Properties

Label 275.3.bk.c.82.6
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.6
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.534746 + 1.04950i) q^{2} +(5.70073 - 0.902907i) q^{3} +(1.53565 + 2.11364i) q^{4} +(-2.10084 + 6.46573i) q^{6} +(-1.94938 - 0.308752i) q^{7} +(-7.69295 + 1.21844i) q^{8} +(23.1236 - 7.51330i) q^{9} +(-9.40014 + 5.71291i) q^{11} +(10.6627 + 10.6627i) q^{12} +(14.8284 + 7.55546i) q^{13} +(1.36646 - 1.88077i) q^{14} +(-0.394331 + 1.21363i) q^{16} +(4.31894 - 2.20061i) q^{17} +(-4.48004 + 28.2858i) q^{18} +(-8.23200 + 11.3304i) q^{19} -11.3917 q^{21} +(-0.968994 - 12.9204i) q^{22} +(20.5117 - 20.5117i) q^{23} +(-42.7553 + 13.8920i) q^{24} +(-15.8589 + 11.5221i) q^{26} +(78.7530 - 40.1266i) q^{27} +(-2.34098 - 4.59443i) q^{28} +(-25.5765 - 35.2031i) q^{29} +(-3.79161 - 11.6694i) q^{31} +(-23.0930 - 23.0930i) q^{32} +(-48.4294 + 41.0552i) q^{33} +5.70948i q^{34} +(51.3900 + 37.3370i) q^{36} +(0.192163 + 0.0304356i) q^{37} +(-7.48918 - 14.6984i) q^{38} +(91.3546 + 29.6829i) q^{39} +(-35.3846 - 25.7084i) q^{41} +(6.09166 - 11.9555i) q^{42} +(19.6401 - 19.6401i) q^{43} +(-26.5103 - 11.0955i) q^{44} +(10.5585 + 32.4956i) q^{46} +(7.69458 + 48.5817i) q^{47} +(-1.15218 + 7.27460i) q^{48} +(-42.8970 - 13.9381i) q^{49} +(22.6341 - 16.4447i) q^{51} +(6.80173 + 42.9444i) q^{52} +(-5.00155 - 2.54841i) q^{53} +104.109i q^{54} +15.3727 q^{56} +(-36.6981 + 72.0242i) q^{57} +(50.6225 - 8.01782i) q^{58} +(1.39664 + 1.92231i) q^{59} +(-36.3443 + 111.856i) q^{61} +(14.2745 + 2.26086i) q^{62} +(-47.3964 + 7.50685i) q^{63} +(31.7305 - 10.3099i) q^{64} +(-17.1899 - 72.7807i) q^{66} +(-50.5862 - 50.5862i) q^{67} +(11.2837 + 5.74931i) q^{68} +(98.4116 - 135.452i) q^{69} +(-0.478560 + 1.47286i) q^{71} +(-168.734 + 85.9742i) q^{72} +(14.1887 - 89.5842i) q^{73} +(-0.134700 + 0.185399i) q^{74} -36.5898 q^{76} +(20.0884 - 8.23433i) q^{77} +(-80.0037 + 80.0037i) q^{78} +(47.9857 - 15.5915i) q^{79} +(235.688 - 171.237i) q^{81} +(45.9027 - 23.3886i) q^{82} +(6.34114 + 12.4452i) q^{83} +(-17.4936 - 24.0779i) q^{84} +(10.1098 + 31.1147i) q^{86} +(-177.590 - 177.590i) q^{87} +(65.3540 - 55.4026i) q^{88} -80.6579i q^{89} +(-26.5735 - 19.3068i) q^{91} +(74.8532 + 11.8556i) q^{92} +(-32.1513 - 63.1004i) q^{93} +(-55.1010 - 17.9034i) q^{94} +(-152.498 - 110.796i) q^{96} +(-49.3293 + 96.8143i) q^{97} +(37.5670 - 37.5670i) q^{98} +(-174.442 + 202.729i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.534746 + 1.04950i −0.267373 + 0.524749i −0.985186 0.171486i \(-0.945143\pi\)
0.717813 + 0.696235i \(0.245143\pi\)
\(3\) 5.70073 0.902907i 1.90024 0.300969i 0.907388 0.420295i \(-0.138073\pi\)
0.992855 + 0.119326i \(0.0380734\pi\)
\(4\) 1.53565 + 2.11364i 0.383912 + 0.528410i
\(5\) 0 0
\(6\) −2.10084 + 6.46573i −0.350140 + 1.07762i
\(7\) −1.94938 0.308752i −0.278483 0.0441074i 0.0156304 0.999878i \(-0.495024\pi\)
−0.294114 + 0.955770i \(0.595024\pi\)
\(8\) −7.69295 + 1.21844i −0.961619 + 0.152305i
\(9\) 23.1236 7.51330i 2.56928 0.834811i
\(10\) 0 0
\(11\) −9.40014 + 5.71291i −0.854559 + 0.519355i
\(12\) 10.6627 + 10.6627i 0.888561 + 0.888561i
\(13\) 14.8284 + 7.55546i 1.14065 + 0.581189i 0.919125 0.393966i \(-0.128897\pi\)
0.221523 + 0.975155i \(0.428897\pi\)
\(14\) 1.36646 1.88077i 0.0976043 0.134341i
\(15\) 0 0
\(16\) −0.394331 + 1.21363i −0.0246457 + 0.0758516i
\(17\) 4.31894 2.20061i 0.254055 0.129448i −0.322326 0.946629i \(-0.604465\pi\)
0.576381 + 0.817181i \(0.304465\pi\)
\(18\) −4.48004 + 28.2858i −0.248891 + 1.57144i
\(19\) −8.23200 + 11.3304i −0.433263 + 0.596336i −0.968698 0.248240i \(-0.920148\pi\)
0.535435 + 0.844576i \(0.320148\pi\)
\(20\) 0 0
\(21\) −11.3917 −0.542461
\(22\) −0.968994 12.9204i −0.0440452 0.587290i
\(23\) 20.5117 20.5117i 0.891814 0.891814i −0.102879 0.994694i \(-0.532806\pi\)
0.994694 + 0.102879i \(0.0328056\pi\)
\(24\) −42.7553 + 13.8920i −1.78147 + 0.578835i
\(25\) 0 0
\(26\) −15.8589 + 11.5221i −0.609957 + 0.443159i
\(27\) 78.7530 40.1266i 2.91678 1.48617i
\(28\) −2.34098 4.59443i −0.0836063 0.164087i
\(29\) −25.5765 35.2031i −0.881949 1.21390i −0.975877 0.218320i \(-0.929942\pi\)
0.0939277 0.995579i \(-0.470058\pi\)
\(30\) 0 0
\(31\) −3.79161 11.6694i −0.122310 0.376431i 0.871091 0.491121i \(-0.163413\pi\)
−0.993401 + 0.114690i \(0.963413\pi\)
\(32\) −23.0930 23.0930i −0.721657 0.721657i
\(33\) −48.4294 + 41.0552i −1.46756 + 1.24410i
\(34\) 5.70948i 0.167926i
\(35\) 0 0
\(36\) 51.3900 + 37.3370i 1.42750 + 1.03714i
\(37\) 0.192163 + 0.0304356i 0.00519359 + 0.000822583i 0.159031 0.987274i \(-0.449163\pi\)
−0.153837 + 0.988096i \(0.549163\pi\)
\(38\) −7.48918 14.6984i −0.197084 0.386799i
\(39\) 91.3546 + 29.6829i 2.34243 + 0.761101i
\(40\) 0 0
\(41\) −35.3846 25.7084i −0.863039 0.627034i 0.0656713 0.997841i \(-0.479081\pi\)
−0.928710 + 0.370807i \(0.879081\pi\)
\(42\) 6.09166 11.9555i 0.145039 0.284656i
\(43\) 19.6401 19.6401i 0.456746 0.456746i −0.440840 0.897586i \(-0.645319\pi\)
0.897586 + 0.440840i \(0.145319\pi\)
\(44\) −26.5103 11.0955i −0.602507 0.252170i
\(45\) 0 0
\(46\) 10.5585 + 32.4956i 0.229532 + 0.706426i
\(47\) 7.69458 + 48.5817i 0.163714 + 1.03365i 0.923533 + 0.383518i \(0.125288\pi\)
−0.759819 + 0.650135i \(0.774712\pi\)
\(48\) −1.15218 + 7.27460i −0.0240038 + 0.151554i
\(49\) −42.8970 13.9381i −0.875449 0.284451i
\(50\) 0 0
\(51\) 22.6341 16.4447i 0.443807 0.322444i
\(52\) 6.80173 + 42.9444i 0.130802 + 0.825854i
\(53\) −5.00155 2.54841i −0.0943688 0.0480833i 0.406169 0.913798i \(-0.366864\pi\)
−0.500538 + 0.865715i \(0.666864\pi\)
\(54\) 104.109i 1.92794i
\(55\) 0 0
\(56\) 15.3727 0.274513
\(57\) −36.6981 + 72.0242i −0.643827 + 1.26358i
\(58\) 50.6225 8.01782i 0.872802 0.138238i
\(59\) 1.39664 + 1.92231i 0.0236719 + 0.0325816i 0.820689 0.571375i \(-0.193590\pi\)
−0.797017 + 0.603957i \(0.793590\pi\)
\(60\) 0 0
\(61\) −36.3443 + 111.856i −0.595809 + 1.83371i −0.0451502 + 0.998980i \(0.514377\pi\)
−0.550659 + 0.834731i \(0.685623\pi\)
\(62\) 14.2745 + 2.26086i 0.230234 + 0.0364655i
\(63\) −47.3964 + 7.50685i −0.752324 + 0.119156i
\(64\) 31.7305 10.3099i 0.495789 0.161091i
\(65\) 0 0
\(66\) −17.1899 72.7807i −0.260453 1.10274i
\(67\) −50.5862 50.5862i −0.755018 0.755018i 0.220393 0.975411i \(-0.429266\pi\)
−0.975411 + 0.220393i \(0.929266\pi\)
\(68\) 11.2837 + 5.74931i 0.165936 + 0.0845487i
\(69\) 98.4116 135.452i 1.42626 1.96307i
\(70\) 0 0
\(71\) −0.478560 + 1.47286i −0.00674028 + 0.0207445i −0.954370 0.298626i \(-0.903472\pi\)
0.947630 + 0.319371i \(0.103472\pi\)
\(72\) −168.734 + 85.9742i −2.34353 + 1.19409i
\(73\) 14.1887 89.5842i 0.194366 1.22718i −0.676790 0.736176i \(-0.736630\pi\)
0.871157 0.491005i \(-0.163370\pi\)
\(74\) −0.134700 + 0.185399i −0.00182028 + 0.00250539i
\(75\) 0 0
\(76\) −36.5898 −0.481445
\(77\) 20.0884 8.23433i 0.260888 0.106939i
\(78\) −80.0037 + 80.0037i −1.02569 + 1.02569i
\(79\) 47.9857 15.5915i 0.607414 0.197361i 0.0108696 0.999941i \(-0.496540\pi\)
0.596544 + 0.802580i \(0.296540\pi\)
\(80\) 0 0
\(81\) 235.688 171.237i 2.90973 2.11404i
\(82\) 45.9027 23.3886i 0.559789 0.285227i
\(83\) 6.34114 + 12.4452i 0.0763993 + 0.149942i 0.926046 0.377410i \(-0.123185\pi\)
−0.849647 + 0.527352i \(0.823185\pi\)
\(84\) −17.4936 24.0779i −0.208257 0.286642i
\(85\) 0 0
\(86\) 10.1098 + 31.1147i 0.117555 + 0.361799i
\(87\) −177.590 177.590i −2.04126 2.04126i
\(88\) 65.3540 55.4026i 0.742659 0.629576i
\(89\) 80.6579i 0.906269i −0.891442 0.453135i \(-0.850306\pi\)
0.891442 0.453135i \(-0.149694\pi\)
\(90\) 0 0
\(91\) −26.5735 19.3068i −0.292017 0.212162i
\(92\) 74.8532 + 11.8556i 0.813621 + 0.128865i
\(93\) −32.1513 63.1004i −0.345713 0.678499i
\(94\) −55.1010 17.9034i −0.586181 0.190462i
\(95\) 0 0
\(96\) −152.498 110.796i −1.58852 1.15413i
\(97\) −49.3293 + 96.8143i −0.508550 + 0.998085i 0.483864 + 0.875143i \(0.339233\pi\)
−0.992414 + 0.122942i \(0.960767\pi\)
\(98\) 37.5670 37.5670i 0.383337 0.383337i
\(99\) −174.442 + 202.729i −1.76204 + 2.04777i
\(100\) 0 0
\(101\) −10.2333 31.4947i −0.101319 0.311829i 0.887530 0.460751i \(-0.152420\pi\)
−0.988849 + 0.148922i \(0.952420\pi\)
\(102\) 5.15513 + 32.5482i 0.0505405 + 0.319100i
\(103\) 11.3649 71.7554i 0.110339 0.696654i −0.869058 0.494710i \(-0.835274\pi\)
0.979397 0.201944i \(-0.0647258\pi\)
\(104\) −123.280 40.0562i −1.18539 0.385155i
\(105\) 0 0
\(106\) 5.34911 3.88636i 0.0504633 0.0366638i
\(107\) −7.58086 47.8637i −0.0708492 0.447324i −0.997456 0.0712913i \(-0.977288\pi\)
0.926606 0.376033i \(-0.122712\pi\)
\(108\) 205.750 + 104.835i 1.90509 + 0.970693i
\(109\) 151.952i 1.39405i 0.717045 + 0.697026i \(0.245494\pi\)
−0.717045 + 0.697026i \(0.754506\pi\)
\(110\) 0 0
\(111\) 1.12295 0.0101166
\(112\) 1.14341 2.24407i 0.0102090 0.0200364i
\(113\) −131.034 + 20.7537i −1.15959 + 0.183661i −0.706440 0.707773i \(-0.749700\pi\)
−0.453150 + 0.891434i \(0.649700\pi\)
\(114\) −55.9650 77.0293i −0.490921 0.675695i
\(115\) 0 0
\(116\) 35.1300 108.119i 0.302845 0.932061i
\(117\) 399.652 + 63.2987i 3.41583 + 0.541014i
\(118\) −2.76432 + 0.437825i −0.0234264 + 0.00371038i
\(119\) −9.09870 + 2.95635i −0.0764597 + 0.0248433i
\(120\) 0 0
\(121\) 55.7254 107.404i 0.460541 0.887639i
\(122\) −97.9581 97.9581i −0.802935 0.802935i
\(123\) −224.930 114.608i −1.82870 0.931770i
\(124\) 18.8422 25.9341i 0.151954 0.209146i
\(125\) 0 0
\(126\) 17.4666 53.7567i 0.138624 0.426641i
\(127\) 52.3868 26.6924i 0.412495 0.210176i −0.235413 0.971895i \(-0.575644\pi\)
0.647908 + 0.761719i \(0.275644\pi\)
\(128\) 14.2881 90.2113i 0.111625 0.704776i
\(129\) 94.2296 129.696i 0.730462 1.00539i
\(130\) 0 0
\(131\) −175.310 −1.33825 −0.669124 0.743151i \(-0.733330\pi\)
−0.669124 + 0.743151i \(0.733330\pi\)
\(132\) −161.146 39.3160i −1.22081 0.297849i
\(133\) 19.5456 19.5456i 0.146959 0.146959i
\(134\) 80.1409 26.0394i 0.598066 0.194324i
\(135\) 0 0
\(136\) −30.5440 + 22.1916i −0.224589 + 0.163173i
\(137\) −7.21419 + 3.67581i −0.0526583 + 0.0268308i −0.480121 0.877202i \(-0.659407\pi\)
0.427463 + 0.904033i \(0.359407\pi\)
\(138\) 89.5314 + 175.715i 0.648778 + 1.27330i
\(139\) 79.9474 + 110.038i 0.575161 + 0.791641i 0.993154 0.116809i \(-0.0372665\pi\)
−0.417993 + 0.908450i \(0.637266\pi\)
\(140\) 0 0
\(141\) 87.7294 + 270.003i 0.622195 + 1.91492i
\(142\) −1.28985 1.28985i −0.00908347 0.00908347i
\(143\) −182.553 + 13.6910i −1.27659 + 0.0957410i
\(144\) 31.0261i 0.215459i
\(145\) 0 0
\(146\) 86.4311 + 62.7959i 0.591994 + 0.430109i
\(147\) −257.129 40.7252i −1.74918 0.277042i
\(148\) 0.230765 + 0.452901i 0.00155922 + 0.00306014i
\(149\) 75.9893 + 24.6904i 0.509995 + 0.165707i 0.552700 0.833380i \(-0.313598\pi\)
−0.0427049 + 0.999088i \(0.513598\pi\)
\(150\) 0 0
\(151\) 73.7929 + 53.6137i 0.488695 + 0.355058i 0.804682 0.593706i \(-0.202336\pi\)
−0.315987 + 0.948763i \(0.602336\pi\)
\(152\) 49.5230 97.1943i 0.325809 0.639436i
\(153\) 83.3353 83.3353i 0.544675 0.544675i
\(154\) −2.10026 + 25.4860i −0.0136380 + 0.165493i
\(155\) 0 0
\(156\) 77.5496 + 238.673i 0.497113 + 1.52996i
\(157\) 39.4430 + 249.034i 0.251230 + 1.58620i 0.714274 + 0.699866i \(0.246757\pi\)
−0.463045 + 0.886335i \(0.653243\pi\)
\(158\) −9.29691 + 58.6984i −0.0588412 + 0.371509i
\(159\) −30.8134 10.0119i −0.193795 0.0629679i
\(160\) 0 0
\(161\) −46.3183 + 33.6522i −0.287691 + 0.209020i
\(162\) 53.6801 + 338.923i 0.331358 + 2.09212i
\(163\) 204.260 + 104.075i 1.25313 + 0.638500i 0.949343 0.314242i \(-0.101750\pi\)
0.303783 + 0.952741i \(0.401750\pi\)
\(164\) 114.269i 0.696764i
\(165\) 0 0
\(166\) −16.4521 −0.0991091
\(167\) 46.9036 92.0535i 0.280860 0.551219i −0.706879 0.707335i \(-0.749897\pi\)
0.987739 + 0.156116i \(0.0498974\pi\)
\(168\) 87.6356 13.8801i 0.521641 0.0826198i
\(169\) 63.4613 + 87.3470i 0.375511 + 0.516846i
\(170\) 0 0
\(171\) −105.225 + 323.848i −0.615349 + 1.89385i
\(172\) 71.6723 + 11.3518i 0.416699 + 0.0659987i
\(173\) −6.36471 + 1.00807i −0.0367902 + 0.00582700i −0.174802 0.984604i \(-0.555929\pi\)
0.138012 + 0.990431i \(0.455929\pi\)
\(174\) 281.346 91.4148i 1.61693 0.525372i
\(175\) 0 0
\(176\) −3.22656 13.6610i −0.0183327 0.0776195i
\(177\) 9.69756 + 9.69756i 0.0547885 + 0.0547885i
\(178\) 84.6504 + 43.1315i 0.475564 + 0.242312i
\(179\) 50.2025 69.0978i 0.280461 0.386021i −0.645426 0.763823i \(-0.723320\pi\)
0.925886 + 0.377802i \(0.123320\pi\)
\(180\) 0 0
\(181\) −49.5631 + 152.540i −0.273829 + 0.842760i 0.715697 + 0.698411i \(0.246109\pi\)
−0.989527 + 0.144350i \(0.953891\pi\)
\(182\) 34.4725 17.5646i 0.189409 0.0965089i
\(183\) −106.193 + 670.478i −0.580291 + 3.66382i
\(184\) −132.803 + 182.788i −0.721757 + 0.993414i
\(185\) 0 0
\(186\) 83.4166 0.448476
\(187\) −28.0268 + 45.3597i −0.149876 + 0.242565i
\(188\) −90.8679 + 90.8679i −0.483340 + 0.483340i
\(189\) −165.909 + 53.9071i −0.877825 + 0.285223i
\(190\) 0 0
\(191\) 105.149 76.3950i 0.550517 0.399974i −0.277459 0.960737i \(-0.589492\pi\)
0.827976 + 0.560764i \(0.189492\pi\)
\(192\) 171.578 87.4233i 0.893635 0.455330i
\(193\) −147.719 289.915i −0.765383 1.50215i −0.862045 0.506831i \(-0.830817\pi\)
0.0966622 0.995317i \(-0.469183\pi\)
\(194\) −75.2277 103.542i −0.387772 0.533722i
\(195\) 0 0
\(196\) −36.4146 112.073i −0.185789 0.571800i
\(197\) 4.22058 + 4.22058i 0.0214242 + 0.0214242i 0.717738 0.696314i \(-0.245178\pi\)
−0.696314 + 0.717738i \(0.745178\pi\)
\(198\) −119.481 291.485i −0.603441 1.47215i
\(199\) 231.739i 1.16452i 0.813003 + 0.582260i \(0.197831\pi\)
−0.813003 + 0.582260i \(0.802169\pi\)
\(200\) 0 0
\(201\) −334.053 242.704i −1.66195 1.20748i
\(202\) 38.5258 + 6.10189i 0.190722 + 0.0302074i
\(203\) 38.9895 + 76.5211i 0.192066 + 0.376951i
\(204\) 69.5161 + 22.5872i 0.340765 + 0.110721i
\(205\) 0 0
\(206\) 69.2298 + 50.2984i 0.336067 + 0.244167i
\(207\) 320.193 628.415i 1.54683 3.03582i
\(208\) −15.0168 + 15.0168i −0.0721962 + 0.0721962i
\(209\) 12.6526 153.536i 0.0605389 0.734622i
\(210\) 0 0
\(211\) −46.5064 143.132i −0.220409 0.678350i −0.998725 0.0504773i \(-0.983926\pi\)
0.778316 0.627873i \(-0.216074\pi\)
\(212\) −2.29419 14.4849i −0.0108216 0.0683251i
\(213\) −1.39829 + 8.82845i −0.00656474 + 0.0414481i
\(214\) 54.2867 + 17.6388i 0.253676 + 0.0824243i
\(215\) 0 0
\(216\) −556.951 + 404.648i −2.57848 + 1.87337i
\(217\) 3.78836 + 23.9187i 0.0174579 + 0.110225i
\(218\) −159.473 81.2556i −0.731528 0.372732i
\(219\) 523.506i 2.39044i
\(220\) 0 0
\(221\) 80.6696 0.365021
\(222\) −0.600492 + 1.17853i −0.00270492 + 0.00530870i
\(223\) 137.283 21.7436i 0.615621 0.0975048i 0.159167 0.987252i \(-0.449119\pi\)
0.456454 + 0.889747i \(0.349119\pi\)
\(224\) 37.8871 + 52.1472i 0.169139 + 0.232800i
\(225\) 0 0
\(226\) 48.2887 148.617i 0.213667 0.657600i
\(227\) 1.00628 + 0.159379i 0.00443296 + 0.000702112i 0.158651 0.987335i \(-0.449286\pi\)
−0.154218 + 0.988037i \(0.549286\pi\)
\(228\) −208.588 + 33.0372i −0.914862 + 0.144900i
\(229\) 8.36376 2.71755i 0.0365230 0.0118670i −0.290699 0.956815i \(-0.593888\pi\)
0.327222 + 0.944948i \(0.393888\pi\)
\(230\) 0 0
\(231\) 107.083 65.0796i 0.463565 0.281730i
\(232\) 239.652 + 239.652i 1.03298 + 1.03298i
\(233\) 370.632 + 188.847i 1.59070 + 0.810500i 0.999993 + 0.00361160i \(0.00114961\pi\)
0.590703 + 0.806889i \(0.298850\pi\)
\(234\) −280.144 + 385.585i −1.19720 + 1.64780i
\(235\) 0 0
\(236\) −1.91833 + 5.90400i −0.00812850 + 0.0250169i
\(237\) 259.476 132.209i 1.09483 0.557846i
\(238\) 1.76281 11.1300i 0.00740678 0.0467646i
\(239\) −168.700 + 232.195i −0.705857 + 0.971529i 0.294019 + 0.955800i \(0.405007\pi\)
−0.999876 + 0.0157295i \(0.994993\pi\)
\(240\) 0 0
\(241\) 317.030 1.31548 0.657738 0.753247i \(-0.271513\pi\)
0.657738 + 0.753247i \(0.271513\pi\)
\(242\) 82.9216 + 115.918i 0.342651 + 0.478999i
\(243\) 626.494 626.494i 2.57816 2.57816i
\(244\) −292.236 + 94.9532i −1.19769 + 0.389153i
\(245\) 0 0
\(246\) 240.561 174.778i 0.977890 0.710479i
\(247\) −207.674 + 105.815i −0.840785 + 0.428401i
\(248\) 43.3871 + 85.1520i 0.174948 + 0.343355i
\(249\) 47.3860 + 65.2212i 0.190305 + 0.261933i
\(250\) 0 0
\(251\) 21.5845 + 66.4304i 0.0859942 + 0.264663i 0.984802 0.173680i \(-0.0555657\pi\)
−0.898808 + 0.438342i \(0.855566\pi\)
\(252\) −88.6510 88.6510i −0.351790 0.351790i
\(253\) −75.6317 + 309.995i −0.298939 + 1.22528i
\(254\) 69.2535i 0.272652i
\(255\) 0 0
\(256\) 195.002 + 141.677i 0.761728 + 0.553427i
\(257\) −285.248 45.1789i −1.10992 0.175793i −0.425552 0.904934i \(-0.639920\pi\)
−0.684364 + 0.729141i \(0.739920\pi\)
\(258\) 85.7267 + 168.248i 0.332274 + 0.652124i
\(259\) −0.365202 0.118661i −0.00141005 0.000458152i
\(260\) 0 0
\(261\) −855.912 621.856i −3.27935 2.38259i
\(262\) 93.7465 183.988i 0.357811 0.702244i
\(263\) 6.71971 6.71971i 0.0255502 0.0255502i −0.694216 0.719766i \(-0.744249\pi\)
0.719766 + 0.694216i \(0.244249\pi\)
\(264\) 322.542 374.844i 1.22175 1.41986i
\(265\) 0 0
\(266\) 10.0611 + 30.9650i 0.0378239 + 0.116410i
\(267\) −72.8266 459.809i −0.272759 1.72213i
\(268\) 29.2383 184.604i 0.109098 0.688819i
\(269\) 99.7989 + 32.4266i 0.371000 + 0.120545i 0.488582 0.872518i \(-0.337514\pi\)
−0.117582 + 0.993063i \(0.537514\pi\)
\(270\) 0 0
\(271\) 76.1609 55.3341i 0.281037 0.204185i −0.438333 0.898813i \(-0.644431\pi\)
0.719369 + 0.694628i \(0.244431\pi\)
\(272\) 0.967625 + 6.10934i 0.00355744 + 0.0224608i
\(273\) −168.921 86.0693i −0.618757 0.315272i
\(274\) 9.53691i 0.0348062i
\(275\) 0 0
\(276\) 437.422 1.58486
\(277\) −105.001 + 206.076i −0.379065 + 0.743956i −0.999177 0.0405564i \(-0.987087\pi\)
0.620113 + 0.784513i \(0.287087\pi\)
\(278\) −158.236 + 25.0622i −0.569196 + 0.0901517i
\(279\) −175.351 241.350i −0.628498 0.865053i
\(280\) 0 0
\(281\) 88.5075 272.398i 0.314973 0.969388i −0.660792 0.750569i \(-0.729780\pi\)
0.975765 0.218819i \(-0.0702204\pi\)
\(282\) −330.281 52.3114i −1.17121 0.185501i
\(283\) 168.322 26.6596i 0.594777 0.0942035i 0.148214 0.988955i \(-0.452648\pi\)
0.446564 + 0.894752i \(0.352648\pi\)
\(284\) −3.84799 + 1.25029i −0.0135492 + 0.00440242i
\(285\) 0 0
\(286\) 83.2508 198.910i 0.291087 0.695490i
\(287\) 61.0406 + 61.0406i 0.212685 + 0.212685i
\(288\) −707.497 360.488i −2.45659 1.25169i
\(289\) −156.059 + 214.797i −0.539998 + 0.743243i
\(290\) 0 0
\(291\) −193.799 + 596.452i −0.665976 + 2.04966i
\(292\) 211.138 107.580i 0.723074 0.368425i
\(293\) −42.5506 + 268.654i −0.145224 + 0.916907i 0.802230 + 0.597015i \(0.203647\pi\)
−0.947454 + 0.319892i \(0.896353\pi\)
\(294\) 180.240 248.079i 0.613060 0.843805i
\(295\) 0 0
\(296\) −1.51538 −0.00511954
\(297\) −511.050 + 827.104i −1.72071 + 2.78486i
\(298\) −66.5475 + 66.5475i −0.223314 + 0.223314i
\(299\) 459.132 149.181i 1.53556 0.498933i
\(300\) 0 0
\(301\) −44.3500 + 32.2221i −0.147342 + 0.107050i
\(302\) −95.7279 + 48.7758i −0.316980 + 0.161509i
\(303\) −86.7738 170.303i −0.286382 0.562056i
\(304\) −10.5047 14.4585i −0.0345550 0.0475609i
\(305\) 0 0
\(306\) 42.8970 + 132.023i 0.140186 + 0.431449i
\(307\) 141.243 + 141.243i 0.460075 + 0.460075i 0.898680 0.438605i \(-0.144527\pi\)
−0.438605 + 0.898680i \(0.644527\pi\)
\(308\) 48.2530 + 29.8145i 0.156666 + 0.0968003i
\(309\) 419.319i 1.35702i
\(310\) 0 0
\(311\) 39.1515 + 28.4453i 0.125889 + 0.0914639i 0.648948 0.760833i \(-0.275209\pi\)
−0.523059 + 0.852297i \(0.675209\pi\)
\(312\) −738.954 117.039i −2.36844 0.375124i
\(313\) 15.0929 + 29.6215i 0.0482202 + 0.0946374i 0.913859 0.406031i \(-0.133088\pi\)
−0.865639 + 0.500669i \(0.833088\pi\)
\(314\) −282.452 91.7743i −0.899529 0.292275i
\(315\) 0 0
\(316\) 106.644 + 77.4813i 0.337481 + 0.245194i
\(317\) −123.349 + 242.086i −0.389113 + 0.763678i −0.999598 0.0283501i \(-0.990975\pi\)
0.610485 + 0.792028i \(0.290975\pi\)
\(318\) 26.9848 26.9848i 0.0848579 0.0848579i
\(319\) 441.535 + 184.798i 1.38412 + 0.579303i
\(320\) 0 0
\(321\) −86.4329 266.013i −0.269261 0.828701i
\(322\) −10.5494 66.6063i −0.0327621 0.206852i
\(323\) −10.6198 + 67.0506i −0.0328786 + 0.207587i
\(324\) 723.868 + 235.199i 2.23416 + 0.725922i
\(325\) 0 0
\(326\) −218.454 + 158.716i −0.670104 + 0.486859i
\(327\) 137.198 + 866.236i 0.419567 + 2.64904i
\(328\) 303.536 + 154.659i 0.925415 + 0.471523i
\(329\) 97.0800i 0.295076i
\(330\) 0 0
\(331\) −114.527 −0.346003 −0.173001 0.984922i \(-0.555347\pi\)
−0.173001 + 0.984922i \(0.555347\pi\)
\(332\) −16.5669 + 32.5143i −0.0499002 + 0.0979347i
\(333\) 4.67216 0.739997i 0.0140305 0.00222221i
\(334\) 71.5285 + 98.4505i 0.214157 + 0.294762i
\(335\) 0 0
\(336\) 4.49209 13.8252i 0.0133693 0.0411466i
\(337\) −125.302 19.8459i −0.371816 0.0588899i −0.0322698 0.999479i \(-0.510274\pi\)
−0.339546 + 0.940589i \(0.610274\pi\)
\(338\) −125.606 + 19.8941i −0.371616 + 0.0588582i
\(339\) −728.248 + 236.622i −2.14823 + 0.698001i
\(340\) 0 0
\(341\) 102.308 + 88.0327i 0.300022 + 0.258160i
\(342\) −283.610 283.610i −0.829268 0.829268i
\(343\) 165.489 + 84.3208i 0.482475 + 0.245833i
\(344\) −127.160 + 175.020i −0.369651 + 0.508780i
\(345\) 0 0
\(346\) 2.34554 7.21882i 0.00677900 0.0208636i
\(347\) −134.140 + 68.3476i −0.386570 + 0.196967i −0.636465 0.771306i \(-0.719604\pi\)
0.249895 + 0.968273i \(0.419604\pi\)
\(348\) 102.645 648.077i 0.294958 1.86229i
\(349\) −205.310 + 282.585i −0.588281 + 0.809699i −0.994573 0.104045i \(-0.966822\pi\)
0.406292 + 0.913743i \(0.366822\pi\)
\(350\) 0 0
\(351\) 1470.96 4.19076
\(352\) 349.006 + 85.1495i 0.991494 + 0.241902i
\(353\) −362.555 + 362.555i −1.02707 + 1.02707i −0.0274434 + 0.999623i \(0.508737\pi\)
−0.999623 + 0.0274434i \(0.991263\pi\)
\(354\) −15.3633 + 4.99184i −0.0433991 + 0.0141012i
\(355\) 0 0
\(356\) 170.482 123.862i 0.478881 0.347928i
\(357\) −49.1999 + 25.0686i −0.137815 + 0.0702202i
\(358\) 45.6724 + 89.6372i 0.127577 + 0.250383i
\(359\) 285.929 + 393.548i 0.796461 + 1.09623i 0.993273 + 0.115793i \(0.0369410\pi\)
−0.196812 + 0.980441i \(0.563059\pi\)
\(360\) 0 0
\(361\) 50.9435 + 156.788i 0.141118 + 0.434315i
\(362\) −133.586 133.586i −0.369023 0.369023i
\(363\) 220.700 662.597i 0.607988 1.82534i
\(364\) 85.8152i 0.235756i
\(365\) 0 0
\(366\) −646.879 469.985i −1.76743 1.28411i
\(367\) −9.42516 1.49280i −0.0256816 0.00406757i 0.143580 0.989639i \(-0.454138\pi\)
−0.169262 + 0.985571i \(0.554138\pi\)
\(368\) 16.8052 + 32.9820i 0.0456662 + 0.0896250i
\(369\) −1011.37 328.615i −2.74085 0.890555i
\(370\) 0 0
\(371\) 8.96310 + 6.51208i 0.0241593 + 0.0175528i
\(372\) 83.9984 164.856i 0.225802 0.443162i
\(373\) 268.508 268.508i 0.719862 0.719862i −0.248715 0.968577i \(-0.580008\pi\)
0.968577 + 0.248715i \(0.0800082\pi\)
\(374\) −32.6177 53.6700i −0.0872132 0.143503i
\(375\) 0 0
\(376\) −118.388 364.361i −0.314862 0.969045i
\(377\) −113.284 715.248i −0.300489 1.89721i
\(378\) 32.1438 202.948i 0.0850364 0.536899i
\(379\) −329.126 106.940i −0.868406 0.282162i −0.159271 0.987235i \(-0.550914\pi\)
−0.709135 + 0.705073i \(0.750914\pi\)
\(380\) 0 0
\(381\) 274.542 199.467i 0.720583 0.523534i
\(382\) 23.9486 + 151.205i 0.0626926 + 0.395825i
\(383\) −77.9932 39.7395i −0.203638 0.103758i 0.349198 0.937049i \(-0.386454\pi\)
−0.552835 + 0.833291i \(0.686454\pi\)
\(384\) 527.171i 1.37284i
\(385\) 0 0
\(386\) 383.257 0.992894
\(387\) 306.587 601.710i 0.792213 1.55481i
\(388\) −280.383 + 44.4083i −0.722636 + 0.114454i
\(389\) 246.055 + 338.666i 0.632533 + 0.870607i 0.998190 0.0601430i \(-0.0191557\pi\)
−0.365657 + 0.930750i \(0.619156\pi\)
\(390\) 0 0
\(391\) 43.4506 133.727i 0.111127 0.342013i
\(392\) 346.987 + 54.9574i 0.885172 + 0.140197i
\(393\) −999.397 + 158.289i −2.54299 + 0.402771i
\(394\) −6.68642 + 2.17255i −0.0169706 + 0.00551409i
\(395\) 0 0
\(396\) −696.377 57.3872i −1.75853 0.144917i
\(397\) −434.845 434.845i −1.09533 1.09533i −0.994950 0.100377i \(-0.967995\pi\)
−0.100377 0.994950i \(-0.532005\pi\)
\(398\) −243.210 123.922i −0.611080 0.311361i
\(399\) 93.7764 129.072i 0.235028 0.323489i
\(400\) 0 0
\(401\) −166.418 + 512.181i −0.415007 + 1.27726i 0.497238 + 0.867614i \(0.334347\pi\)
−0.912245 + 0.409645i \(0.865653\pi\)
\(402\) 433.350 220.803i 1.07799 0.549261i
\(403\) 31.9439 201.686i 0.0792652 0.500461i
\(404\) 50.8537 69.9942i 0.125876 0.173253i
\(405\) 0 0
\(406\) −101.158 −0.249158
\(407\) −1.98023 + 0.811709i −0.00486544 + 0.00199437i
\(408\) −154.086 + 154.086i −0.377663 + 0.377663i
\(409\) 2.27154 0.738069i 0.00555390 0.00180457i −0.306239 0.951955i \(-0.599071\pi\)
0.311793 + 0.950150i \(0.399071\pi\)
\(410\) 0 0
\(411\) −37.8072 + 27.4686i −0.0919884 + 0.0668335i
\(412\) 169.117 86.1696i 0.410479 0.209150i
\(413\) −2.12908 4.17855i −0.00515515 0.0101175i
\(414\) 488.298 + 672.085i 1.17946 + 1.62339i
\(415\) 0 0
\(416\) −167.955 516.911i −0.403737 1.24257i
\(417\) 555.113 + 555.113i 1.33121 + 1.33121i
\(418\) 154.370 + 95.3816i 0.369305 + 0.228186i
\(419\) 235.871i 0.562937i −0.959570 0.281469i \(-0.909178\pi\)
0.959570 0.281469i \(-0.0908215\pi\)
\(420\) 0 0
\(421\) 492.334 + 357.702i 1.16944 + 0.849648i 0.990942 0.134293i \(-0.0428762\pi\)
0.178498 + 0.983940i \(0.442876\pi\)
\(422\) 175.086 + 27.7309i 0.414895 + 0.0657129i
\(423\) 542.935 + 1065.57i 1.28353 + 2.51908i
\(424\) 41.5817 + 13.5107i 0.0980702 + 0.0318649i
\(425\) 0 0
\(426\) −8.51771 6.18848i −0.0199946 0.0145270i
\(427\) 105.385 206.830i 0.246803 0.484378i
\(428\) 89.5249 89.5249i 0.209170 0.209170i
\(429\) −1028.32 + 242.877i −2.39702 + 0.566146i
\(430\) 0 0
\(431\) −125.771 387.085i −0.291813 0.898108i −0.984273 0.176652i \(-0.943473\pi\)
0.692460 0.721456i \(-0.256527\pi\)
\(432\) 17.6440 + 111.400i 0.0408426 + 0.257870i
\(433\) 80.5214 508.392i 0.185962 1.17412i −0.701306 0.712861i \(-0.747399\pi\)
0.887267 0.461255i \(-0.152601\pi\)
\(434\) −27.1285 8.81458i −0.0625080 0.0203101i
\(435\) 0 0
\(436\) −321.171 + 233.344i −0.736631 + 0.535194i
\(437\) 63.5531 + 401.258i 0.145430 + 0.918211i
\(438\) 549.419 + 279.943i 1.25438 + 0.639139i
\(439\) 352.062i 0.801963i −0.916086 0.400982i \(-0.868669\pi\)
0.916086 0.400982i \(-0.131331\pi\)
\(440\) 0 0
\(441\) −1096.65 −2.48674
\(442\) −43.1377 + 84.6626i −0.0975967 + 0.191544i
\(443\) 7.34858 1.16390i 0.0165882 0.00262732i −0.148135 0.988967i \(-0.547327\pi\)
0.164723 + 0.986340i \(0.447327\pi\)
\(444\) 1.72445 + 2.37351i 0.00388390 + 0.00534573i
\(445\) 0 0
\(446\) −50.5920 + 155.706i −0.113435 + 0.349117i
\(447\) 455.487 + 72.1421i 1.01899 + 0.161392i
\(448\) −65.0380 + 10.3010i −0.145174 + 0.0229933i
\(449\) −175.258 + 56.9447i −0.390329 + 0.126826i −0.497605 0.867404i \(-0.665787\pi\)
0.107276 + 0.994229i \(0.465787\pi\)
\(450\) 0 0
\(451\) 479.490 + 39.5139i 1.06317 + 0.0876141i
\(452\) −245.087 245.087i −0.542229 0.542229i
\(453\) 469.082 + 239.009i 1.03550 + 0.527614i
\(454\) −0.705374 + 0.970864i −0.00155369 + 0.00213847i
\(455\) 0 0
\(456\) 194.560 598.793i 0.426666 1.31314i
\(457\) 209.215 106.600i 0.457800 0.233261i −0.209854 0.977733i \(-0.567299\pi\)
0.667654 + 0.744472i \(0.267299\pi\)
\(458\) −1.62042 + 10.2310i −0.00353804 + 0.0223383i
\(459\) 251.826 346.609i 0.548641 0.755139i
\(460\) 0 0
\(461\) −542.586 −1.17698 −0.588488 0.808506i \(-0.700277\pi\)
−0.588488 + 0.808506i \(0.700277\pi\)
\(462\) 11.0385 + 147.185i 0.0238928 + 0.318582i
\(463\) −48.2381 + 48.2381i −0.104186 + 0.104186i −0.757278 0.653092i \(-0.773471\pi\)
0.653092 + 0.757278i \(0.273471\pi\)
\(464\) 52.8090 17.1587i 0.113813 0.0369799i
\(465\) 0 0
\(466\) −396.388 + 287.993i −0.850619 + 0.618011i
\(467\) −559.339 + 284.997i −1.19773 + 0.610272i −0.935017 0.354602i \(-0.884616\pi\)
−0.262710 + 0.964875i \(0.584616\pi\)
\(468\) 479.934 + 941.924i 1.02550 + 2.01266i
\(469\) 82.9933 + 114.231i 0.176958 + 0.243562i
\(470\) 0 0
\(471\) 449.708 + 1384.06i 0.954794 + 2.93855i
\(472\) −13.0865 13.0865i −0.0277257 0.0277257i
\(473\) −72.4177 + 296.821i −0.153103 + 0.627529i
\(474\) 343.018i 0.723666i
\(475\) 0 0
\(476\) −20.2211 14.6915i −0.0424812 0.0308644i
\(477\) −134.801 21.3503i −0.282601 0.0447595i
\(478\) −153.477 301.216i −0.321082 0.630159i
\(479\) 553.115 + 179.718i 1.15473 + 0.375194i 0.822922 0.568154i \(-0.192342\pi\)
0.331806 + 0.943348i \(0.392342\pi\)
\(480\) 0 0
\(481\) 2.61951 + 1.90319i 0.00544598 + 0.00395673i
\(482\) −169.530 + 332.722i −0.351723 + 0.690295i
\(483\) −233.663 + 233.663i −0.483774 + 0.483774i
\(484\) 312.588 47.1518i 0.645844 0.0974210i
\(485\) 0 0
\(486\) 322.489 + 992.519i 0.663557 + 2.04222i
\(487\) 27.2780 + 172.226i 0.0560122 + 0.353647i 0.999737 + 0.0229166i \(0.00729520\pi\)
−0.943725 + 0.330731i \(0.892705\pi\)
\(488\) 143.305 904.789i 0.293657 1.85408i
\(489\) 1258.40 + 408.878i 2.57341 + 0.836152i
\(490\) 0 0
\(491\) −216.106 + 157.010i −0.440134 + 0.319776i −0.785688 0.618623i \(-0.787691\pi\)
0.345554 + 0.938399i \(0.387691\pi\)
\(492\) −103.174 651.418i −0.209704 1.32402i
\(493\) −187.932 95.7559i −0.381200 0.194231i
\(494\) 274.537i 0.555744i
\(495\) 0 0
\(496\) 15.6574 0.0315673
\(497\) 1.38764 2.72341i 0.00279204 0.00547969i
\(498\) −93.7890 + 14.8547i −0.188331 + 0.0298287i
\(499\) −552.387 760.296i −1.10699 1.52364i −0.825781 0.563991i \(-0.809265\pi\)
−0.281207 0.959647i \(-0.590735\pi\)
\(500\) 0 0
\(501\) 184.269 567.122i 0.367802 1.13198i
\(502\) −81.2608 12.8704i −0.161874 0.0256383i
\(503\) 511.045 80.9416i 1.01599 0.160918i 0.373840 0.927493i \(-0.378041\pi\)
0.642154 + 0.766576i \(0.278041\pi\)
\(504\) 355.472 115.500i 0.705301 0.229166i
\(505\) 0 0
\(506\) −284.895 245.144i −0.563034 0.484474i
\(507\) 440.642 + 440.642i 0.869116 + 0.869116i
\(508\) 136.866 + 69.7366i 0.269421 + 0.137277i
\(509\) 359.646 495.010i 0.706573 0.972515i −0.293291 0.956023i \(-0.594750\pi\)
0.999864 0.0164915i \(-0.00524964\pi\)
\(510\) 0 0
\(511\) −55.3186 + 170.253i −0.108256 + 0.333177i
\(512\) 72.5562 36.9692i 0.141711 0.0722055i
\(513\) −193.645 + 1222.62i −0.377475 + 2.38328i
\(514\) 199.951 275.208i 0.389009 0.535425i
\(515\) 0 0
\(516\) 418.834 0.811693
\(517\) −349.873 412.716i −0.676736 0.798291i
\(518\) 0.319825 0.319825i 0.000617423 0.000617423i
\(519\) −35.3733 + 11.4935i −0.0681566 + 0.0221454i
\(520\) 0 0
\(521\) −755.178 + 548.669i −1.44948 + 1.05311i −0.463526 + 0.886083i \(0.653416\pi\)
−0.985953 + 0.167025i \(0.946584\pi\)
\(522\) 1110.33 565.742i 2.12707 1.08380i
\(523\) −168.115 329.945i −0.321444 0.630870i 0.672581 0.740024i \(-0.265186\pi\)
−0.994025 + 0.109154i \(0.965186\pi\)
\(524\) −269.215 370.543i −0.513769 0.707143i
\(525\) 0 0
\(526\) 3.45898 + 10.6457i 0.00657601 + 0.0202389i
\(527\) −42.0554 42.0554i −0.0798016 0.0798016i
\(528\) −30.7284 74.9646i −0.0581977 0.141978i
\(529\) 312.462i 0.590666i
\(530\) 0 0
\(531\) 46.7383 + 33.9574i 0.0880194 + 0.0639498i
\(532\) 71.3275 + 11.2972i 0.134074 + 0.0212353i
\(533\) −330.459 648.562i −0.619997 1.21681i
\(534\) 521.512 + 169.450i 0.976615 + 0.317321i
\(535\) 0 0
\(536\) 450.794 + 327.521i 0.841033 + 0.611046i
\(537\) 223.802 439.236i 0.416763 0.817944i
\(538\) −87.3988 + 87.3988i −0.162451 + 0.162451i
\(539\) 482.865 114.047i 0.895853 0.211589i
\(540\) 0 0
\(541\) −135.828 418.036i −0.251069 0.772711i −0.994579 0.103986i \(-0.966840\pi\)
0.743510 0.668725i \(-0.233160\pi\)
\(542\) 17.3463 + 109.520i 0.0320043 + 0.202067i
\(543\) −144.817 + 914.338i −0.266698 + 1.68386i
\(544\) −150.556 48.9186i −0.276757 0.0899239i
\(545\) 0 0
\(546\) 180.659 131.257i 0.330878 0.240397i
\(547\) 8.50871 + 53.7219i 0.0155552 + 0.0982119i 0.994244 0.107135i \(-0.0341677\pi\)
−0.978689 + 0.205347i \(0.934168\pi\)
\(548\) −18.8478 9.60343i −0.0343938 0.0175245i
\(549\) 2859.58i 5.20871i
\(550\) 0 0
\(551\) 609.411 1.10601
\(552\) −592.035 + 1161.93i −1.07253 + 2.10495i
\(553\) −98.3564 + 15.5781i −0.177860 + 0.0281702i
\(554\) −160.127 220.397i −0.289039 0.397828i
\(555\) 0 0
\(556\) −109.810 + 337.960i −0.197500 + 0.607841i
\(557\) 518.636 + 82.1439i 0.931124 + 0.147476i 0.603527 0.797342i \(-0.293761\pi\)
0.327596 + 0.944818i \(0.393761\pi\)
\(558\) 347.064 54.9696i 0.621979 0.0985118i
\(559\) 439.621 142.841i 0.786442 0.255530i
\(560\) 0 0
\(561\) −118.817 + 283.889i −0.211796 + 0.506041i
\(562\) 238.552 + 238.552i 0.424470 + 0.424470i
\(563\) 678.778 + 345.855i 1.20565 + 0.614307i 0.937134 0.348970i \(-0.113468\pi\)
0.268511 + 0.963277i \(0.413468\pi\)
\(564\) −435.968 + 600.058i −0.772993 + 1.06393i
\(565\) 0 0
\(566\) −62.0303 + 190.910i −0.109594 + 0.337296i
\(567\) −512.316 + 261.038i −0.903556 + 0.460385i
\(568\) 1.88695 11.9137i 0.00332209 0.0209748i
\(569\) −522.049 + 718.539i −0.917485 + 1.26281i 0.0470600 + 0.998892i \(0.485015\pi\)
−0.964545 + 0.263918i \(0.914985\pi\)
\(570\) 0 0
\(571\) −943.557 −1.65246 −0.826232 0.563330i \(-0.809520\pi\)
−0.826232 + 0.563330i \(0.809520\pi\)
\(572\) −309.275 364.826i −0.540690 0.637808i
\(573\) 530.447 530.447i 0.925736 0.925736i
\(574\) −96.7032 + 31.4208i −0.168473 + 0.0547400i
\(575\) 0 0
\(576\) 656.260 476.801i 1.13934 0.827779i
\(577\) 116.315 59.2654i 0.201585 0.102713i −0.350284 0.936644i \(-0.613915\pi\)
0.551869 + 0.833931i \(0.313915\pi\)
\(578\) −141.977 278.646i −0.245635 0.482087i
\(579\) −1103.87 1519.35i −1.90651 2.62409i
\(580\) 0 0
\(581\) −8.51884 26.2183i −0.0146624 0.0451261i
\(582\) −522.342 522.342i −0.897494 0.897494i
\(583\) 61.5741 4.61789i 0.105616 0.00792091i
\(584\) 706.455i 1.20968i
\(585\) 0 0
\(586\) −259.198 188.318i −0.442317 0.321362i
\(587\) 620.273 + 98.2417i 1.05668 + 0.167362i 0.660513 0.750815i \(-0.270339\pi\)
0.396171 + 0.918177i \(0.370339\pi\)
\(588\) −308.781 606.017i −0.525138 1.03064i
\(589\) 163.431 + 53.1019i 0.277472 + 0.0901561i
\(590\) 0 0
\(591\) 27.8711 + 20.2496i 0.0471593 + 0.0342632i
\(592\) −0.112713 + 0.221212i −0.000190394 + 0.000373669i
\(593\) 543.917 543.917i 0.917229 0.917229i −0.0795984 0.996827i \(-0.525364\pi\)
0.996827 + 0.0795984i \(0.0253638\pi\)
\(594\) −594.763 978.636i −1.00128 1.64754i
\(595\) 0 0
\(596\) 64.5062 + 198.530i 0.108232 + 0.333103i
\(597\) 209.239 + 1321.08i 0.350484 + 2.21287i
\(598\) −88.9538 + 561.632i −0.148752 + 0.939184i
\(599\) −955.576 310.485i −1.59529 0.518340i −0.629350 0.777122i \(-0.716679\pi\)
−0.965936 + 0.258783i \(0.916679\pi\)
\(600\) 0 0
\(601\) −211.574 + 153.717i −0.352036 + 0.255769i −0.749723 0.661752i \(-0.769813\pi\)
0.397686 + 0.917521i \(0.369813\pi\)
\(602\) −10.1011 63.7758i −0.0167792 0.105940i
\(603\) −1549.80 789.663i −2.57015 1.30956i
\(604\) 238.303i 0.394542i
\(605\) 0 0
\(606\) 225.135 0.371509
\(607\) 413.211 810.971i 0.680742 1.33603i −0.249245 0.968440i \(-0.580183\pi\)
0.929987 0.367591i \(-0.119817\pi\)
\(608\) 451.754 71.5509i 0.743017 0.117682i
\(609\) 291.360 + 401.022i 0.478423 + 0.658493i
\(610\) 0 0
\(611\) −252.958 + 778.525i −0.414007 + 1.27418i
\(612\) 304.114 + 48.1670i 0.496919 + 0.0787042i
\(613\) −765.368 + 121.222i −1.24856 + 0.197753i −0.745504 0.666501i \(-0.767791\pi\)
−0.503057 + 0.864254i \(0.667791\pi\)
\(614\) −223.764 + 72.7052i −0.364436 + 0.118412i
\(615\) 0 0
\(616\) −144.506 + 87.8228i −0.234587 + 0.142570i
\(617\) 204.509 + 204.509i 0.331457 + 0.331457i 0.853140 0.521682i \(-0.174695\pi\)
−0.521682 + 0.853140i \(0.674695\pi\)
\(618\) 440.075 + 224.229i 0.712095 + 0.362831i
\(619\) 149.114 205.237i 0.240894 0.331563i −0.671402 0.741093i \(-0.734308\pi\)
0.912296 + 0.409531i \(0.134308\pi\)
\(620\) 0 0
\(621\) 792.293 2438.43i 1.27583 3.92661i
\(622\) −50.7894 + 25.8785i −0.0816550 + 0.0416053i
\(623\) −24.9033 + 157.233i −0.0399732 + 0.252381i
\(624\) −72.0479 + 99.1655i −0.115461 + 0.158919i
\(625\) 0 0
\(626\) −39.1586 −0.0625537
\(627\) −66.4994 886.691i −0.106060 1.41418i
\(628\) −465.796 + 465.796i −0.741714 + 0.741714i
\(629\) 0.896915 0.291425i 0.00142594 0.000463316i
\(630\) 0 0
\(631\) 884.455 642.594i 1.40167 1.01837i 0.407204 0.913337i \(-0.366504\pi\)
0.994468 0.105038i \(-0.0334963\pi\)
\(632\) −350.154 + 178.413i −0.554042 + 0.282298i
\(633\) −394.355 773.965i −0.622994 1.22269i
\(634\) −188.108 258.909i −0.296701 0.408374i
\(635\) 0 0
\(636\) −26.1571 80.5032i −0.0411275 0.126577i
\(637\) −530.786 530.786i −0.833259 0.833259i
\(638\) −430.054 + 364.570i −0.674066 + 0.571427i
\(639\) 37.6532i 0.0589253i
\(640\) 0 0
\(641\) −327.130 237.674i −0.510343 0.370786i 0.302610 0.953114i \(-0.402142\pi\)
−0.812954 + 0.582328i \(0.802142\pi\)
\(642\) 325.400 + 51.5383i 0.506853 + 0.0802777i
\(643\) −131.198 257.491i −0.204040 0.400452i 0.766198 0.642605i \(-0.222146\pi\)
−0.970238 + 0.242153i \(0.922146\pi\)
\(644\) −142.257 46.2221i −0.220896 0.0717735i
\(645\) 0 0
\(646\) −64.6906 47.0005i −0.100140 0.0727562i
\(647\) 228.056 447.585i 0.352482 0.691785i −0.644887 0.764278i \(-0.723096\pi\)
0.997369 + 0.0724932i \(0.0230955\pi\)
\(648\) −1604.49 + 1604.49i −2.47607 + 2.47607i
\(649\) −24.1107 10.0911i −0.0371505 0.0155488i
\(650\) 0 0
\(651\) 43.1928 + 132.934i 0.0663484 + 0.204199i
\(652\) 93.6929 + 591.554i 0.143701 + 0.907291i
\(653\) 121.449 766.801i 0.185987 1.17427i −0.701235 0.712930i \(-0.747368\pi\)
0.887222 0.461343i \(-0.152632\pi\)
\(654\) −982.479 319.227i −1.50226 0.488114i
\(655\) 0 0
\(656\) 45.1536 32.8060i 0.0688318 0.0500092i
\(657\) −344.979 2178.11i −0.525082 3.31524i
\(658\) 101.885 + 51.9132i 0.154841 + 0.0788954i
\(659\) 167.781i 0.254599i 0.991864 + 0.127299i \(0.0406309\pi\)
−0.991864 + 0.127299i \(0.959369\pi\)
\(660\) 0 0
\(661\) 6.21057 0.00939572 0.00469786 0.999989i \(-0.498505\pi\)
0.00469786 + 0.999989i \(0.498505\pi\)
\(662\) 61.2428 120.196i 0.0925119 0.181565i
\(663\) 459.875 72.8371i 0.693628 0.109860i
\(664\) −63.9459 88.0139i −0.0963040 0.132551i
\(665\) 0 0
\(666\) −1.72179 + 5.29913i −0.00258527 + 0.00795665i
\(667\) −1246.70 197.457i −1.86911 0.296038i
\(668\) 266.595 42.2246i 0.399095 0.0632104i
\(669\) 762.983 247.908i 1.14048 0.370565i
\(670\) 0 0
\(671\) −297.383 1259.10i −0.443193 1.87645i
\(672\) 263.068 + 263.068i 0.391471 + 0.391471i
\(673\) 735.139 + 374.572i 1.09233 + 0.556570i 0.904864 0.425701i \(-0.139972\pi\)
0.187467 + 0.982271i \(0.439972\pi\)
\(674\) 87.8330 120.892i 0.130316 0.179365i
\(675\) 0 0
\(676\) −87.1657 + 268.269i −0.128943 + 0.396847i
\(677\) −901.999 + 459.592i −1.33235 + 0.678865i −0.967658 0.252264i \(-0.918825\pi\)
−0.364689 + 0.931129i \(0.618825\pi\)
\(678\) 141.093 890.828i 0.208102 1.31391i
\(679\) 126.053 173.498i 0.185646 0.255519i
\(680\) 0 0
\(681\) 5.88044 0.00863501
\(682\) −147.099 + 60.2966i −0.215687 + 0.0884114i
\(683\) 229.153 229.153i 0.335510 0.335510i −0.519164 0.854674i \(-0.673757\pi\)
0.854674 + 0.519164i \(0.173757\pi\)
\(684\) −846.086 + 274.910i −1.23697 + 0.401915i
\(685\) 0 0
\(686\) −176.989 + 128.590i −0.258002 + 0.187449i
\(687\) 45.2258 23.0437i 0.0658309 0.0335425i
\(688\) 16.0910 + 31.5804i 0.0233881 + 0.0459017i
\(689\) −54.9106 75.5779i −0.0796960 0.109692i
\(690\) 0 0
\(691\) −74.3036 228.683i −0.107531 0.330945i 0.882786 0.469776i \(-0.155665\pi\)
−0.990316 + 0.138831i \(0.955665\pi\)
\(692\) −11.9047 11.9047i −0.0172033 0.0172033i
\(693\) 402.647 341.337i 0.581021 0.492549i
\(694\) 177.328i 0.255516i
\(695\) 0 0
\(696\) 1582.57 + 1149.81i 2.27381 + 1.65202i
\(697\) −209.398 33.1654i −0.300427 0.0475830i
\(698\) −186.784 366.583i −0.267598 0.525191i
\(699\) 2283.39 + 741.917i 3.26665 + 1.06140i
\(700\) 0 0
\(701\) 198.550 + 144.255i 0.283238 + 0.205785i 0.720329 0.693633i \(-0.243991\pi\)
−0.437090 + 0.899418i \(0.643991\pi\)
\(702\) −786.588 + 1543.77i −1.12050 + 2.19910i
\(703\) −1.92673 + 1.92673i −0.00274073 + 0.00274073i
\(704\) −239.372 + 278.187i −0.340017 + 0.395152i
\(705\) 0 0
\(706\) −186.626 574.375i −0.264342 0.813562i
\(707\) 10.2245 + 64.5548i 0.0144618 + 0.0913081i
\(708\) −5.60509 + 35.3892i −0.00791680 + 0.0499847i
\(709\) −853.145 277.204i −1.20331 0.390979i −0.362331 0.932049i \(-0.618019\pi\)
−0.840977 + 0.541071i \(0.818019\pi\)
\(710\) 0 0
\(711\) 992.456 721.062i 1.39586 1.01415i
\(712\) 98.2772 + 620.498i 0.138030 + 0.871486i
\(713\) −317.131 161.587i −0.444785 0.226629i
\(714\) 65.0406i 0.0910933i
\(715\) 0 0
\(716\) 223.141 0.311649
\(717\) −752.061 + 1476.00i −1.04890 + 2.05858i
\(718\) −565.928 + 89.6341i −0.788200 + 0.124839i
\(719\) −119.555 164.554i −0.166280 0.228865i 0.717743 0.696308i \(-0.245175\pi\)
−0.884023 + 0.467443i \(0.845175\pi\)
\(720\) 0 0
\(721\) −44.3092 + 136.370i −0.0614552 + 0.189140i
\(722\) −191.790 30.3766i −0.265638 0.0420729i
\(723\) 1807.30 286.248i 2.49972 0.395917i
\(724\) −398.525 + 129.489i −0.550449 + 0.178852i
\(725\) 0 0
\(726\) 577.377 + 585.945i 0.795284 + 0.807087i
\(727\) −373.051 373.051i −0.513137 0.513137i 0.402349 0.915486i \(-0.368194\pi\)
−0.915486 + 0.402349i \(0.868194\pi\)
\(728\) 227.953 + 116.148i 0.313122 + 0.159544i
\(729\) 1464.67 2015.94i 2.00915 2.76535i
\(730\) 0 0
\(731\) 41.6041 128.044i 0.0569140 0.175163i
\(732\) −1580.22 + 805.164i −2.15878 + 1.09995i
\(733\) 79.5625 502.338i 0.108544 0.685318i −0.872072 0.489377i \(-0.837224\pi\)
0.980616 0.195940i \(-0.0627759\pi\)
\(734\) 6.60676 9.09342i 0.00900103 0.0123889i
\(735\) 0 0
\(736\) −947.355 −1.28717
\(737\) 764.512 + 186.523i 1.03733 + 0.253085i
\(738\) 885.708 885.708i 1.20015 1.20015i
\(739\) 334.582 108.712i 0.452750 0.147107i −0.0737605 0.997276i \(-0.523500\pi\)
0.526511 + 0.850169i \(0.323500\pi\)
\(740\) 0 0
\(741\) −1088.35 + 790.733i −1.46876 + 1.06712i
\(742\) −11.6274 + 5.92445i −0.0156703 + 0.00798444i
\(743\) 523.897 + 1028.21i 0.705110 + 1.38386i 0.913918 + 0.405900i \(0.133042\pi\)
−0.208807 + 0.977957i \(0.566958\pi\)
\(744\) 324.223 + 446.254i 0.435783 + 0.599804i
\(745\) 0 0
\(746\) 138.215 + 425.383i 0.185275 + 0.570218i
\(747\) 240.134 + 240.134i 0.321465 + 0.321465i
\(748\) −138.913 + 10.4181i −0.185713 + 0.0139280i
\(749\) 95.6453i 0.127697i
\(750\) 0 0
\(751\) −199.691 145.084i −0.265900 0.193188i 0.446844 0.894612i \(-0.352548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(752\) −61.9942 9.81892i −0.0824391 0.0130571i
\(753\) 183.028 + 359.213i 0.243065 + 0.477042i
\(754\) 811.230 + 263.585i 1.07590 + 0.349582i
\(755\) 0 0
\(756\) −368.718 267.889i −0.487722 0.354351i
\(757\) −526.866 + 1034.03i −0.695992 + 1.36596i 0.224220 + 0.974539i \(0.428017\pi\)
−0.920211 + 0.391422i \(0.871983\pi\)
\(758\) 288.232 288.232i 0.380253 0.380253i
\(759\) −151.259 + 1835.48i −0.199287 + 2.41829i
\(760\) 0 0
\(761\) 160.769 + 494.797i 0.211260 + 0.650193i 0.999398 + 0.0346936i \(0.0110455\pi\)
−0.788138 + 0.615499i \(0.788954\pi\)
\(762\) 62.5295 + 394.796i 0.0820597 + 0.518104i
\(763\) 46.9154 296.212i 0.0614881 0.388221i
\(764\) 322.943 + 104.930i 0.422700 + 0.137344i
\(765\) 0 0
\(766\) 83.4131 60.6031i 0.108894 0.0791164i
\(767\) 6.18605 + 39.0572i 0.00806525 + 0.0509220i
\(768\) 1239.58 + 631.596i 1.61403 + 0.822390i
\(769\) 801.838i 1.04270i −0.853342 0.521351i \(-0.825428\pi\)
0.853342 0.521351i \(-0.174572\pi\)
\(770\) 0 0
\(771\) −1666.92 −2.16202
\(772\) 385.930 757.431i 0.499910 0.981129i
\(773\) −686.852 + 108.787i −0.888553 + 0.140733i −0.583992 0.811760i \(-0.698510\pi\)
−0.304561 + 0.952493i \(0.598510\pi\)
\(774\) 467.548 + 643.524i 0.604067 + 0.831426i
\(775\) 0 0
\(776\) 261.525 804.893i 0.337017 1.03723i
\(777\) −2.18906 0.346712i −0.00281732 0.000446219i
\(778\) −487.006 + 77.1342i −0.625972 + 0.0991443i
\(779\) 582.572 189.289i 0.747846 0.242990i
\(780\) 0 0
\(781\) −3.91576 16.5790i −0.00501377 0.0212280i
\(782\) 117.111 + 117.111i 0.149759 + 0.149759i
\(783\) −3426.81 1746.05i −4.37651 2.22994i
\(784\) 33.8312 46.5647i 0.0431521 0.0593938i
\(785\) 0 0
\(786\) 368.300 1133.51i 0.468574 1.44212i
\(787\) −134.719 + 68.6427i −0.171180 + 0.0872207i −0.537481 0.843276i \(-0.680624\pi\)
0.366301 + 0.930496i \(0.380624\pi\)
\(788\) −2.43945 + 15.4021i −0.00309575 + 0.0195458i
\(789\) 32.2399 44.3745i 0.0408618 0.0562414i
\(790\) 0 0
\(791\) 261.843 0.331027
\(792\) 1094.96 1772.13i 1.38253 2.23754i
\(793\) −1384.05 + 1384.05i −1.74534 + 1.74534i
\(794\) 688.900 223.837i 0.867632 0.281911i
\(795\) 0 0
\(796\) −489.813 + 355.870i −0.615343 + 0.447073i
\(797\) 1099.39 560.165i 1.37941 0.702842i 0.402282 0.915516i \(-0.368217\pi\)
0.977123 + 0.212674i \(0.0682172\pi\)
\(798\) 85.3144 + 167.439i 0.106910 + 0.209823i
\(799\) 140.142 + 192.888i 0.175396 + 0.241412i
\(800\) 0 0
\(801\) −606.007 1865.10i −0.756563 2.32846i
\(802\) −448.542 448.542i −0.559279 0.559279i
\(803\) 378.410 + 923.164i 0.471245 + 1.14964i
\(804\) 1078.77i 1.34176i
\(805\) 0 0
\(806\) 194.587 + 141.376i 0.241423 + 0.175404i
\(807\) 598.205 + 94.7463i 0.741270 + 0.117406i
\(808\) 117.098 + 229.819i 0.144924 + 0.284429i
\(809\) −896.054 291.145i −1.10761 0.359883i −0.302581 0.953124i \(-0.597848\pi\)
−0.805025 + 0.593241i \(0.797848\pi\)
\(810\) 0 0
\(811\) 972.098 + 706.271i 1.19864 + 0.870864i 0.994150 0.108005i \(-0.0344461\pi\)
0.204491 + 0.978868i \(0.434446\pi\)
\(812\) −101.864 + 199.919i −0.125448 + 0.246206i
\(813\) 384.211 384.211i 0.472584 0.472584i
\(814\) 0.207035 2.51231i 0.000254343 0.00308637i
\(815\) 0 0
\(816\) 11.0323 + 33.9540i 0.0135200 + 0.0416103i
\(817\) 60.8524 + 384.207i 0.0744827 + 0.470265i
\(818\) −0.440097 + 2.77866i −0.000538015 + 0.00339690i
\(819\) −759.532 246.787i −0.927389 0.301327i
\(820\) 0 0
\(821\) 805.110 584.947i 0.980645 0.712481i 0.0227926 0.999740i \(-0.492744\pi\)
0.957853 + 0.287260i \(0.0927443\pi\)
\(822\) −8.61093 54.3673i −0.0104756 0.0661403i
\(823\) 161.842 + 82.4626i 0.196649 + 0.100198i 0.549542 0.835466i \(-0.314802\pi\)
−0.352893 + 0.935664i \(0.614802\pi\)
\(824\) 565.858i 0.686721i
\(825\) 0 0
\(826\) 5.52389 0.00668752
\(827\) 541.252 1062.27i 0.654477 1.28448i −0.290352 0.956920i \(-0.593772\pi\)
0.944829 0.327564i \(-0.106228\pi\)
\(828\) 1819.95 288.251i 2.19800 0.348129i
\(829\) −529.845 729.269i −0.639137 0.879697i 0.359432 0.933171i \(-0.382970\pi\)
−0.998569 + 0.0534743i \(0.982970\pi\)
\(830\) 0 0
\(831\) −412.514 + 1269.59i −0.496407 + 1.52778i
\(832\) 548.408 + 86.8593i 0.659144 + 0.104398i
\(833\) −215.942 + 34.2018i −0.259234 + 0.0410586i
\(834\) −879.434 + 285.745i −1.05448 + 0.342620i
\(835\) 0 0
\(836\) 343.949 209.034i 0.411423 0.250041i
\(837\) −766.853 766.853i −0.916192 0.916192i
\(838\) 247.546 + 126.131i 0.295401 + 0.150514i
\(839\) −588.099 + 809.448i −0.700952 + 0.964778i 0.298993 + 0.954255i \(0.403349\pi\)
−0.999945 + 0.0105222i \(0.996651\pi\)
\(840\) 0 0
\(841\) −325.214 + 1000.91i −0.386700 + 1.19014i
\(842\) −638.681 + 325.424i −0.758528 + 0.386489i
\(843\) 258.607 1632.78i 0.306770 1.93687i
\(844\) 231.112 318.098i 0.273829 0.376893i
\(845\) 0 0
\(846\) −1408.65 −1.66507
\(847\) −141.792 + 192.167i −0.167404 + 0.226879i
\(848\) 5.06509 5.06509i 0.00597298 0.00597298i
\(849\) 935.487 303.958i 1.10187 0.358019i
\(850\) 0 0
\(851\) 4.56588 3.31730i 0.00536531 0.00389812i
\(852\) −20.8074 + 10.6019i −0.0244219 + 0.0124436i
\(853\) 42.5561 + 83.5210i 0.0498899 + 0.0979145i 0.914605 0.404347i \(-0.132501\pi\)
−0.864716 + 0.502262i \(0.832501\pi\)
\(854\) 160.713 + 221.203i 0.188189 + 0.259019i
\(855\) 0 0
\(856\) 116.638 + 358.976i 0.136260 + 0.419365i
\(857\) 521.312 + 521.312i 0.608299 + 0.608299i 0.942501 0.334202i \(-0.108467\pi\)
−0.334202 + 0.942501i \(0.608467\pi\)
\(858\) 294.993 1209.10i 0.343814 1.40921i
\(859\) 385.080i 0.448289i 0.974556 + 0.224144i \(0.0719587\pi\)
−0.974556 + 0.224144i \(0.928041\pi\)
\(860\) 0 0
\(861\) 403.090 + 292.862i 0.468165 + 0.340142i
\(862\) 473.500 + 74.9951i 0.549304 + 0.0870013i
\(863\) 318.523 + 625.137i 0.369088 + 0.724377i 0.998616 0.0526018i \(-0.0167514\pi\)
−0.629527 + 0.776978i \(0.716751\pi\)
\(864\) −2745.29 891.998i −3.17742 1.03241i
\(865\) 0 0
\(866\) 490.498 + 356.368i 0.566395 + 0.411510i
\(867\) −695.710 + 1365.41i −0.802434 + 1.57487i
\(868\) −44.7380 + 44.7380i −0.0515415 + 0.0515415i
\(869\) −362.000 + 420.700i −0.416570 + 0.484120i
\(870\) 0 0
\(871\) −367.911 1132.32i −0.422401 1.30002i
\(872\) −185.145 1168.96i −0.212322 1.34055i
\(873\) −413.275 + 2609.32i −0.473396 + 2.98891i
\(874\) −455.105 147.872i −0.520715 0.169190i
\(875\) 0 0
\(876\) 1106.50 803.922i 1.26313 0.917719i
\(877\) −155.228 980.068i −0.176998 1.11752i −0.902940 0.429767i \(-0.858596\pi\)
0.725941 0.687756i \(-0.241404\pi\)
\(878\) 369.488 + 188.264i 0.420829 + 0.214423i
\(879\) 1569.94i 1.78605i
\(880\) 0 0
\(881\) 1602.32 1.81875 0.909376 0.415974i \(-0.136559\pi\)
0.909376 + 0.415974i \(0.136559\pi\)
\(882\) 586.430 1150.93i 0.664887 1.30491i
\(883\) −378.831 + 60.0009i −0.429027 + 0.0679512i −0.367214 0.930137i \(-0.619688\pi\)
−0.0618131 + 0.998088i \(0.519688\pi\)
\(884\) 123.880 + 170.506i 0.140136 + 0.192880i
\(885\) 0 0
\(886\) −2.70811 + 8.33471i −0.00305656 + 0.00940713i
\(887\) 824.162 + 130.534i 0.929157 + 0.147164i 0.602627 0.798023i \(-0.294121\pi\)
0.326530 + 0.945187i \(0.394121\pi\)
\(888\) −8.63878 + 1.36825i −0.00972836 + 0.00154082i
\(889\) −110.363 + 35.8592i −0.124143 + 0.0403366i
\(890\) 0 0
\(891\) −1237.24 + 2956.12i −1.38860 + 3.31775i
\(892\) 256.777 + 256.777i 0.287867 + 0.287867i
\(893\) −613.791 312.742i −0.687336 0.350215i
\(894\) −319.283 + 439.455i −0.357140 + 0.491561i
\(895\) 0 0
\(896\) −55.7058 + 171.445i −0.0621717 + 0.191345i
\(897\) 2482.69 1264.99i 2.76777 1.41025i
\(898\) 33.9550 214.384i 0.0378118 0.238734i
\(899\) −313.822 + 431.938i −0.349078 + 0.480465i
\(900\) 0 0
\(901\) −27.2094 −0.0301991
\(902\) −297.875 + 482.094i −0.330238 + 0.534472i
\(903\) −223.733 + 223.733i −0.247767 + 0.247767i
\(904\) 982.748 319.314i 1.08711 0.353224i
\(905\) 0 0
\(906\) −501.679 + 364.491i −0.553730 + 0.402308i
\(907\) −379.145 + 193.184i −0.418021 + 0.212992i −0.650333 0.759649i \(-0.725371\pi\)
0.232313 + 0.972641i \(0.425371\pi\)
\(908\) 1.20842 + 2.37167i 0.00133086 + 0.00261197i
\(909\) −473.258 651.384i −0.520636 0.716594i
\(910\) 0 0
\(911\) −488.370 1503.05i −0.536081 1.64989i −0.741301 0.671173i \(-0.765791\pi\)
0.205219 0.978716i \(-0.434209\pi\)
\(912\) −72.9392 72.9392i −0.0799772 0.0799772i
\(913\) −130.706 80.7603i −0.143161 0.0884559i
\(914\) 276.574i 0.302598i
\(915\) 0 0
\(916\) 18.5877 + 13.5048i 0.0202923 + 0.0147432i
\(917\) 341.747 + 54.1274i 0.372680 + 0.0590266i
\(918\) 229.102 + 449.639i 0.249567 + 0.489802i
\(919\) 19.2879 + 6.26701i 0.0209879 + 0.00681938i 0.319492 0.947589i \(-0.396488\pi\)
−0.298504 + 0.954408i \(0.596488\pi\)
\(920\) 0 0
\(921\) 932.718 + 677.660i 1.01272 + 0.735787i
\(922\) 290.146 569.443i 0.314692 0.617617i
\(923\) −18.2244 + 18.2244i −0.0197447 + 0.0197447i
\(924\) 301.997 + 126.396i 0.326837 + 0.136793i
\(925\) 0 0
\(926\) −24.8307 76.4210i −0.0268150 0.0825281i
\(927\) −276.322 1744.63i −0.298082 1.88201i
\(928\) −222.306 + 1403.58i −0.239554 + 1.51248i
\(929\) −640.531 208.121i −0.689484 0.224027i −0.0567411 0.998389i \(-0.518071\pi\)
−0.632743 + 0.774362i \(0.718071\pi\)
\(930\) 0 0
\(931\) 511.052 371.301i 0.548928 0.398820i
\(932\) 170.007 + 1073.38i 0.182411 + 1.15170i
\(933\) 248.876 + 126.809i 0.266748 + 0.135915i
\(934\) 739.426i 0.791677i
\(935\) 0 0
\(936\) −3151.63 −3.36713
\(937\) −131.549 + 258.180i −0.140394 + 0.275539i −0.950488 0.310761i \(-0.899416\pi\)
0.810094 + 0.586300i \(0.199416\pi\)
\(938\) −164.265 + 26.0170i −0.175123 + 0.0277367i
\(939\) 112.786 + 155.237i 0.120113 + 0.165321i
\(940\) 0 0
\(941\) −1.31431 + 4.04503i −0.00139672 + 0.00429865i −0.951752 0.306867i \(-0.900719\pi\)
0.950356 + 0.311166i \(0.100719\pi\)
\(942\) −1693.05 268.152i −1.79729 0.284663i
\(943\) −1253.12 + 198.475i −1.32887 + 0.210472i
\(944\) −2.88371 + 0.936975i −0.00305478 + 0.000992558i
\(945\) 0 0
\(946\) −272.788 234.726i −0.288360 0.248125i
\(947\) 779.521 + 779.521i 0.823148 + 0.823148i 0.986558 0.163410i \(-0.0522495\pi\)
−0.163410 + 0.986558i \(0.552249\pi\)
\(948\) 677.906 + 345.411i 0.715091 + 0.364357i
\(949\) 887.246 1221.19i 0.934928 1.28682i
\(950\) 0 0
\(951\) −484.598 + 1491.44i −0.509567 + 1.56828i
\(952\) 66.3938 33.8293i 0.0697413 0.0355350i
\(953\) 90.4385 571.006i 0.0948987 0.599167i −0.893708 0.448648i \(-0.851906\pi\)
0.988607 0.150519i \(-0.0480944\pi\)
\(954\) 94.4911 130.056i 0.0990473 0.136327i
\(955\) 0 0
\(956\) −749.841 −0.784352
\(957\) 2683.93 + 654.817i 2.80452 + 0.684239i
\(958\) −484.389 + 484.389i −0.505626 + 0.505626i
\(959\) 15.1981 4.93817i 0.0158479 0.00514930i
\(960\) 0 0
\(961\) 655.667 476.370i 0.682276 0.495703i
\(962\) −3.39817 + 1.73145i −0.00353240 + 0.00179985i
\(963\) −534.910 1049.82i −0.555463 1.09016i
\(964\) 486.846 + 670.086i 0.505027 + 0.695110i
\(965\) 0 0
\(966\) −120.279 370.179i −0.124512 0.383208i
\(967\) −115.321 115.321i −0.119256 0.119256i 0.644960 0.764216i \(-0.276874\pi\)
−0.764216 + 0.644960i \(0.776874\pi\)
\(968\) −297.827 + 894.154i −0.307672 + 0.923713i
\(969\) 391.826i 0.404361i
\(970\) 0 0
\(971\) −305.877 222.233i −0.315012 0.228870i 0.419032 0.907971i \(-0.362370\pi\)
−0.734044 + 0.679102i \(0.762370\pi\)
\(972\) 2286.25 + 362.107i 2.35211 + 0.372538i
\(973\) −121.874 239.190i −0.125256 0.245828i
\(974\) −195.338 63.4691i −0.200552 0.0651634i
\(975\) 0 0
\(976\) −121.420 88.2169i −0.124406 0.0903861i
\(977\) −86.3306 + 169.433i −0.0883629 + 0.173422i −0.930959 0.365125i \(-0.881026\pi\)
0.842596 + 0.538547i \(0.181026\pi\)
\(978\) −1102.04 + 1102.04i −1.12683 + 1.12683i
\(979\) 460.791 + 758.196i 0.470675 + 0.774460i
\(980\) 0 0
\(981\) 1141.66 + 3513.66i 1.16377 + 3.58172i
\(982\) −49.2201 310.763i −0.0501223 0.316460i
\(983\) 195.147 1232.11i 0.198522 1.25342i −0.664129 0.747618i \(-0.731198\pi\)
0.862651 0.505799i \(-0.168802\pi\)
\(984\) 1870.02 + 607.606i 1.90043 + 0.617486i
\(985\) 0 0
\(986\) 200.991 146.029i 0.203845 0.148102i
\(987\) −87.6542 553.427i −0.0888087 0.560716i
\(988\) −542.569 276.453i −0.549159 0.279810i
\(989\) 805.704i 0.814665i
\(990\) 0 0
\(991\) 1692.83 1.70821 0.854103 0.520104i \(-0.174107\pi\)
0.854103 + 0.520104i \(0.174107\pi\)
\(992\) −181.921 + 357.041i −0.183388 + 0.359920i
\(993\) −652.887 + 103.407i −0.657490 + 0.104136i
\(994\) 2.11617 + 2.91266i 0.00212895 + 0.00293024i
\(995\) 0 0
\(996\) −65.0858 + 200.314i −0.0653472 + 0.201118i
\(997\) −1170.11 185.327i −1.17363 0.185885i −0.460983 0.887409i \(-0.652503\pi\)
−0.712646 + 0.701524i \(0.752503\pi\)
\(998\) 1093.32 173.164i 1.09551 0.173511i
\(999\) 16.3547 5.31395i 0.0163710 0.00531927i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.6 128
5.2 odd 4 inner 275.3.bk.c.93.6 yes 128
5.3 odd 4 inner 275.3.bk.c.93.11 yes 128
5.4 even 2 inner 275.3.bk.c.82.11 yes 128
11.9 even 5 inner 275.3.bk.c.207.11 yes 128
55.9 even 10 inner 275.3.bk.c.207.6 yes 128
55.42 odd 20 inner 275.3.bk.c.218.11 yes 128
55.53 odd 20 inner 275.3.bk.c.218.6 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.6 128 1.1 even 1 trivial
275.3.bk.c.82.11 yes 128 5.4 even 2 inner
275.3.bk.c.93.6 yes 128 5.2 odd 4 inner
275.3.bk.c.93.11 yes 128 5.3 odd 4 inner
275.3.bk.c.207.6 yes 128 55.9 even 10 inner
275.3.bk.c.207.11 yes 128 11.9 even 5 inner
275.3.bk.c.218.6 yes 128 55.53 odd 20 inner
275.3.bk.c.218.11 yes 128 55.42 odd 20 inner