Properties

Label 275.2.z.c.124.3
Level $275$
Weight $2$
Character 275.124
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(49,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 124.3
Character \(\chi\) \(=\) 275.124
Dual form 275.2.z.c.224.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.776830 - 1.06921i) q^{2} +(-1.92724 + 0.626199i) q^{3} +(0.0782786 - 0.240917i) q^{4} +(2.16668 + 1.57419i) q^{6} +(0.331213 + 0.107618i) q^{7} +(-2.83228 + 0.920262i) q^{8} +(0.895086 - 0.650318i) q^{9} +(-3.25463 + 0.638246i) q^{11} +0.513323i q^{12} +(1.09079 + 1.50135i) q^{13} +(-0.142230 - 0.437738i) q^{14} +(2.77428 + 2.01563i) q^{16} +(1.05786 - 1.45602i) q^{17} +(-1.39066 - 0.451853i) q^{18} +(2.21198 + 6.80779i) q^{19} -0.705717 q^{21} +(3.21072 + 2.98409i) q^{22} +8.41145i q^{23} +(4.88221 - 3.54714i) q^{24} +(0.757902 - 2.33258i) q^{26} +(2.25548 - 3.10441i) q^{27} +(0.0518537 - 0.0713705i) q^{28} +(-1.79251 + 5.51679i) q^{29} +(-4.49489 + 3.26573i) q^{31} +1.42395i q^{32} +(5.87280 - 3.26810i) q^{33} -2.37858 q^{34} +(-0.0866064 - 0.266547i) q^{36} +(-1.75766 - 0.571099i) q^{37} +(5.56065 - 7.65358i) q^{38} +(-3.04236 - 2.21041i) q^{39} +(-2.79149 - 8.59133i) q^{41} +(0.548222 + 0.754563i) q^{42} -6.76370i q^{43} +(-0.101004 + 0.834057i) q^{44} +(8.99364 - 6.53426i) q^{46} +(-6.90656 + 2.24408i) q^{47} +(-6.60890 - 2.14736i) q^{48} +(-5.56500 - 4.04321i) q^{49} +(-1.12700 + 3.46854i) q^{51} +(0.447085 - 0.145267i) q^{52} +(-0.201527 - 0.277378i) q^{53} -5.07141 q^{54} -1.03712 q^{56} +(-8.52606 - 11.7351i) q^{57} +(7.29112 - 2.36903i) q^{58} +(-0.0615923 + 0.189562i) q^{59} +(6.30721 + 4.58245i) q^{61} +(6.98354 + 2.26909i) q^{62} +(0.366449 - 0.119067i) q^{63} +(7.07108 - 5.13744i) q^{64} +(-8.05647 - 3.74052i) q^{66} +12.2451i q^{67} +(-0.267972 - 0.368832i) q^{68} +(-5.26724 - 16.2109i) q^{69} +(-7.95510 - 5.77972i) q^{71} +(-1.93667 + 2.66559i) q^{72} +(0.963578 + 0.313085i) q^{73} +(0.754777 + 2.32297i) q^{74} +1.81326 q^{76} +(-1.14666 - 0.138860i) q^{77} +4.97005i q^{78} +(5.36632 - 3.89886i) q^{79} +(-3.42856 + 10.5520i) q^{81} +(-7.01746 + 9.65870i) q^{82} +(-6.53931 + 9.00058i) q^{83} +(-0.0552425 + 0.170019i) q^{84} +(-7.23185 + 5.25425i) q^{86} -11.7547i q^{87} +(8.63067 - 4.80281i) q^{88} -8.84524 q^{89} +(0.199713 + 0.614654i) q^{91} +(2.02646 + 0.658436i) q^{92} +(6.61775 - 9.10855i) q^{93} +(7.76462 + 5.64133i) q^{94} +(-0.891677 - 2.74430i) q^{96} +(3.64564 + 5.01780i) q^{97} +9.09106i q^{98} +(-2.49811 + 2.68783i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} - 6 q^{6} - 16 q^{9} - 10 q^{11} - 6 q^{14} - 8 q^{16} + 26 q^{19} + 20 q^{21} + 86 q^{24} - 68 q^{26} + 22 q^{29} - 20 q^{31} - 40 q^{34} + 6 q^{36} - 6 q^{39} + 50 q^{41} + 2 q^{44} + 80 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.776830 1.06921i −0.549302 0.756049i 0.440615 0.897696i \(-0.354760\pi\)
−0.989917 + 0.141647i \(0.954760\pi\)
\(3\) −1.92724 + 0.626199i −1.11269 + 0.361536i −0.806975 0.590586i \(-0.798897\pi\)
−0.305719 + 0.952122i \(0.598897\pi\)
\(4\) 0.0782786 0.240917i 0.0391393 0.120458i
\(5\) 0 0
\(6\) 2.16668 + 1.57419i 0.884544 + 0.642659i
\(7\) 0.331213 + 0.107618i 0.125187 + 0.0406756i 0.370940 0.928657i \(-0.379035\pi\)
−0.245754 + 0.969332i \(0.579035\pi\)
\(8\) −2.83228 + 0.920262i −1.00136 + 0.325362i
\(9\) 0.895086 0.650318i 0.298362 0.216773i
\(10\) 0 0
\(11\) −3.25463 + 0.638246i −0.981309 + 0.192438i
\(12\) 0.513323i 0.148183i
\(13\) 1.09079 + 1.50135i 0.302532 + 0.416399i 0.933034 0.359788i \(-0.117151\pi\)
−0.630502 + 0.776187i \(0.717151\pi\)
\(14\) −0.142230 0.437738i −0.0380125 0.116990i
\(15\) 0 0
\(16\) 2.77428 + 2.01563i 0.693571 + 0.503909i
\(17\) 1.05786 1.45602i 0.256569 0.353137i −0.661229 0.750184i \(-0.729965\pi\)
0.917798 + 0.397047i \(0.129965\pi\)
\(18\) −1.39066 0.451853i −0.327782 0.106503i
\(19\) 2.21198 + 6.80779i 0.507464 + 1.56181i 0.796588 + 0.604522i \(0.206636\pi\)
−0.289124 + 0.957292i \(0.593364\pi\)
\(20\) 0 0
\(21\) −0.705717 −0.154000
\(22\) 3.21072 + 2.98409i 0.684528 + 0.636211i
\(23\) 8.41145i 1.75391i 0.480574 + 0.876954i \(0.340428\pi\)
−0.480574 + 0.876954i \(0.659572\pi\)
\(24\) 4.88221 3.54714i 0.996578 0.724056i
\(25\) 0 0
\(26\) 0.757902 2.33258i 0.148637 0.457457i
\(27\) 2.25548 3.10441i 0.434068 0.597444i
\(28\) 0.0518537 0.0713705i 0.00979943 0.0134878i
\(29\) −1.79251 + 5.51679i −0.332862 + 1.02444i 0.634904 + 0.772591i \(0.281040\pi\)
−0.967766 + 0.251852i \(0.918960\pi\)
\(30\) 0 0
\(31\) −4.49489 + 3.26573i −0.807307 + 0.586543i −0.913048 0.407851i \(-0.866278\pi\)
0.105742 + 0.994394i \(0.466278\pi\)
\(32\) 1.42395i 0.251722i
\(33\) 5.87280 3.26810i 1.02232 0.568904i
\(34\) −2.37858 −0.407923
\(35\) 0 0
\(36\) −0.0866064 0.266547i −0.0144344 0.0444245i
\(37\) −1.75766 0.571099i −0.288958 0.0938881i 0.160952 0.986962i \(-0.448544\pi\)
−0.449909 + 0.893074i \(0.648544\pi\)
\(38\) 5.56065 7.65358i 0.902057 1.24157i
\(39\) −3.04236 2.21041i −0.487168 0.353948i
\(40\) 0 0
\(41\) −2.79149 8.59133i −0.435958 1.34174i −0.892102 0.451834i \(-0.850770\pi\)
0.456144 0.889906i \(-0.349230\pi\)
\(42\) 0.548222 + 0.754563i 0.0845925 + 0.116432i
\(43\) 6.76370i 1.03145i −0.856753 0.515727i \(-0.827522\pi\)
0.856753 0.515727i \(-0.172478\pi\)
\(44\) −0.101004 + 0.834057i −0.0152269 + 0.125739i
\(45\) 0 0
\(46\) 8.99364 6.53426i 1.32604 0.963425i
\(47\) −6.90656 + 2.24408i −1.00742 + 0.327332i −0.765829 0.643045i \(-0.777671\pi\)
−0.241596 + 0.970377i \(0.577671\pi\)
\(48\) −6.60890 2.14736i −0.953913 0.309945i
\(49\) −5.56500 4.04321i −0.795000 0.577601i
\(50\) 0 0
\(51\) −1.12700 + 3.46854i −0.157811 + 0.485693i
\(52\) 0.447085 0.145267i 0.0619996 0.0201449i
\(53\) −0.201527 0.277378i −0.0276819 0.0381009i 0.794952 0.606673i \(-0.207496\pi\)
−0.822634 + 0.568572i \(0.807496\pi\)
\(54\) −5.07141 −0.690131
\(55\) 0 0
\(56\) −1.03712 −0.138591
\(57\) −8.52606 11.7351i −1.12930 1.55435i
\(58\) 7.29112 2.36903i 0.957370 0.311069i
\(59\) −0.0615923 + 0.189562i −0.00801863 + 0.0246788i −0.954986 0.296652i \(-0.904130\pi\)
0.946967 + 0.321330i \(0.104130\pi\)
\(60\) 0 0
\(61\) 6.30721 + 4.58245i 0.807555 + 0.586723i 0.913121 0.407689i \(-0.133665\pi\)
−0.105566 + 0.994412i \(0.533665\pi\)
\(62\) 6.98354 + 2.26909i 0.886910 + 0.288175i
\(63\) 0.366449 0.119067i 0.0461683 0.0150010i
\(64\) 7.07108 5.13744i 0.883885 0.642180i
\(65\) 0 0
\(66\) −8.05647 3.74052i −0.991683 0.460426i
\(67\) 12.2451i 1.49597i 0.663715 + 0.747986i \(0.268979\pi\)
−0.663715 + 0.747986i \(0.731021\pi\)
\(68\) −0.267972 0.368832i −0.0324964 0.0447275i
\(69\) −5.26724 16.2109i −0.634101 1.95156i
\(70\) 0 0
\(71\) −7.95510 5.77972i −0.944097 0.685927i 0.00530622 0.999986i \(-0.498311\pi\)
−0.949403 + 0.314059i \(0.898311\pi\)
\(72\) −1.93667 + 2.66559i −0.228238 + 0.314143i
\(73\) 0.963578 + 0.313085i 0.112778 + 0.0366439i 0.364862 0.931061i \(-0.381116\pi\)
−0.252084 + 0.967705i \(0.581116\pi\)
\(74\) 0.754777 + 2.32297i 0.0877411 + 0.270039i
\(75\) 0 0
\(76\) 1.81326 0.207995
\(77\) −1.14666 0.138860i −0.130674 0.0158246i
\(78\) 4.97005i 0.562748i
\(79\) 5.36632 3.89886i 0.603758 0.438656i −0.243453 0.969913i \(-0.578280\pi\)
0.847211 + 0.531257i \(0.178280\pi\)
\(80\) 0 0
\(81\) −3.42856 + 10.5520i −0.380952 + 1.17245i
\(82\) −7.01746 + 9.65870i −0.774949 + 1.06663i
\(83\) −6.53931 + 9.00058i −0.717782 + 0.987942i 0.281813 + 0.959469i \(0.409064\pi\)
−0.999595 + 0.0284727i \(0.990936\pi\)
\(84\) −0.0552425 + 0.170019i −0.00602745 + 0.0185506i
\(85\) 0 0
\(86\) −7.23185 + 5.25425i −0.779830 + 0.566580i
\(87\) 11.7547i 1.26023i
\(88\) 8.63067 4.80281i 0.920032 0.511981i
\(89\) −8.84524 −0.937594 −0.468797 0.883306i \(-0.655312\pi\)
−0.468797 + 0.883306i \(0.655312\pi\)
\(90\) 0 0
\(91\) 0.199713 + 0.614654i 0.0209356 + 0.0644332i
\(92\) 2.02646 + 0.658436i 0.211273 + 0.0686467i
\(93\) 6.61775 9.10855i 0.686229 0.944513i
\(94\) 7.76462 + 5.64133i 0.800859 + 0.581858i
\(95\) 0 0
\(96\) −0.891677 2.74430i −0.0910064 0.280089i
\(97\) 3.64564 + 5.01780i 0.370159 + 0.509480i 0.952944 0.303146i \(-0.0980370\pi\)
−0.582785 + 0.812626i \(0.698037\pi\)
\(98\) 9.09106i 0.918336i
\(99\) −2.49811 + 2.68783i −0.251070 + 0.270137i
\(100\) 0 0
\(101\) 2.96734 2.15590i 0.295262 0.214520i −0.430285 0.902693i \(-0.641587\pi\)
0.725547 + 0.688173i \(0.241587\pi\)
\(102\) 4.58410 1.48946i 0.453894 0.147479i
\(103\) −18.7187 6.08206i −1.84440 0.599283i −0.997743 0.0671522i \(-0.978609\pi\)
−0.846662 0.532131i \(-0.821391\pi\)
\(104\) −4.47106 3.24842i −0.438423 0.318533i
\(105\) 0 0
\(106\) −0.140025 + 0.430952i −0.0136004 + 0.0418577i
\(107\) −0.286633 + 0.0931327i −0.0277098 + 0.00900347i −0.322839 0.946454i \(-0.604637\pi\)
0.295129 + 0.955457i \(0.404637\pi\)
\(108\) −0.571348 0.786392i −0.0549779 0.0756706i
\(109\) 10.9371 1.04759 0.523794 0.851845i \(-0.324516\pi\)
0.523794 + 0.851845i \(0.324516\pi\)
\(110\) 0 0
\(111\) 3.74506 0.355466
\(112\) 0.701960 + 0.966165i 0.0663290 + 0.0912940i
\(113\) 5.51830 1.79300i 0.519118 0.168672i −0.0377271 0.999288i \(-0.512012\pi\)
0.556845 + 0.830616i \(0.312012\pi\)
\(114\) −5.92406 + 18.2324i −0.554839 + 1.70762i
\(115\) 0 0
\(116\) 1.18877 + 0.863693i 0.110375 + 0.0801919i
\(117\) 1.95271 + 0.634473i 0.180528 + 0.0586570i
\(118\) 0.250529 0.0814018i 0.0230630 0.00749364i
\(119\) 0.507071 0.368409i 0.0464831 0.0337720i
\(120\) 0 0
\(121\) 10.1853 4.15451i 0.925935 0.377683i
\(122\) 10.3035i 0.932839i
\(123\) 10.7598 + 14.8095i 0.970175 + 1.33533i
\(124\) 0.434915 + 1.33853i 0.0390565 + 0.120204i
\(125\) 0 0
\(126\) −0.411977 0.299319i −0.0367018 0.0266654i
\(127\) 7.25943 9.99175i 0.644170 0.886625i −0.354659 0.934996i \(-0.615403\pi\)
0.998829 + 0.0483711i \(0.0154030\pi\)
\(128\) −8.27753 2.68953i −0.731637 0.237723i
\(129\) 4.23542 + 13.0353i 0.372908 + 1.14769i
\(130\) 0 0
\(131\) 7.81632 0.682915 0.341458 0.939897i \(-0.389079\pi\)
0.341458 + 0.939897i \(0.389079\pi\)
\(132\) −0.327626 1.67068i −0.0285162 0.145414i
\(133\) 2.49287i 0.216160i
\(134\) 13.0926 9.51233i 1.13103 0.821740i
\(135\) 0 0
\(136\) −1.65624 + 5.09737i −0.142021 + 0.437096i
\(137\) 5.63141 7.75098i 0.481124 0.662211i −0.497596 0.867409i \(-0.665784\pi\)
0.978720 + 0.205198i \(0.0657839\pi\)
\(138\) −13.2412 + 18.2249i −1.12716 + 1.55141i
\(139\) −5.91169 + 18.1943i −0.501423 + 1.54322i 0.305280 + 0.952263i \(0.401250\pi\)
−0.806702 + 0.590958i \(0.798750\pi\)
\(140\) 0 0
\(141\) 11.9054 8.64976i 1.00261 0.728441i
\(142\) 12.9956i 1.09056i
\(143\) −4.50836 4.19014i −0.377008 0.350397i
\(144\) 3.79403 0.316169
\(145\) 0 0
\(146\) −0.413781 1.27349i −0.0342447 0.105394i
\(147\) 13.2570 + 4.30744i 1.09341 + 0.355272i
\(148\) −0.275175 + 0.378745i −0.0226192 + 0.0311327i
\(149\) 4.67208 + 3.39446i 0.382752 + 0.278085i 0.762479 0.647013i \(-0.223982\pi\)
−0.379727 + 0.925099i \(0.623982\pi\)
\(150\) 0 0
\(151\) 4.13098 + 12.7139i 0.336175 + 1.03464i 0.966141 + 0.258016i \(0.0830689\pi\)
−0.629966 + 0.776623i \(0.716931\pi\)
\(152\) −12.5299 17.2459i −1.01631 1.39883i
\(153\) 1.99121i 0.160980i
\(154\) 0.742290 + 1.33390i 0.0598155 + 0.107489i
\(155\) 0 0
\(156\) −0.770676 + 0.559929i −0.0617035 + 0.0448302i
\(157\) −12.7870 + 4.15475i −1.02051 + 0.331585i −0.771033 0.636795i \(-0.780260\pi\)
−0.249481 + 0.968380i \(0.580260\pi\)
\(158\) −8.33744 2.70900i −0.663291 0.215516i
\(159\) 0.562086 + 0.408379i 0.0445763 + 0.0323866i
\(160\) 0 0
\(161\) −0.905219 + 2.78598i −0.0713413 + 0.219566i
\(162\) 13.9458 4.53127i 1.09569 0.356010i
\(163\) −1.84293 2.53658i −0.144349 0.198680i 0.730720 0.682677i \(-0.239184\pi\)
−0.875070 + 0.483997i \(0.839184\pi\)
\(164\) −2.28831 −0.178687
\(165\) 0 0
\(166\) 14.7035 1.14121
\(167\) 1.54515 + 2.12672i 0.119567 + 0.164570i 0.864605 0.502452i \(-0.167569\pi\)
−0.745038 + 0.667022i \(0.767569\pi\)
\(168\) 1.99879 0.649445i 0.154210 0.0501057i
\(169\) 2.95301 9.08842i 0.227154 0.699109i
\(170\) 0 0
\(171\) 6.40714 + 4.65506i 0.489967 + 0.355982i
\(172\) −1.62949 0.529453i −0.124247 0.0403704i
\(173\) 3.73072 1.21218i 0.283641 0.0921606i −0.163741 0.986503i \(-0.552356\pi\)
0.447383 + 0.894343i \(0.352356\pi\)
\(174\) −12.5683 + 9.13138i −0.952798 + 0.692248i
\(175\) 0 0
\(176\) −10.3157 4.78948i −0.777579 0.361020i
\(177\) 0.403900i 0.0303590i
\(178\) 6.87125 + 9.45746i 0.515022 + 0.708867i
\(179\) 1.02435 + 3.15264i 0.0765639 + 0.235639i 0.982012 0.188817i \(-0.0604653\pi\)
−0.905448 + 0.424456i \(0.860465\pi\)
\(180\) 0 0
\(181\) −13.6763 9.93640i −1.01655 0.738567i −0.0509769 0.998700i \(-0.516233\pi\)
−0.965573 + 0.260133i \(0.916233\pi\)
\(182\) 0.502054 0.691018i 0.0372147 0.0512216i
\(183\) −15.0250 4.88193i −1.11068 0.360883i
\(184\) −7.74074 23.8235i −0.570655 1.75629i
\(185\) 0 0
\(186\) −14.8799 −1.09104
\(187\) −2.51365 + 5.41400i −0.183817 + 0.395911i
\(188\) 1.83957i 0.134164i
\(189\) 1.08113 0.785490i 0.0786409 0.0571360i
\(190\) 0 0
\(191\) −6.49420 + 19.9871i −0.469903 + 1.44621i 0.382806 + 0.923829i \(0.374958\pi\)
−0.852709 + 0.522385i \(0.825042\pi\)
\(192\) −10.4106 + 14.3290i −0.751322 + 1.03411i
\(193\) 1.94751 2.68051i 0.140184 0.192947i −0.733152 0.680065i \(-0.761952\pi\)
0.873336 + 0.487117i \(0.161952\pi\)
\(194\) 2.53306 7.79595i 0.181863 0.559717i
\(195\) 0 0
\(196\) −1.40970 + 1.02420i −0.100693 + 0.0731575i
\(197\) 6.97218i 0.496747i 0.968664 + 0.248374i \(0.0798961\pi\)
−0.968664 + 0.248374i \(0.920104\pi\)
\(198\) 4.81448 + 0.583032i 0.342150 + 0.0414343i
\(199\) 19.2184 1.36236 0.681178 0.732118i \(-0.261468\pi\)
0.681178 + 0.732118i \(0.261468\pi\)
\(200\) 0 0
\(201\) −7.66784 23.5992i −0.540848 1.66456i
\(202\) −4.61024 1.49796i −0.324375 0.105396i
\(203\) −1.18741 + 1.63433i −0.0833396 + 0.114707i
\(204\) 0.747409 + 0.543025i 0.0523291 + 0.0380193i
\(205\) 0 0
\(206\) 8.03819 + 24.7390i 0.560047 + 1.72365i
\(207\) 5.47012 + 7.52897i 0.380199 + 0.523299i
\(208\) 6.36380i 0.441250i
\(209\) −11.5442 20.7451i −0.798532 1.43497i
\(210\) 0 0
\(211\) −3.47407 + 2.52406i −0.239165 + 0.173764i −0.700911 0.713249i \(-0.747223\pi\)
0.461746 + 0.887012i \(0.347223\pi\)
\(212\) −0.0826004 + 0.0268385i −0.00567302 + 0.00184327i
\(213\) 18.9507 + 6.15745i 1.29848 + 0.421901i
\(214\) 0.322244 + 0.234124i 0.0220281 + 0.0160044i
\(215\) 0 0
\(216\) −3.53128 + 10.8682i −0.240273 + 0.739486i
\(217\) −1.84022 + 0.597922i −0.124922 + 0.0405896i
\(218\) −8.49629 11.6941i −0.575442 0.792027i
\(219\) −2.05310 −0.138736
\(220\) 0 0
\(221\) 3.33991 0.224666
\(222\) −2.90928 4.00428i −0.195258 0.268749i
\(223\) −10.0702 + 3.27200i −0.674349 + 0.219109i −0.626120 0.779727i \(-0.715358\pi\)
−0.0482295 + 0.998836i \(0.515358\pi\)
\(224\) −0.153242 + 0.471631i −0.0102389 + 0.0315122i
\(225\) 0 0
\(226\) −6.20389 4.50739i −0.412676 0.299827i
\(227\) 5.49240 + 1.78459i 0.364543 + 0.118447i 0.485560 0.874203i \(-0.338616\pi\)
−0.121017 + 0.992650i \(0.538616\pi\)
\(228\) −3.49459 + 1.13546i −0.231435 + 0.0751978i
\(229\) −4.13124 + 3.00152i −0.273000 + 0.198346i −0.715858 0.698245i \(-0.753964\pi\)
0.442858 + 0.896592i \(0.353964\pi\)
\(230\) 0 0
\(231\) 2.29685 0.450421i 0.151122 0.0296355i
\(232\) 17.2747i 1.13414i
\(233\) 16.3323 + 22.4794i 1.06996 + 1.47268i 0.870115 + 0.492850i \(0.164045\pi\)
0.199848 + 0.979827i \(0.435955\pi\)
\(234\) −0.838534 2.58074i −0.0548167 0.168708i
\(235\) 0 0
\(236\) 0.0408472 + 0.0296772i 0.00265893 + 0.00193182i
\(237\) −7.90074 + 10.8744i −0.513208 + 0.706370i
\(238\) −0.787816 0.255977i −0.0510665 0.0165925i
\(239\) 2.08502 + 6.41702i 0.134868 + 0.415082i 0.995570 0.0940282i \(-0.0299744\pi\)
−0.860701 + 0.509111i \(0.829974\pi\)
\(240\) 0 0
\(241\) −13.0610 −0.841331 −0.420666 0.907216i \(-0.638203\pi\)
−0.420666 + 0.907216i \(0.638203\pi\)
\(242\) −12.3543 7.66290i −0.794165 0.492590i
\(243\) 10.9715i 0.703823i
\(244\) 1.59771 1.16080i 0.102283 0.0743128i
\(245\) 0 0
\(246\) 7.47607 23.0090i 0.476657 1.46700i
\(247\) −7.80804 + 10.7468i −0.496814 + 0.683805i
\(248\) 9.72545 13.3859i 0.617567 0.850007i
\(249\) 6.96667 21.4412i 0.441495 1.35878i
\(250\) 0 0
\(251\) 24.3883 17.7191i 1.53938 1.11842i 0.588650 0.808388i \(-0.299660\pi\)
0.950726 0.310033i \(-0.100340\pi\)
\(252\) 0.0976041i 0.00614848i
\(253\) −5.36857 27.3762i −0.337519 1.72113i
\(254\) −16.3227 −1.02418
\(255\) 0 0
\(256\) −1.84728 5.68533i −0.115455 0.355333i
\(257\) −0.345199 0.112162i −0.0215329 0.00699648i 0.298231 0.954494i \(-0.403604\pi\)
−0.319764 + 0.947497i \(0.603604\pi\)
\(258\) 10.6473 14.6548i 0.662873 0.912367i
\(259\) −0.520700 0.378310i −0.0323547 0.0235071i
\(260\) 0 0
\(261\) 1.98322 + 6.10371i 0.122758 + 0.377810i
\(262\) −6.07195 8.35733i −0.375127 0.516317i
\(263\) 22.5498i 1.39048i −0.718779 0.695239i \(-0.755299\pi\)
0.718779 0.695239i \(-0.244701\pi\)
\(264\) −13.6259 + 14.6607i −0.838614 + 0.902303i
\(265\) 0 0
\(266\) 2.66542 1.93654i 0.163427 0.118737i
\(267\) 17.0469 5.53888i 1.04325 0.338974i
\(268\) 2.95004 + 0.958525i 0.180202 + 0.0585512i
\(269\) −4.97323 3.61326i −0.303223 0.220305i 0.425760 0.904836i \(-0.360007\pi\)
−0.728983 + 0.684532i \(0.760007\pi\)
\(270\) 0 0
\(271\) 5.15939 15.8790i 0.313410 0.964578i −0.662993 0.748625i \(-0.730714\pi\)
0.976404 0.215953i \(-0.0692858\pi\)
\(272\) 5.86962 1.90715i 0.355898 0.115638i
\(273\) −0.769791 1.05953i −0.0465899 0.0641255i
\(274\) −12.6621 −0.764946
\(275\) 0 0
\(276\) −4.31779 −0.259900
\(277\) 13.1252 + 18.0652i 0.788614 + 1.08543i 0.994279 + 0.106812i \(0.0340643\pi\)
−0.205665 + 0.978622i \(0.565936\pi\)
\(278\) 24.0460 7.81302i 1.44218 0.468594i
\(279\) −1.89955 + 5.84622i −0.113723 + 0.350004i
\(280\) 0 0
\(281\) −19.2992 14.0217i −1.15129 0.836463i −0.162640 0.986685i \(-0.552001\pi\)
−0.988652 + 0.150223i \(0.952001\pi\)
\(282\) −18.4969 6.01000i −1.10147 0.357891i
\(283\) 0.138749 0.0450824i 0.00824779 0.00267987i −0.304890 0.952388i \(-0.598620\pi\)
0.313138 + 0.949708i \(0.398620\pi\)
\(284\) −2.01515 + 1.46409i −0.119577 + 0.0868777i
\(285\) 0 0
\(286\) −0.977932 + 8.07544i −0.0578264 + 0.477511i
\(287\) 3.14597i 0.185701i
\(288\) 0.926022 + 1.27456i 0.0545664 + 0.0751041i
\(289\) 4.25236 + 13.0874i 0.250139 + 0.769848i
\(290\) 0 0
\(291\) −10.1682 7.38761i −0.596069 0.433070i
\(292\) 0.150855 0.207634i 0.00882812 0.0121509i
\(293\) 7.29917 + 2.37164i 0.426422 + 0.138553i 0.514363 0.857573i \(-0.328029\pi\)
−0.0879405 + 0.996126i \(0.528029\pi\)
\(294\) −5.69281 17.5207i −0.332012 1.02183i
\(295\) 0 0
\(296\) 5.50374 0.319899
\(297\) −5.35940 + 11.5433i −0.310984 + 0.669808i
\(298\) 7.63238i 0.442132i
\(299\) −12.6285 + 9.17515i −0.730325 + 0.530612i
\(300\) 0 0
\(301\) 0.727893 2.24022i 0.0419550 0.129124i
\(302\) 10.3848 14.2934i 0.597577 0.822494i
\(303\) −4.36876 + 6.01309i −0.250979 + 0.345443i
\(304\) −7.58534 + 23.3453i −0.435049 + 1.33894i
\(305\) 0 0
\(306\) −2.12903 + 1.54683i −0.121709 + 0.0884266i
\(307\) 9.69537i 0.553344i −0.960964 0.276672i \(-0.910768\pi\)
0.960964 0.276672i \(-0.0892315\pi\)
\(308\) −0.123213 + 0.265380i −0.00702071 + 0.0151214i
\(309\) 39.8840 2.26892
\(310\) 0 0
\(311\) 7.77436 + 23.9270i 0.440844 + 1.35678i 0.886978 + 0.461811i \(0.152800\pi\)
−0.446135 + 0.894966i \(0.647200\pi\)
\(312\) 10.6510 + 3.46071i 0.602992 + 0.195924i
\(313\) −6.39138 + 8.79698i −0.361262 + 0.497235i −0.950500 0.310725i \(-0.899428\pi\)
0.589238 + 0.807960i \(0.299428\pi\)
\(314\) 14.3757 + 10.4445i 0.811265 + 0.589418i
\(315\) 0 0
\(316\) −0.519233 1.59803i −0.0292091 0.0898964i
\(317\) 14.9499 + 20.5768i 0.839672 + 1.15571i 0.986045 + 0.166480i \(0.0532402\pi\)
−0.146373 + 0.989230i \(0.546760\pi\)
\(318\) 0.918232i 0.0514919i
\(319\) 2.31291 19.0992i 0.129498 1.06935i
\(320\) 0 0
\(321\) 0.494091 0.358978i 0.0275775 0.0200362i
\(322\) 3.68201 1.19636i 0.205190 0.0666704i
\(323\) 12.2523 + 3.98100i 0.681734 + 0.221509i
\(324\) 2.27378 + 1.65200i 0.126321 + 0.0917776i
\(325\) 0 0
\(326\) −1.28050 + 3.94098i −0.0709204 + 0.218270i
\(327\) −21.0785 + 6.84882i −1.16564 + 0.378741i
\(328\) 15.8125 + 21.7641i 0.873102 + 1.20172i
\(329\) −2.52904 −0.139431
\(330\) 0 0
\(331\) −10.3091 −0.566638 −0.283319 0.959026i \(-0.591435\pi\)
−0.283319 + 0.959026i \(0.591435\pi\)
\(332\) 1.65650 + 2.27998i 0.0909124 + 0.125130i
\(333\) −1.94465 + 0.631857i −0.106566 + 0.0346255i
\(334\) 1.07360 3.30420i 0.0587447 0.180798i
\(335\) 0 0
\(336\) −1.95786 1.42247i −0.106810 0.0776020i
\(337\) −2.19127 0.711987i −0.119366 0.0387844i 0.248725 0.968574i \(-0.419988\pi\)
−0.368091 + 0.929790i \(0.619988\pi\)
\(338\) −12.0115 + 3.90276i −0.653337 + 0.212282i
\(339\) −9.51232 + 6.91111i −0.516638 + 0.375360i
\(340\) 0 0
\(341\) 12.5449 13.4976i 0.679344 0.730936i
\(342\) 10.4668i 0.565980i
\(343\) −2.84098 3.91028i −0.153399 0.211135i
\(344\) 6.22438 + 19.1567i 0.335596 + 1.03286i
\(345\) 0 0
\(346\) −4.19422 3.04728i −0.225483 0.163823i
\(347\) 12.1899 16.7779i 0.654387 0.900686i −0.344892 0.938642i \(-0.612085\pi\)
0.999279 + 0.0379558i \(0.0120846\pi\)
\(348\) −2.83189 0.920138i −0.151806 0.0493246i
\(349\) −1.14723 3.53080i −0.0614097 0.189000i 0.915645 0.401988i \(-0.131680\pi\)
−0.977055 + 0.212988i \(0.931680\pi\)
\(350\) 0 0
\(351\) 7.12106 0.380094
\(352\) −0.908832 4.63444i −0.0484409 0.247017i
\(353\) 3.01441i 0.160441i −0.996777 0.0802203i \(-0.974438\pi\)
0.996777 0.0802203i \(-0.0255624\pi\)
\(354\) −0.431856 + 0.313762i −0.0229529 + 0.0166763i
\(355\) 0 0
\(356\) −0.692393 + 2.13097i −0.0366967 + 0.112941i
\(357\) −0.746551 + 1.02754i −0.0395117 + 0.0543832i
\(358\) 2.57510 3.54432i 0.136098 0.187323i
\(359\) 7.02678 21.6262i 0.370859 1.14139i −0.575371 0.817893i \(-0.695142\pi\)
0.946230 0.323494i \(-0.104858\pi\)
\(360\) 0 0
\(361\) −26.0818 + 18.9495i −1.37273 + 0.997344i
\(362\) 22.3418i 1.17426i
\(363\) −17.0280 + 14.3848i −0.893736 + 0.755005i
\(364\) 0.163714 0.00858092
\(365\) 0 0
\(366\) 6.45207 + 19.8574i 0.337255 + 1.03796i
\(367\) −12.8806 4.18516i −0.672362 0.218464i −0.0471138 0.998890i \(-0.515002\pi\)
−0.625248 + 0.780426i \(0.715002\pi\)
\(368\) −16.9544 + 23.3357i −0.883809 + 1.21646i
\(369\) −8.08572 5.87462i −0.420926 0.305820i
\(370\) 0 0
\(371\) −0.0368976 0.113559i −0.00191563 0.00589570i
\(372\) −1.67637 2.30733i −0.0869159 0.119630i
\(373\) 24.8281i 1.28555i 0.766056 + 0.642774i \(0.222217\pi\)
−0.766056 + 0.642774i \(0.777783\pi\)
\(374\) 7.74141 1.51812i 0.400299 0.0785001i
\(375\) 0 0
\(376\) 17.4961 12.7117i 0.902294 0.655555i
\(377\) −10.2379 + 3.32649i −0.527278 + 0.171323i
\(378\) −1.67971 0.545772i −0.0863952 0.0280715i
\(379\) 4.98407 + 3.62114i 0.256015 + 0.186005i 0.708388 0.705823i \(-0.249423\pi\)
−0.452374 + 0.891829i \(0.649423\pi\)
\(380\) 0 0
\(381\) −7.73386 + 23.8024i −0.396218 + 1.21943i
\(382\) 26.4154 8.58287i 1.35153 0.439138i
\(383\) 0.213759 + 0.294214i 0.0109226 + 0.0150337i 0.814443 0.580243i \(-0.197042\pi\)
−0.803521 + 0.595277i \(0.797042\pi\)
\(384\) 17.6370 0.900034
\(385\) 0 0
\(386\) −4.37892 −0.222881
\(387\) −4.39856 6.05409i −0.223591 0.307747i
\(388\) 1.49425 0.485510i 0.0758589 0.0246481i
\(389\) 0.577201 1.77644i 0.0292653 0.0900693i −0.935357 0.353705i \(-0.884922\pi\)
0.964622 + 0.263636i \(0.0849217\pi\)
\(390\) 0 0
\(391\) 12.2473 + 8.89815i 0.619370 + 0.449999i
\(392\) 19.4824 + 6.33022i 0.984011 + 0.319725i
\(393\) −15.0639 + 4.89457i −0.759875 + 0.246898i
\(394\) 7.45476 5.41620i 0.375565 0.272864i
\(395\) 0 0
\(396\) 0.451995 + 0.812237i 0.0227136 + 0.0408164i
\(397\) 0.384172i 0.0192811i 0.999954 + 0.00964053i \(0.00306872\pi\)
−0.999954 + 0.00964053i \(0.996931\pi\)
\(398\) −14.9294 20.5486i −0.748345 1.03001i
\(399\) −1.56104 4.80437i −0.0781495 0.240519i
\(400\) 0 0
\(401\) 18.3270 + 13.3153i 0.915206 + 0.664936i 0.942326 0.334696i \(-0.108634\pi\)
−0.0271201 + 0.999632i \(0.508634\pi\)
\(402\) −19.2760 + 26.5311i −0.961399 + 1.32325i
\(403\) −9.80600 3.18616i −0.488471 0.158714i
\(404\) −0.287113 0.883643i −0.0142844 0.0439629i
\(405\) 0 0
\(406\) 2.66986 0.132503
\(407\) 6.08505 + 0.736897i 0.301625 + 0.0365266i
\(408\) 10.8610i 0.537699i
\(409\) −23.6348 + 17.1717i −1.16866 + 0.849085i −0.990848 0.134979i \(-0.956903\pi\)
−0.177816 + 0.984064i \(0.556903\pi\)
\(410\) 0 0
\(411\) −5.99944 + 18.4644i −0.295931 + 0.910781i
\(412\) −2.93054 + 4.03354i −0.144377 + 0.198718i
\(413\) −0.0408003 + 0.0561568i −0.00200765 + 0.00276330i
\(414\) 3.80073 11.6975i 0.186796 0.574899i
\(415\) 0 0
\(416\) −2.13785 + 1.55324i −0.104817 + 0.0761537i
\(417\) 38.7667i 1.89841i
\(418\) −13.2130 + 28.4587i −0.646270 + 1.39196i
\(419\) 0.720765 0.0352117 0.0176058 0.999845i \(-0.494396\pi\)
0.0176058 + 0.999845i \(0.494396\pi\)
\(420\) 0 0
\(421\) −7.24859 22.3089i −0.353275 1.08727i −0.957003 0.290078i \(-0.906319\pi\)
0.603728 0.797190i \(-0.293681\pi\)
\(422\) 5.39753 + 1.75376i 0.262747 + 0.0853718i
\(423\) −4.72260 + 6.50010i −0.229621 + 0.316046i
\(424\) 0.826042 + 0.600154i 0.0401161 + 0.0291461i
\(425\) 0 0
\(426\) −8.13782 25.0456i −0.394278 1.21346i
\(427\) 1.59587 + 2.19653i 0.0772298 + 0.106298i
\(428\) 0.0763449i 0.00369027i
\(429\) 11.3126 + 5.25229i 0.546176 + 0.253583i
\(430\) 0 0
\(431\) −3.04083 + 2.20930i −0.146472 + 0.106418i −0.658608 0.752486i \(-0.728854\pi\)
0.512136 + 0.858904i \(0.328854\pi\)
\(432\) 12.5147 4.06627i 0.602114 0.195639i
\(433\) −12.9409 4.20476i −0.621901 0.202068i −0.0189169 0.999821i \(-0.506022\pi\)
−0.602984 + 0.797753i \(0.706022\pi\)
\(434\) 2.06884 + 1.50310i 0.0993076 + 0.0721512i
\(435\) 0 0
\(436\) 0.856143 2.63494i 0.0410018 0.126191i
\(437\) −57.2634 + 18.6060i −2.73928 + 0.890045i
\(438\) 1.59491 + 2.19521i 0.0762078 + 0.104891i
\(439\) −15.6217 −0.745584 −0.372792 0.927915i \(-0.621600\pi\)
−0.372792 + 0.927915i \(0.621600\pi\)
\(440\) 0 0
\(441\) −7.61052 −0.362406
\(442\) −2.59454 3.57108i −0.123410 0.169859i
\(443\) 1.34652 0.437512i 0.0639753 0.0207868i −0.276855 0.960912i \(-0.589292\pi\)
0.340830 + 0.940125i \(0.389292\pi\)
\(444\) 0.293158 0.902248i 0.0139127 0.0428188i
\(445\) 0 0
\(446\) 11.3213 + 8.22540i 0.536079 + 0.389484i
\(447\) −11.1298 3.61630i −0.526423 0.171045i
\(448\) 2.89491 0.940613i 0.136772 0.0444398i
\(449\) 5.58939 4.06093i 0.263780 0.191647i −0.448032 0.894017i \(-0.647875\pi\)
0.711812 + 0.702370i \(0.247875\pi\)
\(450\) 0 0
\(451\) 14.5687 + 26.1800i 0.686012 + 1.23277i
\(452\) 1.46980i 0.0691338i
\(453\) −15.9228 21.9159i −0.748119 1.02970i
\(454\) −2.35855 7.25887i −0.110692 0.340676i
\(455\) 0 0
\(456\) 34.9475 + 25.3909i 1.63657 + 1.18904i
\(457\) 24.8949 34.2649i 1.16453 1.60284i 0.471669 0.881776i \(-0.343652\pi\)
0.692865 0.721068i \(-0.256348\pi\)
\(458\) 6.41854 + 2.08551i 0.299919 + 0.0974496i
\(459\) −2.13410 6.56807i −0.0996111 0.306571i
\(460\) 0 0
\(461\) 25.1563 1.17165 0.585823 0.810439i \(-0.300772\pi\)
0.585823 + 0.810439i \(0.300772\pi\)
\(462\) −2.26586 2.10593i −0.105417 0.0979765i
\(463\) 7.89251i 0.366796i 0.983039 + 0.183398i \(0.0587097\pi\)
−0.983039 + 0.183398i \(0.941290\pi\)
\(464\) −16.0928 + 11.6921i −0.747089 + 0.542792i
\(465\) 0 0
\(466\) 11.3479 34.9254i 0.525684 1.61789i
\(467\) 9.38761 12.9209i 0.434407 0.597909i −0.534551 0.845136i \(-0.679519\pi\)
0.968958 + 0.247227i \(0.0795193\pi\)
\(468\) 0.305710 0.420774i 0.0141315 0.0194503i
\(469\) −1.31778 + 4.05572i −0.0608495 + 0.187276i
\(470\) 0 0
\(471\) 22.0420 16.0144i 1.01564 0.737905i
\(472\) 0.593572i 0.0273214i
\(473\) 4.31691 + 22.0134i 0.198492 + 1.01218i
\(474\) 17.7646 0.815957
\(475\) 0 0
\(476\) −0.0490630 0.151000i −0.00224880 0.00692109i
\(477\) −0.360768 0.117221i −0.0165185 0.00536717i
\(478\) 5.24147 7.21426i 0.239739 0.329973i
\(479\) 11.6195 + 8.44209i 0.530910 + 0.385729i 0.820698 0.571362i \(-0.193585\pi\)
−0.289788 + 0.957091i \(0.593585\pi\)
\(480\) 0 0
\(481\) −1.05983 3.26181i −0.0483240 0.148726i
\(482\) 10.1462 + 13.9650i 0.462145 + 0.636088i
\(483\) 5.93610i 0.270102i
\(484\) −0.203602 2.77901i −0.00925465 0.126319i
\(485\) 0 0
\(486\) −11.7309 + 8.52300i −0.532125 + 0.386611i
\(487\) 34.1729 11.1034i 1.54852 0.503145i 0.594808 0.803868i \(-0.297228\pi\)
0.953712 + 0.300723i \(0.0972279\pi\)
\(488\) −22.0808 7.17449i −0.999551 0.324774i
\(489\) 5.14017 + 3.73455i 0.232447 + 0.168882i
\(490\) 0 0
\(491\) 10.8828 33.4939i 0.491135 1.51156i −0.331760 0.943364i \(-0.607642\pi\)
0.822895 0.568194i \(-0.192358\pi\)
\(492\) 4.41012 1.43294i 0.198824 0.0646017i
\(493\) 6.13634 + 8.44595i 0.276367 + 0.380386i
\(494\) 17.5562 0.789891
\(495\) 0 0
\(496\) −19.0526 −0.855488
\(497\) −2.01283 2.77043i −0.0902879 0.124271i
\(498\) −28.3372 + 9.20731i −1.26982 + 0.412589i
\(499\) −8.18654 + 25.1956i −0.366480 + 1.12791i 0.582569 + 0.812781i \(0.302048\pi\)
−0.949049 + 0.315128i \(0.897952\pi\)
\(500\) 0 0
\(501\) −4.30963 3.13113i −0.192540 0.139888i
\(502\) −37.8911 12.3116i −1.69116 0.549492i
\(503\) 16.8751 5.48306i 0.752424 0.244478i 0.0924004 0.995722i \(-0.470546\pi\)
0.660024 + 0.751244i \(0.270546\pi\)
\(504\) −0.928313 + 0.674459i −0.0413504 + 0.0300428i
\(505\) 0 0
\(506\) −25.1005 + 27.0068i −1.11586 + 1.20060i
\(507\) 19.3647i 0.860019i
\(508\) −1.83892 2.53106i −0.0815889 0.112298i
\(509\) 4.25018 + 13.0807i 0.188386 + 0.579793i 0.999990 0.00441502i \(-0.00140535\pi\)
−0.811604 + 0.584208i \(0.801405\pi\)
\(510\) 0 0
\(511\) 0.285456 + 0.207396i 0.0126278 + 0.00917465i
\(512\) −14.8754 + 20.4742i −0.657406 + 0.904842i
\(513\) 26.1232 + 8.48796i 1.15337 + 0.374753i
\(514\) 0.148236 + 0.456223i 0.00653840 + 0.0201231i
\(515\) 0 0
\(516\) 3.47196 0.152845
\(517\) 21.0460 11.7117i 0.925604 0.515081i
\(518\) 0.850623i 0.0373742i
\(519\) −6.43093 + 4.67234i −0.282286 + 0.205093i
\(520\) 0 0
\(521\) 3.88720 11.9636i 0.170301 0.524133i −0.829087 0.559120i \(-0.811139\pi\)
0.999388 + 0.0349870i \(0.0111390\pi\)
\(522\) 4.98555 6.86203i 0.218212 0.300343i
\(523\) 23.9797 33.0052i 1.04856 1.44322i 0.158508 0.987358i \(-0.449331\pi\)
0.890051 0.455861i \(-0.150669\pi\)
\(524\) 0.611850 1.88308i 0.0267288 0.0822628i
\(525\) 0 0
\(526\) −24.1105 + 17.5173i −1.05127 + 0.763792i
\(527\) 9.99936i 0.435579i
\(528\) 22.8801 + 2.77077i 0.995729 + 0.120582i
\(529\) −47.7524 −2.07619
\(530\) 0 0
\(531\) 0.0681449 + 0.209729i 0.00295724 + 0.00910144i
\(532\) 0.600575 + 0.195139i 0.0260382 + 0.00846033i
\(533\) 9.85363 13.5624i 0.426808 0.587451i
\(534\) −19.1648 13.9241i −0.829342 0.602553i
\(535\) 0 0
\(536\) −11.2687 34.6814i −0.486732 1.49801i
\(537\) −3.94836 5.43445i −0.170384 0.234514i
\(538\) 8.12434i 0.350265i
\(539\) 20.6926 + 9.60732i 0.891293 + 0.413817i
\(540\) 0 0
\(541\) −26.3873 + 19.1715i −1.13448 + 0.824247i −0.986340 0.164720i \(-0.947328\pi\)
−0.148138 + 0.988967i \(0.547328\pi\)
\(542\) −20.9860 + 6.81876i −0.901425 + 0.292891i
\(543\) 32.5797 + 10.5858i 1.39813 + 0.454279i
\(544\) 2.07331 + 1.50635i 0.0888923 + 0.0645840i
\(545\) 0 0
\(546\) −0.534865 + 1.64614i −0.0228901 + 0.0704485i
\(547\) −5.44942 + 1.77062i −0.233000 + 0.0757064i −0.423190 0.906041i \(-0.639090\pi\)
0.190190 + 0.981747i \(0.439090\pi\)
\(548\) −1.42652 1.96344i −0.0609379 0.0838739i
\(549\) 8.62555 0.368129
\(550\) 0 0
\(551\) −41.5222 −1.76890
\(552\) 29.8365 + 41.0665i 1.26993 + 1.74791i
\(553\) 2.19698 0.713842i 0.0934251 0.0303556i
\(554\) 9.11960 28.0672i 0.387454 1.19246i
\(555\) 0 0
\(556\) 3.92055 + 2.84845i 0.166268 + 0.120801i
\(557\) 38.6418 + 12.5555i 1.63731 + 0.531993i 0.975935 0.218064i \(-0.0699741\pi\)
0.661373 + 0.750057i \(0.269974\pi\)
\(558\) 7.72649 2.51049i 0.327089 0.106278i
\(559\) 10.1547 7.37780i 0.429497 0.312048i
\(560\) 0 0
\(561\) 1.45418 12.0081i 0.0613955 0.506984i
\(562\) 31.5274i 1.32990i
\(563\) −8.63316 11.8825i −0.363844 0.500788i 0.587371 0.809318i \(-0.300163\pi\)
−0.951215 + 0.308530i \(0.900163\pi\)
\(564\) −1.15194 3.54529i −0.0485052 0.149284i
\(565\) 0 0
\(566\) −0.155987 0.113332i −0.00655664 0.00476368i
\(567\) −2.27117 + 3.12600i −0.0953801 + 0.131279i
\(568\) 27.8499 + 9.04898i 1.16856 + 0.379687i
\(569\) 7.60025 + 23.3912i 0.318619 + 0.980609i 0.974239 + 0.225518i \(0.0724073\pi\)
−0.655620 + 0.755091i \(0.727593\pi\)
\(570\) 0 0
\(571\) −22.4923 −0.941273 −0.470637 0.882327i \(-0.655976\pi\)
−0.470637 + 0.882327i \(0.655976\pi\)
\(572\) −1.36238 + 0.758141i −0.0569641 + 0.0316995i
\(573\) 42.5866i 1.77908i
\(574\) −3.36372 + 2.44388i −0.140399 + 0.102006i
\(575\) 0 0
\(576\) 2.98825 9.19690i 0.124511 0.383204i
\(577\) 22.0616 30.3652i 0.918435 1.26412i −0.0457674 0.998952i \(-0.514573\pi\)
0.964203 0.265166i \(-0.0854267\pi\)
\(578\) 10.6899 14.7134i 0.444641 0.611996i
\(579\) −2.07478 + 6.38552i −0.0862249 + 0.265373i
\(580\) 0 0
\(581\) −3.13452 + 2.27736i −0.130042 + 0.0944809i
\(582\) 16.6109i 0.688543i
\(583\) 0.832933 + 0.774141i 0.0344966 + 0.0320617i
\(584\) −3.01724 −0.124854
\(585\) 0 0
\(586\) −3.13442 9.64675i −0.129482 0.398503i
\(587\) −26.6393 8.65563i −1.09952 0.357256i −0.297603 0.954690i \(-0.596187\pi\)
−0.801918 + 0.597434i \(0.796187\pi\)
\(588\) 2.07547 2.85664i 0.0855910 0.117806i
\(589\) −32.1750 23.3765i −1.32575 0.963213i
\(590\) 0 0
\(591\) −4.36597 13.4371i −0.179592 0.552728i
\(592\) −3.72512 5.12719i −0.153102 0.210726i
\(593\) 17.7522i 0.728996i 0.931204 + 0.364498i \(0.118759\pi\)
−0.931204 + 0.364498i \(0.881241\pi\)
\(594\) 16.5056 3.23681i 0.677232 0.132808i
\(595\) 0 0
\(596\) 1.18351 0.859868i 0.0484783 0.0352216i
\(597\) −37.0385 + 12.0345i −1.51589 + 0.492541i
\(598\) 19.6204 + 6.37506i 0.802338 + 0.260695i
\(599\) −19.7594 14.3561i −0.807348 0.586573i 0.105713 0.994397i \(-0.466288\pi\)
−0.913061 + 0.407824i \(0.866288\pi\)
\(600\) 0 0
\(601\) −1.34725 + 4.14640i −0.0549553 + 0.169135i −0.974767 0.223225i \(-0.928341\pi\)
0.919812 + 0.392360i \(0.128341\pi\)
\(602\) −2.96073 + 0.961999i −0.120670 + 0.0392082i
\(603\) 7.96318 + 10.9604i 0.324286 + 0.446341i
\(604\) 3.38635 0.137789
\(605\) 0 0
\(606\) 9.82307 0.399035
\(607\) −23.2869 32.0516i −0.945185 1.30094i −0.953633 0.300971i \(-0.902689\pi\)
0.00844827 0.999964i \(-0.497311\pi\)
\(608\) −9.69396 + 3.14976i −0.393142 + 0.127740i
\(609\) 1.26501 3.89329i 0.0512607 0.157764i
\(610\) 0 0
\(611\) −10.9028 7.92132i −0.441078 0.320462i
\(612\) −0.479716 0.155869i −0.0193914 0.00630064i
\(613\) −2.48151 + 0.806291i −0.100227 + 0.0325658i −0.358701 0.933452i \(-0.616780\pi\)
0.258474 + 0.966018i \(0.416780\pi\)
\(614\) −10.3664 + 7.53165i −0.418355 + 0.303953i
\(615\) 0 0
\(616\) 3.37545 0.661939i 0.136001 0.0266703i
\(617\) 3.53110i 0.142157i −0.997471 0.0710783i \(-0.977356\pi\)
0.997471 0.0710783i \(-0.0226440\pi\)
\(618\) −30.9831 42.6445i −1.24632 1.71541i
\(619\) 1.86509 + 5.74014i 0.0749641 + 0.230716i 0.981517 0.191377i \(-0.0612955\pi\)
−0.906552 + 0.422093i \(0.861295\pi\)
\(620\) 0 0
\(621\) 26.1126 + 18.9719i 1.04786 + 0.761316i
\(622\) 19.5438 26.8997i 0.783634 1.07858i
\(623\) −2.92966 0.951903i −0.117374 0.0381372i
\(624\) −3.98501 12.2646i −0.159528 0.490977i
\(625\) 0 0
\(626\) 14.3709 0.574376
\(627\) 35.2391 + 32.7518i 1.40731 + 1.30798i
\(628\) 3.40583i 0.135907i
\(629\) −2.69090 + 1.95505i −0.107293 + 0.0779530i
\(630\) 0 0
\(631\) 0.333740 1.02714i 0.0132860 0.0408900i −0.944194 0.329391i \(-0.893157\pi\)
0.957480 + 0.288501i \(0.0931567\pi\)
\(632\) −11.6109 + 15.9811i −0.461858 + 0.635693i
\(633\) 5.11481 7.03994i 0.203296 0.279812i
\(634\) 10.3875 31.9694i 0.412540 1.26967i
\(635\) 0 0
\(636\) 0.142385 0.103449i 0.00564592 0.00410200i
\(637\) 12.7653i 0.505780i
\(638\) −22.2179 + 12.3638i −0.879615 + 0.489489i
\(639\) −10.8792 −0.430373
\(640\) 0 0
\(641\) 3.05474 + 9.40153i 0.120655 + 0.371338i 0.993084 0.117402i \(-0.0374566\pi\)
−0.872429 + 0.488740i \(0.837457\pi\)
\(642\) −0.767650 0.249425i −0.0302967 0.00984400i
\(643\) −16.9284 + 23.2999i −0.667589 + 0.918858i −0.999703 0.0243814i \(-0.992238\pi\)
0.332113 + 0.943240i \(0.392238\pi\)
\(644\) 0.600329 + 0.436165i 0.0236563 + 0.0171873i
\(645\) 0 0
\(646\) −5.26138 16.1929i −0.207006 0.637100i
\(647\) −10.7614 14.8118i −0.423074 0.582311i 0.543272 0.839557i \(-0.317185\pi\)
−0.966346 + 0.257245i \(0.917185\pi\)
\(648\) 33.0415i 1.29799i
\(649\) 0.0794734 0.656265i 0.00311961 0.0257606i
\(650\) 0 0
\(651\) 3.17212 2.30468i 0.124325 0.0903276i
\(652\) −0.755365 + 0.245433i −0.0295824 + 0.00961190i
\(653\) 30.3775 + 9.87025i 1.18876 + 0.386253i 0.835616 0.549315i \(-0.185111\pi\)
0.353148 + 0.935567i \(0.385111\pi\)
\(654\) 23.6973 + 17.2171i 0.926637 + 0.673241i
\(655\) 0 0
\(656\) 9.57259 29.4614i 0.373747 1.15027i
\(657\) 1.06609 0.346394i 0.0415921 0.0135141i
\(658\) 1.96463 + 2.70409i 0.0765894 + 0.105416i
\(659\) −27.0408 −1.05336 −0.526679 0.850064i \(-0.676563\pi\)
−0.526679 + 0.850064i \(0.676563\pi\)
\(660\) 0 0
\(661\) 47.2504 1.83783 0.918915 0.394456i \(-0.129067\pi\)
0.918915 + 0.394456i \(0.129067\pi\)
\(662\) 8.00839 + 11.0226i 0.311255 + 0.428406i
\(663\) −6.43681 + 2.09144i −0.249985 + 0.0812250i
\(664\) 10.2382 31.5100i 0.397320 1.22283i
\(665\) 0 0
\(666\) 2.18626 + 1.58841i 0.0847157 + 0.0615496i
\(667\) −46.4042 15.0776i −1.79678 0.583809i
\(668\) 0.633314 0.205776i 0.0245036 0.00796172i
\(669\) 17.3588 12.6119i 0.671128 0.487603i
\(670\) 0 0
\(671\) −23.4524 10.8887i −0.905369 0.420352i
\(672\) 1.00491i 0.0387651i
\(673\) −22.2631 30.6425i −0.858179 1.18118i −0.982001 0.188878i \(-0.939515\pi\)
0.123821 0.992305i \(-0.460485\pi\)
\(674\) 0.940977 + 2.89603i 0.0362451 + 0.111551i
\(675\) 0 0
\(676\) −1.95839 1.42286i −0.0753228 0.0547252i
\(677\) −19.9281 + 27.4287i −0.765900 + 1.05417i 0.230800 + 0.973001i \(0.425866\pi\)
−0.996700 + 0.0811701i \(0.974134\pi\)
\(678\) 14.7789 + 4.80196i 0.567581 + 0.184418i
\(679\) 0.667481 + 2.05429i 0.0256156 + 0.0788366i
\(680\) 0 0
\(681\) −11.7027 −0.448448
\(682\) −24.1771 2.92784i −0.925789 0.112113i
\(683\) 38.6515i 1.47896i 0.673178 + 0.739480i \(0.264929\pi\)
−0.673178 + 0.739480i \(0.735071\pi\)
\(684\) 1.62302 1.17920i 0.0620579 0.0450877i
\(685\) 0 0
\(686\) −1.97397 + 6.07524i −0.0753664 + 0.231954i
\(687\) 6.08235 8.37164i 0.232056 0.319398i
\(688\) 13.6331 18.7644i 0.519759 0.715387i
\(689\) 0.196617 0.605125i 0.00749051 0.0230534i
\(690\) 0 0
\(691\) −21.3377 + 15.5027i −0.811723 + 0.589751i −0.914330 0.404971i \(-0.867282\pi\)
0.102607 + 0.994722i \(0.467282\pi\)
\(692\) 0.993680i 0.0377741i
\(693\) −1.11666 + 0.621403i −0.0424186 + 0.0236052i
\(694\) −27.4087 −1.04042
\(695\) 0 0
\(696\) 10.8174 + 33.2925i 0.410032 + 1.26195i
\(697\) −15.4622 5.02397i −0.585672 0.190296i
\(698\) −2.88399 + 3.96947i −0.109161 + 0.150247i
\(699\) −45.5528 33.0961i −1.72297 1.25181i
\(700\) 0 0
\(701\) 5.74279 + 17.6745i 0.216902 + 0.667556i 0.999013 + 0.0444171i \(0.0141430\pi\)
−0.782111 + 0.623139i \(0.785857\pi\)
\(702\) −5.53186 7.61395i −0.208786 0.287370i
\(703\) 13.2291i 0.498943i
\(704\) −19.7348 + 21.2336i −0.743784 + 0.800270i
\(705\) 0 0
\(706\) −3.22305 + 2.34168i −0.121301 + 0.0881303i
\(707\) 1.21483 0.394723i 0.0456885 0.0148451i
\(708\) −0.0973063 0.0316167i −0.00365699 0.00118823i
\(709\) 19.1789 + 13.9343i 0.720280 + 0.523314i 0.886474 0.462779i \(-0.153148\pi\)
−0.166194 + 0.986093i \(0.553148\pi\)
\(710\) 0 0
\(711\) 2.26782 6.97963i 0.0850499 0.261757i
\(712\) 25.0522 8.13994i 0.938869 0.305057i
\(713\) −27.4695 37.8086i −1.02874 1.41594i
\(714\) 1.67860 0.0628202
\(715\) 0 0
\(716\) 0.839708 0.0313814
\(717\) −8.03666 11.0615i −0.300135 0.413100i
\(718\) −28.5817 + 9.28674i −1.06666 + 0.346578i
\(719\) 9.53420 29.3432i 0.355566 1.09432i −0.600115 0.799914i \(-0.704879\pi\)
0.955681 0.294405i \(-0.0951214\pi\)
\(720\) 0 0
\(721\) −5.54532 4.02891i −0.206519 0.150045i
\(722\) 40.5222 + 13.1665i 1.50808 + 0.490005i
\(723\) 25.1717 8.17877i 0.936144 0.304172i
\(724\) −3.46440 + 2.51704i −0.128754 + 0.0935449i
\(725\) 0 0
\(726\) 28.6082 + 7.03202i 1.06175 + 0.260983i
\(727\) 24.1222i 0.894642i 0.894373 + 0.447321i \(0.147622\pi\)
−0.894373 + 0.447321i \(0.852378\pi\)
\(728\) −1.13129 1.55708i −0.0419282 0.0577092i
\(729\) −3.41534 10.5113i −0.126494 0.389309i
\(730\) 0 0
\(731\) −9.84810 7.15506i −0.364245 0.264640i
\(732\) −2.35228 + 3.23763i −0.0869427 + 0.119666i
\(733\) −13.1699 4.27917i −0.486442 0.158055i 0.0555200 0.998458i \(-0.482318\pi\)
−0.541962 + 0.840403i \(0.682318\pi\)
\(734\) 5.53120 + 17.0233i 0.204160 + 0.628341i
\(735\) 0 0
\(736\) −11.9775 −0.441496
\(737\) −7.81536 39.8532i −0.287882 1.46801i
\(738\) 13.2090i 0.486228i
\(739\) 22.2549 16.1692i 0.818661 0.594792i −0.0976674 0.995219i \(-0.531138\pi\)
0.916329 + 0.400427i \(0.131138\pi\)
\(740\) 0 0
\(741\) 8.31832 25.6012i 0.305581 0.940482i
\(742\) −0.0927559 + 0.127668i −0.00340518 + 0.00468683i
\(743\) −1.58429 + 2.18058i −0.0581218 + 0.0799979i −0.837089 0.547067i \(-0.815744\pi\)
0.778967 + 0.627065i \(0.215744\pi\)
\(744\) −10.3610 + 31.8880i −0.379854 + 1.16907i
\(745\) 0 0
\(746\) 26.5465 19.2872i 0.971937 0.706154i
\(747\) 12.3089i 0.450360i
\(748\) 1.10756 + 1.02938i 0.0404963 + 0.0376379i
\(749\) −0.104959 −0.00383512
\(750\) 0 0
\(751\) 7.10258 + 21.8595i 0.259177 + 0.797664i 0.992978 + 0.118300i \(0.0377443\pi\)
−0.733801 + 0.679364i \(0.762256\pi\)
\(752\) −23.6840 7.69539i −0.863666 0.280622i
\(753\) −35.9064 + 49.4210i −1.30850 + 1.80100i
\(754\) 11.5098 + 8.36238i 0.419163 + 0.304540i
\(755\) 0 0
\(756\) −0.104608 0.321950i −0.00380455 0.0117092i
\(757\) 20.5466 + 28.2800i 0.746780 + 1.02785i 0.998200 + 0.0599765i \(0.0191026\pi\)
−0.251420 + 0.967878i \(0.580897\pi\)
\(758\) 8.14205i 0.295733i
\(759\) 27.4895 + 49.3987i 0.997805 + 1.79306i
\(760\) 0 0
\(761\) −30.1151 + 21.8799i −1.09167 + 0.793145i −0.979681 0.200564i \(-0.935723\pi\)
−0.111990 + 0.993709i \(0.535723\pi\)
\(762\) 31.4577 10.2212i 1.13959 0.370276i
\(763\) 3.62252 + 1.17703i 0.131144 + 0.0426112i
\(764\) 4.30686 + 3.12912i 0.155817 + 0.113208i
\(765\) 0 0
\(766\) 0.148524 0.457109i 0.00536638 0.0165160i
\(767\) −0.351782 + 0.114301i −0.0127021 + 0.00412717i
\(768\) 7.12029 + 9.80024i 0.256931 + 0.353636i
\(769\) −30.1272 −1.08642 −0.543208 0.839598i \(-0.682790\pi\)
−0.543208 + 0.839598i \(0.682790\pi\)
\(770\) 0 0
\(771\) 0.735518 0.0264890
\(772\) −0.493332 0.679013i −0.0177554 0.0244382i
\(773\) −29.3954 + 9.55113i −1.05728 + 0.343530i −0.785521 0.618836i \(-0.787605\pi\)
−0.271757 + 0.962366i \(0.587605\pi\)
\(774\) −3.05620 + 9.40600i −0.109853 + 0.338092i
\(775\) 0 0
\(776\) −14.9432 10.8568i −0.536428 0.389738i
\(777\) 1.24041 + 0.403034i 0.0444995 + 0.0144588i
\(778\) −2.34779 + 0.762842i −0.0841722 + 0.0273492i
\(779\) 52.3132 38.0078i 1.87431 1.36177i
\(780\) 0 0
\(781\) 29.5798 + 13.7336i 1.05845 + 0.491426i
\(782\) 20.0073i 0.715460i
\(783\) 13.0834 + 18.0077i 0.467562 + 0.643544i
\(784\) −7.28925 22.4340i −0.260330 0.801214i
\(785\) 0 0
\(786\) 16.9355 + 12.3043i 0.604068 + 0.438881i
\(787\) −20.2891 + 27.9255i −0.723227 + 0.995437i 0.276183 + 0.961105i \(0.410930\pi\)
−0.999410 + 0.0343320i \(0.989070\pi\)
\(788\) 1.67972 + 0.545773i 0.0598374 + 0.0194423i
\(789\) 14.1206 + 43.4588i 0.502708 + 1.54718i
\(790\) 0 0
\(791\) 2.02069 0.0718474
\(792\) 4.60184 9.91160i 0.163519 0.352193i
\(793\) 14.4678i 0.513767i
\(794\) 0.410763 0.298437i 0.0145774 0.0105911i
\(795\) 0 0
\(796\) 1.50439 4.63003i 0.0533217 0.164107i
\(797\) 6.01617 8.28055i 0.213104 0.293312i −0.689061 0.724703i \(-0.741977\pi\)
0.902165 + 0.431391i \(0.141977\pi\)
\(798\) −3.92425 + 5.40126i −0.138917 + 0.191203i
\(799\) −4.03876 + 12.4300i −0.142881 + 0.439743i
\(800\) 0 0
\(801\) −7.91725 + 5.75222i −0.279742 + 0.203245i
\(802\) 29.9392i 1.05719i
\(803\) −3.33592 0.403979i −0.117722 0.0142561i
\(804\) −6.28566 −0.221678
\(805\) 0 0
\(806\) 4.21090 + 12.9598i 0.148323 + 0.456490i
\(807\) 11.8472 + 3.84940i 0.417043 + 0.135505i
\(808\) −6.42034 + 8.83683i −0.225867 + 0.310879i
\(809\) 29.0143 + 21.0801i 1.02009 + 0.741139i 0.966301 0.257414i \(-0.0828704\pi\)
0.0537884 + 0.998552i \(0.482870\pi\)
\(810\) 0 0
\(811\) 5.71683 + 17.5946i 0.200745 + 0.617830i 0.999861 + 0.0166535i \(0.00530122\pi\)
−0.799116 + 0.601177i \(0.794699\pi\)
\(812\) 0.300788 + 0.413999i 0.0105556 + 0.0145285i
\(813\) 33.8334i 1.18659i
\(814\) −3.93915 7.07867i −0.138067 0.248107i
\(815\) 0 0
\(816\) −10.1179 + 7.35110i −0.354198 + 0.257340i
\(817\) 46.0458 14.9612i 1.61094 0.523426i
\(818\) 36.7204 + 11.9312i 1.28390 + 0.417164i
\(819\) 0.578481 + 0.420291i 0.0202138 + 0.0146862i
\(820\) 0 0
\(821\) −8.43005 + 25.9450i −0.294211 + 0.905488i 0.689275 + 0.724500i \(0.257929\pi\)
−0.983485 + 0.180987i \(0.942071\pi\)
\(822\) 24.4030 7.92900i 0.851151 0.276556i
\(823\) −1.16646 1.60549i −0.0406602 0.0559639i 0.788203 0.615416i \(-0.211012\pi\)
−0.828863 + 0.559452i \(0.811012\pi\)
\(824\) 58.6135 2.04190
\(825\) 0 0
\(826\) 0.0917386 0.00319199
\(827\) 7.24783 + 9.97578i 0.252032 + 0.346892i 0.916222 0.400672i \(-0.131223\pi\)
−0.664190 + 0.747564i \(0.731223\pi\)
\(828\) 2.24205 0.728485i 0.0779165 0.0253166i
\(829\) −0.0956826 + 0.294481i −0.00332319 + 0.0102277i −0.952704 0.303899i \(-0.901712\pi\)
0.949381 + 0.314126i \(0.101712\pi\)
\(830\) 0 0
\(831\) −36.6078 26.5971i −1.26991 0.922644i
\(832\) 15.4262 + 5.01226i 0.534806 + 0.173769i
\(833\) −11.7740 + 3.82561i −0.407945 + 0.132549i
\(834\) −41.4499 + 30.1151i −1.43529 + 1.04280i
\(835\) 0 0
\(836\) −5.90150 + 1.15731i −0.204108 + 0.0400263i
\(837\) 21.3198i 0.736920i
\(838\) −0.559912 0.770653i −0.0193418 0.0266218i
\(839\) 2.07149 + 6.37539i 0.0715158 + 0.220103i 0.980426 0.196890i \(-0.0630841\pi\)
−0.908910 + 0.416993i \(0.863084\pi\)
\(840\) 0 0
\(841\) −3.76040 2.73209i −0.129669 0.0942101i
\(842\) −18.2220 + 25.0805i −0.627973 + 0.864331i
\(843\) 45.9745 + 14.9380i 1.58345 + 0.514493i
\(844\) 0.336143 + 1.03454i 0.0115705 + 0.0356104i
\(845\) 0 0
\(846\) 10.6187 0.365077
\(847\) 3.82059 0.279913i 0.131277 0.00961792i
\(848\) 1.17573i 0.0403748i
\(849\) −0.239173 + 0.173769i −0.00820840 + 0.00596375i
\(850\) 0 0
\(851\) 4.80377 14.7845i 0.164671 0.506806i
\(852\) 2.96686 4.08354i 0.101643 0.139900i
\(853\) −26.1984 + 36.0590i −0.897015 + 1.23464i 0.0743953 + 0.997229i \(0.476297\pi\)
−0.971410 + 0.237407i \(0.923703\pi\)
\(854\) 1.10884 3.41267i 0.0379438 0.116779i
\(855\) 0 0
\(856\) 0.726117 0.527555i 0.0248182 0.0180314i
\(857\) 32.2444i 1.10145i 0.834688 + 0.550723i \(0.185648\pi\)
−0.834688 + 0.550723i \(0.814352\pi\)
\(858\) −3.17212 16.1757i −0.108294 0.552229i
\(859\) 18.1192 0.618220 0.309110 0.951026i \(-0.399969\pi\)
0.309110 + 0.951026i \(0.399969\pi\)
\(860\) 0 0
\(861\) 1.97000 + 6.06305i 0.0671375 + 0.206628i
\(862\) 4.72442 + 1.53506i 0.160915 + 0.0522843i
\(863\) −4.82918 + 6.64680i −0.164387 + 0.226260i −0.883262 0.468880i \(-0.844658\pi\)
0.718874 + 0.695140i \(0.244658\pi\)
\(864\) 4.42053 + 3.21170i 0.150389 + 0.109264i
\(865\) 0 0
\(866\) 5.55711 + 17.1030i 0.188838 + 0.581184i
\(867\) −16.3907 22.5598i −0.556656 0.766171i
\(868\) 0.490143i 0.0166365i
\(869\) −14.9770 + 16.1144i −0.508059 + 0.546643i
\(870\) 0 0
\(871\) −18.3841 + 13.3568i −0.622921 + 0.452579i
\(872\) −30.9770 + 10.0650i −1.04901 + 0.340845i
\(873\) 6.52633 + 2.12053i 0.220883 + 0.0717692i
\(874\) 64.3777 + 46.7731i 2.17761 + 1.58212i
\(875\) 0 0
\(876\) −0.160714 + 0.494626i −0.00543002 + 0.0167119i
\(877\) 31.4147 10.2073i 1.06080 0.344675i 0.273901 0.961758i \(-0.411686\pi\)
0.786898 + 0.617083i \(0.211686\pi\)
\(878\) 12.1354 + 16.7030i 0.409551 + 0.563698i
\(879\) −15.5524 −0.524569
\(880\) 0 0
\(881\) 30.1182 1.01471 0.507354 0.861738i \(-0.330624\pi\)
0.507354 + 0.861738i \(0.330624\pi\)
\(882\) 5.91208 + 8.13728i 0.199070 + 0.273997i
\(883\) −18.1246 + 5.88905i −0.609943 + 0.198182i −0.597670 0.801742i \(-0.703907\pi\)
−0.0122728 + 0.999925i \(0.503907\pi\)
\(884\) 0.261443 0.804639i 0.00879328 0.0270629i
\(885\) 0 0
\(886\) −1.51381 1.09985i −0.0508576 0.0369502i
\(887\) 21.2737 + 6.91223i 0.714300 + 0.232090i 0.643550 0.765404i \(-0.277461\pi\)
0.0707497 + 0.997494i \(0.477461\pi\)
\(888\) −10.6070 + 3.44644i −0.355949 + 0.115655i
\(889\) 3.47970 2.52815i 0.116706 0.0847915i
\(890\) 0 0
\(891\) 4.42393 36.5313i 0.148207 1.22384i
\(892\) 2.68220i 0.0898068i
\(893\) −30.5544 42.0545i −1.02246 1.40730i
\(894\) 4.77939 + 14.7094i 0.159847 + 0.491957i
\(895\) 0 0
\(896\) −2.45218 1.78161i −0.0819217 0.0595196i
\(897\) 18.5927 25.5907i 0.620793 0.854448i
\(898\) −8.68401 2.82161i −0.289789 0.0941582i
\(899\) −9.95920 30.6513i −0.332158 1.02228i
\(900\) 0 0
\(901\) −0.617057 −0.0205572
\(902\) 16.6746 35.9144i 0.555204 1.19582i
\(903\) 4.77326i 0.158844i
\(904\) −13.9793 + 10.1566i −0.464945 + 0.337802i
\(905\) 0 0
\(906\) −11.0635 + 34.0498i −0.367559 + 1.13123i
\(907\) −25.0745 + 34.5121i −0.832586 + 1.14596i 0.154850 + 0.987938i \(0.450511\pi\)
−0.987436 + 0.158019i \(0.949489\pi\)
\(908\) 0.859874 1.18351i 0.0285359 0.0392763i
\(909\) 1.25401 3.85943i 0.0415927 0.128009i
\(910\) 0 0
\(911\) 30.0340 21.8210i 0.995070 0.722960i 0.0340443 0.999420i \(-0.489161\pi\)
0.961025 + 0.276460i \(0.0891613\pi\)
\(912\) 49.7419i 1.64712i
\(913\) 15.5385 33.4673i 0.514248 1.10761i
\(914\) −55.9756 −1.85151
\(915\) 0 0
\(916\) 0.399729 + 1.23024i 0.0132074 + 0.0406483i
\(917\) 2.58886 + 0.841173i 0.0854918 + 0.0277780i
\(918\) −5.36485 + 7.38408i −0.177066 + 0.243711i
\(919\) 2.71707 + 1.97406i 0.0896278 + 0.0651184i 0.631697 0.775216i \(-0.282359\pi\)
−0.542069 + 0.840334i \(0.682359\pi\)
\(920\) 0 0
\(921\) 6.07123 + 18.6853i 0.200054 + 0.615702i
\(922\) −19.5422 26.8975i −0.643587 0.885821i
\(923\) 18.2479i 0.600636i
\(924\) 0.0712802 0.588608i 0.00234495 0.0193638i
\(925\) 0 0
\(926\) 8.43879 6.13114i 0.277316 0.201482i
\(927\) −20.7101 + 6.72912i −0.680209 + 0.221013i
\(928\) −7.85565 2.55245i −0.257874 0.0837884i
\(929\) −16.2929 11.8375i −0.534552 0.388375i 0.287506 0.957779i \(-0.407174\pi\)
−0.822058 + 0.569404i \(0.807174\pi\)
\(930\) 0 0
\(931\) 15.2156 46.8288i 0.498672 1.53475i
\(932\) 6.69414 2.17506i 0.219274 0.0712463i
\(933\) −29.9661 41.2449i −0.981048 1.35030i
\(934\) −21.1078 −0.690669
\(935\) 0 0
\(936\) −6.11449 −0.199858
\(937\) −6.18937 8.51894i −0.202198 0.278302i 0.695861 0.718176i \(-0.255023\pi\)
−0.898059 + 0.439875i \(0.855023\pi\)
\(938\) 5.36013 1.74161i 0.175014 0.0568656i
\(939\) 6.80908 20.9562i 0.222206 0.683879i
\(940\) 0 0
\(941\) 15.6743 + 11.3880i 0.510966 + 0.371239i 0.813190 0.581998i \(-0.197729\pi\)
−0.302224 + 0.953237i \(0.597729\pi\)
\(942\) −34.2457 11.1271i −1.11579 0.362541i
\(943\) 72.2655 23.4805i 2.35329 0.764630i
\(944\) −0.552961 + 0.401750i −0.0179974 + 0.0130758i
\(945\) 0 0
\(946\) 20.1835 21.7163i 0.656223 0.706059i
\(947\) 3.79793i 0.123416i −0.998094 0.0617081i \(-0.980345\pi\)
0.998094 0.0617081i \(-0.0196548\pi\)
\(948\) 2.00137 + 2.75465i 0.0650016 + 0.0894670i
\(949\) 0.581014 + 1.78818i 0.0188605 + 0.0580467i
\(950\) 0 0
\(951\) −41.6973 30.2949i −1.35213 0.982379i
\(952\) −1.09713 + 1.51007i −0.0355583 + 0.0489417i
\(953\) −0.509545 0.165561i −0.0165058 0.00536305i 0.300752 0.953702i \(-0.402762\pi\)
−0.317258 + 0.948339i \(0.602762\pi\)
\(954\) 0.154922 + 0.476800i 0.00501577 + 0.0154370i
\(955\) 0 0
\(956\) 1.70918 0.0552788
\(957\) 7.50237 + 38.2571i 0.242517 + 1.23668i
\(958\) 18.9819i 0.613276i
\(959\) 2.69934 1.96118i 0.0871661 0.0633299i
\(960\) 0 0
\(961\) −0.0404620 + 0.124529i −0.00130523 + 0.00401707i
\(962\) −2.66427 + 3.66706i −0.0858996 + 0.118231i
\(963\) −0.195995 + 0.269764i −0.00631586 + 0.00869303i
\(964\) −1.02239 + 3.14661i −0.0329291 + 0.101345i
\(965\) 0 0
\(966\) −6.34697 + 4.61134i −0.204210 + 0.148367i
\(967\) 36.5291i 1.17470i 0.809335 + 0.587348i \(0.199828\pi\)
−0.809335 + 0.587348i \(0.800172\pi\)
\(968\) −25.0243 + 21.1399i −0.804311 + 0.679461i
\(969\) −26.1060 −0.838645
\(970\) 0 0
\(971\) 6.37443 + 19.6185i 0.204565 + 0.629587i 0.999731 + 0.0231946i \(0.00738372\pi\)
−0.795166 + 0.606392i \(0.792616\pi\)
\(972\) −2.64322 0.858835i −0.0847814 0.0275471i
\(973\) −3.91605 + 5.38998i −0.125543 + 0.172795i
\(974\) −38.4185 27.9126i −1.23101 0.894379i
\(975\) 0 0
\(976\) 8.26142 + 25.4261i 0.264442 + 0.813868i
\(977\) −13.8335 19.0402i −0.442573 0.609149i 0.528209 0.849115i \(-0.322864\pi\)
−0.970781 + 0.239965i \(0.922864\pi\)
\(978\) 8.39706i 0.268508i
\(979\) 28.7880 5.64544i 0.920069 0.180429i
\(980\) 0 0
\(981\) 9.78967 7.11261i 0.312560 0.227088i
\(982\) −44.2663 + 14.3830i −1.41259 + 0.458979i
\(983\) −38.6829 12.5688i −1.23379 0.400883i −0.381706 0.924284i \(-0.624663\pi\)
−0.852087 + 0.523400i \(0.824663\pi\)
\(984\) −44.1033 32.0429i −1.40596 1.02149i
\(985\) 0 0
\(986\) 4.26364 13.1221i 0.135782 0.417894i
\(987\) 4.87407 1.58368i 0.155143 0.0504092i
\(988\) 1.97789 + 2.72233i 0.0629251 + 0.0866090i
\(989\) 56.8925 1.80908
\(990\) 0 0
\(991\) 23.1498 0.735377 0.367688 0.929949i \(-0.380149\pi\)
0.367688 + 0.929949i \(0.380149\pi\)
\(992\) −4.65024 6.40051i −0.147645 0.203216i
\(993\) 19.8681 6.45553i 0.630494 0.204860i
\(994\) −1.39855 + 4.30430i −0.0443594 + 0.136524i
\(995\) 0 0
\(996\) −4.62020 3.35677i −0.146397 0.106363i
\(997\) −5.06765 1.64658i −0.160494 0.0521477i 0.227668 0.973739i \(-0.426890\pi\)
−0.388162 + 0.921591i \(0.626890\pi\)
\(998\) 33.2991 10.8195i 1.05406 0.342486i
\(999\) −5.73730 + 4.16840i −0.181520 + 0.131882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.c.124.3 32
5.2 odd 4 275.2.h.c.201.3 yes 16
5.3 odd 4 275.2.h.e.201.2 yes 16
5.4 even 2 inner 275.2.z.c.124.6 32
11.4 even 5 inner 275.2.z.c.224.6 32
55.2 even 20 3025.2.a.bm.1.5 8
55.4 even 10 inner 275.2.z.c.224.3 32
55.13 even 20 3025.2.a.bj.1.4 8
55.37 odd 20 275.2.h.c.26.3 16
55.42 odd 20 3025.2.a.bi.1.4 8
55.48 odd 20 275.2.h.e.26.2 yes 16
55.53 odd 20 3025.2.a.bn.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.3 16 55.37 odd 20
275.2.h.c.201.3 yes 16 5.2 odd 4
275.2.h.e.26.2 yes 16 55.48 odd 20
275.2.h.e.201.2 yes 16 5.3 odd 4
275.2.z.c.124.3 32 1.1 even 1 trivial
275.2.z.c.124.6 32 5.4 even 2 inner
275.2.z.c.224.3 32 55.4 even 10 inner
275.2.z.c.224.6 32 11.4 even 5 inner
3025.2.a.bi.1.4 8 55.42 odd 20
3025.2.a.bj.1.4 8 55.13 even 20
3025.2.a.bm.1.5 8 55.2 even 20
3025.2.a.bn.1.5 8 55.53 odd 20