Properties

Label 324.2
Level 324
Weight 2
Dimension 1288
Nonzero newspaces 8
Newform subspaces 21
Sturm bound 11664
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 21 \)
Sturm bound: \(11664\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(324))\).

Total New Old
Modular forms 3186 1400 1786
Cusp forms 2647 1288 1359
Eisenstein series 539 112 427

Trace form

\( 1288 q - 12 q^{2} - 20 q^{4} - 27 q^{5} - 18 q^{6} - 3 q^{7} - 9 q^{8} - 36 q^{9} - 25 q^{10} - 3 q^{11} - 18 q^{12} - 37 q^{13} + 3 q^{14} - 8 q^{16} - 6 q^{17} - 18 q^{18} + 18 q^{19} + 9 q^{20} - 9 q^{21}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(324))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
324.2.a \(\chi_{324}(1, \cdot)\) 324.2.a.a 1 1
324.2.a.b 1
324.2.a.c 1
324.2.a.d 1
324.2.b \(\chi_{324}(323, \cdot)\) 324.2.b.a 4 1
324.2.b.b 8
324.2.b.c 8
324.2.e \(\chi_{324}(109, \cdot)\) 324.2.e.a 2 2
324.2.e.b 2
324.2.e.c 2
324.2.e.d 2
324.2.h \(\chi_{324}(107, \cdot)\) 324.2.h.a 4 2
324.2.h.b 4
324.2.h.c 4
324.2.h.d 8
324.2.h.e 8
324.2.h.f 16
324.2.i \(\chi_{324}(37, \cdot)\) 324.2.i.a 18 6
324.2.l \(\chi_{324}(35, \cdot)\) 324.2.l.a 96 6
324.2.m \(\chi_{324}(13, \cdot)\) 324.2.m.a 162 18
324.2.p \(\chi_{324}(11, \cdot)\) 324.2.p.a 936 18

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(324))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(324)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 2}\)