Properties

Label 275.3.bk.c.207.11
Level $275$
Weight $3$
Character 275.207
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 207.11
Character \(\chi\) \(=\) 275.207
Dual form 275.3.bk.c.93.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04950 - 0.534746i) q^{2} +(0.902907 - 5.70073i) q^{3} +(-1.53565 + 2.11364i) q^{4} +(-2.10084 - 6.46573i) q^{6} +(-0.308752 - 1.94938i) q^{7} +(-1.21844 + 7.69295i) q^{8} +(-23.1236 - 7.51330i) q^{9} +(-9.40014 - 5.71291i) q^{11} +(10.6627 + 10.6627i) q^{12} +(-7.55546 - 14.8284i) q^{13} +(-1.36646 - 1.88077i) q^{14} +(-0.394331 - 1.21363i) q^{16} +(-2.20061 + 4.31894i) q^{17} +(-28.2858 + 4.48004i) q^{18} +(8.23200 + 11.3304i) q^{19} -11.3917 q^{21} +(-12.9204 - 0.968994i) q^{22} +(20.5117 - 20.5117i) q^{23} +(42.7553 + 13.8920i) q^{24} +(-15.8589 - 11.5221i) q^{26} +(-40.1266 + 78.7530i) q^{27} +(4.59443 + 2.34098i) q^{28} +(25.5765 - 35.2031i) q^{29} +(-3.79161 + 11.6694i) q^{31} +(-23.0930 - 23.0930i) q^{32} +(-41.0552 + 48.4294i) q^{33} +5.70948i q^{34} +(51.3900 - 37.3370i) q^{36} +(0.0304356 + 0.192163i) q^{37} +(14.6984 + 7.48918i) q^{38} +(-91.3546 + 29.6829i) q^{39} +(-35.3846 + 25.7084i) q^{41} +(-11.9555 + 6.09166i) q^{42} +(19.6401 - 19.6401i) q^{43} +(26.5103 - 11.0955i) q^{44} +(10.5585 - 32.4956i) q^{46} +(48.5817 + 7.69458i) q^{47} +(-7.27460 + 1.15218i) q^{48} +(42.8970 - 13.9381i) q^{49} +(22.6341 + 16.4447i) q^{51} +(42.9444 + 6.80173i) q^{52} +(2.54841 + 5.00155i) q^{53} +104.109i q^{54} +15.3727 q^{56} +(72.0242 - 36.6981i) q^{57} +(8.01782 - 50.6225i) q^{58} +(-1.39664 + 1.92231i) q^{59} +(-36.3443 - 111.856i) q^{61} +(2.26086 + 14.2745i) q^{62} +(-7.50685 + 47.3964i) q^{63} +(-31.7305 - 10.3099i) q^{64} +(-17.1899 + 72.7807i) q^{66} +(-50.5862 - 50.5862i) q^{67} +(-5.74931 - 11.2837i) q^{68} +(-98.4116 - 135.452i) q^{69} +(-0.478560 - 1.47286i) q^{71} +(85.9742 - 168.734i) q^{72} +(89.5842 - 14.1887i) q^{73} +(0.134700 + 0.185399i) q^{74} -36.5898 q^{76} +(-8.23433 + 20.0884i) q^{77} +(-80.0037 + 80.0037i) q^{78} +(-47.9857 - 15.5915i) q^{79} +(235.688 + 171.237i) q^{81} +(-23.3886 + 45.9027i) q^{82} +(-12.4452 - 6.34114i) q^{83} +(17.4936 - 24.0779i) q^{84} +(10.1098 - 31.1147i) q^{86} +(-177.590 - 177.590i) q^{87} +(55.4026 - 65.3540i) q^{88} -80.6579i q^{89} +(-26.5735 + 19.3068i) q^{91} +(11.8556 + 74.8532i) q^{92} +(63.1004 + 32.1513i) q^{93} +(55.1010 - 17.9034i) q^{94} +(-152.498 + 110.796i) q^{96} +(96.8143 - 49.3293i) q^{97} +(37.5670 - 37.5670i) q^{98} +(174.442 + 202.729i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04950 0.534746i 0.524749 0.267373i −0.171486 0.985186i \(-0.554857\pi\)
0.696235 + 0.717813i \(0.254857\pi\)
\(3\) 0.902907 5.70073i 0.300969 1.90024i −0.119326 0.992855i \(-0.538073\pi\)
0.420295 0.907388i \(-0.361927\pi\)
\(4\) −1.53565 + 2.11364i −0.383912 + 0.528410i
\(5\) 0 0
\(6\) −2.10084 6.46573i −0.350140 1.07762i
\(7\) −0.308752 1.94938i −0.0441074 0.278483i 0.955770 0.294114i \(-0.0950245\pi\)
−0.999878 + 0.0156304i \(0.995024\pi\)
\(8\) −1.21844 + 7.69295i −0.152305 + 0.961619i
\(9\) −23.1236 7.51330i −2.56928 0.834811i
\(10\) 0 0
\(11\) −9.40014 5.71291i −0.854559 0.519355i
\(12\) 10.6627 + 10.6627i 0.888561 + 0.888561i
\(13\) −7.55546 14.8284i −0.581189 1.14065i −0.975155 0.221523i \(-0.928897\pi\)
0.393966 0.919125i \(-0.371103\pi\)
\(14\) −1.36646 1.88077i −0.0976043 0.134341i
\(15\) 0 0
\(16\) −0.394331 1.21363i −0.0246457 0.0758516i
\(17\) −2.20061 + 4.31894i −0.129448 + 0.254055i −0.946629 0.322326i \(-0.895535\pi\)
0.817181 + 0.576381i \(0.195535\pi\)
\(18\) −28.2858 + 4.48004i −1.57144 + 0.248891i
\(19\) 8.23200 + 11.3304i 0.433263 + 0.596336i 0.968698 0.248240i \(-0.0798523\pi\)
−0.535435 + 0.844576i \(0.679852\pi\)
\(20\) 0 0
\(21\) −11.3917 −0.542461
\(22\) −12.9204 0.968994i −0.587290 0.0440452i
\(23\) 20.5117 20.5117i 0.891814 0.891814i −0.102879 0.994694i \(-0.532806\pi\)
0.994694 + 0.102879i \(0.0328056\pi\)
\(24\) 42.7553 + 13.8920i 1.78147 + 0.578835i
\(25\) 0 0
\(26\) −15.8589 11.5221i −0.609957 0.443159i
\(27\) −40.1266 + 78.7530i −1.48617 + 2.91678i
\(28\) 4.59443 + 2.34098i 0.164087 + 0.0836063i
\(29\) 25.5765 35.2031i 0.881949 1.21390i −0.0939277 0.995579i \(-0.529942\pi\)
0.975877 0.218320i \(-0.0700577\pi\)
\(30\) 0 0
\(31\) −3.79161 + 11.6694i −0.122310 + 0.376431i −0.993401 0.114690i \(-0.963413\pi\)
0.871091 + 0.491121i \(0.163413\pi\)
\(32\) −23.0930 23.0930i −0.721657 0.721657i
\(33\) −41.0552 + 48.4294i −1.24410 + 1.46756i
\(34\) 5.70948i 0.167926i
\(35\) 0 0
\(36\) 51.3900 37.3370i 1.42750 1.03714i
\(37\) 0.0304356 + 0.192163i 0.000822583 + 0.00519359i 0.988096 0.153837i \(-0.0491631\pi\)
−0.987274 + 0.159031i \(0.949163\pi\)
\(38\) 14.6984 + 7.48918i 0.386799 + 0.197084i
\(39\) −91.3546 + 29.6829i −2.34243 + 0.761101i
\(40\) 0 0
\(41\) −35.3846 + 25.7084i −0.863039 + 0.627034i −0.928710 0.370807i \(-0.879081\pi\)
0.0656713 + 0.997841i \(0.479081\pi\)
\(42\) −11.9555 + 6.09166i −0.284656 + 0.145039i
\(43\) 19.6401 19.6401i 0.456746 0.456746i −0.440840 0.897586i \(-0.645319\pi\)
0.897586 + 0.440840i \(0.145319\pi\)
\(44\) 26.5103 11.0955i 0.602507 0.252170i
\(45\) 0 0
\(46\) 10.5585 32.4956i 0.229532 0.706426i
\(47\) 48.5817 + 7.69458i 1.03365 + 0.163714i 0.650135 0.759819i \(-0.274712\pi\)
0.383518 + 0.923533i \(0.374712\pi\)
\(48\) −7.27460 + 1.15218i −0.151554 + 0.0240038i
\(49\) 42.8970 13.9381i 0.875449 0.284451i
\(50\) 0 0
\(51\) 22.6341 + 16.4447i 0.443807 + 0.322444i
\(52\) 42.9444 + 6.80173i 0.825854 + 0.130802i
\(53\) 2.54841 + 5.00155i 0.0480833 + 0.0943688i 0.913798 0.406169i \(-0.133136\pi\)
−0.865715 + 0.500538i \(0.833136\pi\)
\(54\) 104.109i 1.92794i
\(55\) 0 0
\(56\) 15.3727 0.274513
\(57\) 72.0242 36.6981i 1.26358 0.643827i
\(58\) 8.01782 50.6225i 0.138238 0.872802i
\(59\) −1.39664 + 1.92231i −0.0236719 + 0.0325816i −0.820689 0.571375i \(-0.806410\pi\)
0.797017 + 0.603957i \(0.206410\pi\)
\(60\) 0 0
\(61\) −36.3443 111.856i −0.595809 1.83371i −0.550659 0.834731i \(-0.685623\pi\)
−0.0451502 0.998980i \(-0.514377\pi\)
\(62\) 2.26086 + 14.2745i 0.0364655 + 0.230234i
\(63\) −7.50685 + 47.3964i −0.119156 + 0.752324i
\(64\) −31.7305 10.3099i −0.495789 0.161091i
\(65\) 0 0
\(66\) −17.1899 + 72.7807i −0.260453 + 1.10274i
\(67\) −50.5862 50.5862i −0.755018 0.755018i 0.220393 0.975411i \(-0.429266\pi\)
−0.975411 + 0.220393i \(0.929266\pi\)
\(68\) −5.74931 11.2837i −0.0845487 0.165936i
\(69\) −98.4116 135.452i −1.42626 1.96307i
\(70\) 0 0
\(71\) −0.478560 1.47286i −0.00674028 0.0207445i 0.947630 0.319371i \(-0.103472\pi\)
−0.954370 + 0.298626i \(0.903472\pi\)
\(72\) 85.9742 168.734i 1.19409 2.34353i
\(73\) 89.5842 14.1887i 1.22718 0.194366i 0.491005 0.871157i \(-0.336630\pi\)
0.736176 + 0.676790i \(0.236630\pi\)
\(74\) 0.134700 + 0.185399i 0.00182028 + 0.00250539i
\(75\) 0 0
\(76\) −36.5898 −0.481445
\(77\) −8.23433 + 20.0884i −0.106939 + 0.260888i
\(78\) −80.0037 + 80.0037i −1.02569 + 1.02569i
\(79\) −47.9857 15.5915i −0.607414 0.197361i −0.0108696 0.999941i \(-0.503460\pi\)
−0.596544 + 0.802580i \(0.703460\pi\)
\(80\) 0 0
\(81\) 235.688 + 171.237i 2.90973 + 2.11404i
\(82\) −23.3886 + 45.9027i −0.285227 + 0.559789i
\(83\) −12.4452 6.34114i −0.149942 0.0763993i 0.377410 0.926046i \(-0.376815\pi\)
−0.527352 + 0.849647i \(0.676815\pi\)
\(84\) 17.4936 24.0779i 0.208257 0.286642i
\(85\) 0 0
\(86\) 10.1098 31.1147i 0.117555 0.361799i
\(87\) −177.590 177.590i −2.04126 2.04126i
\(88\) 55.4026 65.3540i 0.629576 0.742659i
\(89\) 80.6579i 0.906269i −0.891442 0.453135i \(-0.850306\pi\)
0.891442 0.453135i \(-0.149694\pi\)
\(90\) 0 0
\(91\) −26.5735 + 19.3068i −0.292017 + 0.212162i
\(92\) 11.8556 + 74.8532i 0.128865 + 0.813621i
\(93\) 63.1004 + 32.1513i 0.678499 + 0.345713i
\(94\) 55.1010 17.9034i 0.586181 0.190462i
\(95\) 0 0
\(96\) −152.498 + 110.796i −1.58852 + 1.15413i
\(97\) 96.8143 49.3293i 0.998085 0.508550i 0.122942 0.992414i \(-0.460767\pi\)
0.875143 + 0.483864i \(0.160767\pi\)
\(98\) 37.5670 37.5670i 0.383337 0.383337i
\(99\) 174.442 + 202.729i 1.76204 + 2.04777i
\(100\) 0 0
\(101\) −10.2333 + 31.4947i −0.101319 + 0.311829i −0.988849 0.148922i \(-0.952420\pi\)
0.887530 + 0.460751i \(0.152420\pi\)
\(102\) 32.5482 + 5.15513i 0.319100 + 0.0505405i
\(103\) 71.7554 11.3649i 0.696654 0.110339i 0.201944 0.979397i \(-0.435274\pi\)
0.494710 + 0.869058i \(0.335274\pi\)
\(104\) 123.280 40.0562i 1.18539 0.385155i
\(105\) 0 0
\(106\) 5.34911 + 3.88636i 0.0504633 + 0.0366638i
\(107\) −47.8637 7.58086i −0.447324 0.0708492i −0.0712913 0.997456i \(-0.522712\pi\)
−0.376033 + 0.926606i \(0.622712\pi\)
\(108\) −104.835 205.750i −0.970693 1.90509i
\(109\) 151.952i 1.39405i 0.717045 + 0.697026i \(0.245494\pi\)
−0.717045 + 0.697026i \(0.754506\pi\)
\(110\) 0 0
\(111\) 1.12295 0.0101166
\(112\) −2.24407 + 1.14341i −0.0200364 + 0.0102090i
\(113\) −20.7537 + 131.034i −0.183661 + 1.15959i 0.707773 + 0.706440i \(0.249700\pi\)
−0.891434 + 0.453150i \(0.850300\pi\)
\(114\) 55.9650 77.0293i 0.490921 0.675695i
\(115\) 0 0
\(116\) 35.1300 + 108.119i 0.302845 + 0.932061i
\(117\) 63.2987 + 399.652i 0.541014 + 3.41583i
\(118\) −0.437825 + 2.76432i −0.00371038 + 0.0234264i
\(119\) 9.09870 + 2.95635i 0.0764597 + 0.0248433i
\(120\) 0 0
\(121\) 55.7254 + 107.404i 0.460541 + 0.887639i
\(122\) −97.9581 97.9581i −0.802935 0.802935i
\(123\) 114.608 + 224.930i 0.931770 + 1.82870i
\(124\) −18.8422 25.9341i −0.151954 0.209146i
\(125\) 0 0
\(126\) 17.4666 + 53.7567i 0.138624 + 0.426641i
\(127\) −26.6924 + 52.3868i −0.210176 + 0.412495i −0.971895 0.235413i \(-0.924356\pi\)
0.761719 + 0.647908i \(0.224356\pi\)
\(128\) 90.2113 14.2881i 0.704776 0.111625i
\(129\) −94.2296 129.696i −0.730462 1.00539i
\(130\) 0 0
\(131\) −175.310 −1.33825 −0.669124 0.743151i \(-0.733330\pi\)
−0.669124 + 0.743151i \(0.733330\pi\)
\(132\) −39.3160 161.146i −0.297849 1.22081i
\(133\) 19.5456 19.5456i 0.146959 0.146959i
\(134\) −80.1409 26.0394i −0.598066 0.194324i
\(135\) 0 0
\(136\) −30.5440 22.1916i −0.224589 0.163173i
\(137\) 3.67581 7.21419i 0.0268308 0.0526583i −0.877202 0.480121i \(-0.840593\pi\)
0.904033 + 0.427463i \(0.140593\pi\)
\(138\) −175.715 89.5314i −1.27330 0.648778i
\(139\) −79.9474 + 110.038i −0.575161 + 0.791641i −0.993154 0.116809i \(-0.962734\pi\)
0.417993 + 0.908450i \(0.362734\pi\)
\(140\) 0 0
\(141\) 87.7294 270.003i 0.622195 1.91492i
\(142\) −1.28985 1.28985i −0.00908347 0.00908347i
\(143\) −13.6910 + 182.553i −0.0957410 + 1.27659i
\(144\) 31.0261i 0.215459i
\(145\) 0 0
\(146\) 86.4311 62.7959i 0.591994 0.430109i
\(147\) −40.7252 257.129i −0.277042 1.74918i
\(148\) −0.452901 0.230765i −0.00306014 0.00155922i
\(149\) −75.9893 + 24.6904i −0.509995 + 0.165707i −0.552700 0.833380i \(-0.686402\pi\)
0.0427049 + 0.999088i \(0.486402\pi\)
\(150\) 0 0
\(151\) 73.7929 53.6137i 0.488695 0.355058i −0.315987 0.948763i \(-0.602336\pi\)
0.804682 + 0.593706i \(0.202336\pi\)
\(152\) −97.1943 + 49.5230i −0.639436 + 0.325809i
\(153\) 83.3353 83.3353i 0.544675 0.544675i
\(154\) 2.10026 + 25.4860i 0.0136380 + 0.165493i
\(155\) 0 0
\(156\) 77.5496 238.673i 0.497113 1.52996i
\(157\) 249.034 + 39.4430i 1.58620 + 0.251230i 0.886335 0.463045i \(-0.153243\pi\)
0.699866 + 0.714274i \(0.253243\pi\)
\(158\) −58.6984 + 9.29691i −0.371509 + 0.0588412i
\(159\) 30.8134 10.0119i 0.193795 0.0629679i
\(160\) 0 0
\(161\) −46.3183 33.6522i −0.287691 0.209020i
\(162\) 338.923 + 53.6801i 2.09212 + 0.331358i
\(163\) −104.075 204.260i −0.638500 1.25313i −0.952741 0.303783i \(-0.901750\pi\)
0.314242 0.949343i \(-0.398250\pi\)
\(164\) 114.269i 0.696764i
\(165\) 0 0
\(166\) −16.4521 −0.0991091
\(167\) −92.0535 + 46.9036i −0.551219 + 0.280860i −0.707335 0.706879i \(-0.750103\pi\)
0.156116 + 0.987739i \(0.450103\pi\)
\(168\) 13.8801 87.6356i 0.0826198 0.521641i
\(169\) −63.4613 + 87.3470i −0.375511 + 0.516846i
\(170\) 0 0
\(171\) −105.225 323.848i −0.615349 1.89385i
\(172\) 11.3518 + 71.6723i 0.0659987 + 0.416699i
\(173\) −1.00807 + 6.36471i −0.00582700 + 0.0367902i −0.990431 0.138012i \(-0.955929\pi\)
0.984604 + 0.174802i \(0.0559287\pi\)
\(174\) −281.346 91.4148i −1.61693 0.525372i
\(175\) 0 0
\(176\) −3.22656 + 13.6610i −0.0183327 + 0.0776195i
\(177\) 9.69756 + 9.69756i 0.0547885 + 0.0547885i
\(178\) −43.1315 84.6504i −0.242312 0.475564i
\(179\) −50.2025 69.0978i −0.280461 0.386021i 0.645426 0.763823i \(-0.276680\pi\)
−0.925886 + 0.377802i \(0.876680\pi\)
\(180\) 0 0
\(181\) −49.5631 152.540i −0.273829 0.842760i −0.989527 0.144350i \(-0.953891\pi\)
0.715697 0.698411i \(-0.246109\pi\)
\(182\) −17.5646 + 34.4725i −0.0965089 + 0.189409i
\(183\) −670.478 + 106.193i −3.66382 + 0.580291i
\(184\) 132.803 + 182.788i 0.721757 + 0.993414i
\(185\) 0 0
\(186\) 83.4166 0.448476
\(187\) 45.3597 28.0268i 0.242565 0.149876i
\(188\) −90.8679 + 90.8679i −0.483340 + 0.483340i
\(189\) 165.909 + 53.9071i 0.877825 + 0.285223i
\(190\) 0 0
\(191\) 105.149 + 76.3950i 0.550517 + 0.399974i 0.827976 0.560764i \(-0.189492\pi\)
−0.277459 + 0.960737i \(0.589492\pi\)
\(192\) −87.4233 + 171.578i −0.455330 + 0.893635i
\(193\) 289.915 + 147.719i 1.50215 + 0.765383i 0.995317 0.0966622i \(-0.0308166\pi\)
0.506831 + 0.862045i \(0.330817\pi\)
\(194\) 75.2277 103.542i 0.387772 0.533722i
\(195\) 0 0
\(196\) −36.4146 + 112.073i −0.185789 + 0.571800i
\(197\) 4.22058 + 4.22058i 0.0214242 + 0.0214242i 0.717738 0.696314i \(-0.245178\pi\)
−0.696314 + 0.717738i \(0.745178\pi\)
\(198\) 291.485 + 119.481i 1.47215 + 0.603441i
\(199\) 231.739i 1.16452i 0.813003 + 0.582260i \(0.197831\pi\)
−0.813003 + 0.582260i \(0.802169\pi\)
\(200\) 0 0
\(201\) −334.053 + 242.704i −1.66195 + 1.20748i
\(202\) 6.10189 + 38.5258i 0.0302074 + 0.190722i
\(203\) −76.5211 38.9895i −0.376951 0.192066i
\(204\) −69.5161 + 22.5872i −0.340765 + 0.110721i
\(205\) 0 0
\(206\) 69.2298 50.2984i 0.336067 0.244167i
\(207\) −628.415 + 320.193i −3.03582 + 1.54683i
\(208\) −15.0168 + 15.0168i −0.0721962 + 0.0721962i
\(209\) −12.6526 153.536i −0.0605389 0.734622i
\(210\) 0 0
\(211\) −46.5064 + 143.132i −0.220409 + 0.678350i 0.778316 + 0.627873i \(0.216074\pi\)
−0.998725 + 0.0504773i \(0.983926\pi\)
\(212\) −14.4849 2.29419i −0.0683251 0.0108216i
\(213\) −8.82845 + 1.39829i −0.0414481 + 0.00656474i
\(214\) −54.2867 + 17.6388i −0.253676 + 0.0824243i
\(215\) 0 0
\(216\) −556.951 404.648i −2.57848 1.87337i
\(217\) 23.9187 + 3.78836i 0.110225 + 0.0174579i
\(218\) 81.2556 + 159.473i 0.372732 + 0.731528i
\(219\) 523.506i 2.39044i
\(220\) 0 0
\(221\) 80.6696 0.365021
\(222\) 1.17853 0.600492i 0.00530870 0.00270492i
\(223\) 21.7436 137.283i 0.0975048 0.615621i −0.889747 0.456454i \(-0.849119\pi\)
0.987252 0.159167i \(-0.0508807\pi\)
\(224\) −37.8871 + 52.1472i −0.169139 + 0.232800i
\(225\) 0 0
\(226\) 48.2887 + 148.617i 0.213667 + 0.657600i
\(227\) 0.159379 + 1.00628i 0.000702112 + 0.00443296i 0.988037 0.154218i \(-0.0492857\pi\)
−0.987335 + 0.158651i \(0.949286\pi\)
\(228\) −33.0372 + 208.588i −0.144900 + 0.914862i
\(229\) −8.36376 2.71755i −0.0365230 0.0118670i 0.290699 0.956815i \(-0.406112\pi\)
−0.327222 + 0.944948i \(0.606112\pi\)
\(230\) 0 0
\(231\) 107.083 + 65.0796i 0.463565 + 0.281730i
\(232\) 239.652 + 239.652i 1.03298 + 1.03298i
\(233\) −188.847 370.632i −0.810500 1.59070i −0.806889 0.590703i \(-0.798850\pi\)
−0.00361160 0.999993i \(-0.501150\pi\)
\(234\) 280.144 + 385.585i 1.19720 + 1.64780i
\(235\) 0 0
\(236\) −1.91833 5.90400i −0.00812850 0.0250169i
\(237\) −132.209 + 259.476i −0.557846 + 1.09483i
\(238\) 11.1300 1.76281i 0.0467646 0.00740678i
\(239\) 168.700 + 232.195i 0.705857 + 0.971529i 0.999876 + 0.0157295i \(0.00500705\pi\)
−0.294019 + 0.955800i \(0.594993\pi\)
\(240\) 0 0
\(241\) 317.030 1.31548 0.657738 0.753247i \(-0.271513\pi\)
0.657738 + 0.753247i \(0.271513\pi\)
\(242\) 115.918 + 82.9216i 0.478999 + 0.342651i
\(243\) 626.494 626.494i 2.57816 2.57816i
\(244\) 292.236 + 94.9532i 1.19769 + 0.389153i
\(245\) 0 0
\(246\) 240.561 + 174.778i 0.977890 + 0.710479i
\(247\) 105.815 207.674i 0.428401 0.840785i
\(248\) −85.1520 43.3871i −0.343355 0.174948i
\(249\) −47.3860 + 65.2212i −0.190305 + 0.261933i
\(250\) 0 0
\(251\) 21.5845 66.4304i 0.0859942 0.264663i −0.898808 0.438342i \(-0.855566\pi\)
0.984802 + 0.173680i \(0.0555657\pi\)
\(252\) −88.6510 88.6510i −0.351790 0.351790i
\(253\) −309.995 + 75.6317i −1.22528 + 0.298939i
\(254\) 69.2535i 0.272652i
\(255\) 0 0
\(256\) 195.002 141.677i 0.761728 0.553427i
\(257\) −45.1789 285.248i −0.175793 1.10992i −0.904934 0.425552i \(-0.860080\pi\)
0.729141 0.684364i \(-0.239920\pi\)
\(258\) −168.248 85.7267i −0.652124 0.332274i
\(259\) 0.365202 0.118661i 0.00141005 0.000458152i
\(260\) 0 0
\(261\) −855.912 + 621.856i −3.27935 + 2.38259i
\(262\) −183.988 + 93.7465i −0.702244 + 0.357811i
\(263\) 6.71971 6.71971i 0.0255502 0.0255502i −0.694216 0.719766i \(-0.744249\pi\)
0.719766 + 0.694216i \(0.244249\pi\)
\(264\) −322.542 374.844i −1.22175 1.41986i
\(265\) 0 0
\(266\) 10.0611 30.9650i 0.0378239 0.116410i
\(267\) −459.809 72.8266i −1.72213 0.272759i
\(268\) 184.604 29.2383i 0.688819 0.109098i
\(269\) −99.7989 + 32.4266i −0.371000 + 0.120545i −0.488582 0.872518i \(-0.662486\pi\)
0.117582 + 0.993063i \(0.462486\pi\)
\(270\) 0 0
\(271\) 76.1609 + 55.3341i 0.281037 + 0.204185i 0.719369 0.694628i \(-0.244431\pi\)
−0.438333 + 0.898813i \(0.644431\pi\)
\(272\) 6.10934 + 0.967625i 0.0224608 + 0.00355744i
\(273\) 86.0693 + 168.921i 0.315272 + 0.618757i
\(274\) 9.53691i 0.0348062i
\(275\) 0 0
\(276\) 437.422 1.58486
\(277\) 206.076 105.001i 0.743956 0.379065i −0.0405564 0.999177i \(-0.512913\pi\)
0.784513 + 0.620113i \(0.212913\pi\)
\(278\) −25.0622 + 158.236i −0.0901517 + 0.569196i
\(279\) 175.351 241.350i 0.628498 0.865053i
\(280\) 0 0
\(281\) 88.5075 + 272.398i 0.314973 + 0.969388i 0.975765 + 0.218819i \(0.0702204\pi\)
−0.660792 + 0.750569i \(0.729780\pi\)
\(282\) −52.3114 330.281i −0.185501 1.17121i
\(283\) 26.6596 168.322i 0.0942035 0.594777i −0.894752 0.446564i \(-0.852648\pi\)
0.988955 0.148214i \(-0.0473524\pi\)
\(284\) 3.84799 + 1.25029i 0.0135492 + 0.00440242i
\(285\) 0 0
\(286\) 83.2508 + 198.910i 0.291087 + 0.695490i
\(287\) 61.0406 + 61.0406i 0.212685 + 0.212685i
\(288\) 360.488 + 707.497i 1.25169 + 2.45659i
\(289\) 156.059 + 214.797i 0.539998 + 0.743243i
\(290\) 0 0
\(291\) −193.799 596.452i −0.665976 2.04966i
\(292\) −107.580 + 211.138i −0.368425 + 0.723074i
\(293\) −268.654 + 42.5506i −0.916907 + 0.145224i −0.597015 0.802230i \(-0.703647\pi\)
−0.319892 + 0.947454i \(0.603647\pi\)
\(294\) −180.240 248.079i −0.613060 0.843805i
\(295\) 0 0
\(296\) −1.51538 −0.00511954
\(297\) 827.104 511.050i 2.78486 1.72071i
\(298\) −66.5475 + 66.5475i −0.223314 + 0.223314i
\(299\) −459.132 149.181i −1.53556 0.498933i
\(300\) 0 0
\(301\) −44.3500 32.2221i −0.147342 0.107050i
\(302\) 48.7758 95.7279i 0.161509 0.316980i
\(303\) 170.303 + 86.7738i 0.562056 + 0.286382i
\(304\) 10.5047 14.4585i 0.0345550 0.0475609i
\(305\) 0 0
\(306\) 42.8970 132.023i 0.140186 0.431449i
\(307\) 141.243 + 141.243i 0.460075 + 0.460075i 0.898680 0.438605i \(-0.144527\pi\)
−0.438605 + 0.898680i \(0.644527\pi\)
\(308\) −29.8145 48.2530i −0.0968003 0.156666i
\(309\) 419.319i 1.35702i
\(310\) 0 0
\(311\) 39.1515 28.4453i 0.125889 0.0914639i −0.523059 0.852297i \(-0.675209\pi\)
0.648948 + 0.760833i \(0.275209\pi\)
\(312\) −117.039 738.954i −0.375124 2.36844i
\(313\) −29.6215 15.0929i −0.0946374 0.0482202i 0.406031 0.913859i \(-0.366912\pi\)
−0.500669 + 0.865639i \(0.666912\pi\)
\(314\) 282.452 91.7743i 0.899529 0.292275i
\(315\) 0 0
\(316\) 106.644 77.4813i 0.337481 0.245194i
\(317\) 242.086 123.349i 0.763678 0.389113i −0.0283501 0.999598i \(-0.509025\pi\)
0.792028 + 0.610485i \(0.209025\pi\)
\(318\) 26.9848 26.9848i 0.0848579 0.0848579i
\(319\) −441.535 + 184.798i −1.38412 + 0.579303i
\(320\) 0 0
\(321\) −86.4329 + 266.013i −0.269261 + 0.828701i
\(322\) −66.6063 10.5494i −0.206852 0.0327621i
\(323\) −67.0506 + 10.6198i −0.207587 + 0.0328786i
\(324\) −723.868 + 235.199i −2.23416 + 0.725922i
\(325\) 0 0
\(326\) −218.454 158.716i −0.670104 0.486859i
\(327\) 866.236 + 137.198i 2.64904 + 0.419567i
\(328\) −154.659 303.536i −0.471523 0.925415i
\(329\) 97.0800i 0.295076i
\(330\) 0 0
\(331\) −114.527 −0.346003 −0.173001 0.984922i \(-0.555347\pi\)
−0.173001 + 0.984922i \(0.555347\pi\)
\(332\) 32.5143 16.5669i 0.0979347 0.0499002i
\(333\) 0.739997 4.67216i 0.00222221 0.0140305i
\(334\) −71.5285 + 98.4505i −0.214157 + 0.294762i
\(335\) 0 0
\(336\) 4.49209 + 13.8252i 0.0133693 + 0.0411466i
\(337\) −19.8459 125.302i −0.0588899 0.371816i −0.999479 0.0322698i \(-0.989726\pi\)
0.940589 0.339546i \(-0.110274\pi\)
\(338\) −19.8941 + 125.606i −0.0588582 + 0.371616i
\(339\) 728.248 + 236.622i 2.14823 + 0.698001i
\(340\) 0 0
\(341\) 102.308 88.0327i 0.300022 0.258160i
\(342\) −283.610 283.610i −0.829268 0.829268i
\(343\) −84.3208 165.489i −0.245833 0.482475i
\(344\) 127.160 + 175.020i 0.369651 + 0.508780i
\(345\) 0 0
\(346\) 2.34554 + 7.21882i 0.00677900 + 0.0208636i
\(347\) 68.3476 134.140i 0.196967 0.386570i −0.771306 0.636465i \(-0.780396\pi\)
0.968273 + 0.249895i \(0.0803961\pi\)
\(348\) 648.077 102.645i 1.86229 0.294958i
\(349\) 205.310 + 282.585i 0.588281 + 0.809699i 0.994573 0.104045i \(-0.0331785\pi\)
−0.406292 + 0.913743i \(0.633178\pi\)
\(350\) 0 0
\(351\) 1470.96 4.19076
\(352\) 85.1495 + 349.006i 0.241902 + 0.991494i
\(353\) −362.555 + 362.555i −1.02707 + 1.02707i −0.0274434 + 0.999623i \(0.508737\pi\)
−0.999623 + 0.0274434i \(0.991263\pi\)
\(354\) 15.3633 + 4.99184i 0.0433991 + 0.0141012i
\(355\) 0 0
\(356\) 170.482 + 123.862i 0.478881 + 0.347928i
\(357\) 25.0686 49.1999i 0.0702202 0.137815i
\(358\) −89.6372 45.6724i −0.250383 0.127577i
\(359\) −285.929 + 393.548i −0.796461 + 1.09623i 0.196812 + 0.980441i \(0.436941\pi\)
−0.993273 + 0.115793i \(0.963059\pi\)
\(360\) 0 0
\(361\) 50.9435 156.788i 0.141118 0.434315i
\(362\) −133.586 133.586i −0.369023 0.369023i
\(363\) 662.597 220.700i 1.82534 0.607988i
\(364\) 85.8152i 0.235756i
\(365\) 0 0
\(366\) −646.879 + 469.985i −1.76743 + 1.28411i
\(367\) −1.49280 9.42516i −0.00406757 0.0256816i 0.985571 0.169262i \(-0.0541384\pi\)
−0.989639 + 0.143580i \(0.954138\pi\)
\(368\) −32.9820 16.8052i −0.0896250 0.0456662i
\(369\) 1011.37 328.615i 2.74085 0.890555i
\(370\) 0 0
\(371\) 8.96310 6.51208i 0.0241593 0.0175528i
\(372\) −164.856 + 83.9984i −0.443162 + 0.225802i
\(373\) 268.508 268.508i 0.719862 0.719862i −0.248715 0.968577i \(-0.580008\pi\)
0.968577 + 0.248715i \(0.0800082\pi\)
\(374\) 32.6177 53.6700i 0.0872132 0.143503i
\(375\) 0 0
\(376\) −118.388 + 364.361i −0.314862 + 0.969045i
\(377\) −715.248 113.284i −1.89721 0.300489i
\(378\) 202.948 32.1438i 0.536899 0.0850364i
\(379\) 329.126 106.940i 0.868406 0.282162i 0.159271 0.987235i \(-0.449086\pi\)
0.709135 + 0.705073i \(0.249086\pi\)
\(380\) 0 0
\(381\) 274.542 + 199.467i 0.720583 + 0.523534i
\(382\) 151.205 + 23.9486i 0.395825 + 0.0626926i
\(383\) 39.7395 + 77.9932i 0.103758 + 0.203638i 0.937049 0.349198i \(-0.113546\pi\)
−0.833291 + 0.552835i \(0.813546\pi\)
\(384\) 527.171i 1.37284i
\(385\) 0 0
\(386\) 383.257 0.992894
\(387\) −601.710 + 306.587i −1.55481 + 0.792213i
\(388\) −44.4083 + 280.383i −0.114454 + 0.722636i
\(389\) −246.055 + 338.666i −0.632533 + 0.870607i −0.998190 0.0601430i \(-0.980844\pi\)
0.365657 + 0.930750i \(0.380844\pi\)
\(390\) 0 0
\(391\) 43.4506 + 133.727i 0.111127 + 0.342013i
\(392\) 54.9574 + 346.987i 0.140197 + 0.885172i
\(393\) −158.289 + 999.397i −0.402771 + 2.54299i
\(394\) 6.68642 + 2.17255i 0.0169706 + 0.00551409i
\(395\) 0 0
\(396\) −696.377 + 57.3872i −1.75853 + 0.144917i
\(397\) −434.845 434.845i −1.09533 1.09533i −0.994950 0.100377i \(-0.967995\pi\)
−0.100377 0.994950i \(-0.532005\pi\)
\(398\) 123.922 + 243.210i 0.311361 + 0.611080i
\(399\) −93.7764 129.072i −0.235028 0.323489i
\(400\) 0 0
\(401\) −166.418 512.181i −0.415007 1.27726i −0.912245 0.409645i \(-0.865653\pi\)
0.497238 0.867614i \(-0.334347\pi\)
\(402\) −220.803 + 433.350i −0.549261 + 1.07799i
\(403\) 201.686 31.9439i 0.500461 0.0792652i
\(404\) −50.8537 69.9942i −0.125876 0.173253i
\(405\) 0 0
\(406\) −101.158 −0.249158
\(407\) 0.811709 1.98023i 0.00199437 0.00486544i
\(408\) −154.086 + 154.086i −0.377663 + 0.377663i
\(409\) −2.27154 0.738069i −0.00555390 0.00180457i 0.306239 0.951955i \(-0.400929\pi\)
−0.311793 + 0.950150i \(0.600929\pi\)
\(410\) 0 0
\(411\) −37.8072 27.4686i −0.0919884 0.0668335i
\(412\) −86.1696 + 169.117i −0.209150 + 0.410479i
\(413\) 4.17855 + 2.12908i 0.0101175 + 0.00515515i
\(414\) −488.298 + 672.085i −1.17946 + 1.62339i
\(415\) 0 0
\(416\) −167.955 + 516.911i −0.403737 + 1.24257i
\(417\) 555.113 + 555.113i 1.33121 + 1.33121i
\(418\) −95.3816 154.370i −0.228186 0.369305i
\(419\) 235.871i 0.562937i −0.959570 0.281469i \(-0.909178\pi\)
0.959570 0.281469i \(-0.0908215\pi\)
\(420\) 0 0
\(421\) 492.334 357.702i 1.16944 0.849648i 0.178498 0.983940i \(-0.442876\pi\)
0.990942 + 0.134293i \(0.0428762\pi\)
\(422\) 27.7309 + 175.086i 0.0657129 + 0.414895i
\(423\) −1065.57 542.935i −2.51908 1.28353i
\(424\) −41.5817 + 13.5107i −0.0980702 + 0.0318649i
\(425\) 0 0
\(426\) −8.51771 + 6.18848i −0.0199946 + 0.0145270i
\(427\) −206.830 + 105.385i −0.484378 + 0.246803i
\(428\) 89.5249 89.5249i 0.209170 0.209170i
\(429\) 1028.32 + 242.877i 2.39702 + 0.566146i
\(430\) 0 0
\(431\) −125.771 + 387.085i −0.291813 + 0.898108i 0.692460 + 0.721456i \(0.256527\pi\)
−0.984273 + 0.176652i \(0.943473\pi\)
\(432\) 111.400 + 17.6440i 0.257870 + 0.0408426i
\(433\) 508.392 80.5214i 1.17412 0.185962i 0.461255 0.887267i \(-0.347399\pi\)
0.712861 + 0.701306i \(0.247399\pi\)
\(434\) 27.1285 8.81458i 0.0625080 0.0203101i
\(435\) 0 0
\(436\) −321.171 233.344i −0.736631 0.535194i
\(437\) 401.258 + 63.5531i 0.918211 + 0.145430i
\(438\) −279.943 549.419i −0.639139 1.25438i
\(439\) 352.062i 0.801963i −0.916086 0.400982i \(-0.868669\pi\)
0.916086 0.400982i \(-0.131331\pi\)
\(440\) 0 0
\(441\) −1096.65 −2.48674
\(442\) 84.6626 43.1377i 0.191544 0.0975967i
\(443\) 1.16390 7.34858i 0.00262732 0.0165882i −0.986340 0.164723i \(-0.947327\pi\)
0.988967 + 0.148135i \(0.0473270\pi\)
\(444\) −1.72445 + 2.37351i −0.00388390 + 0.00534573i
\(445\) 0 0
\(446\) −50.5920 155.706i −0.113435 0.349117i
\(447\) 72.1421 + 455.487i 0.161392 + 1.01899i
\(448\) −10.3010 + 65.0380i −0.0229933 + 0.145174i
\(449\) 175.258 + 56.9447i 0.390329 + 0.126826i 0.497605 0.867404i \(-0.334213\pi\)
−0.107276 + 0.994229i \(0.534213\pi\)
\(450\) 0 0
\(451\) 479.490 39.5139i 1.06317 0.0876141i
\(452\) −245.087 245.087i −0.542229 0.542229i
\(453\) −239.009 469.082i −0.527614 1.03550i
\(454\) 0.705374 + 0.970864i 0.00155369 + 0.00213847i
\(455\) 0 0
\(456\) 194.560 + 598.793i 0.426666 + 1.31314i
\(457\) −106.600 + 209.215i −0.233261 + 0.457800i −0.977733 0.209854i \(-0.932701\pi\)
0.744472 + 0.667654i \(0.232701\pi\)
\(458\) −10.2310 + 1.62042i −0.0223383 + 0.00353804i
\(459\) −251.826 346.609i −0.548641 0.755139i
\(460\) 0 0
\(461\) −542.586 −1.17698 −0.588488 0.808506i \(-0.700277\pi\)
−0.588488 + 0.808506i \(0.700277\pi\)
\(462\) 147.185 + 11.0385i 0.318582 + 0.0238928i
\(463\) −48.2381 + 48.2381i −0.104186 + 0.104186i −0.757278 0.653092i \(-0.773471\pi\)
0.653092 + 0.757278i \(0.273471\pi\)
\(464\) −52.8090 17.1587i −0.113813 0.0369799i
\(465\) 0 0
\(466\) −396.388 287.993i −0.850619 0.618011i
\(467\) 284.997 559.339i 0.610272 1.19773i −0.354602 0.935017i \(-0.615384\pi\)
0.964875 0.262710i \(-0.0846162\pi\)
\(468\) −941.924 479.934i −2.01266 1.02550i
\(469\) −82.9933 + 114.231i −0.176958 + 0.243562i
\(470\) 0 0
\(471\) 449.708 1384.06i 0.954794 2.93855i
\(472\) −13.0865 13.0865i −0.0277257 0.0277257i
\(473\) −296.821 + 72.4177i −0.627529 + 0.153103i
\(474\) 343.018i 0.723666i
\(475\) 0 0
\(476\) −20.2211 + 14.6915i −0.0424812 + 0.0308644i
\(477\) −21.3503 134.801i −0.0447595 0.282601i
\(478\) 301.216 + 153.477i 0.630159 + 0.321082i
\(479\) −553.115 + 179.718i −1.15473 + 0.375194i −0.822922 0.568154i \(-0.807658\pi\)
−0.331806 + 0.943348i \(0.607658\pi\)
\(480\) 0 0
\(481\) 2.61951 1.90319i 0.00544598 0.00395673i
\(482\) 332.722 169.530i 0.690295 0.351723i
\(483\) −233.663 + 233.663i −0.483774 + 0.483774i
\(484\) −312.588 47.1518i −0.645844 0.0974210i
\(485\) 0 0
\(486\) 322.489 992.519i 0.663557 2.04222i
\(487\) 172.226 + 27.2780i 0.353647 + 0.0560122i 0.330731 0.943725i \(-0.392705\pi\)
0.0229166 + 0.999737i \(0.492705\pi\)
\(488\) 904.789 143.305i 1.85408 0.293657i
\(489\) −1258.40 + 408.878i −2.57341 + 0.836152i
\(490\) 0 0
\(491\) −216.106 157.010i −0.440134 0.319776i 0.345554 0.938399i \(-0.387691\pi\)
−0.785688 + 0.618623i \(0.787691\pi\)
\(492\) −651.418 103.174i −1.32402 0.209704i
\(493\) 95.7559 + 187.932i 0.194231 + 0.381200i
\(494\) 274.537i 0.555744i
\(495\) 0 0
\(496\) 15.6574 0.0315673
\(497\) −2.72341 + 1.38764i −0.00547969 + 0.00279204i
\(498\) −14.8547 + 93.7890i −0.0298287 + 0.188331i
\(499\) 552.387 760.296i 1.10699 1.52364i 0.281207 0.959647i \(-0.409265\pi\)
0.825781 0.563991i \(-0.190735\pi\)
\(500\) 0 0
\(501\) 184.269 + 567.122i 0.367802 + 1.13198i
\(502\) −12.8704 81.2608i −0.0256383 0.161874i
\(503\) 80.9416 511.045i 0.160918 1.01599i −0.766576 0.642154i \(-0.778041\pi\)
0.927493 0.373840i \(-0.121959\pi\)
\(504\) −355.472 115.500i −0.705301 0.229166i
\(505\) 0 0
\(506\) −284.895 + 245.144i −0.563034 + 0.484474i
\(507\) 440.642 + 440.642i 0.869116 + 0.869116i
\(508\) −69.7366 136.866i −0.137277 0.269421i
\(509\) −359.646 495.010i −0.706573 0.972515i −0.999864 0.0164915i \(-0.994750\pi\)
0.293291 0.956023i \(-0.405250\pi\)
\(510\) 0 0
\(511\) −55.3186 170.253i −0.108256 0.333177i
\(512\) −36.9692 + 72.5562i −0.0722055 + 0.141711i
\(513\) −1222.62 + 193.645i −2.38328 + 0.377475i
\(514\) −199.951 275.208i −0.389009 0.535425i
\(515\) 0 0
\(516\) 418.834 0.811693
\(517\) −412.716 349.873i −0.798291 0.676736i
\(518\) 0.319825 0.319825i 0.000617423 0.000617423i
\(519\) 35.3733 + 11.4935i 0.0681566 + 0.0221454i
\(520\) 0 0
\(521\) −755.178 548.669i −1.44948 1.05311i −0.985953 0.167025i \(-0.946584\pi\)
−0.463526 0.886083i \(-0.653416\pi\)
\(522\) −565.742 + 1110.33i −1.08380 + 2.12707i
\(523\) 329.945 + 168.115i 0.630870 + 0.321444i 0.740024 0.672581i \(-0.234814\pi\)
−0.109154 + 0.994025i \(0.534814\pi\)
\(524\) 269.215 370.543i 0.513769 0.707143i
\(525\) 0 0
\(526\) 3.45898 10.6457i 0.00657601 0.0202389i
\(527\) −42.0554 42.0554i −0.0798016 0.0798016i
\(528\) 74.9646 + 30.7284i 0.141978 + 0.0581977i
\(529\) 312.462i 0.590666i
\(530\) 0 0
\(531\) 46.7383 33.9574i 0.0880194 0.0639498i
\(532\) 11.2972 + 71.3275i 0.0212353 + 0.134074i
\(533\) 648.562 + 330.459i 1.21681 + 0.619997i
\(534\) −521.512 + 169.450i −0.976615 + 0.317321i
\(535\) 0 0
\(536\) 450.794 327.521i 0.841033 0.611046i
\(537\) −439.236 + 223.802i −0.817944 + 0.416763i
\(538\) −87.3988 + 87.3988i −0.162451 + 0.162451i
\(539\) −482.865 114.047i −0.895853 0.211589i
\(540\) 0 0
\(541\) −135.828 + 418.036i −0.251069 + 0.772711i 0.743510 + 0.668725i \(0.233160\pi\)
−0.994579 + 0.103986i \(0.966840\pi\)
\(542\) 109.520 + 17.3463i 0.202067 + 0.0320043i
\(543\) −914.338 + 144.817i −1.68386 + 0.266698i
\(544\) 150.556 48.9186i 0.276757 0.0899239i
\(545\) 0 0
\(546\) 180.659 + 131.257i 0.330878 + 0.240397i
\(547\) 53.7219 + 8.50871i 0.0982119 + 0.0155552i 0.205347 0.978689i \(-0.434168\pi\)
−0.107135 + 0.994244i \(0.534168\pi\)
\(548\) 9.60343 + 18.8478i 0.0175245 + 0.0343938i
\(549\) 2859.58i 5.20871i
\(550\) 0 0
\(551\) 609.411 1.10601
\(552\) 1161.93 592.035i 2.10495 1.07253i
\(553\) −15.5781 + 98.3564i −0.0281702 + 0.177860i
\(554\) 160.127 220.397i 0.289039 0.397828i
\(555\) 0 0
\(556\) −109.810 337.960i −0.197500 0.607841i
\(557\) 82.1439 + 518.636i 0.147476 + 0.931124i 0.944818 + 0.327596i \(0.106239\pi\)
−0.797342 + 0.603527i \(0.793761\pi\)
\(558\) 54.9696 347.064i 0.0985118 0.621979i
\(559\) −439.621 142.841i −0.786442 0.255530i
\(560\) 0 0
\(561\) −118.817 283.889i −0.211796 0.506041i
\(562\) 238.552 + 238.552i 0.424470 + 0.424470i
\(563\) −345.855 678.778i −0.614307 1.20565i −0.963277 0.268511i \(-0.913468\pi\)
0.348970 0.937134i \(-0.386532\pi\)
\(564\) 435.968 + 600.058i 0.772993 + 1.06393i
\(565\) 0 0
\(566\) −62.0303 190.910i −0.109594 0.337296i
\(567\) 261.038 512.316i 0.460385 0.903556i
\(568\) 11.9137 1.88695i 0.0209748 0.00332209i
\(569\) 522.049 + 718.539i 0.917485 + 1.26281i 0.964545 + 0.263918i \(0.0850148\pi\)
−0.0470600 + 0.998892i \(0.514985\pi\)
\(570\) 0 0
\(571\) −943.557 −1.65246 −0.826232 0.563330i \(-0.809520\pi\)
−0.826232 + 0.563330i \(0.809520\pi\)
\(572\) −364.826 309.275i −0.637808 0.540690i
\(573\) 530.447 530.447i 0.925736 0.925736i
\(574\) 96.7032 + 31.4208i 0.168473 + 0.0547400i
\(575\) 0 0
\(576\) 656.260 + 476.801i 1.13934 + 0.827779i
\(577\) −59.2654 + 116.315i −0.102713 + 0.201585i −0.936644 0.350284i \(-0.886085\pi\)
0.833931 + 0.551869i \(0.186085\pi\)
\(578\) 278.646 + 141.977i 0.482087 + 0.245635i
\(579\) 1103.87 1519.35i 1.90651 2.62409i
\(580\) 0 0
\(581\) −8.51884 + 26.2183i −0.0146624 + 0.0451261i
\(582\) −522.342 522.342i −0.897494 0.897494i
\(583\) 4.61789 61.5741i 0.00792091 0.105616i
\(584\) 706.455i 1.20968i
\(585\) 0 0
\(586\) −259.198 + 188.318i −0.442317 + 0.321362i
\(587\) 98.2417 + 620.273i 0.167362 + 1.05668i 0.918177 + 0.396171i \(0.129661\pi\)
−0.750815 + 0.660513i \(0.770339\pi\)
\(588\) 606.017 + 308.781i 1.03064 + 0.525138i
\(589\) −163.431 + 53.1019i −0.277472 + 0.0901561i
\(590\) 0 0
\(591\) 27.8711 20.2496i 0.0471593 0.0342632i
\(592\) 0.221212 0.112713i 0.000373669 0.000190394i
\(593\) 543.917 543.917i 0.917229 0.917229i −0.0795984 0.996827i \(-0.525364\pi\)
0.996827 + 0.0795984i \(0.0253638\pi\)
\(594\) 594.763 978.636i 1.00128 1.64754i
\(595\) 0 0
\(596\) 64.5062 198.530i 0.108232 0.333103i
\(597\) 1321.08 + 209.239i 2.21287 + 0.350484i
\(598\) −561.632 + 88.9538i −0.939184 + 0.148752i
\(599\) 955.576 310.485i 1.59529 0.518340i 0.629350 0.777122i \(-0.283321\pi\)
0.965936 + 0.258783i \(0.0833213\pi\)
\(600\) 0 0
\(601\) −211.574 153.717i −0.352036 0.255769i 0.397686 0.917521i \(-0.369813\pi\)
−0.749723 + 0.661752i \(0.769813\pi\)
\(602\) −63.7758 10.1011i −0.105940 0.0167792i
\(603\) 789.663 + 1549.80i 1.30956 + 2.57015i
\(604\) 238.303i 0.394542i
\(605\) 0 0
\(606\) 225.135 0.371509
\(607\) −810.971 + 413.211i −1.33603 + 0.680742i −0.968440 0.249245i \(-0.919817\pi\)
−0.367591 + 0.929987i \(0.619817\pi\)
\(608\) 71.5509 451.754i 0.117682 0.743017i
\(609\) −291.360 + 401.022i −0.478423 + 0.658493i
\(610\) 0 0
\(611\) −252.958 778.525i −0.414007 1.27418i
\(612\) 48.1670 + 304.114i 0.0787042 + 0.496919i
\(613\) −121.222 + 765.368i −0.197753 + 1.24856i 0.666501 + 0.745504i \(0.267791\pi\)
−0.864254 + 0.503057i \(0.832209\pi\)
\(614\) 223.764 + 72.7052i 0.364436 + 0.118412i
\(615\) 0 0
\(616\) −144.506 87.8228i −0.234587 0.142570i
\(617\) 204.509 + 204.509i 0.331457 + 0.331457i 0.853140 0.521682i \(-0.174695\pi\)
−0.521682 + 0.853140i \(0.674695\pi\)
\(618\) −224.229 440.075i −0.362831 0.712095i
\(619\) −149.114 205.237i −0.240894 0.331563i 0.671402 0.741093i \(-0.265692\pi\)
−0.912296 + 0.409531i \(0.865692\pi\)
\(620\) 0 0
\(621\) 792.293 + 2438.43i 1.27583 + 3.92661i
\(622\) 25.8785 50.7894i 0.0416053 0.0816550i
\(623\) −157.233 + 24.9033i −0.252381 + 0.0399732i
\(624\) 72.0479 + 99.1655i 0.115461 + 0.158919i
\(625\) 0 0
\(626\) −39.1586 −0.0625537
\(627\) −886.691 66.4994i −1.41418 0.106060i
\(628\) −465.796 + 465.796i −0.741714 + 0.741714i
\(629\) −0.896915 0.291425i −0.00142594 0.000463316i
\(630\) 0 0
\(631\) 884.455 + 642.594i 1.40167 + 1.01837i 0.994468 + 0.105038i \(0.0334963\pi\)
0.407204 + 0.913337i \(0.366504\pi\)
\(632\) 178.413 350.154i 0.282298 0.554042i
\(633\) 773.965 + 394.355i 1.22269 + 0.622994i
\(634\) 188.108 258.909i 0.296701 0.408374i
\(635\) 0 0
\(636\) −26.1571 + 80.5032i −0.0411275 + 0.126577i
\(637\) −530.786 530.786i −0.833259 0.833259i
\(638\) −364.570 + 430.054i −0.571427 + 0.674066i
\(639\) 37.6532i 0.0589253i
\(640\) 0 0
\(641\) −327.130 + 237.674i −0.510343 + 0.370786i −0.812954 0.582328i \(-0.802142\pi\)
0.302610 + 0.953114i \(0.402142\pi\)
\(642\) 51.5383 + 325.400i 0.0802777 + 0.506853i
\(643\) 257.491 + 131.198i 0.400452 + 0.204040i 0.642605 0.766198i \(-0.277854\pi\)
−0.242153 + 0.970238i \(0.577854\pi\)
\(644\) 142.257 46.2221i 0.220896 0.0717735i
\(645\) 0 0
\(646\) −64.6906 + 47.0005i −0.100140 + 0.0727562i
\(647\) −447.585 + 228.056i −0.691785 + 0.352482i −0.764278 0.644887i \(-0.776904\pi\)
0.0724932 + 0.997369i \(0.476904\pi\)
\(648\) −1604.49 + 1604.49i −2.47607 + 2.47607i
\(649\) 24.1107 10.0911i 0.0371505 0.0155488i
\(650\) 0 0
\(651\) 43.1928 132.934i 0.0663484 0.204199i
\(652\) 591.554 + 93.6929i 0.907291 + 0.143701i
\(653\) 766.801 121.449i 1.17427 0.185987i 0.461343 0.887222i \(-0.347368\pi\)
0.712930 + 0.701235i \(0.247368\pi\)
\(654\) 982.479 319.227i 1.50226 0.488114i
\(655\) 0 0
\(656\) 45.1536 + 32.8060i 0.0688318 + 0.0500092i
\(657\) −2178.11 344.979i −3.31524 0.525082i
\(658\) −51.9132 101.885i −0.0788954 0.154841i
\(659\) 167.781i 0.254599i 0.991864 + 0.127299i \(0.0406309\pi\)
−0.991864 + 0.127299i \(0.959369\pi\)
\(660\) 0 0
\(661\) 6.21057 0.00939572 0.00469786 0.999989i \(-0.498505\pi\)
0.00469786 + 0.999989i \(0.498505\pi\)
\(662\) −120.196 + 61.2428i −0.181565 + 0.0925119i
\(663\) 72.8371 459.875i 0.109860 0.693628i
\(664\) 63.9459 88.0139i 0.0963040 0.132551i
\(665\) 0 0
\(666\) −1.72179 5.29913i −0.00258527 0.00795665i
\(667\) −197.457 1246.70i −0.296038 1.86911i
\(668\) 42.2246 266.595i 0.0632104 0.399095i
\(669\) −762.983 247.908i −1.14048 0.370565i
\(670\) 0 0
\(671\) −297.383 + 1259.10i −0.443193 + 1.87645i
\(672\) 263.068 + 263.068i 0.391471 + 0.391471i
\(673\) −374.572 735.139i −0.556570 1.09233i −0.982271 0.187467i \(-0.939972\pi\)
0.425701 0.904864i \(-0.360028\pi\)
\(674\) −87.8330 120.892i −0.130316 0.179365i
\(675\) 0 0
\(676\) −87.1657 268.269i −0.128943 0.396847i
\(677\) 459.592 901.999i 0.678865 1.33235i −0.252264 0.967658i \(-0.581175\pi\)
0.931129 0.364689i \(-0.118825\pi\)
\(678\) 890.828 141.093i 1.31391 0.208102i
\(679\) −126.053 173.498i −0.185646 0.255519i
\(680\) 0 0
\(681\) 5.88044 0.00863501
\(682\) 60.2966 147.099i 0.0884114 0.215687i
\(683\) 229.153 229.153i 0.335510 0.335510i −0.519164 0.854674i \(-0.673757\pi\)
0.854674 + 0.519164i \(0.173757\pi\)
\(684\) 846.086 + 274.910i 1.23697 + 0.401915i
\(685\) 0 0
\(686\) −176.989 128.590i −0.258002 0.187449i
\(687\) −23.0437 + 45.2258i −0.0335425 + 0.0658309i
\(688\) −31.5804 16.0910i −0.0459017 0.0233881i
\(689\) 54.9106 75.5779i 0.0796960 0.109692i
\(690\) 0 0
\(691\) −74.3036 + 228.683i −0.107531 + 0.330945i −0.990316 0.138831i \(-0.955665\pi\)
0.882786 + 0.469776i \(0.155665\pi\)
\(692\) −11.9047 11.9047i −0.0172033 0.0172033i
\(693\) 341.337 402.647i 0.492549 0.581021i
\(694\) 177.328i 0.255516i
\(695\) 0 0
\(696\) 1582.57 1149.81i 2.27381 1.65202i
\(697\) −33.1654 209.398i −0.0475830 0.300427i
\(698\) 366.583 + 186.784i 0.525191 + 0.267598i
\(699\) −2283.39 + 741.917i −3.26665 + 1.06140i
\(700\) 0 0
\(701\) 198.550 144.255i 0.283238 0.205785i −0.437090 0.899418i \(-0.643991\pi\)
0.720329 + 0.693633i \(0.243991\pi\)
\(702\) 1543.77 786.588i 2.19910 1.12050i
\(703\) −1.92673 + 1.92673i −0.00274073 + 0.00274073i
\(704\) 239.372 + 278.187i 0.340017 + 0.395152i
\(705\) 0 0
\(706\) −186.626 + 574.375i −0.264342 + 0.813562i
\(707\) 64.5548 + 10.2245i 0.0913081 + 0.0144618i
\(708\) −35.3892 + 5.60509i −0.0499847 + 0.00791680i
\(709\) 853.145 277.204i 1.20331 0.390979i 0.362331 0.932049i \(-0.381981\pi\)
0.840977 + 0.541071i \(0.181981\pi\)
\(710\) 0 0
\(711\) 992.456 + 721.062i 1.39586 + 1.01415i
\(712\) 620.498 + 98.2772i 0.871486 + 0.138030i
\(713\) 161.587 + 317.131i 0.226629 + 0.444785i
\(714\) 65.0406i 0.0910933i
\(715\) 0 0
\(716\) 223.141 0.311649
\(717\) 1476.00 752.061i 2.05858 1.04890i
\(718\) −89.6341 + 565.928i −0.124839 + 0.788200i
\(719\) 119.555 164.554i 0.166280 0.228865i −0.717743 0.696308i \(-0.754825\pi\)
0.884023 + 0.467443i \(0.154825\pi\)
\(720\) 0 0
\(721\) −44.3092 136.370i −0.0614552 0.189140i
\(722\) −30.3766 191.790i −0.0420729 0.265638i
\(723\) 286.248 1807.30i 0.395917 2.49972i
\(724\) 398.525 + 129.489i 0.550449 + 0.178852i
\(725\) 0 0
\(726\) 577.377 585.945i 0.795284 0.807087i
\(727\) −373.051 373.051i −0.513137 0.513137i 0.402349 0.915486i \(-0.368194\pi\)
−0.915486 + 0.402349i \(0.868194\pi\)
\(728\) −116.148 227.953i −0.159544 0.313122i
\(729\) −1464.67 2015.94i −2.00915 2.76535i
\(730\) 0 0
\(731\) 41.6041 + 128.044i 0.0569140 + 0.175163i
\(732\) 805.164 1580.22i 1.09995 2.15878i
\(733\) 502.338 79.5625i 0.685318 0.108544i 0.195940 0.980616i \(-0.437224\pi\)
0.489377 + 0.872072i \(0.337224\pi\)
\(734\) −6.60676 9.09342i −0.00900103 0.0123889i
\(735\) 0 0
\(736\) −947.355 −1.28717
\(737\) 186.523 + 764.512i 0.253085 + 1.03733i
\(738\) 885.708 885.708i 1.20015 1.20015i
\(739\) −334.582 108.712i −0.452750 0.147107i 0.0737605 0.997276i \(-0.476500\pi\)
−0.526511 + 0.850169i \(0.676500\pi\)
\(740\) 0 0
\(741\) −1088.35 790.733i −1.46876 1.06712i
\(742\) 5.92445 11.6274i 0.00798444 0.0156703i
\(743\) −1028.21 523.897i −1.38386 0.705110i −0.405900 0.913918i \(-0.633042\pi\)
−0.977957 + 0.208807i \(0.933042\pi\)
\(744\) −324.223 + 446.254i −0.435783 + 0.599804i
\(745\) 0 0
\(746\) 138.215 425.383i 0.185275 0.570218i
\(747\) 240.134 + 240.134i 0.321465 + 0.321465i
\(748\) −10.4181 + 138.913i −0.0139280 + 0.185713i
\(749\) 95.6453i 0.127697i
\(750\) 0 0
\(751\) −199.691 + 145.084i −0.265900 + 0.193188i −0.712744 0.701424i \(-0.752548\pi\)
0.446844 + 0.894612i \(0.352548\pi\)
\(752\) −9.81892 61.9942i −0.0130571 0.0824391i
\(753\) −359.213 183.028i −0.477042 0.243065i
\(754\) −811.230 + 263.585i −1.07590 + 0.349582i
\(755\) 0 0
\(756\) −368.718 + 267.889i −0.487722 + 0.354351i
\(757\) 1034.03 526.866i 1.36596 0.695992i 0.391422 0.920211i \(-0.371983\pi\)
0.974539 + 0.224220i \(0.0719834\pi\)
\(758\) 288.232 288.232i 0.380253 0.380253i
\(759\) 151.259 + 1835.48i 0.199287 + 2.41829i
\(760\) 0 0
\(761\) 160.769 494.797i 0.211260 0.650193i −0.788138 0.615499i \(-0.788954\pi\)
0.999398 0.0346936i \(-0.0110455\pi\)
\(762\) 394.796 + 62.5295i 0.518104 + 0.0820597i
\(763\) 296.212 46.9154i 0.388221 0.0614881i
\(764\) −322.943 + 104.930i −0.422700 + 0.137344i
\(765\) 0 0
\(766\) 83.4131 + 60.6031i 0.108894 + 0.0791164i
\(767\) 39.0572 + 6.18605i 0.0509220 + 0.00806525i
\(768\) −631.596 1239.58i −0.822390 1.61403i
\(769\) 801.838i 1.04270i −0.853342 0.521351i \(-0.825428\pi\)
0.853342 0.521351i \(-0.174572\pi\)
\(770\) 0 0
\(771\) −1666.92 −2.16202
\(772\) −757.431 + 385.930i −0.981129 + 0.499910i
\(773\) −108.787 + 686.852i −0.140733 + 0.888553i 0.811760 + 0.583992i \(0.198510\pi\)
−0.952493 + 0.304561i \(0.901490\pi\)
\(774\) −467.548 + 643.524i −0.604067 + 0.831426i
\(775\) 0 0
\(776\) 261.525 + 804.893i 0.337017 + 1.03723i
\(777\) −0.346712 2.18906i −0.000446219 0.00281732i
\(778\) −77.1342 + 487.006i −0.0991443 + 0.625972i
\(779\) −582.572 189.289i −0.747846 0.242990i
\(780\) 0 0
\(781\) −3.91576 + 16.5790i −0.00501377 + 0.0212280i
\(782\) 117.111 + 117.111i 0.149759 + 0.149759i
\(783\) 1746.05 + 3426.81i 2.22994 + 4.37651i
\(784\) −33.8312 46.5647i −0.0431521 0.0593938i
\(785\) 0 0
\(786\) 368.300 + 1133.51i 0.468574 + 1.44212i
\(787\) 68.6427 134.719i 0.0872207 0.171180i −0.843276 0.537481i \(-0.819376\pi\)
0.930496 + 0.366301i \(0.119376\pi\)
\(788\) −15.4021 + 2.43945i −0.0195458 + 0.00309575i
\(789\) −32.2399 44.3745i −0.0408618 0.0562414i
\(790\) 0 0
\(791\) 261.843 0.331027
\(792\) −1772.13 + 1094.96i −2.23754 + 1.38253i
\(793\) −1384.05 + 1384.05i −1.74534 + 1.74534i
\(794\) −688.900 223.837i −0.867632 0.281911i
\(795\) 0 0
\(796\) −489.813 355.870i −0.615343 0.447073i
\(797\) −560.165 + 1099.39i −0.702842 + 1.37941i 0.212674 + 0.977123i \(0.431783\pi\)
−0.915516 + 0.402282i \(0.868217\pi\)
\(798\) −167.439 85.3144i −0.209823 0.106910i
\(799\) −140.142 + 192.888i −0.175396 + 0.241412i
\(800\) 0 0
\(801\) −606.007 + 1865.10i −0.756563 + 2.32846i
\(802\) −448.542 448.542i −0.559279 0.559279i
\(803\) −923.164 378.410i −1.14964 0.471245i
\(804\) 1078.77i 1.34176i
\(805\) 0 0
\(806\) 194.587 141.376i 0.241423 0.175404i
\(807\) 94.7463 + 598.205i 0.117406 + 0.741270i
\(808\) −229.819 117.098i −0.284429 0.144924i
\(809\) 896.054 291.145i 1.10761 0.359883i 0.302581 0.953124i \(-0.402152\pi\)
0.805025 + 0.593241i \(0.202152\pi\)
\(810\) 0 0
\(811\) 972.098 706.271i 1.19864 0.870864i 0.204491 0.978868i \(-0.434446\pi\)
0.994150 + 0.108005i \(0.0344461\pi\)
\(812\) 199.919 101.864i 0.246206 0.125448i
\(813\) 384.211 384.211i 0.472584 0.472584i
\(814\) −0.207035 2.51231i −0.000254343 0.00308637i
\(815\) 0 0
\(816\) 11.0323 33.9540i 0.0135200 0.0416103i
\(817\) 384.207 + 60.8524i 0.470265 + 0.0744827i
\(818\) −2.77866 + 0.440097i −0.00339690 + 0.000538015i
\(819\) 759.532 246.787i 0.927389 0.301327i
\(820\) 0 0
\(821\) 805.110 + 584.947i 0.980645 + 0.712481i 0.957853 0.287260i \(-0.0927443\pi\)
0.0227926 + 0.999740i \(0.492744\pi\)
\(822\) −54.3673 8.61093i −0.0661403 0.0104756i
\(823\) −82.4626 161.842i −0.100198 0.196649i 0.835466 0.549542i \(-0.185198\pi\)
−0.935664 + 0.352893i \(0.885198\pi\)
\(824\) 565.858i 0.686721i
\(825\) 0 0
\(826\) 5.52389 0.00668752
\(827\) −1062.27 + 541.252i −1.28448 + 0.654477i −0.956920 0.290352i \(-0.906228\pi\)
−0.327564 + 0.944829i \(0.606228\pi\)
\(828\) 288.251 1819.95i 0.348129 2.19800i
\(829\) 529.845 729.269i 0.639137 0.879697i −0.359432 0.933171i \(-0.617030\pi\)
0.998569 + 0.0534743i \(0.0170295\pi\)
\(830\) 0 0
\(831\) −412.514 1269.59i −0.496407 1.52778i
\(832\) 86.8593 + 548.408i 0.104398 + 0.659144i
\(833\) −34.2018 + 215.942i −0.0410586 + 0.259234i
\(834\) 879.434 + 285.745i 1.05448 + 0.342620i
\(835\) 0 0
\(836\) 343.949 + 209.034i 0.411423 + 0.250041i
\(837\) −766.853 766.853i −0.916192 0.916192i
\(838\) −126.131 247.546i −0.150514 0.295401i
\(839\) 588.099 + 809.448i 0.700952 + 0.964778i 0.999945 + 0.0105222i \(0.00334938\pi\)
−0.298993 + 0.954255i \(0.596651\pi\)
\(840\) 0 0
\(841\) −325.214 1000.91i −0.386700 1.19014i
\(842\) 325.424 638.681i 0.386489 0.758528i
\(843\) 1632.78 258.607i 1.93687 0.306770i
\(844\) −231.112 318.098i −0.273829 0.376893i
\(845\) 0 0
\(846\) −1408.65 −1.66507
\(847\) 192.167 141.792i 0.226879 0.167404i
\(848\) 5.06509 5.06509i 0.00597298 0.00597298i
\(849\) −935.487 303.958i −1.10187 0.358019i
\(850\) 0 0
\(851\) 4.56588 + 3.31730i 0.00536531 + 0.00389812i
\(852\) 10.6019 20.8074i 0.0124436 0.0244219i
\(853\) −83.5210 42.5561i −0.0979145 0.0498899i 0.404347 0.914605i \(-0.367499\pi\)
−0.502262 + 0.864716i \(0.667499\pi\)
\(854\) −160.713 + 221.203i −0.188189 + 0.259019i
\(855\) 0 0
\(856\) 116.638 358.976i 0.136260 0.419365i
\(857\) 521.312 + 521.312i 0.608299 + 0.608299i 0.942501 0.334202i \(-0.108467\pi\)
−0.334202 + 0.942501i \(0.608467\pi\)
\(858\) 1209.10 294.993i 1.40921 0.343814i
\(859\) 385.080i 0.448289i 0.974556 + 0.224144i \(0.0719587\pi\)
−0.974556 + 0.224144i \(0.928041\pi\)
\(860\) 0 0
\(861\) 403.090 292.862i 0.468165 0.340142i
\(862\) 74.9951 + 473.500i 0.0870013 + 0.549304i
\(863\) −625.137 318.523i −0.724377 0.369088i 0.0526018 0.998616i \(-0.483249\pi\)
−0.776978 + 0.629527i \(0.783249\pi\)
\(864\) 2745.29 891.998i 3.17742 1.03241i
\(865\) 0 0
\(866\) 490.498 356.368i 0.566395 0.411510i
\(867\) 1365.41 695.710i 1.57487 0.802434i
\(868\) −44.7380 + 44.7380i −0.0515415 + 0.0515415i
\(869\) 362.000 + 420.700i 0.416570 + 0.484120i
\(870\) 0 0
\(871\) −367.911 + 1132.32i −0.422401 + 1.30002i
\(872\) −1168.96 185.145i −1.34055 0.212322i
\(873\) −2609.32 + 413.275i −2.98891 + 0.473396i
\(874\) 455.105 147.872i 0.520715 0.169190i
\(875\) 0 0
\(876\) 1106.50 + 803.922i 1.26313 + 0.917719i
\(877\) −980.068 155.228i −1.11752 0.176998i −0.429767 0.902940i \(-0.641404\pi\)
−0.687756 + 0.725941i \(0.741404\pi\)
\(878\) −188.264 369.488i −0.214423 0.420829i
\(879\) 1569.94i 1.78605i
\(880\) 0 0
\(881\) 1602.32 1.81875 0.909376 0.415974i \(-0.136559\pi\)
0.909376 + 0.415974i \(0.136559\pi\)
\(882\) −1150.93 + 586.430i −1.30491 + 0.664887i
\(883\) −60.0009 + 378.831i −0.0679512 + 0.429027i 0.930137 + 0.367214i \(0.119688\pi\)
−0.998088 + 0.0618131i \(0.980312\pi\)
\(884\) −123.880 + 170.506i −0.140136 + 0.192880i
\(885\) 0 0
\(886\) −2.70811 8.33471i −0.00305656 0.00940713i
\(887\) 130.534 + 824.162i 0.147164 + 0.929157i 0.945187 + 0.326530i \(0.105879\pi\)
−0.798023 + 0.602627i \(0.794121\pi\)
\(888\) −1.36825 + 8.63878i −0.00154082 + 0.00972836i
\(889\) 110.363 + 35.8592i 0.124143 + 0.0403366i
\(890\) 0 0
\(891\) −1237.24 2956.12i −1.38860 3.31775i
\(892\) 256.777 + 256.777i 0.287867 + 0.287867i
\(893\) 312.742 + 613.791i 0.350215 + 0.687336i
\(894\) 319.283 + 439.455i 0.357140 + 0.491561i
\(895\) 0 0
\(896\) −55.7058 171.445i −0.0621717 0.191345i
\(897\) −1264.99 + 2482.69i −1.41025 + 2.76777i
\(898\) 214.384 33.9550i 0.238734 0.0378118i
\(899\) 313.822 + 431.938i 0.349078 + 0.480465i
\(900\) 0 0
\(901\) −27.2094 −0.0301991
\(902\) 482.094 297.875i 0.534472 0.330238i
\(903\) −223.733 + 223.733i −0.247767 + 0.247767i
\(904\) −982.748 319.314i −1.08711 0.353224i
\(905\) 0 0
\(906\) −501.679 364.491i −0.553730 0.402308i
\(907\) 193.184 379.145i 0.212992 0.418021i −0.759649 0.650333i \(-0.774629\pi\)
0.972641 + 0.232313i \(0.0746293\pi\)
\(908\) −2.37167 1.20842i −0.00261197 0.00133086i
\(909\) 473.258 651.384i 0.520636 0.716594i
\(910\) 0 0
\(911\) −488.370 + 1503.05i −0.536081 + 1.64989i 0.205219 + 0.978716i \(0.434209\pi\)
−0.741301 + 0.671173i \(0.765791\pi\)
\(912\) −72.9392 72.9392i −0.0799772 0.0799772i
\(913\) 80.7603 + 130.706i 0.0884559 + 0.143161i
\(914\) 276.574i 0.302598i
\(915\) 0 0
\(916\) 18.5877 13.5048i 0.0202923 0.0147432i
\(917\) 54.1274 + 341.747i 0.0590266 + 0.372680i
\(918\) −449.639 229.102i −0.489802 0.249567i
\(919\) −19.2879 + 6.26701i −0.0209879 + 0.00681938i −0.319492 0.947589i \(-0.603512\pi\)
0.298504 + 0.954408i \(0.403512\pi\)
\(920\) 0 0
\(921\) 932.718 677.660i 1.01272 0.735787i
\(922\) −569.443 + 290.146i −0.617617 + 0.314692i
\(923\) −18.2244 + 18.2244i −0.0197447 + 0.0197447i
\(924\) −301.997 + 126.396i −0.326837 + 0.136793i
\(925\) 0 0
\(926\) −24.8307 + 76.4210i −0.0268150 + 0.0825281i
\(927\) −1744.63 276.322i −1.88201 0.298082i
\(928\) −1403.58 + 222.306i −1.51248 + 0.239554i
\(929\) 640.531 208.121i 0.689484 0.224027i 0.0567411 0.998389i \(-0.481929\pi\)
0.632743 + 0.774362i \(0.281929\pi\)
\(930\) 0 0
\(931\) 511.052 + 371.301i 0.548928 + 0.398820i
\(932\) 1073.38 + 170.007i 1.15170 + 0.182411i
\(933\) −126.809 248.876i −0.135915 0.266748i
\(934\) 739.426i 0.791677i
\(935\) 0 0
\(936\) −3151.63 −3.36713
\(937\) 258.180 131.549i 0.275539 0.140394i −0.310761 0.950488i \(-0.600584\pi\)
0.586300 + 0.810094i \(0.300584\pi\)
\(938\) −26.0170 + 164.265i −0.0277367 + 0.175123i
\(939\) −112.786 + 155.237i −0.120113 + 0.165321i
\(940\) 0 0
\(941\) −1.31431 4.04503i −0.00139672 0.00429865i 0.950356 0.311166i \(-0.100719\pi\)
−0.951752 + 0.306867i \(0.900719\pi\)
\(942\) −268.152 1693.05i −0.284663 1.79729i
\(943\) −198.475 + 1253.12i −0.210472 + 1.32887i
\(944\) 2.88371 + 0.936975i 0.00305478 + 0.000992558i
\(945\) 0 0
\(946\) −272.788 + 234.726i −0.288360 + 0.248125i
\(947\) 779.521 + 779.521i 0.823148 + 0.823148i 0.986558 0.163410i \(-0.0522495\pi\)
−0.163410 + 0.986558i \(0.552249\pi\)
\(948\) −345.411 677.906i −0.364357 0.715091i
\(949\) −887.246 1221.19i −0.934928 1.28682i
\(950\) 0 0
\(951\) −484.598 1491.44i −0.509567 1.56828i
\(952\) −33.8293 + 66.3938i −0.0355350 + 0.0697413i
\(953\) 571.006 90.4385i 0.599167 0.0948987i 0.150519 0.988607i \(-0.451906\pi\)
0.448648 + 0.893708i \(0.351906\pi\)
\(954\) −94.4911 130.056i −0.0990473 0.136327i
\(955\) 0 0
\(956\) −749.841 −0.784352
\(957\) 654.817 + 2683.93i 0.684239 + 2.80452i
\(958\) −484.389 + 484.389i −0.505626 + 0.505626i
\(959\) −15.1981 4.93817i −0.0158479 0.00514930i
\(960\) 0 0
\(961\) 655.667 + 476.370i 0.682276 + 0.495703i
\(962\) 1.73145 3.39817i 0.00179985 0.00353240i
\(963\) 1049.82 + 534.910i 1.09016 + 0.555463i
\(964\) −486.846 + 670.086i −0.505027 + 0.695110i
\(965\) 0 0
\(966\) −120.279 + 370.179i −0.124512 + 0.383208i
\(967\) −115.321 115.321i −0.119256 0.119256i 0.644960 0.764216i \(-0.276874\pi\)
−0.764216 + 0.644960i \(0.776874\pi\)
\(968\) −894.154 + 297.827i −0.923713 + 0.307672i
\(969\) 391.826i 0.404361i
\(970\) 0 0
\(971\) −305.877 + 222.233i −0.315012 + 0.228870i −0.734044 0.679102i \(-0.762370\pi\)
0.419032 + 0.907971i \(0.362370\pi\)
\(972\) 362.107 + 2286.25i 0.372538 + 2.35211i
\(973\) 239.190 + 121.874i 0.245828 + 0.125256i
\(974\) 195.338 63.4691i 0.200552 0.0651634i
\(975\) 0 0
\(976\) −121.420 + 88.2169i −0.124406 + 0.0903861i
\(977\) 169.433 86.3306i 0.173422 0.0883629i −0.365125 0.930959i \(-0.618974\pi\)
0.538547 + 0.842596i \(0.318974\pi\)
\(978\) −1102.04 + 1102.04i −1.12683 + 1.12683i
\(979\) −460.791 + 758.196i −0.470675 + 0.774460i
\(980\) 0 0
\(981\) 1141.66 3513.66i 1.16377 3.58172i
\(982\) −310.763 49.2201i −0.316460 0.0501223i
\(983\) 1232.11 195.147i 1.25342 0.198522i 0.505799 0.862651i \(-0.331198\pi\)
0.747618 + 0.664129i \(0.231198\pi\)
\(984\) −1870.02 + 607.606i −1.90043 + 0.617486i
\(985\) 0 0
\(986\) 200.991 + 146.029i 0.203845 + 0.148102i
\(987\) −553.427 87.6542i −0.560716 0.0888087i
\(988\) 276.453 + 542.569i 0.279810 + 0.549159i
\(989\) 805.704i 0.814665i
\(990\) 0 0
\(991\) 1692.83 1.70821 0.854103 0.520104i \(-0.174107\pi\)
0.854103 + 0.520104i \(0.174107\pi\)
\(992\) 357.041 181.921i 0.359920 0.183388i
\(993\) −103.407 + 652.887i −0.104136 + 0.657490i
\(994\) −2.11617 + 2.91266i −0.00212895 + 0.00293024i
\(995\) 0 0
\(996\) −65.0858 200.314i −0.0653472 0.201118i
\(997\) −185.327 1170.11i −0.185885 1.17363i −0.887409 0.460983i \(-0.847497\pi\)
0.701524 0.712646i \(-0.252503\pi\)
\(998\) 173.164 1093.32i 0.173511 1.09551i
\(999\) −16.3547 5.31395i −0.0163710 0.00531927i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.207.11 yes 128
5.2 odd 4 inner 275.3.bk.c.218.11 yes 128
5.3 odd 4 inner 275.3.bk.c.218.6 yes 128
5.4 even 2 inner 275.3.bk.c.207.6 yes 128
11.5 even 5 inner 275.3.bk.c.82.6 128
55.27 odd 20 inner 275.3.bk.c.93.6 yes 128
55.38 odd 20 inner 275.3.bk.c.93.11 yes 128
55.49 even 10 inner 275.3.bk.c.82.11 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.6 128 11.5 even 5 inner
275.3.bk.c.82.11 yes 128 55.49 even 10 inner
275.3.bk.c.93.6 yes 128 55.27 odd 20 inner
275.3.bk.c.93.11 yes 128 55.38 odd 20 inner
275.3.bk.c.207.6 yes 128 5.4 even 2 inner
275.3.bk.c.207.11 yes 128 1.1 even 1 trivial
275.3.bk.c.218.6 yes 128 5.3 odd 4 inner
275.3.bk.c.218.11 yes 128 5.2 odd 4 inner