497316 0.000784866i
\(977\) −17.0312 46.7929i −0.544877 1.49704i −0.840542 0.541746i \(-0.817763\pi\)
0.295665 0.955292i \(-0.404459\pi\)
\(978\) 0 0
\(979\) 18.4233 3.24853i 0.588812 0.103823i
\(980\) −6.00394 + 23.2419i −0.191789 + 0.742435i
\(981\) 0 0
\(982\) 21.7439 + 2.76313i 0.693875 + 0.0881751i
\(983\) 1.70953 + 0.622218i 0.0545255 + 0.0198457i 0.369139 0.929374i \(-0.379653\pi\)
−0.314613 + 0.949220i \(0.601875\pi\)
\(984\) 0 0
\(985\) −40.1114 33.6575i −1.27806 1.07242i
\(986\) −10.0314 + 32.3220i −0.319464 + 1.02934i
\(987\) 0 0
\(988\) 24.6366 + 51.6151i 0.783793 + 1.64209i
\(989\) −18.6883 10.7897i −0.594252 0.343092i
\(990\) 0 0
\(991\) 48.8792 28.2204i 1.55270 0.896451i 0.554777 0.831999i \(-0.312804\pi\)
0.997921 0.0644516i \(-0.0205298\pi\)
\(992\) −13.7422 + 9.19592i −0.436315 + 0.291971i
\(993\) 0 0
\(994\) −3.33514 + 3.08382i −0.105784 + 0.0978129i
\(995\) 1.23338 6.99485i 0.0391008 0.221752i
\(996\) 0 0
\(997\) 9.04342 7.58833i 0.286408 0.240325i −0.488252 0.872703i \(-0.662365\pi\)
0.774660 + 0.632378i \(0.217921\pi\)
\(998\) 53.3333 22.3731i 1.68824 0.708209i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.d.863.15 96
3.2 odd 2 972.2.l.a.863.2 96
4.3 odd 2 inner 972.2.l.d.863.10 96
9.2 odd 6 324.2.l.a.179.9 96
9.4 even 3 972.2.l.c.215.4 96
9.5 odd 6 972.2.l.b.215.13 96
9.7 even 3 108.2.l.a.23.8 96
12.11 even 2 972.2.l.a.863.7 96
27.2 odd 18 108.2.l.a.47.13 yes 96
27.7 even 9 972.2.l.b.755.15 96
27.11 odd 18 inner 972.2.l.d.107.10 96
27.16 even 9 972.2.l.a.107.7 96
27.20 odd 18 972.2.l.c.755.2 96
27.25 even 9 324.2.l.a.143.4 96
36.7 odd 6 108.2.l.a.23.13 yes 96
36.11 even 6 324.2.l.a.179.4 96
36.23 even 6 972.2.l.b.215.15 96
36.31 odd 6 972.2.l.c.215.2 96
108.7 odd 18 972.2.l.b.755.13 96
108.11 even 18 inner 972.2.l.d.107.15 96
108.43 odd 18 972.2.l.a.107.2 96
108.47 even 18 972.2.l.c.755.4 96
108.79 odd 18 324.2.l.a.143.9 96
108.83 even 18 108.2.l.a.47.8 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.8 96 9.7 even 3
108.2.l.a.23.13 yes 96 36.7 odd 6
108.2.l.a.47.8 yes 96 108.83 even 18
108.2.l.a.47.13 yes 96 27.2 odd 18
324.2.l.a.143.4 96 27.25 even 9
324.2.l.a.143.9 96 108.79 odd 18
324.2.l.a.179.4 96 36.11 even 6
324.2.l.a.179.9 96 9.2 odd 6
972.2.l.a.107.2 96 108.43 odd 18
972.2.l.a.107.7 96 27.16 even 9
972.2.l.a.863.2 96 3.2 odd 2
972.2.l.a.863.7 96 12.11 even 2
972.2.l.b.215.13 96 9.5 odd 6
972.2.l.b.215.15 96 36.23 even 6
972.2.l.b.755.13 96 108.7 odd 18
972.2.l.b.755.15 96 27.7 even 9
972.2.l.c.215.2 96 36.31 odd 6
972.2.l.c.215.4 96 9.4 even 3
972.2.l.c.755.2 96 27.20 odd 18
972.2.l.c.755.4 96 108.47 even 18
972.2.l.d.107.10 96 27.11 odd 18 inner
972.2.l.d.107.15 96 108.11 even 18 inner
972.2.l.d.863.10 96 4.3 odd 2 inner
972.2.l.d.863.15 96 1.1 even 1 trivial