Properties

Label 275.3.bk.c.82.11
Level $275$
Weight $3$
Character 275.82
Analytic conductor $7.493$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(82,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.bk (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 82.11
Character \(\chi\) \(=\) 275.82
Dual form 275.3.bk.c.218.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.534746 - 1.04950i) q^{2} +(-5.70073 + 0.902907i) q^{3} +(1.53565 + 2.11364i) q^{4} +(-2.10084 + 6.46573i) q^{6} +(1.94938 + 0.308752i) q^{7} +(7.69295 - 1.21844i) q^{8} +(23.1236 - 7.51330i) q^{9} +(-9.40014 + 5.71291i) q^{11} +(-10.6627 - 10.6627i) q^{12} +(-14.8284 - 7.55546i) q^{13} +(1.36646 - 1.88077i) q^{14} +(-0.394331 + 1.21363i) q^{16} +(-4.31894 + 2.20061i) q^{17} +(4.48004 - 28.2858i) q^{18} +(-8.23200 + 11.3304i) q^{19} -11.3917 q^{21} +(0.968994 + 12.9204i) q^{22} +(-20.5117 + 20.5117i) q^{23} +(-42.7553 + 13.8920i) q^{24} +(-15.8589 + 11.5221i) q^{26} +(-78.7530 + 40.1266i) q^{27} +(2.34098 + 4.59443i) q^{28} +(-25.5765 - 35.2031i) q^{29} +(-3.79161 - 11.6694i) q^{31} +(23.0930 + 23.0930i) q^{32} +(48.4294 - 41.0552i) q^{33} +5.70948i q^{34} +(51.3900 + 37.3370i) q^{36} +(-0.192163 - 0.0304356i) q^{37} +(7.48918 + 14.6984i) q^{38} +(91.3546 + 29.6829i) q^{39} +(-35.3846 - 25.7084i) q^{41} +(-6.09166 + 11.9555i) q^{42} +(-19.6401 + 19.6401i) q^{43} +(-26.5103 - 11.0955i) q^{44} +(10.5585 + 32.4956i) q^{46} +(-7.69458 - 48.5817i) q^{47} +(1.15218 - 7.27460i) q^{48} +(-42.8970 - 13.9381i) q^{49} +(22.6341 - 16.4447i) q^{51} +(-6.80173 - 42.9444i) q^{52} +(5.00155 + 2.54841i) q^{53} +104.109i q^{54} +15.3727 q^{56} +(36.6981 - 72.0242i) q^{57} +(-50.6225 + 8.01782i) q^{58} +(1.39664 + 1.92231i) q^{59} +(-36.3443 + 111.856i) q^{61} +(-14.2745 - 2.26086i) q^{62} +(47.3964 - 7.50685i) q^{63} +(31.7305 - 10.3099i) q^{64} +(-17.1899 - 72.7807i) q^{66} +(50.5862 + 50.5862i) q^{67} +(-11.2837 - 5.74931i) q^{68} +(98.4116 - 135.452i) q^{69} +(-0.478560 + 1.47286i) q^{71} +(168.734 - 85.9742i) q^{72} +(-14.1887 + 89.5842i) q^{73} +(-0.134700 + 0.185399i) q^{74} -36.5898 q^{76} +(-20.0884 + 8.23433i) q^{77} +(80.0037 - 80.0037i) q^{78} +(47.9857 - 15.5915i) q^{79} +(235.688 - 171.237i) q^{81} +(-45.9027 + 23.3886i) q^{82} +(-6.34114 - 12.4452i) q^{83} +(-17.4936 - 24.0779i) q^{84} +(10.1098 + 31.1147i) q^{86} +(177.590 + 177.590i) q^{87} +(-65.3540 + 55.4026i) q^{88} -80.6579i q^{89} +(-26.5735 - 19.3068i) q^{91} +(-74.8532 - 11.8556i) q^{92} +(32.1513 + 63.1004i) q^{93} +(-55.1010 - 17.9034i) q^{94} +(-152.498 - 110.796i) q^{96} +(49.3293 - 96.8143i) q^{97} +(-37.5670 + 37.5670i) q^{98} +(-174.442 + 202.729i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 48 q^{6} + 32 q^{11} + 280 q^{16} - 8 q^{21} + 528 q^{26} - 16 q^{31} + 336 q^{36} - 604 q^{41} - 1152 q^{46} - 1024 q^{51} - 992 q^{56} - 320 q^{61} + 1624 q^{66} + 536 q^{71} + 1776 q^{76} + 3680 q^{81}+ \cdots - 6584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.534746 1.04950i 0.267373 0.524749i −0.717813 0.696235i \(-0.754857\pi\)
0.985186 + 0.171486i \(0.0548570\pi\)
\(3\) −5.70073 + 0.902907i −1.90024 + 0.300969i −0.992855 0.119326i \(-0.961927\pi\)
−0.907388 + 0.420295i \(0.861927\pi\)
\(4\) 1.53565 + 2.11364i 0.383912 + 0.528410i
\(5\) 0 0
\(6\) −2.10084 + 6.46573i −0.350140 + 1.07762i
\(7\) 1.94938 + 0.308752i 0.278483 + 0.0441074i 0.294114 0.955770i \(-0.404976\pi\)
−0.0156304 + 0.999878i \(0.504976\pi\)
\(8\) 7.69295 1.21844i 0.961619 0.152305i
\(9\) 23.1236 7.51330i 2.56928 0.834811i
\(10\) 0 0
\(11\) −9.40014 + 5.71291i −0.854559 + 0.519355i
\(12\) −10.6627 10.6627i −0.888561 0.888561i
\(13\) −14.8284 7.55546i −1.14065 0.581189i −0.221523 0.975155i \(-0.571103\pi\)
−0.919125 + 0.393966i \(0.871103\pi\)
\(14\) 1.36646 1.88077i 0.0976043 0.134341i
\(15\) 0 0
\(16\) −0.394331 + 1.21363i −0.0246457 + 0.0758516i
\(17\) −4.31894 + 2.20061i −0.254055 + 0.129448i −0.576381 0.817181i \(-0.695535\pi\)
0.322326 + 0.946629i \(0.395535\pi\)
\(18\) 4.48004 28.2858i 0.248891 1.57144i
\(19\) −8.23200 + 11.3304i −0.433263 + 0.596336i −0.968698 0.248240i \(-0.920148\pi\)
0.535435 + 0.844576i \(0.320148\pi\)
\(20\) 0 0
\(21\) −11.3917 −0.542461
\(22\) 0.968994 + 12.9204i 0.0440452 + 0.587290i
\(23\) −20.5117 + 20.5117i −0.891814 + 0.891814i −0.994694 0.102879i \(-0.967194\pi\)
0.102879 + 0.994694i \(0.467194\pi\)
\(24\) −42.7553 + 13.8920i −1.78147 + 0.578835i
\(25\) 0 0
\(26\) −15.8589 + 11.5221i −0.609957 + 0.443159i
\(27\) −78.7530 + 40.1266i −2.91678 + 1.48617i
\(28\) 2.34098 + 4.59443i 0.0836063 + 0.164087i
\(29\) −25.5765 35.2031i −0.881949 1.21390i −0.975877 0.218320i \(-0.929942\pi\)
0.0939277 0.995579i \(-0.470058\pi\)
\(30\) 0 0
\(31\) −3.79161 11.6694i −0.122310 0.376431i 0.871091 0.491121i \(-0.163413\pi\)
−0.993401 + 0.114690i \(0.963413\pi\)
\(32\) 23.0930 + 23.0930i 0.721657 + 0.721657i
\(33\) 48.4294 41.0552i 1.46756 1.24410i
\(34\) 5.70948i 0.167926i
\(35\) 0 0
\(36\) 51.3900 + 37.3370i 1.42750 + 1.03714i
\(37\) −0.192163 0.0304356i −0.00519359 0.000822583i 0.153837 0.988096i \(-0.450837\pi\)
−0.159031 + 0.987274i \(0.550837\pi\)
\(38\) 7.48918 + 14.6984i 0.197084 + 0.386799i
\(39\) 91.3546 + 29.6829i 2.34243 + 0.761101i
\(40\) 0 0
\(41\) −35.3846 25.7084i −0.863039 0.627034i 0.0656713 0.997841i \(-0.479081\pi\)
−0.928710 + 0.370807i \(0.879081\pi\)
\(42\) −6.09166 + 11.9555i −0.145039 + 0.284656i
\(43\) −19.6401 + 19.6401i −0.456746 + 0.456746i −0.897586 0.440840i \(-0.854681\pi\)
0.440840 + 0.897586i \(0.354681\pi\)
\(44\) −26.5103 11.0955i −0.602507 0.252170i
\(45\) 0 0
\(46\) 10.5585 + 32.4956i 0.229532 + 0.706426i
\(47\) −7.69458 48.5817i −0.163714 1.03365i −0.923533 0.383518i \(-0.874712\pi\)
0.759819 0.650135i \(-0.225288\pi\)
\(48\) 1.15218 7.27460i 0.0240038 0.151554i
\(49\) −42.8970 13.9381i −0.875449 0.284451i
\(50\) 0 0
\(51\) 22.6341 16.4447i 0.443807 0.322444i
\(52\) −6.80173 42.9444i −0.130802 0.825854i
\(53\) 5.00155 + 2.54841i 0.0943688 + 0.0480833i 0.500538 0.865715i \(-0.333136\pi\)
−0.406169 + 0.913798i \(0.633136\pi\)
\(54\) 104.109i 1.92794i
\(55\) 0 0
\(56\) 15.3727 0.274513
\(57\) 36.6981 72.0242i 0.643827 1.26358i
\(58\) −50.6225 + 8.01782i −0.872802 + 0.138238i
\(59\) 1.39664 + 1.92231i 0.0236719 + 0.0325816i 0.820689 0.571375i \(-0.193590\pi\)
−0.797017 + 0.603957i \(0.793590\pi\)
\(60\) 0 0
\(61\) −36.3443 + 111.856i −0.595809 + 1.83371i −0.0451502 + 0.998980i \(0.514377\pi\)
−0.550659 + 0.834731i \(0.685623\pi\)
\(62\) −14.2745 2.26086i −0.230234 0.0364655i
\(63\) 47.3964 7.50685i 0.752324 0.119156i
\(64\) 31.7305 10.3099i 0.495789 0.161091i
\(65\) 0 0
\(66\) −17.1899 72.7807i −0.260453 1.10274i
\(67\) 50.5862 + 50.5862i 0.755018 + 0.755018i 0.975411 0.220393i \(-0.0707340\pi\)
−0.220393 + 0.975411i \(0.570734\pi\)
\(68\) −11.2837 5.74931i −0.165936 0.0845487i
\(69\) 98.4116 135.452i 1.42626 1.96307i
\(70\) 0 0
\(71\) −0.478560 + 1.47286i −0.00674028 + 0.0207445i −0.954370 0.298626i \(-0.903472\pi\)
0.947630 + 0.319371i \(0.103472\pi\)
\(72\) 168.734 85.9742i 2.34353 1.19409i
\(73\) −14.1887 + 89.5842i −0.194366 + 1.22718i 0.676790 + 0.736176i \(0.263370\pi\)
−0.871157 + 0.491005i \(0.836630\pi\)
\(74\) −0.134700 + 0.185399i −0.00182028 + 0.00250539i
\(75\) 0 0
\(76\) −36.5898 −0.481445
\(77\) −20.0884 + 8.23433i −0.260888 + 0.106939i
\(78\) 80.0037 80.0037i 1.02569 1.02569i
\(79\) 47.9857 15.5915i 0.607414 0.197361i 0.0108696 0.999941i \(-0.496540\pi\)
0.596544 + 0.802580i \(0.296540\pi\)
\(80\) 0 0
\(81\) 235.688 171.237i 2.90973 2.11404i
\(82\) −45.9027 + 23.3886i −0.559789 + 0.285227i
\(83\) −6.34114 12.4452i −0.0763993 0.149942i 0.849647 0.527352i \(-0.176815\pi\)
−0.926046 + 0.377410i \(0.876815\pi\)
\(84\) −17.4936 24.0779i −0.208257 0.286642i
\(85\) 0 0
\(86\) 10.1098 + 31.1147i 0.117555 + 0.361799i
\(87\) 177.590 + 177.590i 2.04126 + 2.04126i
\(88\) −65.3540 + 55.4026i −0.742659 + 0.629576i
\(89\) 80.6579i 0.906269i −0.891442 0.453135i \(-0.850306\pi\)
0.891442 0.453135i \(-0.149694\pi\)
\(90\) 0 0
\(91\) −26.5735 19.3068i −0.292017 0.212162i
\(92\) −74.8532 11.8556i −0.813621 0.128865i
\(93\) 32.1513 + 63.1004i 0.345713 + 0.678499i
\(94\) −55.1010 17.9034i −0.586181 0.190462i
\(95\) 0 0
\(96\) −152.498 110.796i −1.58852 1.15413i
\(97\) 49.3293 96.8143i 0.508550 0.998085i −0.483864 0.875143i \(-0.660767\pi\)
0.992414 0.122942i \(-0.0392330\pi\)
\(98\) −37.5670 + 37.5670i −0.383337 + 0.383337i
\(99\) −174.442 + 202.729i −1.76204 + 2.04777i
\(100\) 0 0
\(101\) −10.2333 31.4947i −0.101319 0.311829i 0.887530 0.460751i \(-0.152420\pi\)
−0.988849 + 0.148922i \(0.952420\pi\)
\(102\) −5.15513 32.5482i −0.0505405 0.319100i
\(103\) −11.3649 + 71.7554i −0.110339 + 0.696654i 0.869058 + 0.494710i \(0.164726\pi\)
−0.979397 + 0.201944i \(0.935274\pi\)
\(104\) −123.280 40.0562i −1.18539 0.385155i
\(105\) 0 0
\(106\) 5.34911 3.88636i 0.0504633 0.0366638i
\(107\) 7.58086 + 47.8637i 0.0708492 + 0.447324i 0.997456 + 0.0712913i \(0.0227120\pi\)
−0.926606 + 0.376033i \(0.877288\pi\)
\(108\) −205.750 104.835i −1.90509 0.970693i
\(109\) 151.952i 1.39405i 0.717045 + 0.697026i \(0.245494\pi\)
−0.717045 + 0.697026i \(0.754506\pi\)
\(110\) 0 0
\(111\) 1.12295 0.0101166
\(112\) −1.14341 + 2.24407i −0.0102090 + 0.0200364i
\(113\) 131.034 20.7537i 1.15959 0.183661i 0.453150 0.891434i \(-0.350300\pi\)
0.706440 + 0.707773i \(0.250300\pi\)
\(114\) −55.9650 77.0293i −0.490921 0.675695i
\(115\) 0 0
\(116\) 35.1300 108.119i 0.302845 0.932061i
\(117\) −399.652 63.2987i −3.41583 0.541014i
\(118\) 2.76432 0.437825i 0.0234264 0.00371038i
\(119\) −9.09870 + 2.95635i −0.0764597 + 0.0248433i
\(120\) 0 0
\(121\) 55.7254 107.404i 0.460541 0.887639i
\(122\) 97.9581 + 97.9581i 0.802935 + 0.802935i
\(123\) 224.930 + 114.608i 1.82870 + 0.931770i
\(124\) 18.8422 25.9341i 0.151954 0.209146i
\(125\) 0 0
\(126\) 17.4666 53.7567i 0.138624 0.426641i
\(127\) −52.3868 + 26.6924i −0.412495 + 0.210176i −0.647908 0.761719i \(-0.724356\pi\)
0.235413 + 0.971895i \(0.424356\pi\)
\(128\) −14.2881 + 90.2113i −0.111625 + 0.704776i
\(129\) 94.2296 129.696i 0.730462 1.00539i
\(130\) 0 0
\(131\) −175.310 −1.33825 −0.669124 0.743151i \(-0.733330\pi\)
−0.669124 + 0.743151i \(0.733330\pi\)
\(132\) 161.146 + 39.3160i 1.22081 + 0.297849i
\(133\) −19.5456 + 19.5456i −0.146959 + 0.146959i
\(134\) 80.1409 26.0394i 0.598066 0.194324i
\(135\) 0 0
\(136\) −30.5440 + 22.1916i −0.224589 + 0.163173i
\(137\) 7.21419 3.67581i 0.0526583 0.0268308i −0.427463 0.904033i \(-0.640593\pi\)
0.480121 + 0.877202i \(0.340593\pi\)
\(138\) −89.5314 175.715i −0.648778 1.27330i
\(139\) 79.9474 + 110.038i 0.575161 + 0.791641i 0.993154 0.116809i \(-0.0372665\pi\)
−0.417993 + 0.908450i \(0.637266\pi\)
\(140\) 0 0
\(141\) 87.7294 + 270.003i 0.622195 + 1.91492i
\(142\) 1.28985 + 1.28985i 0.00908347 + 0.00908347i
\(143\) 182.553 13.6910i 1.27659 0.0957410i
\(144\) 31.0261i 0.215459i
\(145\) 0 0
\(146\) 86.4311 + 62.7959i 0.591994 + 0.430109i
\(147\) 257.129 + 40.7252i 1.74918 + 0.277042i
\(148\) −0.230765 0.452901i −0.00155922 0.00306014i
\(149\) 75.9893 + 24.6904i 0.509995 + 0.165707i 0.552700 0.833380i \(-0.313598\pi\)
−0.0427049 + 0.999088i \(0.513598\pi\)
\(150\) 0 0
\(151\) 73.7929 + 53.6137i 0.488695 + 0.355058i 0.804682 0.593706i \(-0.202336\pi\)
−0.315987 + 0.948763i \(0.602336\pi\)
\(152\) −49.5230 + 97.1943i −0.325809 + 0.639436i
\(153\) −83.3353 + 83.3353i −0.544675 + 0.544675i
\(154\) −2.10026 + 25.4860i −0.0136380 + 0.165493i
\(155\) 0 0
\(156\) 77.5496 + 238.673i 0.497113 + 1.52996i
\(157\) −39.4430 249.034i −0.251230 1.58620i −0.714274 0.699866i \(-0.753243\pi\)
0.463045 0.886335i \(-0.346757\pi\)
\(158\) 9.29691 58.6984i 0.0588412 0.371509i
\(159\) −30.8134 10.0119i −0.193795 0.0629679i
\(160\) 0 0
\(161\) −46.3183 + 33.6522i −0.287691 + 0.209020i
\(162\) −53.6801 338.923i −0.331358 2.09212i
\(163\) −204.260 104.075i −1.25313 0.638500i −0.303783 0.952741i \(-0.598250\pi\)
−0.949343 + 0.314242i \(0.898250\pi\)
\(164\) 114.269i 0.696764i
\(165\) 0 0
\(166\) −16.4521 −0.0991091
\(167\) −46.9036 + 92.0535i −0.280860 + 0.551219i −0.987739 0.156116i \(-0.950103\pi\)
0.706879 + 0.707335i \(0.250103\pi\)
\(168\) −87.6356 + 13.8801i −0.521641 + 0.0826198i
\(169\) 63.4613 + 87.3470i 0.375511 + 0.516846i
\(170\) 0 0
\(171\) −105.225 + 323.848i −0.615349 + 1.89385i
\(172\) −71.6723 11.3518i −0.416699 0.0659987i
\(173\) 6.36471 1.00807i 0.0367902 0.00582700i −0.138012 0.990431i \(-0.544071\pi\)
0.174802 + 0.984604i \(0.444071\pi\)
\(174\) 281.346 91.4148i 1.61693 0.525372i
\(175\) 0 0
\(176\) −3.22656 13.6610i −0.0183327 0.0776195i
\(177\) −9.69756 9.69756i −0.0547885 0.0547885i
\(178\) −84.6504 43.1315i −0.475564 0.242312i
\(179\) 50.2025 69.0978i 0.280461 0.386021i −0.645426 0.763823i \(-0.723320\pi\)
0.925886 + 0.377802i \(0.123320\pi\)
\(180\) 0 0
\(181\) −49.5631 + 152.540i −0.273829 + 0.842760i 0.715697 + 0.698411i \(0.246109\pi\)
−0.989527 + 0.144350i \(0.953891\pi\)
\(182\) −34.4725 + 17.5646i −0.189409 + 0.0965089i
\(183\) 106.193 670.478i 0.580291 3.66382i
\(184\) −132.803 + 182.788i −0.721757 + 0.993414i
\(185\) 0 0
\(186\) 83.4166 0.448476
\(187\) 28.0268 45.3597i 0.149876 0.242565i
\(188\) 90.8679 90.8679i 0.483340 0.483340i
\(189\) −165.909 + 53.9071i −0.877825 + 0.285223i
\(190\) 0 0
\(191\) 105.149 76.3950i 0.550517 0.399974i −0.277459 0.960737i \(-0.589492\pi\)
0.827976 + 0.560764i \(0.189492\pi\)
\(192\) −171.578 + 87.4233i −0.893635 + 0.455330i
\(193\) 147.719 + 289.915i 0.765383 + 1.50215i 0.862045 + 0.506831i \(0.169183\pi\)
−0.0966622 + 0.995317i \(0.530817\pi\)
\(194\) −75.2277 103.542i −0.387772 0.533722i
\(195\) 0 0
\(196\) −36.4146 112.073i −0.185789 0.571800i
\(197\) −4.22058 4.22058i −0.0214242 0.0214242i 0.696314 0.717738i \(-0.254822\pi\)
−0.717738 + 0.696314i \(0.754822\pi\)
\(198\) 119.481 + 291.485i 0.603441 + 1.47215i
\(199\) 231.739i 1.16452i 0.813003 + 0.582260i \(0.197831\pi\)
−0.813003 + 0.582260i \(0.802169\pi\)
\(200\) 0 0
\(201\) −334.053 242.704i −1.66195 1.20748i
\(202\) −38.5258 6.10189i −0.190722 0.0302074i
\(203\) −38.9895 76.5211i −0.192066 0.376951i
\(204\) 69.5161 + 22.5872i 0.340765 + 0.110721i
\(205\) 0 0
\(206\) 69.2298 + 50.2984i 0.336067 + 0.244167i
\(207\) −320.193 + 628.415i −1.54683 + 3.03582i
\(208\) 15.0168 15.0168i 0.0721962 0.0721962i
\(209\) 12.6526 153.536i 0.0605389 0.734622i
\(210\) 0 0
\(211\) −46.5064 143.132i −0.220409 0.678350i −0.998725 0.0504773i \(-0.983926\pi\)
0.778316 0.627873i \(-0.216074\pi\)
\(212\) 2.29419 + 14.4849i 0.0108216 + 0.0683251i
\(213\) 1.39829 8.82845i 0.00656474 0.0414481i
\(214\) 54.2867 + 17.6388i 0.253676 + 0.0824243i
\(215\) 0 0
\(216\) −556.951 + 404.648i −2.57848 + 1.87337i
\(217\) −3.78836 23.9187i −0.0174579 0.110225i
\(218\) 159.473 + 81.2556i 0.731528 + 0.372732i
\(219\) 523.506i 2.39044i
\(220\) 0 0
\(221\) 80.6696 0.365021
\(222\) 0.600492 1.17853i 0.00270492 0.00530870i
\(223\) −137.283 + 21.7436i −0.615621 + 0.0975048i −0.456454 0.889747i \(-0.650881\pi\)
−0.159167 + 0.987252i \(0.550881\pi\)
\(224\) 37.8871 + 52.1472i 0.169139 + 0.232800i
\(225\) 0 0
\(226\) 48.2887 148.617i 0.213667 0.657600i
\(227\) −1.00628 0.159379i −0.00443296 0.000702112i 0.154218 0.988037i \(-0.450714\pi\)
−0.158651 + 0.987335i \(0.550714\pi\)
\(228\) 208.588 33.0372i 0.914862 0.144900i
\(229\) 8.36376 2.71755i 0.0365230 0.0118670i −0.290699 0.956815i \(-0.593888\pi\)
0.327222 + 0.944948i \(0.393888\pi\)
\(230\) 0 0
\(231\) 107.083 65.0796i 0.463565 0.281730i
\(232\) −239.652 239.652i −1.03298 1.03298i
\(233\) −370.632 188.847i −1.59070 0.810500i −0.999993 0.00361160i \(-0.998850\pi\)
−0.590703 0.806889i \(-0.701150\pi\)
\(234\) −280.144 + 385.585i −1.19720 + 1.64780i
\(235\) 0 0
\(236\) −1.91833 + 5.90400i −0.00812850 + 0.0250169i
\(237\) −259.476 + 132.209i −1.09483 + 0.557846i
\(238\) −1.76281 + 11.1300i −0.00740678 + 0.0467646i
\(239\) −168.700 + 232.195i −0.705857 + 0.971529i 0.294019 + 0.955800i \(0.405007\pi\)
−0.999876 + 0.0157295i \(0.994993\pi\)
\(240\) 0 0
\(241\) 317.030 1.31548 0.657738 0.753247i \(-0.271513\pi\)
0.657738 + 0.753247i \(0.271513\pi\)
\(242\) −82.9216 115.918i −0.342651 0.478999i
\(243\) −626.494 + 626.494i −2.57816 + 2.57816i
\(244\) −292.236 + 94.9532i −1.19769 + 0.389153i
\(245\) 0 0
\(246\) 240.561 174.778i 0.977890 0.710479i
\(247\) 207.674 105.815i 0.840785 0.428401i
\(248\) −43.3871 85.1520i −0.174948 0.343355i
\(249\) 47.3860 + 65.2212i 0.190305 + 0.261933i
\(250\) 0 0
\(251\) 21.5845 + 66.4304i 0.0859942 + 0.264663i 0.984802 0.173680i \(-0.0555657\pi\)
−0.898808 + 0.438342i \(0.855566\pi\)
\(252\) 88.6510 + 88.6510i 0.351790 + 0.351790i
\(253\) 75.6317 309.995i 0.298939 1.22528i
\(254\) 69.2535i 0.272652i
\(255\) 0 0
\(256\) 195.002 + 141.677i 0.761728 + 0.553427i
\(257\) 285.248 + 45.1789i 1.10992 + 0.175793i 0.684364 0.729141i \(-0.260080\pi\)
0.425552 + 0.904934i \(0.360080\pi\)
\(258\) −85.7267 168.248i −0.332274 0.652124i
\(259\) −0.365202 0.118661i −0.00141005 0.000458152i
\(260\) 0 0
\(261\) −855.912 621.856i −3.27935 2.38259i
\(262\) −93.7465 + 183.988i −0.357811 + 0.702244i
\(263\) −6.71971 + 6.71971i −0.0255502 + 0.0255502i −0.719766 0.694216i \(-0.755751\pi\)
0.694216 + 0.719766i \(0.255751\pi\)
\(264\) 322.542 374.844i 1.22175 1.41986i
\(265\) 0 0
\(266\) 10.0611 + 30.9650i 0.0378239 + 0.116410i
\(267\) 72.8266 + 459.809i 0.272759 + 1.72213i
\(268\) −29.2383 + 184.604i −0.109098 + 0.688819i
\(269\) 99.7989 + 32.4266i 0.371000 + 0.120545i 0.488582 0.872518i \(-0.337514\pi\)
−0.117582 + 0.993063i \(0.537514\pi\)
\(270\) 0 0
\(271\) 76.1609 55.3341i 0.281037 0.204185i −0.438333 0.898813i \(-0.644431\pi\)
0.719369 + 0.694628i \(0.244431\pi\)
\(272\) −0.967625 6.10934i −0.00355744 0.0224608i
\(273\) 168.921 + 86.0693i 0.618757 + 0.315272i
\(274\) 9.53691i 0.0348062i
\(275\) 0 0
\(276\) 437.422 1.58486
\(277\) 105.001 206.076i 0.379065 0.743956i −0.620113 0.784513i \(-0.712913\pi\)
0.999177 + 0.0405564i \(0.0129131\pi\)
\(278\) 158.236 25.0622i 0.569196 0.0901517i
\(279\) −175.351 241.350i −0.628498 0.865053i
\(280\) 0 0
\(281\) 88.5075 272.398i 0.314973 0.969388i −0.660792 0.750569i \(-0.729780\pi\)
0.975765 0.218819i \(-0.0702204\pi\)
\(282\) 330.281 + 52.3114i 1.17121 + 0.185501i
\(283\) −168.322 + 26.6596i −0.594777 + 0.0942035i −0.446564 0.894752i \(-0.647352\pi\)
−0.148214 + 0.988955i \(0.547352\pi\)
\(284\) −3.84799 + 1.25029i −0.0135492 + 0.00440242i
\(285\) 0 0
\(286\) 83.2508 198.910i 0.291087 0.695490i
\(287\) −61.0406 61.0406i −0.212685 0.212685i
\(288\) 707.497 + 360.488i 2.45659 + 1.25169i
\(289\) −156.059 + 214.797i −0.539998 + 0.743243i
\(290\) 0 0
\(291\) −193.799 + 596.452i −0.665976 + 2.04966i
\(292\) −211.138 + 107.580i −0.723074 + 0.368425i
\(293\) 42.5506 268.654i 0.145224 0.916907i −0.802230 0.597015i \(-0.796353\pi\)
0.947454 0.319892i \(-0.103647\pi\)
\(294\) 180.240 248.079i 0.613060 0.843805i
\(295\) 0 0
\(296\) −1.51538 −0.00511954
\(297\) 511.050 827.104i 1.72071 2.78486i
\(298\) 66.5475 66.5475i 0.223314 0.223314i
\(299\) 459.132 149.181i 1.53556 0.498933i
\(300\) 0 0
\(301\) −44.3500 + 32.2221i −0.147342 + 0.107050i
\(302\) 95.7279 48.7758i 0.316980 0.161509i
\(303\) 86.7738 + 170.303i 0.286382 + 0.562056i
\(304\) −10.5047 14.4585i −0.0345550 0.0475609i
\(305\) 0 0
\(306\) 42.8970 + 132.023i 0.140186 + 0.431449i
\(307\) −141.243 141.243i −0.460075 0.460075i 0.438605 0.898680i \(-0.355473\pi\)
−0.898680 + 0.438605i \(0.855473\pi\)
\(308\) −48.2530 29.8145i −0.156666 0.0968003i
\(309\) 419.319i 1.35702i
\(310\) 0 0
\(311\) 39.1515 + 28.4453i 0.125889 + 0.0914639i 0.648948 0.760833i \(-0.275209\pi\)
−0.523059 + 0.852297i \(0.675209\pi\)
\(312\) 738.954 + 117.039i 2.36844 + 0.375124i
\(313\) −15.0929 29.6215i −0.0482202 0.0946374i 0.865639 0.500669i \(-0.166912\pi\)
−0.913859 + 0.406031i \(0.866912\pi\)
\(314\) −282.452 91.7743i −0.899529 0.292275i
\(315\) 0 0
\(316\) 106.644 + 77.4813i 0.337481 + 0.245194i
\(317\) 123.349 242.086i 0.389113 0.763678i −0.610485 0.792028i \(-0.709025\pi\)
0.999598 + 0.0283501i \(0.00902532\pi\)
\(318\) −26.9848 + 26.9848i −0.0848579 + 0.0848579i
\(319\) 441.535 + 184.798i 1.38412 + 0.579303i
\(320\) 0 0
\(321\) −86.4329 266.013i −0.269261 0.828701i
\(322\) 10.5494 + 66.6063i 0.0327621 + 0.206852i
\(323\) 10.6198 67.0506i 0.0328786 0.207587i
\(324\) 723.868 + 235.199i 2.23416 + 0.725922i
\(325\) 0 0
\(326\) −218.454 + 158.716i −0.670104 + 0.486859i
\(327\) −137.198 866.236i −0.419567 2.64904i
\(328\) −303.536 154.659i −0.925415 0.471523i
\(329\) 97.0800i 0.295076i
\(330\) 0 0
\(331\) −114.527 −0.346003 −0.173001 0.984922i \(-0.555347\pi\)
−0.173001 + 0.984922i \(0.555347\pi\)
\(332\) 16.5669 32.5143i 0.0499002 0.0979347i
\(333\) −4.67216 + 0.739997i −0.0140305 + 0.00222221i
\(334\) 71.5285 + 98.4505i 0.214157 + 0.294762i
\(335\) 0 0
\(336\) 4.49209 13.8252i 0.0133693 0.0411466i
\(337\) 125.302 + 19.8459i 0.371816 + 0.0588899i 0.339546 0.940589i \(-0.389726\pi\)
0.0322698 + 0.999479i \(0.489726\pi\)
\(338\) 125.606 19.8941i 0.371616 0.0588582i
\(339\) −728.248 + 236.622i −2.14823 + 0.698001i
\(340\) 0 0
\(341\) 102.308 + 88.0327i 0.300022 + 0.258160i
\(342\) 283.610 + 283.610i 0.829268 + 0.829268i
\(343\) −165.489 84.3208i −0.482475 0.245833i
\(344\) −127.160 + 175.020i −0.369651 + 0.508780i
\(345\) 0 0
\(346\) 2.34554 7.21882i 0.00677900 0.0208636i
\(347\) 134.140 68.3476i 0.386570 0.196967i −0.249895 0.968273i \(-0.580396\pi\)
0.636465 + 0.771306i \(0.280396\pi\)
\(348\) −102.645 + 648.077i −0.294958 + 1.86229i
\(349\) −205.310 + 282.585i −0.588281 + 0.809699i −0.994573 0.104045i \(-0.966822\pi\)
0.406292 + 0.913743i \(0.366822\pi\)
\(350\) 0 0
\(351\) 1470.96 4.19076
\(352\) −349.006 85.1495i −0.991494 0.241902i
\(353\) 362.555 362.555i 1.02707 1.02707i 0.0274434 0.999623i \(-0.491263\pi\)
0.999623 0.0274434i \(-0.00873660\pi\)
\(354\) −15.3633 + 4.99184i −0.0433991 + 0.0141012i
\(355\) 0 0
\(356\) 170.482 123.862i 0.478881 0.347928i
\(357\) 49.1999 25.0686i 0.137815 0.0702202i
\(358\) −45.6724 89.6372i −0.127577 0.250383i
\(359\) 285.929 + 393.548i 0.796461 + 1.09623i 0.993273 + 0.115793i \(0.0369410\pi\)
−0.196812 + 0.980441i \(0.563059\pi\)
\(360\) 0 0
\(361\) 50.9435 + 156.788i 0.141118 + 0.434315i
\(362\) 133.586 + 133.586i 0.369023 + 0.369023i
\(363\) −220.700 + 662.597i −0.607988 + 1.82534i
\(364\) 85.8152i 0.235756i
\(365\) 0 0
\(366\) −646.879 469.985i −1.76743 1.28411i
\(367\) 9.42516 + 1.49280i 0.0256816 + 0.00406757i 0.169262 0.985571i \(-0.445862\pi\)
−0.143580 + 0.989639i \(0.545862\pi\)
\(368\) −16.8052 32.9820i −0.0456662 0.0896250i
\(369\) −1011.37 328.615i −2.74085 0.890555i
\(370\) 0 0
\(371\) 8.96310 + 6.51208i 0.0241593 + 0.0175528i
\(372\) −83.9984 + 164.856i −0.225802 + 0.443162i
\(373\) −268.508 + 268.508i −0.719862 + 0.719862i −0.968577 0.248715i \(-0.919992\pi\)
0.248715 + 0.968577i \(0.419992\pi\)
\(374\) −32.6177 53.6700i −0.0872132 0.143503i
\(375\) 0 0
\(376\) −118.388 364.361i −0.314862 0.969045i
\(377\) 113.284 + 715.248i 0.300489 + 1.89721i
\(378\) −32.1438 + 202.948i −0.0850364 + 0.536899i
\(379\) −329.126 106.940i −0.868406 0.282162i −0.159271 0.987235i \(-0.550914\pi\)
−0.709135 + 0.705073i \(0.750914\pi\)
\(380\) 0 0
\(381\) 274.542 199.467i 0.720583 0.523534i
\(382\) −23.9486 151.205i −0.0626926 0.395825i
\(383\) 77.9932 + 39.7395i 0.203638 + 0.103758i 0.552835 0.833291i \(-0.313546\pi\)
−0.349198 + 0.937049i \(0.613546\pi\)
\(384\) 527.171i 1.37284i
\(385\) 0 0
\(386\) 383.257 0.992894
\(387\) −306.587 + 601.710i −0.792213 + 1.55481i
\(388\) 280.383 44.4083i 0.722636 0.114454i
\(389\) 246.055 + 338.666i 0.632533 + 0.870607i 0.998190 0.0601430i \(-0.0191557\pi\)
−0.365657 + 0.930750i \(0.619156\pi\)
\(390\) 0 0
\(391\) 43.4506 133.727i 0.111127 0.342013i
\(392\) −346.987 54.9574i −0.885172 0.140197i
\(393\) 999.397 158.289i 2.54299 0.402771i
\(394\) −6.68642 + 2.17255i −0.0169706 + 0.00551409i
\(395\) 0 0
\(396\) −696.377 57.3872i −1.75853 0.144917i
\(397\) 434.845 + 434.845i 1.09533 + 1.09533i 0.994950 + 0.100377i \(0.0320048\pi\)
0.100377 + 0.994950i \(0.467995\pi\)
\(398\) 243.210 + 123.922i 0.611080 + 0.311361i
\(399\) 93.7764 129.072i 0.235028 0.323489i
\(400\) 0 0
\(401\) −166.418 + 512.181i −0.415007 + 1.27726i 0.497238 + 0.867614i \(0.334347\pi\)
−0.912245 + 0.409645i \(0.865653\pi\)
\(402\) −433.350 + 220.803i −1.07799 + 0.549261i
\(403\) −31.9439 + 201.686i −0.0792652 + 0.500461i
\(404\) 50.8537 69.9942i 0.125876 0.173253i
\(405\) 0 0
\(406\) −101.158 −0.249158
\(407\) 1.98023 0.811709i 0.00486544 0.00199437i
\(408\) 154.086 154.086i 0.377663 0.377663i
\(409\) 2.27154 0.738069i 0.00555390 0.00180457i −0.306239 0.951955i \(-0.599071\pi\)
0.311793 + 0.950150i \(0.399071\pi\)
\(410\) 0 0
\(411\) −37.8072 + 27.4686i −0.0919884 + 0.0668335i
\(412\) −169.117 + 86.1696i −0.410479 + 0.209150i
\(413\) 2.12908 + 4.17855i 0.00515515 + 0.0101175i
\(414\) 488.298 + 672.085i 1.17946 + 1.62339i
\(415\) 0 0
\(416\) −167.955 516.911i −0.403737 1.24257i
\(417\) −555.113 555.113i −1.33121 1.33121i
\(418\) −154.370 95.3816i −0.369305 0.228186i
\(419\) 235.871i 0.562937i −0.959570 0.281469i \(-0.909178\pi\)
0.959570 0.281469i \(-0.0908215\pi\)
\(420\) 0 0
\(421\) 492.334 + 357.702i 1.16944 + 0.849648i 0.990942 0.134293i \(-0.0428762\pi\)
0.178498 + 0.983940i \(0.442876\pi\)
\(422\) −175.086 27.7309i −0.414895 0.0657129i
\(423\) −542.935 1065.57i −1.28353 2.51908i
\(424\) 41.5817 + 13.5107i 0.0980702 + 0.0318649i
\(425\) 0 0
\(426\) −8.51771 6.18848i −0.0199946 0.0145270i
\(427\) −105.385 + 206.830i −0.246803 + 0.484378i
\(428\) −89.5249 + 89.5249i −0.209170 + 0.209170i
\(429\) −1028.32 + 242.877i −2.39702 + 0.566146i
\(430\) 0 0
\(431\) −125.771 387.085i −0.291813 0.898108i −0.984273 0.176652i \(-0.943473\pi\)
0.692460 0.721456i \(-0.256527\pi\)
\(432\) −17.6440 111.400i −0.0408426 0.257870i
\(433\) −80.5214 + 508.392i −0.185962 + 1.17412i 0.701306 + 0.712861i \(0.252601\pi\)
−0.887267 + 0.461255i \(0.847399\pi\)
\(434\) −27.1285 8.81458i −0.0625080 0.0203101i
\(435\) 0 0
\(436\) −321.171 + 233.344i −0.736631 + 0.535194i
\(437\) −63.5531 401.258i −0.145430 0.918211i
\(438\) −549.419 279.943i −1.25438 0.639139i
\(439\) 352.062i 0.801963i −0.916086 0.400982i \(-0.868669\pi\)
0.916086 0.400982i \(-0.131331\pi\)
\(440\) 0 0
\(441\) −1096.65 −2.48674
\(442\) 43.1377 84.6626i 0.0975967 0.191544i
\(443\) −7.34858 + 1.16390i −0.0165882 + 0.00262732i −0.164723 0.986340i \(-0.552673\pi\)
0.148135 + 0.988967i \(0.452673\pi\)
\(444\) 1.72445 + 2.37351i 0.00388390 + 0.00534573i
\(445\) 0 0
\(446\) −50.5920 + 155.706i −0.113435 + 0.349117i
\(447\) −455.487 72.1421i −1.01899 0.161392i
\(448\) 65.0380 10.3010i 0.145174 0.0229933i
\(449\) −175.258 + 56.9447i −0.390329 + 0.126826i −0.497605 0.867404i \(-0.665787\pi\)
0.107276 + 0.994229i \(0.465787\pi\)
\(450\) 0 0
\(451\) 479.490 + 39.5139i 1.06317 + 0.0876141i
\(452\) 245.087 + 245.087i 0.542229 + 0.542229i
\(453\) −469.082 239.009i −1.03550 0.527614i
\(454\) −0.705374 + 0.970864i −0.00155369 + 0.00213847i
\(455\) 0 0
\(456\) 194.560 598.793i 0.426666 1.31314i
\(457\) −209.215 + 106.600i −0.457800 + 0.233261i −0.667654 0.744472i \(-0.732701\pi\)
0.209854 + 0.977733i \(0.432701\pi\)
\(458\) 1.62042 10.2310i 0.00353804 0.0223383i
\(459\) 251.826 346.609i 0.548641 0.755139i
\(460\) 0 0
\(461\) −542.586 −1.17698 −0.588488 0.808506i \(-0.700277\pi\)
−0.588488 + 0.808506i \(0.700277\pi\)
\(462\) −11.0385 147.185i −0.0238928 0.318582i
\(463\) 48.2381 48.2381i 0.104186 0.104186i −0.653092 0.757278i \(-0.726529\pi\)
0.757278 + 0.653092i \(0.226529\pi\)
\(464\) 52.8090 17.1587i 0.113813 0.0369799i
\(465\) 0 0
\(466\) −396.388 + 287.993i −0.850619 + 0.618011i
\(467\) 559.339 284.997i 1.19773 0.610272i 0.262710 0.964875i \(-0.415384\pi\)
0.935017 + 0.354602i \(0.115384\pi\)
\(468\) −479.934 941.924i −1.02550 2.01266i
\(469\) 82.9933 + 114.231i 0.176958 + 0.243562i
\(470\) 0 0
\(471\) 449.708 + 1384.06i 0.954794 + 2.93855i
\(472\) 13.0865 + 13.0865i 0.0277257 + 0.0277257i
\(473\) 72.4177 296.821i 0.153103 0.627529i
\(474\) 343.018i 0.723666i
\(475\) 0 0
\(476\) −20.2211 14.6915i −0.0424812 0.0308644i
\(477\) 134.801 + 21.3503i 0.282601 + 0.0447595i
\(478\) 153.477 + 301.216i 0.321082 + 0.630159i
\(479\) 553.115 + 179.718i 1.15473 + 0.375194i 0.822922 0.568154i \(-0.192342\pi\)
0.331806 + 0.943348i \(0.392342\pi\)
\(480\) 0 0
\(481\) 2.61951 + 1.90319i 0.00544598 + 0.00395673i
\(482\) 169.530 332.722i 0.351723 0.690295i
\(483\) 233.663 233.663i 0.483774 0.483774i
\(484\) 312.588 47.1518i 0.645844 0.0974210i
\(485\) 0 0
\(486\) 322.489 + 992.519i 0.663557 + 2.04222i
\(487\) −27.2780 172.226i −0.0560122 0.353647i −0.999737 0.0229166i \(-0.992705\pi\)
0.943725 0.330731i \(-0.107295\pi\)
\(488\) −143.305 + 904.789i −0.293657 + 1.85408i
\(489\) 1258.40 + 408.878i 2.57341 + 0.836152i
\(490\) 0 0
\(491\) −216.106 + 157.010i −0.440134 + 0.319776i −0.785688 0.618623i \(-0.787691\pi\)
0.345554 + 0.938399i \(0.387691\pi\)
\(492\) 103.174 + 651.418i 0.209704 + 1.32402i
\(493\) 187.932 + 95.7559i 0.381200 + 0.194231i
\(494\) 274.537i 0.555744i
\(495\) 0 0
\(496\) 15.6574 0.0315673
\(497\) −1.38764 + 2.72341i −0.00279204 + 0.00547969i
\(498\) 93.7890 14.8547i 0.188331 0.0298287i
\(499\) −552.387 760.296i −1.10699 1.52364i −0.825781 0.563991i \(-0.809265\pi\)
−0.281207 0.959647i \(-0.590735\pi\)
\(500\) 0 0
\(501\) 184.269 567.122i 0.367802 1.13198i
\(502\) 81.2608 + 12.8704i 0.161874 + 0.0256383i
\(503\) −511.045 + 80.9416i −1.01599 + 0.160918i −0.642154 0.766576i \(-0.721959\pi\)
−0.373840 + 0.927493i \(0.621959\pi\)
\(504\) 355.472 115.500i 0.705301 0.229166i
\(505\) 0 0
\(506\) −284.895 245.144i −0.563034 0.484474i
\(507\) −440.642 440.642i −0.869116 0.869116i
\(508\) −136.866 69.7366i −0.269421 0.137277i
\(509\) 359.646 495.010i 0.706573 0.972515i −0.293291 0.956023i \(-0.594750\pi\)
0.999864 0.0164915i \(-0.00524964\pi\)
\(510\) 0 0
\(511\) −55.3186 + 170.253i −0.108256 + 0.333177i
\(512\) −72.5562 + 36.9692i −0.141711 + 0.0722055i
\(513\) 193.645 1222.62i 0.377475 2.38328i
\(514\) 199.951 275.208i 0.389009 0.535425i
\(515\) 0 0
\(516\) 418.834 0.811693
\(517\) 349.873 + 412.716i 0.676736 + 0.798291i
\(518\) −0.319825 + 0.319825i −0.000617423 + 0.000617423i
\(519\) −35.3733 + 11.4935i −0.0681566 + 0.0221454i
\(520\) 0 0
\(521\) −755.178 + 548.669i −1.44948 + 1.05311i −0.463526 + 0.886083i \(0.653416\pi\)
−0.985953 + 0.167025i \(0.946584\pi\)
\(522\) −1110.33 + 565.742i −2.12707 + 1.08380i
\(523\) 168.115 + 329.945i 0.321444 + 0.630870i 0.994025 0.109154i \(-0.0348141\pi\)
−0.672581 + 0.740024i \(0.734814\pi\)
\(524\) −269.215 370.543i −0.513769 0.707143i
\(525\) 0 0
\(526\) 3.45898 + 10.6457i 0.00657601 + 0.0202389i
\(527\) 42.0554 + 42.0554i 0.0798016 + 0.0798016i
\(528\) 30.7284 + 74.9646i 0.0581977 + 0.141978i
\(529\) 312.462i 0.590666i
\(530\) 0 0
\(531\) 46.7383 + 33.9574i 0.0880194 + 0.0639498i
\(532\) −71.3275 11.2972i −0.134074 0.0212353i
\(533\) 330.459 + 648.562i 0.619997 + 1.21681i
\(534\) 521.512 + 169.450i 0.976615 + 0.317321i
\(535\) 0 0
\(536\) 450.794 + 327.521i 0.841033 + 0.611046i
\(537\) −223.802 + 439.236i −0.416763 + 0.817944i
\(538\) 87.3988 87.3988i 0.162451 0.162451i
\(539\) 482.865 114.047i 0.895853 0.211589i
\(540\) 0 0
\(541\) −135.828 418.036i −0.251069 0.772711i −0.994579 0.103986i \(-0.966840\pi\)
0.743510 0.668725i \(-0.233160\pi\)
\(542\) −17.3463 109.520i −0.0320043 0.202067i
\(543\) 144.817 914.338i 0.266698 1.68386i
\(544\) −150.556 48.9186i −0.276757 0.0899239i
\(545\) 0 0
\(546\) 180.659 131.257i 0.330878 0.240397i
\(547\) −8.50871 53.7219i −0.0155552 0.0982119i 0.978689 0.205347i \(-0.0658323\pi\)
−0.994244 + 0.107135i \(0.965832\pi\)
\(548\) 18.8478 + 9.60343i 0.0343938 + 0.0175245i
\(549\) 2859.58i 5.20871i
\(550\) 0 0
\(551\) 609.411 1.10601
\(552\) 592.035 1161.93i 1.07253 2.10495i
\(553\) 98.3564 15.5781i 0.177860 0.0281702i
\(554\) −160.127 220.397i −0.289039 0.397828i
\(555\) 0 0
\(556\) −109.810 + 337.960i −0.197500 + 0.607841i
\(557\) −518.636 82.1439i −0.931124 0.147476i −0.327596 0.944818i \(-0.606239\pi\)
−0.603527 + 0.797342i \(0.706239\pi\)
\(558\) −347.064 + 54.9696i −0.621979 + 0.0985118i
\(559\) 439.621 142.841i 0.786442 0.255530i
\(560\) 0 0
\(561\) −118.817 + 283.889i −0.211796 + 0.506041i
\(562\) −238.552 238.552i −0.424470 0.424470i
\(563\) −678.778 345.855i −1.20565 0.614307i −0.268511 0.963277i \(-0.586532\pi\)
−0.937134 + 0.348970i \(0.886532\pi\)
\(564\) −435.968 + 600.058i −0.772993 + 1.06393i
\(565\) 0 0
\(566\) −62.0303 + 190.910i −0.109594 + 0.337296i
\(567\) 512.316 261.038i 0.903556 0.460385i
\(568\) −1.88695 + 11.9137i −0.00332209 + 0.0209748i
\(569\) −522.049 + 718.539i −0.917485 + 1.26281i 0.0470600 + 0.998892i \(0.485015\pi\)
−0.964545 + 0.263918i \(0.914985\pi\)
\(570\) 0 0
\(571\) −943.557 −1.65246 −0.826232 0.563330i \(-0.809520\pi\)
−0.826232 + 0.563330i \(0.809520\pi\)
\(572\) 309.275 + 364.826i 0.540690 + 0.637808i
\(573\) −530.447 + 530.447i −0.925736 + 0.925736i
\(574\) −96.7032 + 31.4208i −0.168473 + 0.0547400i
\(575\) 0 0
\(576\) 656.260 476.801i 1.13934 0.827779i
\(577\) −116.315 + 59.2654i −0.201585 + 0.102713i −0.551869 0.833931i \(-0.686085\pi\)
0.350284 + 0.936644i \(0.386085\pi\)
\(578\) 141.977 + 278.646i 0.245635 + 0.482087i
\(579\) −1103.87 1519.35i −1.90651 2.62409i
\(580\) 0 0
\(581\) −8.51884 26.2183i −0.0146624 0.0451261i
\(582\) 522.342 + 522.342i 0.897494 + 0.897494i
\(583\) −61.5741 + 4.61789i −0.105616 + 0.00792091i
\(584\) 706.455i 1.20968i
\(585\) 0 0
\(586\) −259.198 188.318i −0.442317 0.321362i
\(587\) −620.273 98.2417i −1.05668 0.167362i −0.396171 0.918177i \(-0.629661\pi\)
−0.660513 + 0.750815i \(0.729661\pi\)
\(588\) 308.781 + 606.017i 0.525138 + 1.03064i
\(589\) 163.431 + 53.1019i 0.277472 + 0.0901561i
\(590\) 0 0
\(591\) 27.8711 + 20.2496i 0.0471593 + 0.0342632i
\(592\) 0.112713 0.221212i 0.000190394 0.000373669i
\(593\) −543.917 + 543.917i −0.917229 + 0.917229i −0.996827 0.0795984i \(-0.974636\pi\)
0.0795984 + 0.996827i \(0.474636\pi\)
\(594\) −594.763 978.636i −1.00128 1.64754i
\(595\) 0 0
\(596\) 64.5062 + 198.530i 0.108232 + 0.333103i
\(597\) −209.239 1321.08i −0.350484 2.21287i
\(598\) 88.9538 561.632i 0.148752 0.939184i
\(599\) −955.576 310.485i −1.59529 0.518340i −0.629350 0.777122i \(-0.716679\pi\)
−0.965936 + 0.258783i \(0.916679\pi\)
\(600\) 0 0
\(601\) −211.574 + 153.717i −0.352036 + 0.255769i −0.749723 0.661752i \(-0.769813\pi\)
0.397686 + 0.917521i \(0.369813\pi\)
\(602\) 10.1011 + 63.7758i 0.0167792 + 0.105940i
\(603\) 1549.80 + 789.663i 2.57015 + 1.30956i
\(604\) 238.303i 0.394542i
\(605\) 0 0
\(606\) 225.135 0.371509
\(607\) −413.211 + 810.971i −0.680742 + 1.33603i 0.249245 + 0.968440i \(0.419817\pi\)
−0.929987 + 0.367591i \(0.880183\pi\)
\(608\) −451.754 + 71.5509i −0.743017 + 0.117682i
\(609\) 291.360 + 401.022i 0.478423 + 0.658493i
\(610\) 0 0
\(611\) −252.958 + 778.525i −0.414007 + 1.27418i
\(612\) −304.114 48.1670i −0.496919 0.0787042i
\(613\) 765.368 121.222i 1.24856 0.197753i 0.503057 0.864254i \(-0.332209\pi\)
0.745504 + 0.666501i \(0.232209\pi\)
\(614\) −223.764 + 72.7052i −0.364436 + 0.118412i
\(615\) 0 0
\(616\) −144.506 + 87.8228i −0.234587 + 0.142570i
\(617\) −204.509 204.509i −0.331457 0.331457i 0.521682 0.853140i \(-0.325305\pi\)
−0.853140 + 0.521682i \(0.825305\pi\)
\(618\) −440.075 224.229i −0.712095 0.362831i
\(619\) 149.114 205.237i 0.240894 0.331563i −0.671402 0.741093i \(-0.734308\pi\)
0.912296 + 0.409531i \(0.134308\pi\)
\(620\) 0 0
\(621\) 792.293 2438.43i 1.27583 3.92661i
\(622\) 50.7894 25.8785i 0.0816550 0.0416053i
\(623\) 24.9033 157.233i 0.0399732 0.252381i
\(624\) −72.0479 + 99.1655i −0.115461 + 0.158919i
\(625\) 0 0
\(626\) −39.1586 −0.0625537
\(627\) 66.4994 + 886.691i 0.106060 + 1.41418i
\(628\) 465.796 465.796i 0.741714 0.741714i
\(629\) 0.896915 0.291425i 0.00142594 0.000463316i
\(630\) 0 0
\(631\) 884.455 642.594i 1.40167 1.01837i 0.407204 0.913337i \(-0.366504\pi\)
0.994468 0.105038i \(-0.0334963\pi\)
\(632\) 350.154 178.413i 0.554042 0.282298i
\(633\) 394.355 + 773.965i 0.622994 + 1.22269i
\(634\) −188.108 258.909i −0.296701 0.408374i
\(635\) 0 0
\(636\) −26.1571 80.5032i −0.0411275 0.126577i
\(637\) 530.786 + 530.786i 0.833259 + 0.833259i
\(638\) 430.054 364.570i 0.674066 0.571427i
\(639\) 37.6532i 0.0589253i
\(640\) 0 0
\(641\) −327.130 237.674i −0.510343 0.370786i 0.302610 0.953114i \(-0.402142\pi\)
−0.812954 + 0.582328i \(0.802142\pi\)
\(642\) −325.400 51.5383i −0.506853 0.0802777i
\(643\) 131.198 + 257.491i 0.204040 + 0.400452i 0.970238 0.242153i \(-0.0778536\pi\)
−0.766198 + 0.642605i \(0.777854\pi\)
\(644\) −142.257 46.2221i −0.220896 0.0717735i
\(645\) 0 0
\(646\) −64.6906 47.0005i −0.100140 0.0727562i
\(647\) −228.056 + 447.585i −0.352482 + 0.691785i −0.997369 0.0724932i \(-0.976904\pi\)
0.644887 + 0.764278i \(0.276904\pi\)
\(648\) 1604.49 1604.49i 2.47607 2.47607i
\(649\) −24.1107 10.0911i −0.0371505 0.0155488i
\(650\) 0 0
\(651\) 43.1928 + 132.934i 0.0663484 + 0.204199i
\(652\) −93.6929 591.554i −0.143701 0.907291i
\(653\) −121.449 + 766.801i −0.185987 + 1.17427i 0.701235 + 0.712930i \(0.252632\pi\)
−0.887222 + 0.461343i \(0.847368\pi\)
\(654\) −982.479 319.227i −1.50226 0.488114i
\(655\) 0 0
\(656\) 45.1536 32.8060i 0.0688318 0.0500092i
\(657\) 344.979 + 2178.11i 0.525082 + 3.31524i
\(658\) −101.885 51.9132i −0.154841 0.0788954i
\(659\) 167.781i 0.254599i 0.991864 + 0.127299i \(0.0406309\pi\)
−0.991864 + 0.127299i \(0.959369\pi\)
\(660\) 0 0
\(661\) 6.21057 0.00939572 0.00469786 0.999989i \(-0.498505\pi\)
0.00469786 + 0.999989i \(0.498505\pi\)
\(662\) −61.2428 + 120.196i −0.0925119 + 0.181565i
\(663\) −459.875 + 72.8371i −0.693628 + 0.109860i
\(664\) −63.9459 88.0139i −0.0963040 0.132551i
\(665\) 0 0
\(666\) −1.72179 + 5.29913i −0.00258527 + 0.00795665i
\(667\) 1246.70 + 197.457i 1.86911 + 0.296038i
\(668\) −266.595 + 42.2246i −0.399095 + 0.0632104i
\(669\) 762.983 247.908i 1.14048 0.370565i
\(670\) 0 0
\(671\) −297.383 1259.10i −0.443193 1.87645i
\(672\) −263.068 263.068i −0.391471 0.391471i
\(673\) −735.139 374.572i −1.09233 0.556570i −0.187467 0.982271i \(-0.560028\pi\)
−0.904864 + 0.425701i \(0.860028\pi\)
\(674\) 87.8330 120.892i 0.130316 0.179365i
\(675\) 0 0
\(676\) −87.1657 + 268.269i −0.128943 + 0.396847i
\(677\) 901.999 459.592i 1.33235 0.678865i 0.364689 0.931129i \(-0.381175\pi\)
0.967658 + 0.252264i \(0.0811753\pi\)
\(678\) −141.093 + 890.828i −0.208102 + 1.31391i
\(679\) 126.053 173.498i 0.185646 0.255519i
\(680\) 0 0
\(681\) 5.88044 0.00863501
\(682\) 147.099 60.2966i 0.215687 0.0884114i
\(683\) −229.153 + 229.153i −0.335510 + 0.335510i −0.854674 0.519164i \(-0.826243\pi\)
0.519164 + 0.854674i \(0.326243\pi\)
\(684\) −846.086 + 274.910i −1.23697 + 0.401915i
\(685\) 0 0
\(686\) −176.989 + 128.590i −0.258002 + 0.187449i
\(687\) −45.2258 + 23.0437i −0.0658309 + 0.0335425i
\(688\) −16.0910 31.5804i −0.0233881 0.0459017i
\(689\) −54.9106 75.5779i −0.0796960 0.109692i
\(690\) 0 0
\(691\) −74.3036 228.683i −0.107531 0.330945i 0.882786 0.469776i \(-0.155665\pi\)
−0.990316 + 0.138831i \(0.955665\pi\)
\(692\) 11.9047 + 11.9047i 0.0172033 + 0.0172033i
\(693\) −402.647 + 341.337i −0.581021 + 0.492549i
\(694\) 177.328i 0.255516i
\(695\) 0 0
\(696\) 1582.57 + 1149.81i 2.27381 + 1.65202i
\(697\) 209.398 + 33.1654i 0.300427 + 0.0475830i
\(698\) 186.784 + 366.583i 0.267598 + 0.525191i
\(699\) 2283.39 + 741.917i 3.26665 + 1.06140i
\(700\) 0 0
\(701\) 198.550 + 144.255i 0.283238 + 0.205785i 0.720329 0.693633i \(-0.243991\pi\)
−0.437090 + 0.899418i \(0.643991\pi\)
\(702\) 786.588 1543.77i 1.12050 2.19910i
\(703\) 1.92673 1.92673i 0.00274073 0.00274073i
\(704\) −239.372 + 278.187i −0.340017 + 0.395152i
\(705\) 0 0
\(706\) −186.626 574.375i −0.264342 0.813562i
\(707\) −10.2245 64.5548i −0.0144618 0.0913081i
\(708\) 5.60509 35.3892i 0.00791680 0.0499847i
\(709\) −853.145 277.204i −1.20331 0.390979i −0.362331 0.932049i \(-0.618019\pi\)
−0.840977 + 0.541071i \(0.818019\pi\)
\(710\) 0 0
\(711\) 992.456 721.062i 1.39586 1.01415i
\(712\) −98.2772 620.498i −0.138030 0.871486i
\(713\) 317.131 + 161.587i 0.444785 + 0.226629i
\(714\) 65.0406i 0.0910933i
\(715\) 0 0
\(716\) 223.141 0.311649
\(717\) 752.061 1476.00i 1.04890 2.05858i
\(718\) 565.928 89.6341i 0.788200 0.124839i
\(719\) −119.555 164.554i −0.166280 0.228865i 0.717743 0.696308i \(-0.245175\pi\)
−0.884023 + 0.467443i \(0.845175\pi\)
\(720\) 0 0
\(721\) −44.3092 + 136.370i −0.0614552 + 0.189140i
\(722\) 191.790 + 30.3766i 0.265638 + 0.0420729i
\(723\) −1807.30 + 286.248i −2.49972 + 0.395917i
\(724\) −398.525 + 129.489i −0.550449 + 0.178852i
\(725\) 0 0
\(726\) 577.377 + 585.945i 0.795284 + 0.807087i
\(727\) 373.051 + 373.051i 0.513137 + 0.513137i 0.915486 0.402349i \(-0.131806\pi\)
−0.402349 + 0.915486i \(0.631806\pi\)
\(728\) −227.953 116.148i −0.313122 0.159544i
\(729\) 1464.67 2015.94i 2.00915 2.76535i
\(730\) 0 0
\(731\) 41.6041 128.044i 0.0569140 0.175163i
\(732\) 1580.22 805.164i 2.15878 1.09995i
\(733\) −79.5625 + 502.338i −0.108544 + 0.685318i 0.872072 + 0.489377i \(0.162776\pi\)
−0.980616 + 0.195940i \(0.937224\pi\)
\(734\) 6.60676 9.09342i 0.00900103 0.0123889i
\(735\) 0 0
\(736\) −947.355 −1.28717
\(737\) −764.512 186.523i −1.03733 0.253085i
\(738\) −885.708 + 885.708i −1.20015 + 1.20015i
\(739\) 334.582 108.712i 0.452750 0.147107i −0.0737605 0.997276i \(-0.523500\pi\)
0.526511 + 0.850169i \(0.323500\pi\)
\(740\) 0 0
\(741\) −1088.35 + 790.733i −1.46876 + 1.06712i
\(742\) 11.6274 5.92445i 0.0156703 0.00798444i
\(743\) −523.897 1028.21i −0.705110 1.38386i −0.913918 0.405900i \(-0.866958\pi\)
0.208807 0.977957i \(-0.433042\pi\)
\(744\) 324.223 + 446.254i 0.435783 + 0.599804i
\(745\) 0 0
\(746\) 138.215 + 425.383i 0.185275 + 0.570218i
\(747\) −240.134 240.134i −0.321465 0.321465i
\(748\) 138.913 10.4181i 0.185713 0.0139280i
\(749\) 95.6453i 0.127697i
\(750\) 0 0
\(751\) −199.691 145.084i −0.265900 0.193188i 0.446844 0.894612i \(-0.352548\pi\)
−0.712744 + 0.701424i \(0.752548\pi\)
\(752\) 61.9942 + 9.81892i 0.0824391 + 0.0130571i
\(753\) −183.028 359.213i −0.243065 0.477042i
\(754\) 811.230 + 263.585i 1.07590 + 0.349582i
\(755\) 0 0
\(756\) −368.718 267.889i −0.487722 0.354351i
\(757\) 526.866 1034.03i 0.695992 1.36596i −0.224220 0.974539i \(-0.571983\pi\)
0.920211 0.391422i \(-0.128017\pi\)
\(758\) −288.232 + 288.232i −0.380253 + 0.380253i
\(759\) −151.259 + 1835.48i −0.199287 + 2.41829i
\(760\) 0 0
\(761\) 160.769 + 494.797i 0.211260 + 0.650193i 0.999398 + 0.0346936i \(0.0110455\pi\)
−0.788138 + 0.615499i \(0.788954\pi\)
\(762\) −62.5295 394.796i −0.0820597 0.518104i
\(763\) −46.9154 + 296.212i −0.0614881 + 0.388221i
\(764\) 322.943 + 104.930i 0.422700 + 0.137344i
\(765\) 0 0
\(766\) 83.4131 60.6031i 0.108894 0.0791164i
\(767\) −6.18605 39.0572i −0.00806525 0.0509220i
\(768\) −1239.58 631.596i −1.61403 0.822390i
\(769\) 801.838i 1.04270i −0.853342 0.521351i \(-0.825428\pi\)
0.853342 0.521351i \(-0.174572\pi\)
\(770\) 0 0
\(771\) −1666.92 −2.16202
\(772\) −385.930 + 757.431i −0.499910 + 0.981129i
\(773\) 686.852 108.787i 0.888553 0.140733i 0.304561 0.952493i \(-0.401490\pi\)
0.583992 + 0.811760i \(0.301490\pi\)
\(774\) 467.548 + 643.524i 0.604067 + 0.831426i
\(775\) 0 0
\(776\) 261.525 804.893i 0.337017 1.03723i
\(777\) 2.18906 + 0.346712i 0.00281732 + 0.000446219i
\(778\) 487.006 77.1342i 0.625972 0.0991443i
\(779\) 582.572 189.289i 0.747846 0.242990i
\(780\) 0 0
\(781\) −3.91576 16.5790i −0.00501377 0.0212280i
\(782\) −117.111 117.111i −0.149759 0.149759i
\(783\) 3426.81 + 1746.05i 4.37651 + 2.22994i
\(784\) 33.8312 46.5647i 0.0431521 0.0593938i
\(785\) 0 0
\(786\) 368.300 1133.51i 0.468574 1.44212i
\(787\) 134.719 68.6427i 0.171180 0.0872207i −0.366301 0.930496i \(-0.619376\pi\)
0.537481 + 0.843276i \(0.319376\pi\)
\(788\) 2.43945 15.4021i 0.00309575 0.0195458i
\(789\) 32.2399 44.3745i 0.0408618 0.0562414i
\(790\) 0 0
\(791\) 261.843 0.331027
\(792\) −1094.96 + 1772.13i −1.38253 + 2.23754i
\(793\) 1384.05 1384.05i 1.74534 1.74534i
\(794\) 688.900 223.837i 0.867632 0.281911i
\(795\) 0 0
\(796\) −489.813 + 355.870i −0.615343 + 0.447073i
\(797\) −1099.39 + 560.165i −1.37941 + 0.702842i −0.977123 0.212674i \(-0.931783\pi\)
−0.402282 + 0.915516i \(0.631783\pi\)
\(798\) −85.3144 167.439i −0.106910 0.209823i
\(799\) 140.142 + 192.888i 0.175396 + 0.241412i
\(800\) 0 0
\(801\) −606.007 1865.10i −0.756563 2.32846i
\(802\) 448.542 + 448.542i 0.559279 + 0.559279i
\(803\) −378.410 923.164i −0.471245 1.14964i
\(804\) 1078.77i 1.34176i
\(805\) 0 0
\(806\) 194.587 + 141.376i 0.241423 + 0.175404i
\(807\) −598.205 94.7463i −0.741270 0.117406i
\(808\) −117.098 229.819i −0.144924 0.284429i
\(809\) −896.054 291.145i −1.10761 0.359883i −0.302581 0.953124i \(-0.597848\pi\)
−0.805025 + 0.593241i \(0.797848\pi\)
\(810\) 0 0
\(811\) 972.098 + 706.271i 1.19864 + 0.870864i 0.994150 0.108005i \(-0.0344461\pi\)
0.204491 + 0.978868i \(0.434446\pi\)
\(812\) 101.864 199.919i 0.125448 0.246206i
\(813\) −384.211 + 384.211i −0.472584 + 0.472584i
\(814\) 0.207035 2.51231i 0.000254343 0.00308637i
\(815\) 0 0
\(816\) 11.0323 + 33.9540i 0.0135200 + 0.0416103i
\(817\) −60.8524 384.207i −0.0744827 0.470265i
\(818\) 0.440097 2.77866i 0.000538015 0.00339690i
\(819\) −759.532 246.787i −0.927389 0.301327i
\(820\) 0 0
\(821\) 805.110 584.947i 0.980645 0.712481i 0.0227926 0.999740i \(-0.492744\pi\)
0.957853 + 0.287260i \(0.0927443\pi\)
\(822\) 8.61093 + 54.3673i 0.0104756 + 0.0661403i
\(823\) −161.842 82.4626i −0.196649 0.100198i 0.352893 0.935664i \(-0.385198\pi\)
−0.549542 + 0.835466i \(0.685198\pi\)
\(824\) 565.858i 0.686721i
\(825\) 0 0
\(826\) 5.52389 0.00668752
\(827\) −541.252 + 1062.27i −0.654477 + 1.28448i 0.290352 + 0.956920i \(0.406228\pi\)
−0.944829 + 0.327564i \(0.893772\pi\)
\(828\) −1819.95 + 288.251i −2.19800 + 0.348129i
\(829\) −529.845 729.269i −0.639137 0.879697i 0.359432 0.933171i \(-0.382970\pi\)
−0.998569 + 0.0534743i \(0.982970\pi\)
\(830\) 0 0
\(831\) −412.514 + 1269.59i −0.496407 + 1.52778i
\(832\) −548.408 86.8593i −0.659144 0.104398i
\(833\) 215.942 34.2018i 0.259234 0.0410586i
\(834\) −879.434 + 285.745i −1.05448 + 0.342620i
\(835\) 0 0
\(836\) 343.949 209.034i 0.411423 0.250041i
\(837\) 766.853 + 766.853i 0.916192 + 0.916192i
\(838\) −247.546 126.131i −0.295401 0.150514i
\(839\) −588.099 + 809.448i −0.700952 + 0.964778i 0.298993 + 0.954255i \(0.403349\pi\)
−0.999945 + 0.0105222i \(0.996651\pi\)
\(840\) 0 0
\(841\) −325.214 + 1000.91i −0.386700 + 1.19014i
\(842\) 638.681 325.424i 0.758528 0.386489i
\(843\) −258.607 + 1632.78i −0.306770 + 1.93687i
\(844\) 231.112 318.098i 0.273829 0.376893i
\(845\) 0 0
\(846\) −1408.65 −1.66507
\(847\) 141.792 192.167i 0.167404 0.226879i
\(848\) −5.06509 + 5.06509i −0.00597298 + 0.00597298i
\(849\) 935.487 303.958i 1.10187 0.358019i
\(850\) 0 0
\(851\) 4.56588 3.31730i 0.00536531 0.00389812i
\(852\) 20.8074 10.6019i 0.0244219 0.0124436i
\(853\) −42.5561 83.5210i −0.0498899 0.0979145i 0.864716 0.502262i \(-0.167499\pi\)
−0.914605 + 0.404347i \(0.867499\pi\)
\(854\) 160.713 + 221.203i 0.188189 + 0.259019i
\(855\) 0 0
\(856\) 116.638 + 358.976i 0.136260 + 0.419365i
\(857\) −521.312 521.312i −0.608299 0.608299i 0.334202 0.942501i \(-0.391533\pi\)
−0.942501 + 0.334202i \(0.891533\pi\)
\(858\) −294.993 + 1209.10i −0.343814 + 1.40921i
\(859\) 385.080i 0.448289i 0.974556 + 0.224144i \(0.0719587\pi\)
−0.974556 + 0.224144i \(0.928041\pi\)
\(860\) 0 0
\(861\) 403.090 + 292.862i 0.468165 + 0.340142i
\(862\) −473.500 74.9951i −0.549304 0.0870013i
\(863\) −318.523 625.137i −0.369088 0.724377i 0.629527 0.776978i \(-0.283249\pi\)
−0.998616 + 0.0526018i \(0.983249\pi\)
\(864\) −2745.29 891.998i −3.17742 1.03241i
\(865\) 0 0
\(866\) 490.498 + 356.368i 0.566395 + 0.411510i
\(867\) 695.710 1365.41i 0.802434 1.57487i
\(868\) 44.7380 44.7380i 0.0515415 0.0515415i
\(869\) −362.000 + 420.700i −0.416570 + 0.484120i
\(870\) 0 0
\(871\) −367.911 1132.32i −0.422401 1.30002i
\(872\) 185.145 + 1168.96i 0.212322 + 1.34055i
\(873\) 413.275 2609.32i 0.473396 2.98891i
\(874\) −455.105 147.872i −0.520715 0.169190i
\(875\) 0 0
\(876\) 1106.50 803.922i 1.26313 0.917719i
\(877\) 155.228 + 980.068i 0.176998 + 1.11752i 0.902940 + 0.429767i \(0.141404\pi\)
−0.725941 + 0.687756i \(0.758596\pi\)
\(878\) −369.488 188.264i −0.420829 0.214423i
\(879\) 1569.94i 1.78605i
\(880\) 0 0
\(881\) 1602.32 1.81875 0.909376 0.415974i \(-0.136559\pi\)
0.909376 + 0.415974i \(0.136559\pi\)
\(882\) −586.430 + 1150.93i −0.664887 + 1.30491i
\(883\) 378.831 60.0009i 0.429027 0.0679512i 0.0618131 0.998088i \(-0.480312\pi\)
0.367214 + 0.930137i \(0.380312\pi\)
\(884\) 123.880 + 170.506i 0.140136 + 0.192880i
\(885\) 0 0
\(886\) −2.70811 + 8.33471i −0.00305656 + 0.00940713i
\(887\) −824.162 130.534i −0.929157 0.147164i −0.326530 0.945187i \(-0.605879\pi\)
−0.602627 + 0.798023i \(0.705879\pi\)
\(888\) 8.63878 1.36825i 0.00972836 0.00154082i
\(889\) −110.363 + 35.8592i −0.124143 + 0.0403366i
\(890\) 0 0
\(891\) −1237.24 + 2956.12i −1.38860 + 3.31775i
\(892\) −256.777 256.777i −0.287867 0.287867i
\(893\) 613.791 + 312.742i 0.687336 + 0.350215i
\(894\) −319.283 + 439.455i −0.357140 + 0.491561i
\(895\) 0 0
\(896\) −55.7058 + 171.445i −0.0621717 + 0.191345i
\(897\) −2482.69 + 1264.99i −2.76777 + 1.41025i
\(898\) −33.9550 + 214.384i −0.0378118 + 0.238734i
\(899\) −313.822 + 431.938i −0.349078 + 0.480465i
\(900\) 0 0
\(901\) −27.2094 −0.0301991
\(902\) 297.875 482.094i 0.330238 0.534472i
\(903\) 223.733 223.733i 0.247767 0.247767i
\(904\) 982.748 319.314i 1.08711 0.353224i
\(905\) 0 0
\(906\) −501.679 + 364.491i −0.553730 + 0.402308i
\(907\) 379.145 193.184i 0.418021 0.212992i −0.232313 0.972641i \(-0.574629\pi\)
0.650333 + 0.759649i \(0.274629\pi\)
\(908\) −1.20842 2.37167i −0.00133086 0.00261197i
\(909\) −473.258 651.384i −0.520636 0.716594i
\(910\) 0 0
\(911\) −488.370 1503.05i −0.536081 1.64989i −0.741301 0.671173i \(-0.765791\pi\)
0.205219 0.978716i \(-0.434209\pi\)
\(912\) 72.9392 + 72.9392i 0.0799772 + 0.0799772i
\(913\) 130.706 + 80.7603i 0.143161 + 0.0884559i
\(914\) 276.574i 0.302598i
\(915\) 0 0
\(916\) 18.5877 + 13.5048i 0.0202923 + 0.0147432i
\(917\) −341.747 54.1274i −0.372680 0.0590266i
\(918\) −229.102 449.639i −0.249567 0.489802i
\(919\) 19.2879 + 6.26701i 0.0209879 + 0.00681938i 0.319492 0.947589i \(-0.396488\pi\)
−0.298504 + 0.954408i \(0.596488\pi\)
\(920\) 0 0
\(921\) 932.718 + 677.660i 1.01272 + 0.735787i
\(922\) −290.146 + 569.443i −0.314692 + 0.617617i
\(923\) 18.2244 18.2244i 0.0197447 0.0197447i
\(924\) 301.997 + 126.396i 0.326837 + 0.136793i
\(925\) 0 0
\(926\) −24.8307 76.4210i −0.0268150 0.0825281i
\(927\) 276.322 + 1744.63i 0.298082 + 1.88201i
\(928\) 222.306 1403.58i 0.239554 1.51248i
\(929\) −640.531 208.121i −0.689484 0.224027i −0.0567411 0.998389i \(-0.518071\pi\)
−0.632743 + 0.774362i \(0.718071\pi\)
\(930\) 0 0
\(931\) 511.052 371.301i 0.548928 0.398820i
\(932\) −170.007 1073.38i −0.182411 1.15170i
\(933\) −248.876 126.809i −0.266748 0.135915i
\(934\) 739.426i 0.791677i
\(935\) 0 0
\(936\) −3151.63 −3.36713
\(937\) 131.549 258.180i 0.140394 0.275539i −0.810094 0.586300i \(-0.800584\pi\)
0.950488 + 0.310761i \(0.100584\pi\)
\(938\) 164.265 26.0170i 0.175123 0.0277367i
\(939\) 112.786 + 155.237i 0.120113 + 0.165321i
\(940\) 0 0
\(941\) −1.31431 + 4.04503i −0.00139672 + 0.00429865i −0.951752 0.306867i \(-0.900719\pi\)
0.950356 + 0.311166i \(0.100719\pi\)
\(942\) 1693.05 + 268.152i 1.79729 + 0.284663i
\(943\) 1253.12 198.475i 1.32887 0.210472i
\(944\) −2.88371 + 0.936975i −0.00305478 + 0.000992558i
\(945\) 0 0
\(946\) −272.788 234.726i −0.288360 0.248125i
\(947\) −779.521 779.521i −0.823148 0.823148i 0.163410 0.986558i \(-0.447751\pi\)
−0.986558 + 0.163410i \(0.947751\pi\)
\(948\) −677.906 345.411i −0.715091 0.364357i
\(949\) 887.246 1221.19i 0.934928 1.28682i
\(950\) 0 0
\(951\) −484.598 + 1491.44i −0.509567 + 1.56828i
\(952\) −66.3938 + 33.8293i −0.0697413 + 0.0355350i
\(953\) −90.4385 + 571.006i −0.0948987 + 0.599167i 0.893708 + 0.448648i \(0.148094\pi\)
−0.988607 + 0.150519i \(0.951906\pi\)
\(954\) 94.4911 130.056i 0.0990473 0.136327i
\(955\) 0 0
\(956\) −749.841 −0.784352
\(957\) −2683.93 654.817i −2.80452 0.684239i
\(958\) 484.389 484.389i 0.505626 0.505626i
\(959\) 15.1981 4.93817i 0.0158479 0.00514930i
\(960\) 0 0
\(961\) 655.667 476.370i 0.682276 0.495703i
\(962\) 3.39817 1.73145i 0.00353240 0.00179985i
\(963\) 534.910 + 1049.82i 0.555463 + 1.09016i
\(964\) 486.846 + 670.086i 0.505027 + 0.695110i
\(965\) 0 0
\(966\) −120.279 370.179i −0.124512 0.383208i
\(967\) 115.321 + 115.321i 0.119256 + 0.119256i 0.764216 0.644960i \(-0.223126\pi\)
−0.644960 + 0.764216i \(0.723126\pi\)
\(968\) 297.827 894.154i 0.307672 0.923713i
\(969\) 391.826i 0.404361i
\(970\) 0 0
\(971\) −305.877 222.233i −0.315012 0.228870i 0.419032 0.907971i \(-0.362370\pi\)
−0.734044 + 0.679102i \(0.762370\pi\)
\(972\) −2286.25 362.107i −2.35211 0.372538i
\(973\) 121.874 + 239.190i 0.125256 + 0.245828i
\(974\) −195.338 63.4691i −0.200552 0.0651634i
\(975\) 0 0
\(976\) −121.420 88.2169i −0.124406 0.0903861i
\(977\) 86.3306 169.433i 0.0883629 0.173422i −0.842596 0.538547i \(-0.818974\pi\)
0.930959 + 0.365125i \(0.118974\pi\)
\(978\) 1102.04 1102.04i 1.12683 1.12683i
\(979\) 460.791 + 758.196i 0.470675 + 0.774460i
\(980\) 0 0
\(981\) 1141.66 + 3513.66i 1.16377 + 3.58172i
\(982\) 49.2201 + 310.763i 0.0501223 + 0.316460i
\(983\) −195.147 + 1232.11i −0.198522 + 1.25342i 0.664129 + 0.747618i \(0.268802\pi\)
−0.862651 + 0.505799i \(0.831198\pi\)
\(984\) 1870.02 + 607.606i 1.90043 + 0.617486i
\(985\) 0 0
\(986\) 200.991 146.029i 0.203845 0.148102i
\(987\) 87.6542 + 553.427i 0.0888087 + 0.560716i
\(988\) 542.569 + 276.453i 0.549159 + 0.279810i
\(989\) 805.704i 0.814665i
\(990\) 0 0
\(991\) 1692.83 1.70821 0.854103 0.520104i \(-0.174107\pi\)
0.854103 + 0.520104i \(0.174107\pi\)
\(992\) 181.921 357.041i 0.183388 0.359920i
\(993\) 652.887 103.407i 0.657490 0.104136i
\(994\) 2.11617 + 2.91266i 0.00212895 + 0.00293024i
\(995\) 0 0
\(996\) −65.0858 + 200.314i −0.0653472 + 0.201118i
\(997\) 1170.11 + 185.327i 1.17363 + 0.185885i 0.712646 0.701524i \(-0.247497\pi\)
0.460983 + 0.887409i \(0.347497\pi\)
\(998\) −1093.32 + 173.164i −1.09551 + 0.173511i
\(999\) 16.3547 5.31395i 0.0163710 0.00531927i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.bk.c.82.11 yes 128
5.2 odd 4 inner 275.3.bk.c.93.11 yes 128
5.3 odd 4 inner 275.3.bk.c.93.6 yes 128
5.4 even 2 inner 275.3.bk.c.82.6 128
11.9 even 5 inner 275.3.bk.c.207.6 yes 128
55.9 even 10 inner 275.3.bk.c.207.11 yes 128
55.42 odd 20 inner 275.3.bk.c.218.6 yes 128
55.53 odd 20 inner 275.3.bk.c.218.11 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.bk.c.82.6 128 5.4 even 2 inner
275.3.bk.c.82.11 yes 128 1.1 even 1 trivial
275.3.bk.c.93.6 yes 128 5.3 odd 4 inner
275.3.bk.c.93.11 yes 128 5.2 odd 4 inner
275.3.bk.c.207.6 yes 128 11.9 even 5 inner
275.3.bk.c.207.11 yes 128 55.9 even 10 inner
275.3.bk.c.218.6 yes 128 55.42 odd 20 inner
275.3.bk.c.218.11 yes 128 55.53 odd 20 inner