Newspace parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.bk (of order \(20\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.49320726991\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82.1 | −1.72172 | + | 3.37907i | 2.24871 | − | 0.356160i | −6.10266 | − | 8.39959i | 0 | −2.66816 | + | 8.21175i | 0.264482 | + | 0.0418898i | 23.9070 | − | 3.78649i | −3.62968 | + | 1.17935i | 0 | ||||
82.2 | −1.54871 | + | 3.03951i | 2.39044 | − | 0.378609i | −4.48900 | − | 6.17857i | 0 | −2.55131 | + | 7.85213i | 2.23278 | + | 0.353637i | 12.2547 | − | 1.94095i | −2.98864 | + | 0.971069i | 0 | ||||
82.3 | −1.35668 | + | 2.66263i | −5.64189 | + | 0.893588i | −2.89790 | − | 3.98862i | 0 | 5.27495 | − | 16.2346i | 7.26024 | + | 1.14991i | 2.74554 | − | 0.434852i | 22.4730 | − | 7.30190i | 0 | ||||
82.4 | −1.11368 | + | 2.18572i | −3.11704 | + | 0.493690i | −1.18596 | − | 1.63233i | 0 | 2.39232 | − | 7.36280i | −1.55118 | − | 0.245682i | −4.80296 | + | 0.760714i | 0.912687 | − | 0.296550i | 0 | ||||
82.5 | −0.807274 | + | 1.58436i | 0.0974353 | − | 0.0154322i | 0.492622 | + | 0.678036i | 0 | −0.0542067 | + | 0.166831i | −2.29002 | − | 0.362704i | −8.49706 | + | 1.34580i | −8.55025 | + | 2.77815i | 0 | ||||
82.6 | −0.534746 | + | 1.04950i | 5.70073 | − | 0.902907i | 1.53565 | + | 2.11364i | 0 | −2.10084 | + | 6.46573i | −1.94938 | − | 0.308752i | −7.69295 | + | 1.21844i | 23.1236 | − | 7.51330i | 0 | ||||
82.7 | −0.319362 | + | 0.626784i | 4.31726 | − | 0.683787i | 2.06028 | + | 2.83573i | 0 | −0.950184 | + | 2.92437i | 13.0084 | + | 2.06033i | −5.21454 | + | 0.825902i | 9.61169 | − | 3.12303i | 0 | ||||
82.8 | −0.166354 | + | 0.326489i | 0.928883 | − | 0.147121i | 2.27222 | + | 3.12744i | 0 | −0.106490 | + | 0.327744i | −10.4047 | − | 1.64794i | −2.84673 | + | 0.450878i | −7.71833 | + | 2.50784i | 0 | ||||
82.9 | 0.166354 | − | 0.326489i | −0.928883 | + | 0.147121i | 2.27222 | + | 3.12744i | 0 | −0.106490 | + | 0.327744i | 10.4047 | + | 1.64794i | 2.84673 | − | 0.450878i | −7.71833 | + | 2.50784i | 0 | ||||
82.10 | 0.319362 | − | 0.626784i | −4.31726 | + | 0.683787i | 2.06028 | + | 2.83573i | 0 | −0.950184 | + | 2.92437i | −13.0084 | − | 2.06033i | 5.21454 | − | 0.825902i | 9.61169 | − | 3.12303i | 0 | ||||
82.11 | 0.534746 | − | 1.04950i | −5.70073 | + | 0.902907i | 1.53565 | + | 2.11364i | 0 | −2.10084 | + | 6.46573i | 1.94938 | + | 0.308752i | 7.69295 | − | 1.21844i | 23.1236 | − | 7.51330i | 0 | ||||
82.12 | 0.807274 | − | 1.58436i | −0.0974353 | + | 0.0154322i | 0.492622 | + | 0.678036i | 0 | −0.0542067 | + | 0.166831i | 2.29002 | + | 0.362704i | 8.49706 | − | 1.34580i | −8.55025 | + | 2.77815i | 0 | ||||
82.13 | 1.11368 | − | 2.18572i | 3.11704 | − | 0.493690i | −1.18596 | − | 1.63233i | 0 | 2.39232 | − | 7.36280i | 1.55118 | + | 0.245682i | 4.80296 | − | 0.760714i | 0.912687 | − | 0.296550i | 0 | ||||
82.14 | 1.35668 | − | 2.66263i | 5.64189 | − | 0.893588i | −2.89790 | − | 3.98862i | 0 | 5.27495 | − | 16.2346i | −7.26024 | − | 1.14991i | −2.74554 | + | 0.434852i | 22.4730 | − | 7.30190i | 0 | ||||
82.15 | 1.54871 | − | 3.03951i | −2.39044 | + | 0.378609i | −4.48900 | − | 6.17857i | 0 | −2.55131 | + | 7.85213i | −2.23278 | − | 0.353637i | −12.2547 | + | 1.94095i | −2.98864 | + | 0.971069i | 0 | ||||
82.16 | 1.72172 | − | 3.37907i | −2.24871 | + | 0.356160i | −6.10266 | − | 8.39959i | 0 | −2.66816 | + | 8.21175i | −0.264482 | − | 0.0418898i | −23.9070 | + | 3.78649i | −3.62968 | + | 1.17935i | 0 | ||||
93.1 | −3.37907 | − | 1.72172i | −0.356160 | − | 2.24871i | 6.10266 | + | 8.39959i | 0 | −2.66816 | + | 8.21175i | −0.0418898 | + | 0.264482i | −3.78649 | − | 23.9070i | 3.62968 | − | 1.17935i | 0 | ||||
93.2 | −3.03951 | − | 1.54871i | −0.378609 | − | 2.39044i | 4.48900 | + | 6.17857i | 0 | −2.55131 | + | 7.85213i | −0.353637 | + | 2.23278i | −1.94095 | − | 12.2547i | 2.98864 | − | 0.971069i | 0 | ||||
93.3 | −2.66263 | − | 1.35668i | 0.893588 | + | 5.64189i | 2.89790 | + | 3.98862i | 0 | 5.27495 | − | 16.2346i | −1.14991 | + | 7.26024i | −0.434852 | − | 2.74554i | −22.4730 | + | 7.30190i | 0 | ||||
93.4 | −2.18572 | − | 1.11368i | 0.493690 | + | 3.11704i | 1.18596 | + | 1.63233i | 0 | 2.39232 | − | 7.36280i | 0.245682 | − | 1.55118i | 0.760714 | + | 4.80296i | −0.912687 | + | 0.296550i | 0 | ||||
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
11.c | even | 5 | 1 | inner |
55.j | even | 10 | 1 | inner |
55.k | odd | 20 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.3.bk.c | ✓ | 128 |
5.b | even | 2 | 1 | inner | 275.3.bk.c | ✓ | 128 |
5.c | odd | 4 | 2 | inner | 275.3.bk.c | ✓ | 128 |
11.c | even | 5 | 1 | inner | 275.3.bk.c | ✓ | 128 |
55.j | even | 10 | 1 | inner | 275.3.bk.c | ✓ | 128 |
55.k | odd | 20 | 2 | inner | 275.3.bk.c | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
275.3.bk.c | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
275.3.bk.c | ✓ | 128 | 5.b | even | 2 | 1 | inner |
275.3.bk.c | ✓ | 128 | 5.c | odd | 4 | 2 | inner |
275.3.bk.c | ✓ | 128 | 11.c | even | 5 | 1 | inner |
275.3.bk.c | ✓ | 128 | 55.j | even | 10 | 1 | inner |
275.3.bk.c | ✓ | 128 | 55.k | odd | 20 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{128} - 626 T_{2}^{124} + 223399 T_{2}^{120} - 60936494 T_{2}^{116} + 14980842035 T_{2}^{112} + \cdots + 51\!\cdots\!41 \)
acting on \(S_{3}^{\mathrm{new}}(275, [\chi])\).