Properties

Label 275.3.bk.c.93.6
Level $275$
Weight $3$
Character 275.93
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 93.6
Character \(\chi\) \(=\) 275.93
Dual form 275.3.bk.c.207.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04950 - 0.534746i) q^{2} +(-0.902907 - 5.70073i) q^{3} +(-1.53565 - 2.11364i) q^{4} +(-2.10084 + 6.46573i) q^{6} +(0.308752 - 1.94938i) q^{7} +(1.21844 + 7.69295i) q^{8} +(-23.1236 + 7.51330i) q^{9} +(-9.40014 + 5.71291i) q^{11} +(-10.6627 + 10.6627i) q^{12} +(7.55546 - 14.8284i) q^{13} +(-1.36646 + 1.88077i) q^{14} +(-0.394331 + 1.21363i) q^{16} +(2.20061 + 4.31894i) q^{17} +(28.2858 + 4.48004i) q^{18} +(8.23200 - 11.3304i) q^{19} -11.3917 q^{21} +(12.9204 - 0.968994i) q^{22} +(-20.5117 - 20.5117i) q^{23} +(42.7553 - 13.8920i) q^{24} +(-15.8589 + 11.5221i) q^{26} +(40.1266 + 78.7530i) q^{27} +(-4.59443 + 2.34098i) q^{28} +(25.5765 + 35.2031i) q^{29} +(-3.79161 - 11.6694i) q^{31} +(23.0930 - 23.0930i) q^{32} +(41.0552 + 48.4294i) q^{33} -5.70948i q^{34} +(51.3900 + 37.3370i) q^{36} +(-0.0304356 + 0.192163i) q^{37} +(-14.6984 + 7.48918i) q^{38} +(-91.3546 - 29.6829i) q^{39} +(-35.3846 - 25.7084i) q^{41} +(11.9555 + 6.09166i) q^{42} +(-19.6401 - 19.6401i) q^{43} +(26.5103 + 11.0955i) q^{44} +(10.5585 + 32.4956i) q^{46} +(-48.5817 + 7.69458i) q^{47} +(7.27460 + 1.15218i) q^{48} +(42.8970 + 13.9381i) q^{49} +(22.6341 - 16.4447i) q^{51} +(-42.9444 + 6.80173i) q^{52} +(-2.54841 + 5.00155i) q^{53} -104.109i q^{54} +15.3727 q^{56} +(-72.0242 - 36.6981i) q^{57} +(-8.01782 - 50.6225i) q^{58} +(-1.39664 - 1.92231i) q^{59} +(-36.3443 + 111.856i) q^{61} +(-2.26086 + 14.2745i) q^{62} +(7.50685 + 47.3964i) q^{63} +(-31.7305 + 10.3099i) q^{64} +(-17.1899 - 72.7807i) q^{66} +(50.5862 - 50.5862i) q^{67} +(5.74931 - 11.2837i) q^{68} +(-98.4116 + 135.452i) q^{69} +(-0.478560 + 1.47286i) q^{71} +(-85.9742 - 168.734i) q^{72} +(-89.5842 - 14.1887i) q^{73} +(0.134700 - 0.185399i) q^{74} -36.5898 q^{76} +(8.23433 + 20.0884i) q^{77} +(80.0037 + 80.0037i) q^{78} +(-47.9857 + 15.5915i) q^{79} +(235.688 - 171.237i) q^{81} +(23.3886 + 45.9027i) q^{82} +(12.4452 - 6.34114i) q^{83} +(17.4936 + 24.0779i) q^{84} +(10.1098 + 31.1147i) q^{86} +(177.590 - 177.590i) q^{87} +(-55.4026 - 65.3540i) q^{88} +80.6579i q^{89} +(-26.5735 - 19.3068i) q^{91} +(-11.8556 + 74.8532i) q^{92} +(-63.1004 + 32.1513i) q^{93} +(55.1010 + 17.9034i) q^{94} +(-152.498 - 110.796i) q^{96} +(-96.8143 - 49.3293i) q^{97} +(-37.5670 - 37.5670i) q^{98} +(174.442 - 202.729i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04950 0.534746i −0.524749 0.267373i 0.171486 0.985186i \(-0.445143\pi\)
−0.696235 + 0.717813i \(0.745143\pi\)
\(3\) −0.902907 5.70073i −0.300969 1.90024i −0.420295 0.907388i \(-0.638073\pi\)
0.119326 0.992855i \(-0.461927\pi\)
\(4\) −1.53565 2.11364i −0.383912 0.528410i
\(5\) 0 0
\(6\) −2.10084 + 6.46573i −0.350140 + 1.07762i
\(7\) 0.308752 1.94938i 0.0441074 0.278483i −0.955770 0.294114i \(-0.904976\pi\)
0.999878 + 0.0156304i \(0.00497553\pi\)
\(8\) 1.21844 + 7.69295i 0.152305 + 0.961619i
\(9\) −23.1236 + 7.51330i −2.56928 + 0.834811i
\(10\) 0 0
\(11\) −9.40014 + 5.71291i −0.854559 + 0.519355i
\(12\) −10.6627 + 10.6627i −0.888561 + 0.888561i
\(13\) 7.55546 14.8284i 0.581189 1.14065i −0.393966 0.919125i \(-0.628897\pi\)
0.975155 0.221523i \(-0.0711027\pi\)
\(14\) −1.36646 + 1.88077i −0.0976043 + 0.134341i
\(15\) 0 0
\(16\) −0.394331 + 1.21363i −0.0246457 + 0.0758516i
\(17\) 2.20061 + 4.31894i 0.129448 + 0.254055i 0.946629 0.322326i \(-0.104465\pi\)
−0.817181 + 0.576381i \(0.804465\pi\)
\(18\) 28.2858 + 4.48004i 1.57144 + 0.248891i
\(19\) 8.23200 11.3304i 0.433263 0.596336i −0.535435 0.844576i \(-0.679852\pi\)
0.968698 + 0.248240i \(0.0798523\pi\)
\(20\) 0 0
\(21\) −11.3917 −0.542461
\(22\) 12.9204 0.968994i 0.587290 0.0440452i
\(23\) −20.5117 20.5117i −0.891814 0.891814i 0.102879 0.994694i \(-0.467194\pi\)
−0.994694 + 0.102879i \(0.967194\pi\)
\(24\) 42.7553 13.8920i 1.78147 0.578835i
\(25\) 0 0
\(26\) −15.8589 + 11.5221i −0.609957 + 0.443159i
\(27\) 40.1266 + 78.7530i 1.48617 + 2.91678i
\(28\) −4.59443 + 2.34098i −0.164087 + 0.0836063i
\(29\) 25.5765 + 35.2031i 0.881949 + 1.21390i 0.975877 + 0.218320i \(0.0700577\pi\)
−0.0939277 + 0.995579i \(0.529942\pi\)
\(30\) 0 0
\(31\) −3.79161 11.6694i −0.122310 0.376431i 0.871091 0.491121i \(-0.163413\pi\)
−0.993401 + 0.114690i \(0.963413\pi\)
\(32\) 23.0930 23.0930i 0.721657 0.721657i
\(33\) 41.0552 + 48.4294i 1.24410 + 1.46756i
\(34\) 5.70948i 0.167926i
\(35\) 0 0
\(36\) 51.3900 + 37.3370i 1.42750 + 1.03714i
\(37\) −0.0304356 + 0.192163i −0.000822583 + 0.00519359i −0.988096 0.153837i \(-0.950837\pi\)
0.987274 + 0.159031i \(0.0508369\pi\)
\(38\) −14.6984 + 7.48918i −0.386799 + 0.197084i
\(39\) −91.3546 29.6829i −2.34243 0.761101i
\(40\) 0 0
\(41\) −35.3846 25.7084i −0.863039 0.627034i 0.0656713 0.997841i \(-0.479081\pi\)
−0.928710 + 0.370807i \(0.879081\pi\)
\(42\) 11.9555 + 6.09166i 0.284656 + 0.145039i
\(43\) −19.6401 19.6401i −0.456746 0.456746i 0.440840 0.897586i \(-0.354681\pi\)
−0.897586 + 0.440840i \(0.854681\pi\)
\(44\) 26.5103 + 11.0955i 0.602507 + 0.252170i
\(45\) 0 0
\(46\) 10.5585 + 32.4956i 0.229532 + 0.706426i
\(47\) −48.5817 + 7.69458i −1.03365 + 0.163714i −0.650135 0.759819i \(-0.725288\pi\)
−0.383518 + 0.923533i \(0.625288\pi\)
\(48\) 7.27460 + 1.15218i 0.151554 + 0.0240038i
\(49\) 42.8970 + 13.9381i 0.875449 + 0.284451i
\(50\) 0 0
\(51\) 22.6341 16.4447i 0.443807 0.322444i
\(52\) −42.9444 + 6.80173i −0.825854 + 0.130802i
\(53\) −2.54841 + 5.00155i −0.0480833 + 0.0943688i −0.913798 0.406169i \(-0.866864\pi\)
0.865715 + 0.500538i \(0.166864\pi\)
\(54\) 104.109i 1.92794i
\(55\) 0 0
\(56\) 15.3727 0.274513
\(57\) −72.0242 36.6981i −1.26358 0.643827i
\(58\) −8.01782 50.6225i −0.138238 0.872802i
\(59\) −1.39664 1.92231i −0.0236719 0.0325816i 0.797017 0.603957i \(-0.206410\pi\)
−0.820689 + 0.571375i \(0.806410\pi\)
\(60\) 0 0
\(61\) −36.3443 + 111.856i −0.595809 + 1.83371i −0.0451502 + 0.998980i \(0.514377\pi\)
−0.550659 + 0.834731i \(0.685623\pi\)
\(62\) −2.26086 + 14.2745i −0.0364655 + 0.230234i
\(63\) 7.50685 + 47.3964i 0.119156 + 0.752324i
\(64\) −31.7305 + 10.3099i −0.495789 + 0.161091i
\(65\) 0 0
\(66\) −17.1899 72.7807i −0.260453 1.10274i
\(67\) 50.5862 50.5862i 0.755018 0.755018i −0.220393 0.975411i \(-0.570734\pi\)
0.975411 + 0.220393i \(0.0707340\pi\)
\(68\) 5.74931 11.2837i 0.0845487 0.165936i
\(69\) −98.4116 + 135.452i −1.42626 + 1.96307i
\(70\) 0 0
\(71\) −0.478560 + 1.47286i −0.00674028 + 0.0207445i −0.954370 0.298626i \(-0.903472\pi\)
0.947630 + 0.319371i \(0.103472\pi\)
\(72\) −85.9742 168.734i −1.19409 2.34353i
\(73\) −89.5842 14.1887i −1.22718 0.194366i −0.491005 0.871157i \(-0.663370\pi\)
−0.736176 + 0.676790i \(0.763370\pi\)
\(74\) 0.134700 0.185399i 0.00182028 0.00250539i
\(75\) 0 0
\(76\) −36.5898 −0.481445
\(77\) 8.23433 + 20.0884i 0.106939 + 0.260888i
\(78\) 80.0037 + 80.0037i 1.02569 + 1.02569i
\(79\) −47.9857 + 15.5915i −0.607414 + 0.197361i −0.596544 0.802580i \(-0.703460\pi\)
−0.0108696 + 0.999941i \(0.503460\pi\)
\(80\) 0 0
\(81\) 235.688 171.237i 2.90973 2.11404i
\(82\) 23.3886 + 45.9027i 0.285227 + 0.559789i
\(83\) 12.4452 6.34114i 0.149942 0.0763993i −0.377410 0.926046i \(-0.623185\pi\)
0.527352 + 0.849647i \(0.323185\pi\)
\(84\) 17.4936 + 24.0779i 0.208257 + 0.286642i
\(85\) 0 0
\(86\) 10.1098 + 31.1147i 0.117555 + 0.361799i
\(87\) 177.590 177.590i 2.04126 2.04126i
\(88\) −55.4026 65.3540i −0.629576 0.742659i
\(89\) 80.6579i 0.906269i 0.891442 + 0.453135i \(0.149694\pi\)
−0.891442 + 0.453135i \(0.850306\pi\)
\(90\) 0 0
\(91\) −26.5735 19.3068i −0.292017 0.212162i
\(92\) −11.8556 + 74.8532i −0.128865 + 0.813621i
\(93\) −63.1004 + 32.1513i −0.678499 + 0.345713i
\(94\) 55.1010 + 17.9034i 0.586181 + 0.190462i
\(95\) 0 0
\(96\) −152.498 110.796i −1.58852 1.15413i
\(97\) −96.8143 49.3293i −0.998085 0.508550i −0.122942 0.992414i \(-0.539233\pi\)
−0.875143 + 0.483864i \(0.839233\pi\)
\(98\) −37.5670 37.5670i −0.383337 0.383337i
\(99\) 174.442 202.729i 1.76204 2.04777i
\(100\) 0 0
\(101\) −10.2333 31.4947i −0.101319 0.311829i 0.887530 0.460751i \(-0.152420\pi\)
−0.988849 + 0.148922i \(0.952420\pi\)
\(102\) −32.5482 + 5.15513i −0.319100 + 0.0505405i
\(103\) −71.7554 11.3649i −0.696654 0.110339i −0.201944 0.979397i \(-0.564726\pi\)
−0.494710 + 0.869058i \(0.664726\pi\)
\(104\) 123.280 + 40.0562i 1.18539 + 0.385155i
\(105\) 0 0
\(106\) 5.34911 3.88636i 0.0504633 0.0366638i
\(107\) 47.8637 7.58086i 0.447324 0.0708492i 0.0712913 0.997456i \(-0.477288\pi\)
0.376033 + 0.926606i \(0.377288\pi\)
\(108\) 104.835 205.750i 0.970693 1.90509i
\(109\) 151.952i 1.39405i −0.717045 0.697026i \(-0.754506\pi\)
0.717045 0.697026i \(-0.245494\pi\)
\(110\) 0 0
\(111\) 1.12295 0.0101166
\(112\) 2.24407 + 1.14341i 0.0200364 + 0.0102090i
\(113\) 20.7537 + 131.034i 0.183661 + 1.15959i 0.891434 + 0.453150i \(0.149700\pi\)
−0.707773 + 0.706440i \(0.750300\pi\)
\(114\) 55.9650 + 77.0293i 0.490921 + 0.675695i
\(115\) 0 0
\(116\) 35.1300 108.119i 0.302845 0.932061i
\(117\) −63.2987 + 399.652i −0.541014 + 3.41583i
\(118\) 0.437825 + 2.76432i 0.00371038 + 0.0234264i
\(119\) 9.09870 2.95635i 0.0764597 0.0248433i
\(120\) 0 0
\(121\) 55.7254 107.404i 0.460541 0.887639i
\(122\) 97.9581 97.9581i 0.802935 0.802935i
\(123\) −114.608 + 224.930i −0.931770 + 1.82870i
\(124\) −18.8422 + 25.9341i −0.151954 + 0.209146i
\(125\) 0 0
\(126\) 17.4666 53.7567i 0.138624 0.426641i
\(127\) 26.6924 + 52.3868i 0.210176 + 0.412495i 0.971895 0.235413i \(-0.0756443\pi\)
−0.761719 + 0.647908i \(0.775644\pi\)
\(128\) −90.2113 14.2881i −0.704776 0.111625i
\(129\) −94.2296 + 129.696i −0.730462 + 1.00539i
\(130\) 0 0
\(131\) −175.310 −1.33825 −0.669124 0.743151i \(-0.733330\pi\)
−0.669124 + 0.743151i \(0.733330\pi\)
\(132\) 39.3160 161.146i 0.297849 1.22081i
\(133\) −19.5456 19.5456i −0.146959 0.146959i
\(134\) −80.1409 + 26.0394i −0.598066 + 0.194324i
\(135\) 0 0
\(136\) −30.5440 + 22.1916i −0.224589 + 0.163173i
\(137\) −3.67581 7.21419i −0.0268308 0.0526583i 0.877202 0.480121i \(-0.159407\pi\)
−0.904033 + 0.427463i \(0.859407\pi\)
\(138\) 175.715 89.5314i 1.27330 0.648778i
\(139\) −79.9474 110.038i −0.575161 0.791641i 0.417993 0.908450i \(-0.362734\pi\)
−0.993154 + 0.116809i \(0.962734\pi\)
\(140\) 0 0
\(141\) 87.7294 + 270.003i 0.622195 + 1.91492i
\(142\) 1.28985 1.28985i 0.00908347 0.00908347i
\(143\) 13.6910 + 182.553i 0.0957410 + 1.27659i
\(144\) 31.0261i 0.215459i
\(145\) 0 0
\(146\) 86.4311 + 62.7959i 0.591994 + 0.430109i
\(147\) 40.7252 257.129i 0.277042 1.74918i
\(148\) 0.452901 0.230765i 0.00306014 0.00155922i
\(149\) −75.9893 24.6904i −0.509995 0.165707i 0.0427049 0.999088i \(-0.486402\pi\)
−0.552700 + 0.833380i \(0.686402\pi\)
\(150\) 0 0
\(151\) 73.7929 + 53.6137i 0.488695 + 0.355058i 0.804682 0.593706i \(-0.202336\pi\)
−0.315987 + 0.948763i \(0.602336\pi\)
\(152\) 97.1943 + 49.5230i 0.639436 + 0.325809i
\(153\) −83.3353 83.3353i −0.544675 0.544675i
\(154\) 2.10026 25.4860i 0.0136380 0.165493i
\(155\) 0 0
\(156\) 77.5496 + 238.673i 0.497113 + 1.52996i
\(157\) −249.034 + 39.4430i −1.58620 + 0.251230i −0.886335 0.463045i \(-0.846757\pi\)
−0.699866 + 0.714274i \(0.746757\pi\)
\(158\) 58.6984 + 9.29691i 0.371509 + 0.0588412i
\(159\) 30.8134 + 10.0119i 0.193795 + 0.0629679i
\(160\) 0 0
\(161\) −46.3183 + 33.6522i −0.287691 + 0.209020i
\(162\) −338.923 + 53.6801i −2.09212 + 0.331358i
\(163\) 104.075 204.260i 0.638500 1.25313i −0.314242 0.949343i \(-0.601750\pi\)
0.952741 0.303783i \(-0.0982497\pi\)
\(164\) 114.269i 0.696764i
\(165\) 0 0
\(166\) −16.4521 −0.0991091
\(167\) 92.0535 + 46.9036i 0.551219 + 0.280860i 0.707335 0.706879i \(-0.249897\pi\)
−0.156116 + 0.987739i \(0.549897\pi\)
\(168\) −13.8801 87.6356i −0.0826198 0.521641i
\(169\) −63.4613 87.3470i −0.375511 0.516846i
\(170\) 0 0
\(171\) −105.225 + 323.848i −0.615349 + 1.89385i
\(172\) −11.3518 + 71.6723i −0.0659987 + 0.416699i
\(173\) 1.00807 + 6.36471i 0.00582700 + 0.0367902i 0.990431 0.138012i \(-0.0440713\pi\)
−0.984604 + 0.174802i \(0.944071\pi\)
\(174\) −281.346 + 91.4148i −1.61693 + 0.525372i
\(175\) 0 0
\(176\) −3.22656 13.6610i −0.0183327 0.0776195i
\(177\) −9.69756 + 9.69756i −0.0547885 + 0.0547885i
\(178\) 43.1315 84.6504i 0.242312 0.475564i
\(179\) −50.2025 + 69.0978i −0.280461 + 0.386021i −0.925886 0.377802i \(-0.876680\pi\)
0.645426 + 0.763823i \(0.276680\pi\)
\(180\) 0 0
\(181\) −49.5631 + 152.540i −0.273829 + 0.842760i 0.715697 + 0.698411i \(0.246109\pi\)
−0.989527 + 0.144350i \(0.953891\pi\)
\(182\) 17.5646 + 34.4725i 0.0965089 + 0.189409i
\(183\) 670.478 + 106.193i 3.66382 + 0.580291i
\(184\) 132.803 182.788i 0.721757 0.993414i
\(185\) 0 0
\(186\) 83.4166 0.448476
\(187\) −45.3597 28.0268i −0.242565 0.149876i
\(188\) 90.8679 + 90.8679i 0.483340 + 0.483340i
\(189\) 165.909 53.9071i 0.877825 0.285223i
\(190\) 0 0
\(191\) 105.149 76.3950i 0.550517 0.399974i −0.277459 0.960737i \(-0.589492\pi\)
0.827976 + 0.560764i \(0.189492\pi\)
\(192\) 87.4233 + 171.578i 0.455330 + 0.893635i
\(193\) −289.915 + 147.719i −1.50215 + 0.765383i −0.995317 0.0966622i \(-0.969183\pi\)
−0.506831 + 0.862045i \(0.669183\pi\)
\(194\) 75.2277 + 103.542i 0.387772 + 0.533722i
\(195\) 0 0
\(196\) −36.4146 112.073i −0.185789 0.571800i
\(197\) −4.22058 + 4.22058i −0.0214242 + 0.0214242i −0.717738 0.696314i \(-0.754822\pi\)
0.696314 + 0.717738i \(0.254822\pi\)
\(198\) −291.485 + 119.481i −1.47215 + 0.603441i
\(199\) 231.739i 1.16452i −0.813003 0.582260i \(-0.802169\pi\)
0.813003 0.582260i \(-0.197831\pi\)
\(200\) 0 0
\(201\) −334.053 242.704i −1.66195 1.20748i
\(202\) −6.10189 + 38.5258i −0.0302074 + 0.190722i
\(203\) 76.5211 38.9895i 0.376951 0.192066i
\(204\) −69.5161 22.5872i −0.340765 0.110721i
\(205\) 0 0
\(206\) 69.2298 + 50.2984i 0.336067 + 0.244167i
\(207\) 628.415 + 320.193i 3.03582 + 1.54683i
\(208\) 15.0168 + 15.0168i 0.0721962 + 0.0721962i
\(209\) −12.6526 + 153.536i −0.0605389 + 0.734622i
\(210\) 0 0
\(211\) −46.5064 143.132i −0.220409 0.678350i −0.998725 0.0504773i \(-0.983926\pi\)
0.778316 0.627873i \(-0.216074\pi\)
\(212\) 14.4849 2.29419i 0.0683251 0.0108216i
\(213\) 8.82845 + 1.39829i 0.0414481 + 0.00656474i
\(214\) −54.2867 17.6388i −0.253676 0.0824243i
\(215\) 0 0
\(216\) −556.951 + 404.648i −2.57848 + 1.87337i
\(217\) −23.9187 + 3.78836i −0.110225 + 0.0174579i
\(218\) −81.2556 + 159.473i −0.372732 + 0.731528i
\(219\) 523.506i 2.39044i
\(220\) 0 0
\(221\) 80.6696 0.365021
\(222\) −1.17853 0.600492i −0.00530870 0.00270492i
\(223\) −21.7436 137.283i −0.0975048 0.615621i −0.987252 0.159167i \(-0.949119\pi\)
0.889747 0.456454i \(-0.150881\pi\)
\(224\) −37.8871 52.1472i −0.169139 0.232800i
\(225\) 0 0
\(226\) 48.2887 148.617i 0.213667 0.657600i
\(227\) −0.159379 + 1.00628i −0.000702112 + 0.00443296i −0.988037 0.154218i \(-0.950714\pi\)
0.987335 + 0.158651i \(0.0507143\pi\)
\(228\) 33.0372 + 208.588i 0.144900 + 0.914862i
\(229\) −8.36376 + 2.71755i −0.0365230 + 0.0118670i −0.327222 0.944948i \(-0.606112\pi\)
0.290699 + 0.956815i \(0.406112\pi\)
\(230\) 0 0
\(231\) 107.083 65.0796i 0.463565 0.281730i
\(232\) −239.652 + 239.652i −1.03298 + 1.03298i
\(233\) 188.847 370.632i 0.810500 1.59070i 0.00361160 0.999993i \(-0.498850\pi\)
0.806889 0.590703i \(-0.201150\pi\)
\(234\) 280.144 385.585i 1.19720 1.64780i
\(235\) 0 0
\(236\) −1.91833 + 5.90400i −0.00812850 + 0.0250169i
\(237\) 132.209 + 259.476i 0.557846 + 1.09483i
\(238\) −11.1300 1.76281i −0.0467646 0.00740678i
\(239\) 168.700 232.195i 0.705857 0.971529i −0.294019 0.955800i \(-0.594993\pi\)
0.999876 0.0157295i \(-0.00500705\pi\)
\(240\) 0 0
\(241\) 317.030 1.31548 0.657738 0.753247i \(-0.271513\pi\)
0.657738 + 0.753247i \(0.271513\pi\)
\(242\) −115.918 + 82.9216i −0.478999 + 0.342651i
\(243\) −626.494 626.494i −2.57816 2.57816i
\(244\) 292.236 94.9532i 1.19769 0.389153i
\(245\) 0 0
\(246\) 240.561 174.778i 0.977890 0.710479i
\(247\) −105.815 207.674i −0.428401 0.840785i
\(248\) 85.1520 43.3871i 0.343355 0.174948i
\(249\) −47.3860 65.2212i −0.190305 0.261933i
\(250\) 0 0
\(251\) 21.5845 + 66.4304i 0.0859942 + 0.264663i 0.984802 0.173680i \(-0.0555657\pi\)
−0.898808 + 0.438342i \(0.855566\pi\)
\(252\) 88.6510 88.6510i 0.351790 0.351790i
\(253\) 309.995 + 75.6317i 1.22528 + 0.298939i
\(254\) 69.2535i 0.272652i
\(255\) 0 0
\(256\) 195.002 + 141.677i 0.761728 + 0.553427i
\(257\) 45.1789 285.248i 0.175793 1.10992i −0.729141 0.684364i \(-0.760080\pi\)
0.904934 0.425552i \(-0.139920\pi\)
\(258\) 168.248 85.7267i 0.652124 0.332274i
\(259\) 0.365202 + 0.118661i 0.00141005 + 0.000458152i
\(260\) 0 0
\(261\) −855.912 621.856i −3.27935 2.38259i
\(262\) 183.988 + 93.7465i 0.702244 + 0.357811i
\(263\) −6.71971 6.71971i −0.0255502 0.0255502i 0.694216 0.719766i \(-0.255751\pi\)
−0.719766 + 0.694216i \(0.755751\pi\)
\(264\) −322.542 + 374.844i −1.22175 + 1.41986i
\(265\) 0 0
\(266\) 10.0611 + 30.9650i 0.0378239 + 0.116410i
\(267\) 459.809 72.8266i 1.72213 0.272759i
\(268\) −184.604 29.2383i −0.688819 0.109098i
\(269\) −99.7989 32.4266i −0.371000 0.120545i 0.117582 0.993063i \(-0.462486\pi\)
−0.488582 + 0.872518i \(0.662486\pi\)
\(270\) 0 0
\(271\) 76.1609 55.3341i 0.281037 0.204185i −0.438333 0.898813i \(-0.644431\pi\)
0.719369 + 0.694628i \(0.244431\pi\)
\(272\) −6.10934 + 0.967625i −0.0224608 + 0.00355744i
\(273\) −86.0693 + 168.921i −0.315272 + 0.618757i
\(274\) 9.53691i 0.0348062i
\(275\) 0 0
\(276\) 437.422 1.58486
\(277\) −206.076 105.001i −0.743956 0.379065i 0.0405564 0.999177i \(-0.487087\pi\)
−0.784513 + 0.620113i \(0.787087\pi\)
\(278\) 25.0622 + 158.236i 0.0901517 + 0.569196i
\(279\) 175.351 + 241.350i 0.628498 + 0.865053i
\(280\) 0 0
\(281\) 88.5075 272.398i 0.314973 0.969388i −0.660792 0.750569i \(-0.729780\pi\)
0.975765 0.218819i \(-0.0702204\pi\)
\(282\) 52.3114 330.281i 0.185501 1.17121i
\(283\) −26.6596 168.322i −0.0942035 0.594777i −0.988955 0.148214i \(-0.952648\pi\)
0.894752 0.446564i \(-0.147352\pi\)
\(284\) 3.84799 1.25029i 0.0135492 0.00440242i
\(285\) 0 0
\(286\) 83.2508 198.910i 0.291087 0.695490i
\(287\) −61.0406 + 61.0406i −0.212685 + 0.212685i
\(288\) −360.488 + 707.497i −1.25169 + 2.45659i
\(289\) 156.059 214.797i 0.539998 0.743243i
\(290\) 0 0
\(291\) −193.799 + 596.452i −0.665976 + 2.04966i
\(292\) 107.580 + 211.138i 0.368425 + 0.723074i
\(293\) 268.654 + 42.5506i 0.916907 + 0.145224i 0.597015 0.802230i \(-0.296353\pi\)
0.319892 + 0.947454i \(0.396353\pi\)
\(294\) −180.240 + 248.079i −0.613060 + 0.843805i
\(295\) 0 0
\(296\) −1.51538 −0.00511954
\(297\) −827.104 511.050i −2.78486 1.72071i
\(298\) 66.5475 + 66.5475i 0.223314 + 0.223314i
\(299\) −459.132 + 149.181i −1.53556 + 0.498933i
\(300\) 0 0
\(301\) −44.3500 + 32.2221i −0.147342 + 0.107050i
\(302\) −48.7758 95.7279i −0.161509 0.316980i
\(303\) −170.303 + 86.7738i −0.562056 + 0.286382i
\(304\) 10.5047 + 14.4585i 0.0345550 + 0.0475609i
\(305\) 0 0
\(306\) 42.8970 + 132.023i 0.140186 + 0.431449i
\(307\) −141.243 + 141.243i −0.460075 + 0.460075i −0.898680 0.438605i \(-0.855473\pi\)
0.438605 + 0.898680i \(0.355473\pi\)
\(308\) 29.8145 48.2530i 0.0968003 0.156666i
\(309\) 419.319i 1.35702i
\(310\) 0 0
\(311\) 39.1515 + 28.4453i 0.125889 + 0.0914639i 0.648948 0.760833i \(-0.275209\pi\)
−0.523059 + 0.852297i \(0.675209\pi\)
\(312\) 117.039 738.954i 0.375124 2.36844i
\(313\) 29.6215 15.0929i 0.0946374 0.0482202i −0.406031 0.913859i \(-0.633088\pi\)
0.500669 + 0.865639i \(0.333088\pi\)
\(314\) 282.452 + 91.7743i 0.899529 + 0.292275i
\(315\) 0 0
\(316\) 106.644 + 77.4813i 0.337481 + 0.245194i
\(317\) −242.086 123.349i −0.763678 0.389113i 0.0283501 0.999598i \(-0.490975\pi\)
−0.792028 + 0.610485i \(0.790975\pi\)
\(318\) −26.9848 26.9848i −0.0848579 0.0848579i
\(319\) −441.535 184.798i −1.38412 0.579303i
\(320\) 0 0
\(321\) −86.4329 266.013i −0.269261 0.828701i
\(322\) 66.6063 10.5494i 0.206852 0.0327621i
\(323\) 67.0506 + 10.6198i 0.207587 + 0.0328786i
\(324\) −723.868 235.199i −2.23416 0.725922i
\(325\) 0 0
\(326\) −218.454 + 158.716i −0.670104 + 0.486859i
\(327\) −866.236 + 137.198i −2.64904 + 0.419567i
\(328\) 154.659 303.536i 0.471523 0.925415i
\(329\) 97.0800i 0.295076i
\(330\) 0 0
\(331\) −114.527 −0.346003 −0.173001 0.984922i \(-0.555347\pi\)
−0.173001 + 0.984922i \(0.555347\pi\)
\(332\) −32.5143 16.5669i −0.0979347 0.0499002i
\(333\) −0.739997 4.67216i −0.00222221 0.0140305i
\(334\) −71.5285 98.4505i −0.214157 0.294762i
\(335\) 0 0
\(336\) 4.49209 13.8252i 0.0133693 0.0411466i
\(337\) 19.8459 125.302i 0.0588899 0.371816i −0.940589 0.339546i \(-0.889726\pi\)
0.999479 0.0322698i \(-0.0102736\pi\)
\(338\) 19.8941 + 125.606i 0.0588582 + 0.371616i
\(339\) 728.248 236.622i 2.14823 0.698001i
\(340\) 0 0
\(341\) 102.308 + 88.0327i 0.300022 + 0.258160i
\(342\) 283.610 283.610i 0.829268 0.829268i
\(343\) 84.3208 165.489i 0.245833 0.482475i
\(344\) 127.160 175.020i 0.369651 0.508780i
\(345\) 0 0
\(346\) 2.34554 7.21882i 0.00677900 0.0208636i
\(347\) −68.3476 134.140i −0.196967 0.386570i 0.771306 0.636465i \(-0.219604\pi\)
−0.968273 + 0.249895i \(0.919604\pi\)
\(348\) −648.077 102.645i −1.86229 0.294958i
\(349\) 205.310 282.585i 0.588281 0.809699i −0.406292 0.913743i \(-0.633178\pi\)
0.994573 + 0.104045i \(0.0331785\pi\)
\(350\) 0 0
\(351\) 1470.96 4.19076
\(352\) −85.1495 + 349.006i −0.241902 + 0.991494i
\(353\) 362.555 + 362.555i 1.02707 + 1.02707i 0.999623 + 0.0274434i \(0.00873660\pi\)
0.0274434 + 0.999623i \(0.491263\pi\)
\(354\) 15.3633 4.99184i 0.0433991 0.0141012i
\(355\) 0 0
\(356\) 170.482 123.862i 0.478881 0.347928i
\(357\) −25.0686 49.1999i −0.0702202 0.137815i
\(358\) 89.6372 45.6724i 0.250383 0.127577i
\(359\) −285.929 393.548i −0.796461 1.09623i −0.993273 0.115793i \(-0.963059\pi\)
0.196812 0.980441i \(-0.436941\pi\)
\(360\) 0 0
\(361\) 50.9435 + 156.788i 0.141118 + 0.434315i
\(362\) 133.586 133.586i 0.369023 0.369023i
\(363\) −662.597 220.700i −1.82534 0.607988i
\(364\) 85.8152i 0.235756i
\(365\) 0 0
\(366\) −646.879 469.985i −1.76743 1.28411i
\(367\) 1.49280 9.42516i 0.00406757 0.0256816i −0.985571 0.169262i \(-0.945862\pi\)
0.989639 + 0.143580i \(0.0458616\pi\)
\(368\) 32.9820 16.8052i 0.0896250 0.0456662i
\(369\) 1011.37 + 328.615i 2.74085 + 0.890555i
\(370\) 0 0
\(371\) 8.96310 + 6.51208i 0.0241593 + 0.0175528i
\(372\) 164.856 + 83.9984i 0.443162 + 0.225802i
\(373\) −268.508 268.508i −0.719862 0.719862i 0.248715 0.968577i \(-0.419992\pi\)
−0.968577 + 0.248715i \(0.919992\pi\)
\(374\) 32.6177 + 53.6700i 0.0872132 + 0.143503i
\(375\) 0 0
\(376\) −118.388 364.361i −0.314862 0.969045i
\(377\) 715.248 113.284i 1.89721 0.300489i
\(378\) −202.948 32.1438i −0.536899 0.0850364i
\(379\) 329.126 + 106.940i 0.868406 + 0.282162i 0.709135 0.705073i \(-0.249086\pi\)
0.159271 + 0.987235i \(0.449086\pi\)
\(380\) 0 0
\(381\) 274.542 199.467i 0.720583 0.523534i
\(382\) −151.205 + 23.9486i −0.395825 + 0.0626926i
\(383\) −39.7395 + 77.9932i −0.103758 + 0.203638i −0.937049 0.349198i \(-0.886454\pi\)
0.833291 + 0.552835i \(0.186454\pi\)
\(384\) 527.171i 1.37284i
\(385\) 0 0
\(386\) 383.257 0.992894
\(387\) 601.710 + 306.587i 1.55481 + 0.792213i
\(388\) 44.4083 + 280.383i 0.114454 + 0.722636i
\(389\) −246.055 338.666i −0.632533 0.870607i 0.365657 0.930750i \(-0.380844\pi\)
−0.998190 + 0.0601430i \(0.980844\pi\)
\(390\) 0 0
\(391\) 43.4506 133.727i 0.111127 0.342013i
\(392\) −54.9574 + 346.987i −0.140197 + 0.885172i
\(393\) 158.289 + 999.397i 0.402771 + 2.54299i
\(394\) 6.68642 2.17255i 0.0169706 0.00551409i
\(395\) 0 0
\(396\) −696.377 57.3872i −1.75853 0.144917i
\(397\) 434.845 434.845i 1.09533 1.09533i 0.100377 0.994950i \(-0.467995\pi\)
0.994950 0.100377i \(-0.0320048\pi\)
\(398\) −123.922 + 243.210i −0.311361 + 0.611080i
\(399\) −93.7764 + 129.072i −0.235028 + 0.323489i
\(400\) 0 0
\(401\) −166.418 + 512.181i −0.415007 + 1.27726i 0.497238 + 0.867614i \(0.334347\pi\)
−0.912245 + 0.409645i \(0.865653\pi\)
\(402\) 220.803 + 433.350i 0.549261 + 1.07799i
\(403\) −201.686 31.9439i −0.500461 0.0792652i
\(404\) −50.8537 + 69.9942i −0.125876 + 0.173253i
\(405\) 0 0
\(406\) −101.158 −0.249158
\(407\) −0.811709 1.98023i −0.00199437 0.00486544i
\(408\) 154.086 + 154.086i 0.377663 + 0.377663i
\(409\) −2.27154 + 0.738069i −0.00555390 + 0.00180457i −0.311793 0.950150i \(-0.600929\pi\)
0.306239 + 0.951955i \(0.400929\pi\)
\(410\) 0 0
\(411\) −37.8072 + 27.4686i −0.0919884 + 0.0668335i
\(412\) 86.1696 + 169.117i 0.209150 + 0.410479i
\(413\) −4.17855 + 2.12908i −0.0101175 + 0.00515515i
\(414\) −488.298 672.085i −1.17946 1.62339i
\(415\) 0 0
\(416\) −167.955 516.911i −0.403737 1.24257i
\(417\) −555.113 + 555.113i −1.33121 + 1.33121i
\(418\) 95.3816 154.370i 0.228186 0.369305i
\(419\) 235.871i 0.562937i 0.959570 + 0.281469i \(0.0908215\pi\)
−0.959570 + 0.281469i \(0.909178\pi\)
\(420\) 0 0
\(421\) 492.334 + 357.702i 1.16944 + 0.849648i 0.990942 0.134293i \(-0.0428762\pi\)
0.178498 + 0.983940i \(0.442876\pi\)
\(422\) −27.7309 + 175.086i −0.0657129 + 0.414895i
\(423\) 1065.57 542.935i 2.51908 1.28353i
\(424\) −41.5817 13.5107i −0.0980702 0.0318649i
\(425\) 0 0
\(426\) −8.51771 6.18848i −0.0199946 0.0145270i
\(427\) 206.830 + 105.385i 0.484378 + 0.246803i
\(428\) −89.5249 89.5249i −0.209170 0.209170i
\(429\) 1028.32 242.877i 2.39702 0.566146i
\(430\) 0 0
\(431\) −125.771 387.085i −0.291813 0.898108i −0.984273 0.176652i \(-0.943473\pi\)
0.692460 0.721456i \(-0.256527\pi\)
\(432\) −111.400 + 17.6440i −0.257870 + 0.0408426i
\(433\) −508.392 80.5214i −1.17412 0.185962i −0.461255 0.887267i \(-0.652601\pi\)
−0.712861 + 0.701306i \(0.752601\pi\)
\(434\) 27.1285 + 8.81458i 0.0625080 + 0.0203101i
\(435\) 0 0
\(436\) −321.171 + 233.344i −0.736631 + 0.535194i
\(437\) −401.258 + 63.5531i −0.918211 + 0.145430i
\(438\) 279.943 549.419i 0.639139 1.25438i
\(439\) 352.062i 0.801963i 0.916086 + 0.400982i \(0.131331\pi\)
−0.916086 + 0.400982i \(0.868669\pi\)
\(440\) 0 0
\(441\) −1096.65 −2.48674
\(442\) −84.6626 43.1377i −0.191544 0.0975967i
\(443\) −1.16390 7.34858i −0.00262732 0.0165882i 0.986340 0.164723i \(-0.0526730\pi\)
−0.988967 + 0.148135i \(0.952673\pi\)
\(444\) −1.72445 2.37351i −0.00388390 0.00534573i
\(445\) 0 0
\(446\) −50.5920 + 155.706i −0.113435 + 0.349117i
\(447\) −72.1421 + 455.487i −0.161392 + 1.01899i
\(448\) 10.3010 + 65.0380i 0.0229933 + 0.145174i
\(449\) 175.258 56.9447i 0.390329 0.126826i −0.107276 0.994229i \(-0.534213\pi\)
0.497605 + 0.867404i \(0.334213\pi\)
\(450\) 0 0
\(451\) 479.490 + 39.5139i 1.06317 + 0.0876141i
\(452\) 245.087 245.087i 0.542229 0.542229i
\(453\) 239.009 469.082i 0.527614 1.03550i
\(454\) 0.705374 0.970864i 0.00155369 0.00213847i
\(455\) 0 0
\(456\) 194.560 598.793i 0.426666 1.31314i
\(457\) 106.600 + 209.215i 0.233261 + 0.457800i 0.977733 0.209854i \(-0.0672987\pi\)
−0.744472 + 0.667654i \(0.767299\pi\)
\(458\) 10.2310 + 1.62042i 0.0223383 + 0.00353804i
\(459\) −251.826 + 346.609i −0.548641 + 0.755139i
\(460\) 0 0
\(461\) −542.586 −1.17698 −0.588488 0.808506i \(-0.700277\pi\)
−0.588488 + 0.808506i \(0.700277\pi\)
\(462\) −147.185 + 11.0385i −0.318582 + 0.0238928i
\(463\) 48.2381 + 48.2381i 0.104186 + 0.104186i 0.757278 0.653092i \(-0.226529\pi\)
−0.653092 + 0.757278i \(0.726529\pi\)
\(464\) −52.8090 + 17.1587i −0.113813 + 0.0369799i
\(465\) 0 0
\(466\) −396.388 + 287.993i −0.850619 + 0.618011i
\(467\) −284.997 559.339i −0.610272 1.19773i −0.964875 0.262710i \(-0.915384\pi\)
0.354602 0.935017i \(-0.384616\pi\)
\(468\) 941.924 479.934i 2.01266 1.02550i
\(469\) −82.9933 114.231i −0.176958 0.243562i
\(470\) 0 0
\(471\) 449.708 + 1384.06i 0.954794 + 2.93855i
\(472\) 13.0865 13.0865i 0.0277257 0.0277257i
\(473\) 296.821 + 72.4177i 0.627529 + 0.153103i
\(474\) 343.018i 0.723666i
\(475\) 0 0
\(476\) −20.2211 14.6915i −0.0424812 0.0308644i
\(477\) 21.3503 134.801i 0.0447595 0.282601i
\(478\) −301.216 + 153.477i −0.630159 + 0.321082i
\(479\) −553.115 179.718i −1.15473 0.375194i −0.331806 0.943348i \(-0.607658\pi\)
−0.822922 + 0.568154i \(0.807658\pi\)
\(480\) 0 0
\(481\) 2.61951 + 1.90319i 0.00544598 + 0.00395673i
\(482\) −332.722 169.530i −0.690295 0.351723i
\(483\) 233.663 + 233.663i 0.483774 + 0.483774i
\(484\) −312.588 + 47.1518i −0.645844 + 0.0974210i
\(485\) 0 0
\(486\) 322.489 + 992.519i 0.663557 + 2.04222i
\(487\) −172.226 + 27.2780i −0.353647 + 0.0560122i −0.330731 0.943725i \(-0.607295\pi\)
−0.0229166 + 0.999737i \(0.507295\pi\)
\(488\) −904.789 143.305i −1.85408 0.293657i
\(489\) −1258.40 408.878i −2.57341 0.836152i
\(490\) 0 0
\(491\) −216.106 + 157.010i −0.440134 + 0.319776i −0.785688 0.618623i \(-0.787691\pi\)
0.345554 + 0.938399i \(0.387691\pi\)
\(492\) 651.418 103.174i 1.32402 0.209704i
\(493\) −95.7559 + 187.932i −0.194231 + 0.381200i
\(494\) 274.537i 0.555744i
\(495\) 0 0
\(496\) 15.6574 0.0315673
\(497\) 2.72341 + 1.38764i 0.00547969 + 0.00279204i
\(498\) 14.8547 + 93.7890i 0.0298287 + 0.188331i
\(499\) 552.387 + 760.296i 1.10699 + 1.52364i 0.825781 + 0.563991i \(0.190735\pi\)
0.281207 + 0.959647i \(0.409265\pi\)
\(500\) 0 0
\(501\) 184.269 567.122i 0.367802 1.13198i
\(502\) 12.8704 81.2608i 0.0256383 0.161874i
\(503\) −80.9416 511.045i −0.160918 1.01599i −0.927493 0.373840i \(-0.878041\pi\)
0.766576 0.642154i \(-0.221959\pi\)
\(504\) −355.472 + 115.500i −0.705301 + 0.229166i
\(505\) 0 0
\(506\) −284.895 245.144i −0.563034 0.484474i
\(507\) −440.642 + 440.642i −0.869116 + 0.869116i
\(508\) 69.7366 136.866i 0.137277 0.269421i
\(509\) −359.646 + 495.010i −0.706573 + 0.972515i 0.293291 + 0.956023i \(0.405250\pi\)
−0.999864 + 0.0164915i \(0.994750\pi\)
\(510\) 0 0
\(511\) −55.3186 + 170.253i −0.108256 + 0.333177i
\(512\) 36.9692 + 72.5562i 0.0722055 + 0.141711i
\(513\) 1222.62 + 193.645i 2.38328 + 0.377475i
\(514\) −199.951 + 275.208i −0.389009 + 0.535425i
\(515\) 0 0
\(516\) 418.834 0.811693
\(517\) 412.716 349.873i 0.798291 0.676736i
\(518\) −0.319825 0.319825i −0.000617423 0.000617423i
\(519\) 35.3733 11.4935i 0.0681566 0.0221454i
\(520\) 0 0
\(521\) −755.178 + 548.669i −1.44948 + 1.05311i −0.463526 + 0.886083i \(0.653416\pi\)
−0.985953 + 0.167025i \(0.946584\pi\)
\(522\) 565.742 + 1110.33i 1.08380 + 2.12707i
\(523\) −329.945 + 168.115i −0.630870 + 0.321444i −0.740024 0.672581i \(-0.765186\pi\)
0.109154 + 0.994025i \(0.465186\pi\)
\(524\) 269.215 + 370.543i 0.513769 + 0.707143i
\(525\) 0 0
\(526\) 3.45898 + 10.6457i 0.00657601 + 0.0202389i
\(527\) 42.0554 42.0554i 0.0798016 0.0798016i
\(528\) −74.9646 + 30.7284i −0.141978 + 0.0581977i
\(529\) 312.462i 0.590666i
\(530\) 0 0
\(531\) 46.7383 + 33.9574i 0.0880194 + 0.0639498i
\(532\) −11.2972 + 71.3275i −0.0212353 + 0.134074i
\(533\) −648.562 + 330.459i −1.21681 + 0.619997i
\(534\) −521.512 169.450i −0.976615 0.317321i
\(535\) 0 0
\(536\) 450.794 + 327.521i 0.841033 + 0.611046i
\(537\) 439.236 + 223.802i 0.817944 + 0.416763i
\(538\) 87.3988 + 87.3988i 0.162451 + 0.162451i
\(539\) −482.865 + 114.047i −0.895853 + 0.211589i
\(540\) 0 0
\(541\) −135.828 418.036i −0.251069 0.772711i −0.994579 0.103986i \(-0.966840\pi\)
0.743510 0.668725i \(-0.233160\pi\)
\(542\) −109.520 + 17.3463i −0.202067 + 0.0320043i
\(543\) 914.338 + 144.817i 1.68386 + 0.266698i
\(544\) 150.556 + 48.9186i 0.276757 + 0.0899239i
\(545\) 0 0
\(546\) 180.659 131.257i 0.330878 0.240397i
\(547\) −53.7219 + 8.50871i −0.0982119 + 0.0155552i −0.205347 0.978689i \(-0.565832\pi\)
0.107135 + 0.994244i \(0.465832\pi\)
\(548\) −9.60343 + 18.8478i −0.0175245 + 0.0343938i
\(549\) 2859.58i 5.20871i
\(550\) 0 0
\(551\) 609.411 1.10601
\(552\) −1161.93 592.035i −2.10495 1.07253i
\(553\) 15.5781 + 98.3564i 0.0281702 + 0.177860i
\(554\) 160.127 + 220.397i 0.289039 + 0.397828i
\(555\) 0 0
\(556\) −109.810 + 337.960i −0.197500 + 0.607841i
\(557\) −82.1439 + 518.636i −0.147476 + 0.931124i 0.797342 + 0.603527i \(0.206239\pi\)
−0.944818 + 0.327596i \(0.893761\pi\)
\(558\) −54.9696 347.064i −0.0985118 0.621979i
\(559\) −439.621 + 142.841i −0.786442 + 0.255530i
\(560\) 0 0
\(561\) −118.817 + 283.889i −0.211796 + 0.506041i
\(562\) −238.552 + 238.552i −0.424470 + 0.424470i
\(563\) 345.855 678.778i 0.614307 1.20565i −0.348970 0.937134i \(-0.613468\pi\)
0.963277 0.268511i \(-0.0865316\pi\)
\(564\) 435.968 600.058i 0.772993 1.06393i
\(565\) 0 0
\(566\) −62.0303 + 190.910i −0.109594 + 0.337296i
\(567\) −261.038 512.316i −0.460385 0.903556i
\(568\) −11.9137 1.88695i −0.0209748 0.00332209i
\(569\) 522.049 718.539i 0.917485 1.26281i −0.0470600 0.998892i \(-0.514985\pi\)
0.964545 0.263918i \(-0.0850148\pi\)
\(570\) 0 0
\(571\) −943.557 −1.65246 −0.826232 0.563330i \(-0.809520\pi\)
−0.826232 + 0.563330i \(0.809520\pi\)
\(572\) 364.826 309.275i 0.637808 0.540690i
\(573\) −530.447 530.447i −0.925736 0.925736i
\(574\) 96.7032 31.4208i 0.168473 0.0547400i
\(575\) 0 0
\(576\) 656.260 476.801i 1.13934 0.827779i
\(577\) 59.2654 + 116.315i 0.102713 + 0.201585i 0.936644 0.350284i \(-0.113915\pi\)
−0.833931 + 0.551869i \(0.813915\pi\)
\(578\) −278.646 + 141.977i −0.482087 + 0.245635i
\(579\) 1103.87 + 1519.35i 1.90651 + 2.62409i
\(580\) 0 0
\(581\) −8.51884 26.2183i −0.0146624 0.0451261i
\(582\) 522.342 522.342i 0.897494 0.897494i
\(583\) −4.61789 61.5741i −0.00792091 0.105616i
\(584\) 706.455i 1.20968i
\(585\) 0 0
\(586\) −259.198 188.318i −0.442317 0.321362i
\(587\) −98.2417 + 620.273i −0.167362 + 1.05668i 0.750815 + 0.660513i \(0.229661\pi\)
−0.918177 + 0.396171i \(0.870339\pi\)
\(588\) −606.017 + 308.781i −1.03064 + 0.525138i
\(589\) −163.431 53.1019i −0.277472 0.0901561i
\(590\) 0 0
\(591\) 27.8711 + 20.2496i 0.0471593 + 0.0342632i
\(592\) −0.221212 0.112713i −0.000373669 0.000190394i
\(593\) −543.917 543.917i −0.917229 0.917229i 0.0795984 0.996827i \(-0.474636\pi\)
−0.996827 + 0.0795984i \(0.974636\pi\)
\(594\) 594.763 + 978.636i 1.00128 + 1.64754i
\(595\) 0 0
\(596\) 64.5062 + 198.530i 0.108232 + 0.333103i
\(597\) −1321.08 + 209.239i −2.21287 + 0.350484i
\(598\) 561.632 + 88.9538i 0.939184 + 0.148752i
\(599\) 955.576 + 310.485i 1.59529 + 0.518340i 0.965936 0.258783i \(-0.0833213\pi\)
0.629350 + 0.777122i \(0.283321\pi\)
\(600\) 0 0
\(601\) −211.574 + 153.717i −0.352036 + 0.255769i −0.749723 0.661752i \(-0.769813\pi\)
0.397686 + 0.917521i \(0.369813\pi\)
\(602\) 63.7758 10.1011i 0.105940 0.0167792i
\(603\) −789.663 + 1549.80i −1.30956 + 2.57015i
\(604\) 238.303i 0.394542i
\(605\) 0 0
\(606\) 225.135 0.371509
\(607\) 810.971 + 413.211i 1.33603 + 0.680742i 0.968440 0.249245i \(-0.0801825\pi\)
0.367591 + 0.929987i \(0.380183\pi\)
\(608\) −71.5509 451.754i −0.117682 0.743017i
\(609\) −291.360 401.022i −0.478423 0.658493i
\(610\) 0 0
\(611\) −252.958 + 778.525i −0.414007 + 1.27418i
\(612\) −48.1670 + 304.114i −0.0787042 + 0.496919i
\(613\) 121.222 + 765.368i 0.197753 + 1.24856i 0.864254 + 0.503057i \(0.167791\pi\)
−0.666501 + 0.745504i \(0.732209\pi\)
\(614\) 223.764 72.7052i 0.364436 0.118412i
\(615\) 0 0
\(616\) −144.506 + 87.8228i −0.234587 + 0.142570i
\(617\) −204.509 + 204.509i −0.331457 + 0.331457i −0.853140 0.521682i \(-0.825305\pi\)
0.521682 + 0.853140i \(0.325305\pi\)
\(618\) 224.229 440.075i 0.362831 0.712095i
\(619\) −149.114 + 205.237i −0.240894 + 0.331563i −0.912296 0.409531i \(-0.865692\pi\)
0.671402 + 0.741093i \(0.265692\pi\)
\(620\) 0 0
\(621\) 792.293 2438.43i 1.27583 3.92661i
\(622\) −25.8785 50.7894i −0.0416053 0.0816550i
\(623\) 157.233 + 24.9033i 0.252381 + 0.0399732i
\(624\) 72.0479 99.1655i 0.115461 0.158919i
\(625\) 0 0
\(626\) −39.1586 −0.0625537
\(627\) 886.691 66.4994i 1.41418 0.106060i
\(628\) 465.796 + 465.796i 0.741714 + 0.741714i
\(629\) −0.896915 + 0.291425i −0.00142594 + 0.000463316i
\(630\) 0 0
\(631\) 884.455 642.594i 1.40167 1.01837i 0.407204 0.913337i \(-0.366504\pi\)
0.994468 0.105038i \(-0.0334963\pi\)
\(632\) −178.413 350.154i −0.282298 0.554042i
\(633\) −773.965 + 394.355i −1.22269 + 0.622994i
\(634\) 188.108 + 258.909i 0.296701 + 0.408374i
\(635\) 0 0
\(636\) −26.1571 80.5032i −0.0411275 0.126577i
\(637\) 530.786 530.786i 0.833259 0.833259i
\(638\) 364.570 + 430.054i 0.571427 + 0.674066i
\(639\) 37.6532i 0.0589253i
\(640\) 0 0
\(641\) −327.130 237.674i −0.510343 0.370786i 0.302610 0.953114i \(-0.402142\pi\)
−0.812954 + 0.582328i \(0.802142\pi\)
\(642\) −51.5383 + 325.400i −0.0802777 + 0.506853i
\(643\) −257.491 + 131.198i −0.400452 + 0.204040i −0.642605 0.766198i \(-0.722146\pi\)
0.242153 + 0.970238i \(0.422146\pi\)
\(644\) 142.257 + 46.2221i 0.220896 + 0.0717735i
\(645\) 0 0
\(646\) −64.6906 47.0005i −0.100140 0.0727562i
\(647\) 447.585 + 228.056i 0.691785 + 0.352482i 0.764278 0.644887i \(-0.223096\pi\)
−0.0724932 + 0.997369i \(0.523096\pi\)
\(648\) 1604.49 + 1604.49i 2.47607 + 2.47607i
\(649\) 24.1107 + 10.0911i 0.0371505 + 0.0155488i
\(650\) 0 0
\(651\) 43.1928 + 132.934i 0.0663484 + 0.204199i
\(652\) −591.554 + 93.6929i −0.907291 + 0.143701i
\(653\) −766.801 121.449i −1.17427 0.185987i −0.461343 0.887222i \(-0.652632\pi\)
−0.712930 + 0.701235i \(0.752632\pi\)
\(654\) 982.479 + 319.227i 1.50226 + 0.488114i
\(655\) 0 0
\(656\) 45.1536 32.8060i 0.0688318 0.0500092i
\(657\) 2178.11 344.979i 3.31524 0.525082i
\(658\) 51.9132 101.885i 0.0788954 0.154841i
\(659\) 167.781i 0.254599i −0.991864 0.127299i \(-0.959369\pi\)
0.991864 0.127299i \(-0.0406309\pi\)
\(660\) 0 0
\(661\) 6.21057 0.00939572 0.00469786 0.999989i \(-0.498505\pi\)
0.00469786 + 0.999989i \(0.498505\pi\)
\(662\) 120.196 + 61.2428i 0.181565 + 0.0925119i
\(663\) −72.8371 459.875i −0.109860 0.693628i
\(664\) 63.9459 + 88.0139i 0.0963040 + 0.132551i
\(665\) 0 0
\(666\) −1.72179 + 5.29913i −0.00258527 + 0.00795665i
\(667\) 197.457 1246.70i 0.296038 1.86911i
\(668\) −42.2246 266.595i −0.0632104 0.399095i
\(669\) −762.983 + 247.908i −1.14048 + 0.370565i
\(670\) 0 0
\(671\) −297.383 1259.10i −0.443193 1.87645i
\(672\) −263.068 + 263.068i −0.391471 + 0.391471i
\(673\) 374.572 735.139i 0.556570 1.09233i −0.425701 0.904864i \(-0.639972\pi\)
0.982271 0.187467i \(-0.0600277\pi\)
\(674\) −87.8330 + 120.892i −0.130316 + 0.179365i
\(675\) 0 0
\(676\) −87.1657 + 268.269i −0.128943 + 0.396847i
\(677\) −459.592 901.999i −0.678865 1.33235i −0.931129 0.364689i \(-0.881175\pi\)
0.252264 0.967658i \(-0.418825\pi\)
\(678\) −890.828 141.093i −1.31391 0.208102i
\(679\) −126.053 + 173.498i −0.185646 + 0.255519i
\(680\) 0 0
\(681\) 5.88044 0.00863501
\(682\) −60.2966 147.099i −0.0884114 0.215687i
\(683\) −229.153 229.153i −0.335510 0.335510i 0.519164 0.854674i \(-0.326243\pi\)
−0.854674 + 0.519164i \(0.826243\pi\)
\(684\) 846.086 274.910i 1.23697 0.401915i
\(685\) 0 0
\(686\) −176.989 + 128.590i −0.258002 + 0.187449i
\(687\) 23.0437 + 45.2258i 0.0335425 + 0.0658309i
\(688\) 31.5804 16.0910i 0.0459017 0.0233881i
\(689\) 54.9106 + 75.5779i 0.0796960 + 0.109692i
\(690\) 0 0
\(691\) −74.3036 228.683i −0.107531 0.330945i 0.882786 0.469776i \(-0.155665\pi\)
−0.990316 + 0.138831i \(0.955665\pi\)
\(692\) 11.9047 11.9047i 0.0172033 0.0172033i
\(693\) −341.337 402.647i −0.492549 0.581021i
\(694\) 177.328i 0.255516i
\(695\) 0 0
\(696\) 1582.57 + 1149.81i 2.27381 + 1.65202i
\(697\) 33.1654 209.398i 0.0475830 0.300427i
\(698\) −366.583 + 186.784i −0.525191 + 0.267598i
\(699\) −2283.39 741.917i −3.26665 1.06140i
\(700\) 0 0
\(701\) 198.550 + 144.255i 0.283238 + 0.205785i 0.720329 0.693633i \(-0.243991\pi\)
−0.437090 + 0.899418i \(0.643991\pi\)
\(702\) −1543.77 786.588i −2.19910 1.12050i
\(703\) 1.92673 + 1.92673i 0.00274073 + 0.00274073i
\(704\) 239.372 278.187i 0.340017 0.395152i
\(705\) 0 0
\(706\) −186.626 574.375i −0.264342 0.813562i
\(707\) −64.5548 + 10.2245i −0.0913081 + 0.0144618i
\(708\) 35.3892 + 5.60509i 0.0499847 + 0.00791680i
\(709\) 853.145 + 277.204i 1.20331 + 0.390979i 0.840977 0.541071i \(-0.181981\pi\)
0.362331 + 0.932049i \(0.381981\pi\)
\(710\) 0 0
\(711\) 992.456 721.062i 1.39586 1.01415i
\(712\) −620.498 + 98.2772i −0.871486 + 0.138030i
\(713\) −161.587 + 317.131i −0.226629 + 0.444785i
\(714\) 65.0406i 0.0910933i
\(715\) 0 0
\(716\) 223.141 0.311649
\(717\) −1476.00 752.061i −2.05858 1.04890i
\(718\) 89.6341 + 565.928i 0.124839 + 0.788200i
\(719\) 119.555 + 164.554i 0.166280 + 0.228865i 0.884023 0.467443i \(-0.154825\pi\)
−0.717743 + 0.696308i \(0.754825\pi\)
\(720\) 0 0
\(721\) −44.3092 + 136.370i −0.0614552 + 0.189140i
\(722\) 30.3766 191.790i 0.0420729 0.265638i
\(723\) −286.248 1807.30i −0.395917 2.49972i
\(724\) 398.525 129.489i 0.550449 0.178852i
\(725\) 0 0
\(726\) 577.377 + 585.945i 0.795284 + 0.807087i
\(727\) 373.051 373.051i 0.513137 0.513137i −0.402349 0.915486i \(-0.631806\pi\)
0.915486 + 0.402349i \(0.131806\pi\)
\(728\) 116.148 227.953i 0.159544 0.313122i
\(729\) −1464.67 + 2015.94i −2.00915 + 2.76535i
\(730\) 0 0
\(731\) 41.6041 128.044i 0.0569140 0.175163i
\(732\) −805.164 1580.22i −1.09995 2.15878i
\(733\) −502.338 79.5625i −0.685318 0.108544i −0.195940 0.980616i \(-0.562776\pi\)
−0.489377 + 0.872072i \(0.662776\pi\)
\(734\) −6.60676 + 9.09342i −0.00900103 + 0.0123889i
\(735\) 0 0
\(736\) −947.355 −1.28717
\(737\) −186.523 + 764.512i −0.253085 + 1.03733i
\(738\) −885.708 885.708i −1.20015 1.20015i
\(739\) −334.582 + 108.712i −0.452750 + 0.147107i −0.526511 0.850169i \(-0.676500\pi\)
0.0737605 + 0.997276i \(0.476500\pi\)
\(740\) 0 0
\(741\) −1088.35 + 790.733i −1.46876 + 1.06712i
\(742\) −5.92445 11.6274i −0.00798444 0.0156703i
\(743\) 1028.21 523.897i 1.38386 0.705110i 0.405900 0.913918i \(-0.366958\pi\)
0.977957 + 0.208807i \(0.0669582\pi\)
\(744\) −324.223 446.254i −0.435783 0.599804i
\(745\) 0 0
\(746\) 138.215 + 425.383i 0.185275 + 0.570218i
\(747\) −240.134 + 240.134i −0.321465 + 0.321465i
\(748\) 10.4181 + 138.913i 0.0139280 + 0.185713i
\(749\) 95.6453i 0.127697i
\(750\) 0 0
\(751\) −199.691 145.084i −0.265900 0.193188i 0.446844 0.894612i \(-0.352548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(752\) 9.81892 61.9942i 0.0130571 0.0824391i
\(753\) 359.213 183.028i 0.477042 0.243065i
\(754\) −811.230 263.585i −1.07590 0.349582i
\(755\) 0 0
\(756\) −368.718 267.889i −0.487722 0.354351i
\(757\) −1034.03 526.866i −1.36596 0.695992i −0.391422 0.920211i \(-0.628017\pi\)
−0.974539 + 0.224220i \(0.928017\pi\)
\(758\) −288.232 288.232i −0.380253 0.380253i
\(759\) 151.259 1835.48i 0.199287 2.41829i
\(760\) 0 0
\(761\) 160.769 + 494.797i 0.211260 + 0.650193i 0.999398 + 0.0346936i \(0.0110455\pi\)
−0.788138 + 0.615499i \(0.788954\pi\)
\(762\) −394.796 + 62.5295i −0.518104 + 0.0820597i
\(763\) −296.212 46.9154i −0.388221 0.0614881i
\(764\) −322.943 104.930i −0.422700 0.137344i
\(765\) 0 0
\(766\) 83.4131 60.6031i 0.108894 0.0791164i
\(767\) −39.0572 + 6.18605i −0.0509220 + 0.00806525i
\(768\) 631.596 1239.58i 0.822390 1.61403i
\(769\) 801.838i 1.04270i 0.853342 + 0.521351i \(0.174572\pi\)
−0.853342 + 0.521351i \(0.825428\pi\)
\(770\) 0 0
\(771\) −1666.92 −2.16202
\(772\) 757.431 + 385.930i 0.981129 + 0.499910i
\(773\) 108.787 + 686.852i 0.140733 + 0.888553i 0.952493 + 0.304561i \(0.0985099\pi\)
−0.811760 + 0.583992i \(0.801490\pi\)
\(774\) −467.548 643.524i −0.604067 0.831426i
\(775\) 0 0
\(776\) 261.525 804.893i 0.337017 1.03723i
\(777\) 0.346712 2.18906i 0.000446219 0.00281732i
\(778\) 77.1342 + 487.006i 0.0991443 + 0.625972i
\(779\) −582.572 + 189.289i −0.747846 + 0.242990i
\(780\) 0 0
\(781\) −3.91576 16.5790i −0.00501377 0.0212280i
\(782\) −117.111 + 117.111i −0.149759 + 0.149759i
\(783\) −1746.05 + 3426.81i −2.22994 + 4.37651i
\(784\) −33.8312 + 46.5647i −0.0431521 + 0.0593938i
\(785\) 0 0
\(786\) 368.300 1133.51i 0.468574 1.44212i
\(787\) −68.6427 134.719i −0.0872207 0.171180i 0.843276 0.537481i \(-0.180624\pi\)
−0.930496 + 0.366301i \(0.880624\pi\)
\(788\) 15.4021 + 2.43945i 0.0195458 + 0.00309575i
\(789\) −32.2399 + 44.3745i −0.0408618 + 0.0562414i
\(790\) 0 0
\(791\) 261.843 0.331027
\(792\) 1772.13 + 1094.96i 2.23754 + 1.38253i
\(793\) 1384.05 + 1384.05i 1.74534 + 1.74534i
\(794\) −688.900 + 223.837i −0.867632 + 0.281911i
\(795\) 0 0
\(796\) −489.813 + 355.870i −0.615343 + 0.447073i
\(797\) 560.165 + 1099.39i 0.702842 + 1.37941i 0.915516 + 0.402282i \(0.131783\pi\)
−0.212674 + 0.977123i \(0.568217\pi\)
\(798\) 167.439 85.3144i 0.209823 0.106910i
\(799\) −140.142 192.888i −0.175396 0.241412i
\(800\) 0 0
\(801\) −606.007 1865.10i −0.756563 2.32846i
\(802\) 448.542 448.542i 0.559279 0.559279i
\(803\) 923.164 378.410i 1.14964 0.471245i
\(804\) 1078.77i 1.34176i
\(805\) 0 0
\(806\) 194.587 + 141.376i 0.241423 + 0.175404i
\(807\) −94.7463 + 598.205i −0.117406 + 0.741270i
\(808\) 229.819 117.098i 0.284429 0.144924i
\(809\) 896.054 + 291.145i 1.10761 + 0.359883i 0.805025 0.593241i \(-0.202152\pi\)
0.302581 + 0.953124i \(0.402152\pi\)
\(810\) 0 0
\(811\) 972.098 + 706.271i 1.19864 + 0.870864i 0.994150 0.108005i \(-0.0344461\pi\)
0.204491 + 0.978868i \(0.434446\pi\)
\(812\) −199.919 101.864i −0.246206 0.125448i
\(813\) −384.211 384.211i −0.472584 0.472584i
\(814\) −0.207035 + 2.51231i −0.000254343 + 0.00308637i
\(815\) 0 0
\(816\) 11.0323 + 33.9540i 0.0135200 + 0.0416103i
\(817\) −384.207 + 60.8524i −0.470265 + 0.0744827i
\(818\) 2.77866 + 0.440097i 0.00339690 + 0.000538015i
\(819\) 759.532 + 246.787i 0.927389 + 0.301327i
\(820\) 0 0
\(821\) 805.110 584.947i 0.980645 0.712481i 0.0227926 0.999740i \(-0.492744\pi\)
0.957853 + 0.287260i \(0.0927443\pi\)
\(822\) 54.3673 8.61093i 0.0661403 0.0104756i
\(823\) 82.4626 161.842i 0.100198 0.196649i −0.835466 0.549542i \(-0.814802\pi\)
0.935664 + 0.352893i \(0.114802\pi\)
\(824\) 565.858i 0.686721i
\(825\) 0 0
\(826\) 5.52389 0.00668752
\(827\) 1062.27 + 541.252i 1.28448 + 0.654477i 0.956920 0.290352i \(-0.0937724\pi\)
0.327564 + 0.944829i \(0.393772\pi\)
\(828\) −288.251 1819.95i −0.348129 2.19800i
\(829\) 529.845 + 729.269i 0.639137 + 0.879697i 0.998569 0.0534743i \(-0.0170295\pi\)
−0.359432 + 0.933171i \(0.617030\pi\)
\(830\) 0 0
\(831\) −412.514 + 1269.59i −0.496407 + 1.52778i
\(832\) −86.8593 + 548.408i −0.104398 + 0.659144i
\(833\) 34.2018 + 215.942i 0.0410586 + 0.259234i
\(834\) 879.434 285.745i 1.05448 0.342620i
\(835\) 0 0
\(836\) 343.949 209.034i 0.411423 0.250041i
\(837\) 766.853 766.853i 0.916192 0.916192i
\(838\) 126.131 247.546i 0.150514 0.295401i
\(839\) 588.099 809.448i 0.700952 0.964778i −0.298993 0.954255i \(-0.596651\pi\)
0.999945 0.0105222i \(-0.00334938\pi\)
\(840\) 0 0
\(841\) −325.214 + 1000.91i −0.386700 + 1.19014i
\(842\) −325.424 638.681i −0.386489 0.758528i
\(843\) −1632.78 258.607i −1.93687 0.306770i
\(844\) −231.112 + 318.098i −0.273829 + 0.376893i
\(845\) 0 0
\(846\) −1408.65 −1.66507
\(847\) −192.167 141.792i −0.226879 0.167404i
\(848\) −5.06509 5.06509i −0.00597298 0.00597298i
\(849\) −935.487 + 303.958i −1.10187 + 0.358019i
\(850\) 0 0
\(851\) 4.56588 3.31730i 0.00536531 0.00389812i
\(852\) −10.6019 20.8074i −0.0124436 0.0244219i
\(853\) 83.5210 42.5561i 0.0979145 0.0498899i −0.404347 0.914605i \(-0.632501\pi\)
0.502262 + 0.864716i \(0.332501\pi\)
\(854\) −160.713 221.203i −0.188189 0.259019i
\(855\) 0 0
\(856\) 116.638 + 358.976i 0.136260 + 0.419365i
\(857\) −521.312 + 521.312i −0.608299 + 0.608299i −0.942501 0.334202i \(-0.891533\pi\)
0.334202 + 0.942501i \(0.391533\pi\)
\(858\) −1209.10 294.993i −1.40921 0.343814i
\(859\) 385.080i 0.448289i −0.974556 0.224144i \(-0.928041\pi\)
0.974556 0.224144i \(-0.0719587\pi\)
\(860\) 0 0
\(861\) 403.090 + 292.862i 0.468165 + 0.340142i
\(862\) −74.9951 + 473.500i −0.0870013 + 0.549304i
\(863\) 625.137 318.523i 0.724377 0.369088i −0.0526018 0.998616i \(-0.516751\pi\)
0.776978 + 0.629527i \(0.216751\pi\)
\(864\) 2745.29 + 891.998i 3.17742 + 1.03241i
\(865\) 0 0
\(866\) 490.498 + 356.368i 0.566395 + 0.411510i
\(867\) −1365.41 695.710i −1.57487 0.802434i
\(868\) 44.7380 + 44.7380i 0.0515415 + 0.0515415i
\(869\) 362.000 420.700i 0.416570 0.484120i
\(870\) 0 0
\(871\) −367.911 1132.32i −0.422401 1.30002i
\(872\) 1168.96 185.145i 1.34055 0.212322i
\(873\) 2609.32 + 413.275i 2.98891 + 0.473396i
\(874\) 455.105 + 147.872i 0.520715 + 0.169190i
\(875\) 0 0
\(876\) 1106.50 803.922i 1.26313 0.917719i
\(877\) 980.068 155.228i 1.11752 0.176998i 0.429767 0.902940i \(-0.358596\pi\)
0.687756 + 0.725941i \(0.258596\pi\)
\(878\) 188.264 369.488i 0.214423 0.420829i
\(879\) 1569.94i 1.78605i
\(880\) 0 0
\(881\) 1602.32 1.81875 0.909376 0.415974i \(-0.136559\pi\)
0.909376 + 0.415974i \(0.136559\pi\)
\(882\) 1150.93 + 586.430i 1.30491 + 0.664887i
\(883\) 60.0009 + 378.831i 0.0679512 + 0.429027i 0.998088 + 0.0618131i \(0.0196883\pi\)
−0.930137 + 0.367214i \(0.880312\pi\)
\(884\) −123.880 170.506i −0.140136 0.192880i
\(885\) 0 0
\(886\) −2.70811 + 8.33471i −0.00305656 + 0.00940713i
\(887\) −130.534 + 824.162i −0.147164 + 0.929157i 0.798023 + 0.602627i \(0.205879\pi\)
−0.945187 + 0.326530i \(0.894121\pi\)
\(888\) 1.36825 + 8.63878i 0.00154082 + 0.00972836i
\(889\) 110.363 35.8592i 0.124143 0.0403366i
\(890\) 0 0
\(891\) −1237.24 + 2956.12i −1.38860 + 3.31775i
\(892\) −256.777 + 256.777i −0.287867 + 0.287867i
\(893\) −312.742 + 613.791i −0.350215 + 0.687336i
\(894\) 319.283 439.455i 0.357140 0.491561i
\(895\) 0 0
\(896\) −55.7058 + 171.445i −0.0621717 + 0.191345i
\(897\) 1264.99 + 2482.69i 1.41025 + 2.76777i
\(898\) −214.384 33.9550i −0.238734 0.0378118i
\(899\) 313.822 431.938i 0.349078 0.480465i
\(900\) 0 0
\(901\) −27.2094 −0.0301991
\(902\) −482.094 297.875i −0.534472 0.330238i
\(903\) 223.733 + 223.733i 0.247767 + 0.247767i
\(904\) −982.748 + 319.314i −1.08711 + 0.353224i
\(905\) 0 0
\(906\) −501.679 + 364.491i −0.553730 + 0.402308i
\(907\) −193.184 379.145i −0.212992 0.418021i 0.759649 0.650333i \(-0.225371\pi\)
−0.972641 + 0.232313i \(0.925371\pi\)
\(908\) 2.37167 1.20842i 0.00261197 0.00133086i
\(909\) 473.258 + 651.384i 0.520636 + 0.716594i
\(910\) 0 0
\(911\) −488.370 1503.05i −0.536081 1.64989i −0.741301 0.671173i \(-0.765791\pi\)
0.205219 0.978716i \(-0.434209\pi\)
\(912\) 72.9392 72.9392i 0.0799772 0.0799772i
\(913\) −80.7603 + 130.706i −0.0884559 + 0.143161i
\(914\) 276.574i 0.302598i
\(915\) 0 0
\(916\) 18.5877 + 13.5048i 0.0202923 + 0.0147432i
\(917\) −54.1274 + 341.747i −0.0590266 + 0.372680i
\(918\) 449.639 229.102i 0.489802 0.249567i
\(919\) −19.2879 6.26701i −0.0209879 0.00681938i 0.298504 0.954408i \(-0.403512\pi\)
−0.319492 + 0.947589i \(0.603512\pi\)
\(920\) 0 0
\(921\) 932.718 + 677.660i 1.01272 + 0.735787i
\(922\) 569.443 + 290.146i 0.617617 + 0.314692i
\(923\) 18.2244 + 18.2244i 0.0197447 + 0.0197447i
\(924\) −301.997 126.396i −0.326837 0.136793i
\(925\) 0 0
\(926\) −24.8307 76.4210i −0.0268150 0.0825281i
\(927\) 1744.63 276.322i 1.88201 0.298082i
\(928\) 1403.58 + 222.306i 1.51248 + 0.239554i
\(929\) 640.531 + 208.121i 0.689484 + 0.224027i 0.632743 0.774362i \(-0.281929\pi\)
0.0567411 + 0.998389i \(0.481929\pi\)
\(930\) 0 0
\(931\) 511.052 371.301i 0.548928 0.398820i
\(932\) −1073.38 + 170.007i −1.15170 + 0.182411i
\(933\) 126.809 248.876i 0.135915 0.266748i
\(934\) 739.426i 0.791677i
\(935\) 0 0
\(936\) −3151.63 −3.36713
\(937\) −258.180 131.549i −0.275539 0.140394i 0.310761 0.950488i \(-0.399416\pi\)
−0.586300 + 0.810094i \(0.699416\pi\)
\(938\) 26.0170 + 164.265i 0.0277367 + 0.175123i
\(939\) −112.786 155.237i −0.120113 0.165321i
\(940\) 0 0
\(941\) −1.31431 + 4.04503i −0.00139672 + 0.00429865i −0.951752 0.306867i \(-0.900719\pi\)
0.950356 + 0.311166i \(0.100719\pi\)
\(942\) 268.152 1693.05i 0.284663 1.79729i
\(943\) 198.475 + 1253.12i 0.210472 + 1.32887i
\(944\) 2.88371 0.936975i 0.00305478 0.000992558i
\(945\) 0 0
\(946\) −272.788 234.726i −0.288360 0.248125i
\(947\) −779.521 + 779.521i −0.823148 + 0.823148i −0.986558 0.163410i \(-0.947751\pi\)
0.163410 + 0.986558i \(0.447751\pi\)
\(948\) 345.411 677.906i 0.364357 0.715091i
\(949\) −887.246 + 1221.19i −0.934928 + 1.28682i
\(950\) 0 0
\(951\) −484.598 + 1491.44i −0.509567 + 1.56828i
\(952\) 33.8293 + 66.3938i 0.0355350 + 0.0697413i
\(953\) −571.006 90.4385i −0.599167 0.0948987i −0.150519 0.988607i \(-0.548094\pi\)
−0.448648 + 0.893708i \(0.648094\pi\)
\(954\) −94.4911 + 130.056i −0.0990473 + 0.136327i
\(955\) 0 0
\(956\) −749.841 −0.784352
\(957\) −654.817 + 2683.93i −0.684239 + 2.80452i
\(958\) 484.389 + 484.389i 0.505626 + 0.505626i
\(959\) −15.1981 + 4.93817i −0.0158479 + 0.00514930i
\(960\) 0 0
\(961\) 655.667 476.370i 0.682276 0.495703i
\(962\) −1.73145 3.39817i −0.00179985 0.00353240i
\(963\) −1049.82 + 534.910i −1.09016 + 0.555463i
\(964\) −486.846 670.086i −0.505027 0.695110i
\(965\) 0 0
\(966\) −120.279 370.179i −0.124512 0.383208i
\(967\) 115.321 115.321i 0.119256 0.119256i −0.644960 0.764216i \(-0.723126\pi\)
0.764216 + 0.644960i \(0.223126\pi\)
\(968\) 894.154 + 297.827i 0.923713 + 0.307672i
\(969\) 391.826i 0.404361i
\(970\) 0 0
\(971\) −305.877 222.233i −0.315012 0.228870i 0.419032 0.907971i \(-0.362370\pi\)
−0.734044 + 0.679102i \(0.762370\pi\)
\(972\) −362.107 + 2286.25i −0.372538 + 2.35211i
\(973\) −239.190 + 121.874i −0.245828 + 0.125256i
\(974\) 195.338 + 63.4691i 0.200552 + 0.0651634i
\(975\) 0 0
\(976\) −121.420 88.2169i −0.124406 0.0903861i
\(977\) −169.433 86.3306i −0.173422 0.0883629i 0.365125 0.930959i \(-0.381026\pi\)
−0.538547 + 0.842596i \(0.681026\pi\)
\(978\) 1102.04 + 1102.04i 1.12683 + 1.12683i
\(979\) −460.791 758.196i −0.470675 0.774460i
\(980\) 0 0
\(981\) 1141.66 + 3513.66i 1.16377 + 3.58172i
\(982\) 310.763 49.2201i 0.316460 0.0501223i
\(983\) −1232.11 195.147i −1.25342 0.198522i −0.505799 0.862651i \(-0.668802\pi\)
−0.747618 + 0.664129i \(0.768802\pi\)
\(984\) −1870.02 607.606i −1.90043 0.617486i
\(985\) 0 0
\(986\) 200.991 146.029i 0.203845 0.148102i
\(987\) 553.427 87.6542i 0.560716 0.0888087i
\(988\) −276.453 + 542.569i −0.279810 + 0.549159i
\(989\) 805.704i 0.814665i
\(990\) 0 0
\(991\) 1692.83 1.70821 0.854103 0.520104i \(-0.174107\pi\)
0.854103 + 0.520104i \(0.174107\pi\)
\(992\) −357.041 181.921i −0.359920 0.183388i
\(993\) 103.407 + 652.887i 0.104136 + 0.657490i
\(994\) −2.11617 2.91266i −0.00212895 0.00293024i
\(995\) 0 0
\(996\) −65.0858 + 200.314i −0.0653472 + 0.201118i
\(997\) 185.327 1170.11i 0.185885 1.17363i −0.701524 0.712646i \(-0.747497\pi\)
0.887409 0.460983i \(-0.152503\pi\)
\(998\) −173.164 1093.32i −0.173511 1.09551i
\(999\) −16.3547 + 5.31395i −0.0163710 + 0.00531927i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.93.6 yes 128
5.2 odd 4 inner 275.3.bk.c.82.11 yes 128
5.3 odd 4 inner 275.3.bk.c.82.6 128
5.4 even 2 inner 275.3.bk.c.93.11 yes 128
11.9 even 5 inner 275.3.bk.c.218.11 yes 128
55.9 even 10 inner 275.3.bk.c.218.6 yes 128
55.42 odd 20 inner 275.3.bk.c.207.6 yes 128
55.53 odd 20 inner 275.3.bk.c.207.11 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.6 128 5.3 odd 4 inner
275.3.bk.c.82.11 yes 128 5.2 odd 4 inner
275.3.bk.c.93.6 yes 128 1.1 even 1 trivial
275.3.bk.c.93.11 yes 128 5.4 even 2 inner
275.3.bk.c.207.6 yes 128 55.42 odd 20 inner
275.3.bk.c.207.11 yes 128 55.53 odd 20 inner
275.3.bk.c.218.6 yes 128 55.9 even 10 inner
275.3.bk.c.218.11 yes 128 11.9 even 5 inner