Properties

Label 275.2.h.c.26.3
Level $275$
Weight $2$
Character 275.26
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 26.3
Root \(-0.260198 + 0.189045i\) of defining polynomial
Character \(\chi\) \(=\) 275.26
Dual form 275.2.h.c.201.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06921 + 0.776830i) q^{2} +(0.626199 - 1.92724i) q^{3} +(-0.0782786 - 0.240917i) q^{4} +(2.16668 - 1.57419i) q^{6} +(-0.107618 - 0.331213i) q^{7} +(0.920262 - 2.83228i) q^{8} +(-0.895086 - 0.650318i) q^{9} +(-3.25463 - 0.638246i) q^{11} -0.513323 q^{12} +(1.50135 + 1.09079i) q^{13} +(0.142230 - 0.437738i) q^{14} +(2.77428 - 2.01563i) q^{16} +(1.45602 - 1.05786i) q^{17} +(-0.451853 - 1.39066i) q^{18} +(-2.21198 + 6.80779i) q^{19} -0.705717 q^{21} +(-2.98409 - 3.21072i) q^{22} +8.41145 q^{23} +(-4.88221 - 3.54714i) q^{24} +(0.757902 + 2.33258i) q^{26} +(3.10441 - 2.25548i) q^{27} +(-0.0713705 + 0.0518537i) q^{28} +(1.79251 + 5.51679i) q^{29} +(-4.49489 - 3.26573i) q^{31} -1.42395 q^{32} +(-3.26810 + 5.87280i) q^{33} +2.37858 q^{34} +(-0.0866064 + 0.266547i) q^{36} +(0.571099 + 1.75766i) q^{37} +(-7.65358 + 5.56065i) q^{38} +(3.04236 - 2.21041i) q^{39} +(-2.79149 + 8.59133i) q^{41} +(-0.754563 - 0.548222i) q^{42} -6.76370 q^{43} +(0.101004 + 0.834057i) q^{44} +(8.99364 + 6.53426i) q^{46} +(-2.24408 + 6.90656i) q^{47} +(-2.14736 - 6.60890i) q^{48} +(5.56500 - 4.04321i) q^{49} +(-1.12700 - 3.46854i) q^{51} +(0.145267 - 0.447085i) q^{52} +(-0.277378 - 0.201527i) q^{53} +5.07141 q^{54} -1.03712 q^{56} +(11.7351 + 8.52606i) q^{57} +(-2.36903 + 7.29112i) q^{58} +(0.0615923 + 0.189562i) q^{59} +(6.30721 - 4.58245i) q^{61} +(-2.26909 - 6.98354i) q^{62} +(-0.119067 + 0.366449i) q^{63} +(-7.07108 - 5.13744i) q^{64} +(-8.05647 + 3.74052i) q^{66} -12.2451 q^{67} +(-0.368832 - 0.267972i) q^{68} +(5.26724 - 16.2109i) q^{69} +(-7.95510 + 5.77972i) q^{71} +(-2.66559 + 1.93667i) q^{72} +(0.313085 + 0.963578i) q^{73} +(-0.754777 + 2.32297i) q^{74} +1.81326 q^{76} +(0.138860 + 1.14666i) q^{77} +4.97005 q^{78} +(-5.36632 - 3.89886i) q^{79} +(-3.42856 - 10.5520i) q^{81} +(-9.65870 + 7.01746i) q^{82} +(9.00058 - 6.53931i) q^{83} +(0.0552425 + 0.170019i) q^{84} +(-7.23185 - 5.25425i) q^{86} +11.7547 q^{87} +(-4.80281 + 8.63067i) q^{88} +8.84524 q^{89} +(0.199713 - 0.614654i) q^{91} +(-0.658436 - 2.02646i) q^{92} +(-9.10855 + 6.61775i) q^{93} +(-7.76462 + 5.64133i) q^{94} +(-0.891677 + 2.74430i) q^{96} +(-5.01780 - 3.64564i) q^{97} +9.09106 q^{98} +(2.49811 + 2.68783i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{3} - 2 q^{4} - 3 q^{6} + 4 q^{7} + 16 q^{8} + 8 q^{9} - 5 q^{11} - 6 q^{12} + 7 q^{13} + 3 q^{14} - 4 q^{16} + 12 q^{17} + 16 q^{18} - 13 q^{19} + 10 q^{21} + 28 q^{22} - 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06921 + 0.776830i 0.756049 + 0.549302i 0.897696 0.440615i \(-0.145240\pi\)
−0.141647 + 0.989917i \(0.545240\pi\)
\(3\) 0.626199 1.92724i 0.361536 1.11269i −0.590586 0.806975i \(-0.701103\pi\)
0.952122 0.305719i \(-0.0988968\pi\)
\(4\) −0.0782786 0.240917i −0.0391393 0.120458i
\(5\) 0 0
\(6\) 2.16668 1.57419i 0.884544 0.642659i
\(7\) −0.107618 0.331213i −0.0406756 0.125187i 0.928657 0.370940i \(-0.120965\pi\)
−0.969332 + 0.245754i \(0.920965\pi\)
\(8\) 0.920262 2.83228i 0.325362 1.00136i
\(9\) −0.895086 0.650318i −0.298362 0.216773i
\(10\) 0 0
\(11\) −3.25463 0.638246i −0.981309 0.192438i
\(12\) −0.513323 −0.148183
\(13\) 1.50135 + 1.09079i 0.416399 + 0.302532i 0.776187 0.630502i \(-0.217151\pi\)
−0.359788 + 0.933034i \(0.617151\pi\)
\(14\) 0.142230 0.437738i 0.0380125 0.116990i
\(15\) 0 0
\(16\) 2.77428 2.01563i 0.693571 0.503909i
\(17\) 1.45602 1.05786i 0.353137 0.256569i −0.397047 0.917798i \(-0.629965\pi\)
0.750184 + 0.661229i \(0.229965\pi\)
\(18\) −0.451853 1.39066i −0.106503 0.327782i
\(19\) −2.21198 + 6.80779i −0.507464 + 1.56181i 0.289124 + 0.957292i \(0.406636\pi\)
−0.796588 + 0.604522i \(0.793364\pi\)
\(20\) 0 0
\(21\) −0.705717 −0.154000
\(22\) −2.98409 3.21072i −0.636211 0.684528i
\(23\) 8.41145 1.75391 0.876954 0.480574i \(-0.159572\pi\)
0.876954 + 0.480574i \(0.159572\pi\)
\(24\) −4.88221 3.54714i −0.996578 0.724056i
\(25\) 0 0
\(26\) 0.757902 + 2.33258i 0.148637 + 0.457457i
\(27\) 3.10441 2.25548i 0.597444 0.434068i
\(28\) −0.0713705 + 0.0518537i −0.0134878 + 0.00979943i
\(29\) 1.79251 + 5.51679i 0.332862 + 1.02444i 0.967766 + 0.251852i \(0.0810396\pi\)
−0.634904 + 0.772591i \(0.718960\pi\)
\(30\) 0 0
\(31\) −4.49489 3.26573i −0.807307 0.586543i 0.105742 0.994394i \(-0.466278\pi\)
−0.913048 + 0.407851i \(0.866278\pi\)
\(32\) −1.42395 −0.251722
\(33\) −3.26810 + 5.87280i −0.568904 + 1.02232i
\(34\) 2.37858 0.407923
\(35\) 0 0
\(36\) −0.0866064 + 0.266547i −0.0144344 + 0.0444245i
\(37\) 0.571099 + 1.75766i 0.0938881 + 0.288958i 0.986962 0.160952i \(-0.0514563\pi\)
−0.893074 + 0.449909i \(0.851456\pi\)
\(38\) −7.65358 + 5.56065i −1.24157 + 0.902057i
\(39\) 3.04236 2.21041i 0.487168 0.353948i
\(40\) 0 0
\(41\) −2.79149 + 8.59133i −0.435958 + 1.34174i 0.456144 + 0.889906i \(0.349230\pi\)
−0.892102 + 0.451834i \(0.850770\pi\)
\(42\) −0.754563 0.548222i −0.116432 0.0845925i
\(43\) −6.76370 −1.03145 −0.515727 0.856753i \(-0.672478\pi\)
−0.515727 + 0.856753i \(0.672478\pi\)
\(44\) 0.101004 + 0.834057i 0.0152269 + 0.125739i
\(45\) 0 0
\(46\) 8.99364 + 6.53426i 1.32604 + 0.963425i
\(47\) −2.24408 + 6.90656i −0.327332 + 1.00742i 0.643045 + 0.765829i \(0.277671\pi\)
−0.970377 + 0.241596i \(0.922329\pi\)
\(48\) −2.14736 6.60890i −0.309945 0.953913i
\(49\) 5.56500 4.04321i 0.795000 0.577601i
\(50\) 0 0
\(51\) −1.12700 3.46854i −0.157811 0.485693i
\(52\) 0.145267 0.447085i 0.0201449 0.0619996i
\(53\) −0.277378 0.201527i −0.0381009 0.0276819i 0.568572 0.822634i \(-0.307496\pi\)
−0.606673 + 0.794952i \(0.707496\pi\)
\(54\) 5.07141 0.690131
\(55\) 0 0
\(56\) −1.03712 −0.138591
\(57\) 11.7351 + 8.52606i 1.55435 + 1.12930i
\(58\) −2.36903 + 7.29112i −0.311069 + 0.957370i
\(59\) 0.0615923 + 0.189562i 0.00801863 + 0.0246788i 0.954986 0.296652i \(-0.0958700\pi\)
−0.946967 + 0.321330i \(0.895870\pi\)
\(60\) 0 0
\(61\) 6.30721 4.58245i 0.807555 0.586723i −0.105566 0.994412i \(-0.533665\pi\)
0.913121 + 0.407689i \(0.133665\pi\)
\(62\) −2.26909 6.98354i −0.288175 0.886910i
\(63\) −0.119067 + 0.366449i −0.0150010 + 0.0461683i
\(64\) −7.07108 5.13744i −0.883885 0.642180i
\(65\) 0 0
\(66\) −8.05647 + 3.74052i −0.991683 + 0.460426i
\(67\) −12.2451 −1.49597 −0.747986 0.663715i \(-0.768979\pi\)
−0.747986 + 0.663715i \(0.768979\pi\)
\(68\) −0.368832 0.267972i −0.0447275 0.0324964i
\(69\) 5.26724 16.2109i 0.634101 1.95156i
\(70\) 0 0
\(71\) −7.95510 + 5.77972i −0.944097 + 0.685927i −0.949403 0.314059i \(-0.898311\pi\)
0.00530622 + 0.999986i \(0.498311\pi\)
\(72\) −2.66559 + 1.93667i −0.314143 + 0.228238i
\(73\) 0.313085 + 0.963578i 0.0366439 + 0.112778i 0.967705 0.252084i \(-0.0811160\pi\)
−0.931061 + 0.364862i \(0.881116\pi\)
\(74\) −0.754777 + 2.32297i −0.0877411 + 0.270039i
\(75\) 0 0
\(76\) 1.81326 0.207995
\(77\) 0.138860 + 1.14666i 0.0158246 + 0.130674i
\(78\) 4.97005 0.562748
\(79\) −5.36632 3.89886i −0.603758 0.438656i 0.243453 0.969913i \(-0.421720\pi\)
−0.847211 + 0.531257i \(0.821720\pi\)
\(80\) 0 0
\(81\) −3.42856 10.5520i −0.380952 1.17245i
\(82\) −9.65870 + 7.01746i −1.06663 + 0.774949i
\(83\) 9.00058 6.53931i 0.987942 0.717782i 0.0284727 0.999595i \(-0.490936\pi\)
0.959469 + 0.281813i \(0.0909356\pi\)
\(84\) 0.0552425 + 0.170019i 0.00602745 + 0.0185506i
\(85\) 0 0
\(86\) −7.23185 5.25425i −0.779830 0.566580i
\(87\) 11.7547 1.26023
\(88\) −4.80281 + 8.63067i −0.511981 + 0.920032i
\(89\) 8.84524 0.937594 0.468797 0.883306i \(-0.344688\pi\)
0.468797 + 0.883306i \(0.344688\pi\)
\(90\) 0 0
\(91\) 0.199713 0.614654i 0.0209356 0.0644332i
\(92\) −0.658436 2.02646i −0.0686467 0.211273i
\(93\) −9.10855 + 6.61775i −0.944513 + 0.686229i
\(94\) −7.76462 + 5.64133i −0.800859 + 0.581858i
\(95\) 0 0
\(96\) −0.891677 + 2.74430i −0.0910064 + 0.280089i
\(97\) −5.01780 3.64564i −0.509480 0.370159i 0.303146 0.952944i \(-0.401963\pi\)
−0.812626 + 0.582785i \(0.801963\pi\)
\(98\) 9.09106 0.918336
\(99\) 2.49811 + 2.68783i 0.251070 + 0.270137i
\(100\) 0 0
\(101\) 2.96734 + 2.15590i 0.295262 + 0.214520i 0.725547 0.688173i \(-0.241587\pi\)
−0.430285 + 0.902693i \(0.641587\pi\)
\(102\) 1.48946 4.58410i 0.147479 0.453894i
\(103\) −6.08206 18.7187i −0.599283 1.84440i −0.532131 0.846662i \(-0.678609\pi\)
−0.0671522 0.997743i \(-0.521391\pi\)
\(104\) 4.47106 3.24842i 0.438423 0.318533i
\(105\) 0 0
\(106\) −0.140025 0.430952i −0.0136004 0.0418577i
\(107\) −0.0931327 + 0.286633i −0.00900347 + 0.0277098i −0.955457 0.295129i \(-0.904637\pi\)
0.946454 + 0.322839i \(0.104637\pi\)
\(108\) −0.786392 0.571348i −0.0756706 0.0549779i
\(109\) −10.9371 −1.04759 −0.523794 0.851845i \(-0.675484\pi\)
−0.523794 + 0.851845i \(0.675484\pi\)
\(110\) 0 0
\(111\) 3.74506 0.355466
\(112\) −0.966165 0.701960i −0.0912940 0.0663290i
\(113\) −1.79300 + 5.51830i −0.168672 + 0.519118i −0.999288 0.0377271i \(-0.987988\pi\)
0.830616 + 0.556845i \(0.187988\pi\)
\(114\) 5.92406 + 18.2324i 0.554839 + 1.70762i
\(115\) 0 0
\(116\) 1.18877 0.863693i 0.110375 0.0801919i
\(117\) −0.634473 1.95271i −0.0586570 0.180528i
\(118\) −0.0814018 + 0.250529i −0.00749364 + 0.0230630i
\(119\) −0.507071 0.368409i −0.0464831 0.0337720i
\(120\) 0 0
\(121\) 10.1853 + 4.15451i 0.925935 + 0.377683i
\(122\) 10.3035 0.932839
\(123\) 14.8095 + 10.7598i 1.33533 + 0.970175i
\(124\) −0.434915 + 1.33853i −0.0390565 + 0.120204i
\(125\) 0 0
\(126\) −0.411977 + 0.299319i −0.0367018 + 0.0266654i
\(127\) 9.99175 7.25943i 0.886625 0.644170i −0.0483711 0.998829i \(-0.515403\pi\)
0.934996 + 0.354659i \(0.115403\pi\)
\(128\) −2.68953 8.27753i −0.237723 0.731637i
\(129\) −4.23542 + 13.0353i −0.372908 + 1.14769i
\(130\) 0 0
\(131\) 7.81632 0.682915 0.341458 0.939897i \(-0.389079\pi\)
0.341458 + 0.939897i \(0.389079\pi\)
\(132\) 1.67068 + 0.327626i 0.145414 + 0.0285162i
\(133\) 2.49287 0.216160
\(134\) −13.0926 9.51233i −1.13103 0.821740i
\(135\) 0 0
\(136\) −1.65624 5.09737i −0.142021 0.437096i
\(137\) 7.75098 5.63141i 0.662211 0.481124i −0.205198 0.978720i \(-0.565784\pi\)
0.867409 + 0.497596i \(0.165784\pi\)
\(138\) 18.2249 13.2412i 1.55141 1.12716i
\(139\) 5.91169 + 18.1943i 0.501423 + 1.54322i 0.806702 + 0.590958i \(0.201250\pi\)
−0.305280 + 0.952263i \(0.598750\pi\)
\(140\) 0 0
\(141\) 11.9054 + 8.64976i 1.00261 + 0.728441i
\(142\) −12.9956 −1.09056
\(143\) −4.19014 4.50836i −0.350397 0.377008i
\(144\) −3.79403 −0.316169
\(145\) 0 0
\(146\) −0.413781 + 1.27349i −0.0342447 + 0.105394i
\(147\) −4.30744 13.2570i −0.355272 1.09341i
\(148\) 0.378745 0.275175i 0.0311327 0.0226192i
\(149\) −4.67208 + 3.39446i −0.382752 + 0.278085i −0.762479 0.647013i \(-0.776018\pi\)
0.379727 + 0.925099i \(0.376018\pi\)
\(150\) 0 0
\(151\) 4.13098 12.7139i 0.336175 1.03464i −0.629966 0.776623i \(-0.716931\pi\)
0.966141 0.258016i \(-0.0830689\pi\)
\(152\) 17.2459 + 12.5299i 1.39883 + 1.01631i
\(153\) −1.99121 −0.160980
\(154\) −0.742290 + 1.33390i −0.0598155 + 0.107489i
\(155\) 0 0
\(156\) −0.770676 0.559929i −0.0617035 0.0448302i
\(157\) −4.15475 + 12.7870i −0.331585 + 1.02051i 0.636795 + 0.771033i \(0.280260\pi\)
−0.968380 + 0.249481i \(0.919740\pi\)
\(158\) −2.70900 8.33744i −0.215516 0.663291i
\(159\) −0.562086 + 0.408379i −0.0445763 + 0.0323866i
\(160\) 0 0
\(161\) −0.905219 2.78598i −0.0713413 0.219566i
\(162\) 4.53127 13.9458i 0.356010 1.09569i
\(163\) −2.53658 1.84293i −0.198680 0.144349i 0.483997 0.875070i \(-0.339184\pi\)
−0.682677 + 0.730720i \(0.739184\pi\)
\(164\) 2.28831 0.178687
\(165\) 0 0
\(166\) 14.7035 1.14121
\(167\) −2.12672 1.54515i −0.164570 0.119567i 0.502452 0.864605i \(-0.332431\pi\)
−0.667022 + 0.745038i \(0.732431\pi\)
\(168\) −0.649445 + 1.99879i −0.0501057 + 0.154210i
\(169\) −2.95301 9.08842i −0.227154 0.699109i
\(170\) 0 0
\(171\) 6.40714 4.65506i 0.489967 0.355982i
\(172\) 0.529453 + 1.62949i 0.0403704 + 0.124247i
\(173\) −1.21218 + 3.73072i −0.0921606 + 0.283641i −0.986503 0.163741i \(-0.947644\pi\)
0.894343 + 0.447383i \(0.147644\pi\)
\(174\) 12.5683 + 9.13138i 0.952798 + 0.692248i
\(175\) 0 0
\(176\) −10.3157 + 4.78948i −0.777579 + 0.361020i
\(177\) 0.403900 0.0303590
\(178\) 9.45746 + 6.87125i 0.708867 + 0.515022i
\(179\) −1.02435 + 3.15264i −0.0765639 + 0.235639i −0.982012 0.188817i \(-0.939535\pi\)
0.905448 + 0.424456i \(0.139535\pi\)
\(180\) 0 0
\(181\) −13.6763 + 9.93640i −1.01655 + 0.738567i −0.965573 0.260133i \(-0.916233\pi\)
−0.0509769 + 0.998700i \(0.516233\pi\)
\(182\) 0.691018 0.502054i 0.0512216 0.0372147i
\(183\) −4.88193 15.0250i −0.360883 1.11068i
\(184\) 7.74074 23.8235i 0.570655 1.75629i
\(185\) 0 0
\(186\) −14.8799 −1.09104
\(187\) −5.41400 + 2.51365i −0.395911 + 0.183817i
\(188\) 1.83957 0.134164
\(189\) −1.08113 0.785490i −0.0786409 0.0571360i
\(190\) 0 0
\(191\) −6.49420 19.9871i −0.469903 1.44621i −0.852709 0.522385i \(-0.825042\pi\)
0.382806 0.923829i \(-0.374958\pi\)
\(192\) −14.3290 + 10.4106i −1.03411 + 0.751322i
\(193\) −2.68051 + 1.94751i −0.192947 + 0.140184i −0.680065 0.733152i \(-0.738048\pi\)
0.487117 + 0.873336i \(0.338048\pi\)
\(194\) −2.53306 7.79595i −0.181863 0.559717i
\(195\) 0 0
\(196\) −1.40970 1.02420i −0.100693 0.0731575i
\(197\) −6.97218 −0.496747 −0.248374 0.968664i \(-0.579896\pi\)
−0.248374 + 0.968664i \(0.579896\pi\)
\(198\) 0.583032 + 4.81448i 0.0414343 + 0.342150i
\(199\) −19.2184 −1.36236 −0.681178 0.732118i \(-0.738532\pi\)
−0.681178 + 0.732118i \(0.738532\pi\)
\(200\) 0 0
\(201\) −7.66784 + 23.5992i −0.540848 + 1.66456i
\(202\) 1.49796 + 4.61024i 0.105396 + 0.324375i
\(203\) 1.63433 1.18741i 0.114707 0.0833396i
\(204\) −0.747409 + 0.543025i −0.0523291 + 0.0380193i
\(205\) 0 0
\(206\) 8.03819 24.7390i 0.560047 1.72365i
\(207\) −7.52897 5.47012i −0.523299 0.380199i
\(208\) 6.36380 0.441250
\(209\) 11.5442 20.7451i 0.798532 1.43497i
\(210\) 0 0
\(211\) −3.47407 2.52406i −0.239165 0.173764i 0.461746 0.887012i \(-0.347223\pi\)
−0.700911 + 0.713249i \(0.747223\pi\)
\(212\) −0.0268385 + 0.0826004i −0.00184327 + 0.00567302i
\(213\) 6.15745 + 18.9507i 0.421901 + 1.29848i
\(214\) −0.322244 + 0.234124i −0.0220281 + 0.0160044i
\(215\) 0 0
\(216\) −3.53128 10.8682i −0.240273 0.739486i
\(217\) −0.597922 + 1.84022i −0.0405896 + 0.124922i
\(218\) −11.6941 8.49629i −0.792027 0.575442i
\(219\) 2.05310 0.138736
\(220\) 0 0
\(221\) 3.33991 0.224666
\(222\) 4.00428 + 2.90928i 0.268749 + 0.195258i
\(223\) 3.27200 10.0702i 0.219109 0.674349i −0.779727 0.626120i \(-0.784642\pi\)
0.998836 0.0482295i \(-0.0153579\pi\)
\(224\) 0.153242 + 0.471631i 0.0102389 + 0.0315122i
\(225\) 0 0
\(226\) −6.20389 + 4.50739i −0.412676 + 0.299827i
\(227\) −1.78459 5.49240i −0.118447 0.364543i 0.874203 0.485560i \(-0.161384\pi\)
−0.992650 + 0.121017i \(0.961384\pi\)
\(228\) 1.13546 3.49459i 0.0751978 0.231435i
\(229\) 4.13124 + 3.00152i 0.273000 + 0.198346i 0.715858 0.698245i \(-0.246036\pi\)
−0.442858 + 0.896592i \(0.646036\pi\)
\(230\) 0 0
\(231\) 2.29685 + 0.450421i 0.151122 + 0.0296355i
\(232\) 17.2747 1.13414
\(233\) 22.4794 + 16.3323i 1.47268 + 1.06996i 0.979827 + 0.199848i \(0.0640447\pi\)
0.492850 + 0.870115i \(0.335955\pi\)
\(234\) 0.838534 2.58074i 0.0548167 0.168708i
\(235\) 0 0
\(236\) 0.0408472 0.0296772i 0.00265893 0.00193182i
\(237\) −10.8744 + 7.90074i −0.706370 + 0.513208i
\(238\) −0.255977 0.787816i −0.0165925 0.0510665i
\(239\) −2.08502 + 6.41702i −0.134868 + 0.415082i −0.995570 0.0940282i \(-0.970026\pi\)
0.860701 + 0.509111i \(0.170026\pi\)
\(240\) 0 0
\(241\) −13.0610 −0.841331 −0.420666 0.907216i \(-0.638203\pi\)
−0.420666 + 0.907216i \(0.638203\pi\)
\(242\) 7.66290 + 12.3543i 0.492590 + 0.794165i
\(243\) −10.9715 −0.703823
\(244\) −1.59771 1.16080i −0.102283 0.0743128i
\(245\) 0 0
\(246\) 7.47607 + 23.0090i 0.476657 + 1.46700i
\(247\) −10.7468 + 7.80804i −0.683805 + 0.496814i
\(248\) −13.3859 + 9.72545i −0.850007 + 0.617567i
\(249\) −6.96667 21.4412i −0.441495 1.35878i
\(250\) 0 0
\(251\) 24.3883 + 17.7191i 1.53938 + 1.11842i 0.950726 + 0.310033i \(0.100340\pi\)
0.588650 + 0.808388i \(0.299660\pi\)
\(252\) 0.0976041 0.00614848
\(253\) −27.3762 5.36857i −1.72113 0.337519i
\(254\) 16.3227 1.02418
\(255\) 0 0
\(256\) −1.84728 + 5.68533i −0.115455 + 0.355333i
\(257\) 0.112162 + 0.345199i 0.00699648 + 0.0215329i 0.954494 0.298231i \(-0.0963965\pi\)
−0.947497 + 0.319764i \(0.896396\pi\)
\(258\) −14.6548 + 10.6473i −0.912367 + 0.662873i
\(259\) 0.520700 0.378310i 0.0323547 0.0235071i
\(260\) 0 0
\(261\) 1.98322 6.10371i 0.122758 0.377810i
\(262\) 8.35733 + 6.07195i 0.516317 + 0.375127i
\(263\) −22.5498 −1.39048 −0.695239 0.718779i \(-0.744701\pi\)
−0.695239 + 0.718779i \(0.744701\pi\)
\(264\) 13.6259 + 14.6607i 0.838614 + 0.902303i
\(265\) 0 0
\(266\) 2.66542 + 1.93654i 0.163427 + 0.118737i
\(267\) 5.53888 17.0469i 0.338974 1.04325i
\(268\) 0.958525 + 2.95004i 0.0585512 + 0.180202i
\(269\) 4.97323 3.61326i 0.303223 0.220305i −0.425760 0.904836i \(-0.639993\pi\)
0.728983 + 0.684532i \(0.239993\pi\)
\(270\) 0 0
\(271\) 5.15939 + 15.8790i 0.313410 + 0.964578i 0.976404 + 0.215953i \(0.0692858\pi\)
−0.662993 + 0.748625i \(0.730714\pi\)
\(272\) 1.90715 5.86962i 0.115638 0.355898i
\(273\) −1.05953 0.769791i −0.0641255 0.0465899i
\(274\) 12.6621 0.764946
\(275\) 0 0
\(276\) −4.31779 −0.259900
\(277\) −18.0652 13.1252i −1.08543 0.788614i −0.106812 0.994279i \(-0.534064\pi\)
−0.978622 + 0.205665i \(0.934064\pi\)
\(278\) −7.81302 + 24.0460i −0.468594 + 1.44218i
\(279\) 1.89955 + 5.84622i 0.113723 + 0.350004i
\(280\) 0 0
\(281\) −19.2992 + 14.0217i −1.15129 + 0.836463i −0.988652 0.150223i \(-0.952001\pi\)
−0.162640 + 0.986685i \(0.552001\pi\)
\(282\) 6.01000 + 18.4969i 0.357891 + 1.10147i
\(283\) −0.0450824 + 0.138749i −0.00267987 + 0.00824779i −0.952388 0.304890i \(-0.901380\pi\)
0.949708 + 0.313138i \(0.101380\pi\)
\(284\) 2.01515 + 1.46409i 0.119577 + 0.0868777i
\(285\) 0 0
\(286\) −0.977932 8.07544i −0.0578264 0.477511i
\(287\) 3.14597 0.185701
\(288\) 1.27456 + 0.926022i 0.0751041 + 0.0545664i
\(289\) −4.25236 + 13.0874i −0.250139 + 0.769848i
\(290\) 0 0
\(291\) −10.1682 + 7.38761i −0.596069 + 0.433070i
\(292\) 0.207634 0.150855i 0.0121509 0.00882812i
\(293\) 2.37164 + 7.29917i 0.138553 + 0.426422i 0.996126 0.0879405i \(-0.0280285\pi\)
−0.857573 + 0.514363i \(0.828029\pi\)
\(294\) 5.69281 17.5207i 0.332012 1.02183i
\(295\) 0 0
\(296\) 5.50374 0.319899
\(297\) −11.5433 + 5.35940i −0.669808 + 0.310984i
\(298\) −7.63238 −0.442132
\(299\) 12.6285 + 9.17515i 0.730325 + 0.530612i
\(300\) 0 0
\(301\) 0.727893 + 2.24022i 0.0419550 + 0.129124i
\(302\) 14.2934 10.3848i 0.822494 0.597577i
\(303\) 6.01309 4.36876i 0.345443 0.250979i
\(304\) 7.58534 + 23.3453i 0.435049 + 1.33894i
\(305\) 0 0
\(306\) −2.12903 1.54683i −0.121709 0.0884266i
\(307\) 9.69537 0.553344 0.276672 0.960964i \(-0.410768\pi\)
0.276672 + 0.960964i \(0.410768\pi\)
\(308\) 0.265380 0.123213i 0.0151214 0.00702071i
\(309\) −39.8840 −2.26892
\(310\) 0 0
\(311\) 7.77436 23.9270i 0.440844 1.35678i −0.446135 0.894966i \(-0.647200\pi\)
0.886978 0.461811i \(-0.152800\pi\)
\(312\) −3.46071 10.6510i −0.195924 0.602992i
\(313\) 8.79698 6.39138i 0.497235 0.361262i −0.310725 0.950500i \(-0.600572\pi\)
0.807960 + 0.589238i \(0.200572\pi\)
\(314\) −14.3757 + 10.4445i −0.811265 + 0.589418i
\(315\) 0 0
\(316\) −0.519233 + 1.59803i −0.0292091 + 0.0898964i
\(317\) −20.5768 14.9499i −1.15571 0.839672i −0.166480 0.986045i \(-0.553240\pi\)
−0.989230 + 0.146373i \(0.953240\pi\)
\(318\) −0.918232 −0.0514919
\(319\) −2.31291 19.0992i −0.129498 1.06935i
\(320\) 0 0
\(321\) 0.494091 + 0.358978i 0.0275775 + 0.0200362i
\(322\) 1.19636 3.68201i 0.0666704 0.205190i
\(323\) 3.98100 + 12.2523i 0.221509 + 0.681734i
\(324\) −2.27378 + 1.65200i −0.126321 + 0.0917776i
\(325\) 0 0
\(326\) −1.28050 3.94098i −0.0709204 0.218270i
\(327\) −6.84882 + 21.0785i −0.378741 + 1.16564i
\(328\) 21.7641 + 15.8125i 1.20172 + 0.873102i
\(329\) 2.52904 0.139431
\(330\) 0 0
\(331\) −10.3091 −0.566638 −0.283319 0.959026i \(-0.591435\pi\)
−0.283319 + 0.959026i \(0.591435\pi\)
\(332\) −2.27998 1.65650i −0.125130 0.0909124i
\(333\) 0.631857 1.94465i 0.0346255 0.106566i
\(334\) −1.07360 3.30420i −0.0587447 0.180798i
\(335\) 0 0
\(336\) −1.95786 + 1.42247i −0.106810 + 0.0776020i
\(337\) 0.711987 + 2.19127i 0.0387844 + 0.119366i 0.968574 0.248725i \(-0.0800115\pi\)
−0.929790 + 0.368091i \(0.880012\pi\)
\(338\) 3.90276 12.0115i 0.212282 0.653337i
\(339\) 9.51232 + 6.91111i 0.516638 + 0.375360i
\(340\) 0 0
\(341\) 12.5449 + 13.4976i 0.679344 + 0.730936i
\(342\) 10.4668 0.565980
\(343\) −3.91028 2.84098i −0.211135 0.153399i
\(344\) −6.22438 + 19.1567i −0.335596 + 1.03286i
\(345\) 0 0
\(346\) −4.19422 + 3.04728i −0.225483 + 0.163823i
\(347\) 16.7779 12.1899i 0.900686 0.654387i −0.0379558 0.999279i \(-0.512085\pi\)
0.938642 + 0.344892i \(0.112085\pi\)
\(348\) −0.920138 2.83189i −0.0493246 0.151806i
\(349\) 1.14723 3.53080i 0.0614097 0.189000i −0.915645 0.401988i \(-0.868320\pi\)
0.977055 + 0.212988i \(0.0683195\pi\)
\(350\) 0 0
\(351\) 7.12106 0.380094
\(352\) 4.63444 + 0.908832i 0.247017 + 0.0484409i
\(353\) −3.01441 −0.160441 −0.0802203 0.996777i \(-0.525562\pi\)
−0.0802203 + 0.996777i \(0.525562\pi\)
\(354\) 0.431856 + 0.313762i 0.0229529 + 0.0166763i
\(355\) 0 0
\(356\) −0.692393 2.13097i −0.0366967 0.112941i
\(357\) −1.02754 + 0.746551i −0.0543832 + 0.0395117i
\(358\) −3.54432 + 2.57510i −0.187323 + 0.136098i
\(359\) −7.02678 21.6262i −0.370859 1.14139i −0.946230 0.323494i \(-0.895142\pi\)
0.575371 0.817893i \(-0.304858\pi\)
\(360\) 0 0
\(361\) −26.0818 18.9495i −1.37273 0.997344i
\(362\) −22.3418 −1.17426
\(363\) 14.3848 17.0280i 0.755005 0.893736i
\(364\) −0.163714 −0.00858092
\(365\) 0 0
\(366\) 6.45207 19.8574i 0.337255 1.03796i
\(367\) 4.18516 + 12.8806i 0.218464 + 0.672362i 0.998890 + 0.0471138i \(0.0150024\pi\)
−0.780426 + 0.625248i \(0.784998\pi\)
\(368\) 23.3357 16.9544i 1.21646 0.883809i
\(369\) 8.08572 5.87462i 0.420926 0.305820i
\(370\) 0 0
\(371\) −0.0368976 + 0.113559i −0.00191563 + 0.00589570i
\(372\) 2.30733 + 1.67637i 0.119630 + 0.0869159i
\(373\) 24.8281 1.28555 0.642774 0.766056i \(-0.277783\pi\)
0.642774 + 0.766056i \(0.277783\pi\)
\(374\) −7.74141 1.51812i −0.400299 0.0785001i
\(375\) 0 0
\(376\) 17.4961 + 12.7117i 0.902294 + 0.655555i
\(377\) −3.32649 + 10.2379i −0.171323 + 0.527278i
\(378\) −0.545772 1.67971i −0.0280715 0.0863952i
\(379\) −4.98407 + 3.62114i −0.256015 + 0.186005i −0.708388 0.705823i \(-0.750577\pi\)
0.452374 + 0.891829i \(0.350577\pi\)
\(380\) 0 0
\(381\) −7.73386 23.8024i −0.396218 1.21943i
\(382\) 8.58287 26.4154i 0.439138 1.35153i
\(383\) 0.294214 + 0.213759i 0.0150337 + 0.0109226i 0.595277 0.803521i \(-0.297042\pi\)
−0.580243 + 0.814443i \(0.697042\pi\)
\(384\) −17.6370 −0.900034
\(385\) 0 0
\(386\) −4.37892 −0.222881
\(387\) 6.05409 + 4.39856i 0.307747 + 0.223591i
\(388\) −0.485510 + 1.49425i −0.0246481 + 0.0758589i
\(389\) −0.577201 1.77644i −0.0292653 0.0900693i 0.935357 0.353705i \(-0.115078\pi\)
−0.964622 + 0.263636i \(0.915078\pi\)
\(390\) 0 0
\(391\) 12.2473 8.89815i 0.619370 0.449999i
\(392\) −6.33022 19.4824i −0.319725 0.984011i
\(393\) 4.89457 15.0639i 0.246898 0.759875i
\(394\) −7.45476 5.41620i −0.375565 0.272864i
\(395\) 0 0
\(396\) 0.451995 0.812237i 0.0227136 0.0408164i
\(397\) −0.384172 −0.0192811 −0.00964053 0.999954i \(-0.503069\pi\)
−0.00964053 + 0.999954i \(0.503069\pi\)
\(398\) −20.5486 14.9294i −1.03001 0.748345i
\(399\) 1.56104 4.80437i 0.0781495 0.240519i
\(400\) 0 0
\(401\) 18.3270 13.3153i 0.915206 0.664936i −0.0271201 0.999632i \(-0.508634\pi\)
0.942326 + 0.334696i \(0.108634\pi\)
\(402\) −26.5311 + 19.2760i −1.32325 + 0.961399i
\(403\) −3.18616 9.80600i −0.158714 0.488471i
\(404\) 0.287113 0.883643i 0.0142844 0.0439629i
\(405\) 0 0
\(406\) 2.66986 0.132503
\(407\) −0.736897 6.08505i −0.0365266 0.301625i
\(408\) −10.8610 −0.537699
\(409\) 23.6348 + 17.1717i 1.16866 + 0.849085i 0.990848 0.134979i \(-0.0430967\pi\)
0.177816 + 0.984064i \(0.443097\pi\)
\(410\) 0 0
\(411\) −5.99944 18.4644i −0.295931 0.910781i
\(412\) −4.03354 + 2.93054i −0.198718 + 0.144377i
\(413\) 0.0561568 0.0408003i 0.00276330 0.00200765i
\(414\) −3.80073 11.6975i −0.186796 0.574899i
\(415\) 0 0
\(416\) −2.13785 1.55324i −0.104817 0.0761537i
\(417\) 38.7667 1.89841
\(418\) 28.4587 13.2130i 1.39196 0.646270i
\(419\) −0.720765 −0.0352117 −0.0176058 0.999845i \(-0.505604\pi\)
−0.0176058 + 0.999845i \(0.505604\pi\)
\(420\) 0 0
\(421\) −7.24859 + 22.3089i −0.353275 + 1.08727i 0.603728 + 0.797190i \(0.293681\pi\)
−0.957003 + 0.290078i \(0.906319\pi\)
\(422\) −1.75376 5.39753i −0.0853718 0.262747i
\(423\) 6.50010 4.72260i 0.316046 0.229621i
\(424\) −0.826042 + 0.600154i −0.0401161 + 0.0291461i
\(425\) 0 0
\(426\) −8.13782 + 25.0456i −0.394278 + 1.21346i
\(427\) −2.19653 1.59587i −0.106298 0.0772298i
\(428\) 0.0763449 0.00369027
\(429\) −11.3126 + 5.25229i −0.546176 + 0.253583i
\(430\) 0 0
\(431\) −3.04083 2.20930i −0.146472 0.106418i 0.512136 0.858904i \(-0.328854\pi\)
−0.658608 + 0.752486i \(0.728854\pi\)
\(432\) 4.06627 12.5147i 0.195639 0.602114i
\(433\) −4.20476 12.9409i −0.202068 0.621901i −0.999821 0.0189169i \(-0.993978\pi\)
0.797753 0.602984i \(-0.206022\pi\)
\(434\) −2.06884 + 1.50310i −0.0993076 + 0.0721512i
\(435\) 0 0
\(436\) 0.856143 + 2.63494i 0.0410018 + 0.126191i
\(437\) −18.6060 + 57.2634i −0.890045 + 2.73928i
\(438\) 2.19521 + 1.59491i 0.104891 + 0.0762078i
\(439\) 15.6217 0.745584 0.372792 0.927915i \(-0.378400\pi\)
0.372792 + 0.927915i \(0.378400\pi\)
\(440\) 0 0
\(441\) −7.61052 −0.362406
\(442\) 3.57108 + 2.59454i 0.169859 + 0.123410i
\(443\) −0.437512 + 1.34652i −0.0207868 + 0.0639753i −0.960912 0.276855i \(-0.910708\pi\)
0.940125 + 0.340830i \(0.110708\pi\)
\(444\) −0.293158 0.902248i −0.0139127 0.0428188i
\(445\) 0 0
\(446\) 11.3213 8.22540i 0.536079 0.389484i
\(447\) 3.61630 + 11.1298i 0.171045 + 0.526423i
\(448\) −0.940613 + 2.89491i −0.0444398 + 0.136772i
\(449\) −5.58939 4.06093i −0.263780 0.191647i 0.448032 0.894017i \(-0.352125\pi\)
−0.711812 + 0.702370i \(0.752125\pi\)
\(450\) 0 0
\(451\) 14.5687 26.1800i 0.686012 1.23277i
\(452\) 1.46980 0.0691338
\(453\) −21.9159 15.9228i −1.02970 0.748119i
\(454\) 2.35855 7.25887i 0.110692 0.340676i
\(455\) 0 0
\(456\) 34.9475 25.3909i 1.63657 1.18904i
\(457\) 34.2649 24.8949i 1.60284 1.16453i 0.721068 0.692865i \(-0.243652\pi\)
0.881776 0.471669i \(-0.156348\pi\)
\(458\) 2.08551 + 6.41854i 0.0974496 + 0.299919i
\(459\) 2.13410 6.56807i 0.0996111 0.306571i
\(460\) 0 0
\(461\) 25.1563 1.17165 0.585823 0.810439i \(-0.300772\pi\)
0.585823 + 0.810439i \(0.300772\pi\)
\(462\) 2.10593 + 2.26586i 0.0979765 + 0.105417i
\(463\) 7.89251 0.366796 0.183398 0.983039i \(-0.441290\pi\)
0.183398 + 0.983039i \(0.441290\pi\)
\(464\) 16.0928 + 11.6921i 0.747089 + 0.542792i
\(465\) 0 0
\(466\) 11.3479 + 34.9254i 0.525684 + 1.61789i
\(467\) 12.9209 9.38761i 0.597909 0.434407i −0.247227 0.968958i \(-0.579519\pi\)
0.845136 + 0.534551i \(0.179519\pi\)
\(468\) −0.420774 + 0.305710i −0.0194503 + 0.0141315i
\(469\) 1.31778 + 4.05572i 0.0608495 + 0.187276i
\(470\) 0 0
\(471\) 22.0420 + 16.0144i 1.01564 + 0.737905i
\(472\) 0.593572 0.0273214
\(473\) 22.0134 + 4.31691i 1.01218 + 0.198492i
\(474\) −17.7646 −0.815957
\(475\) 0 0
\(476\) −0.0490630 + 0.151000i −0.00224880 + 0.00692109i
\(477\) 0.117221 + 0.360768i 0.00536717 + 0.0165185i
\(478\) −7.21426 + 5.24147i −0.329973 + 0.239739i
\(479\) −11.6195 + 8.44209i −0.530910 + 0.385729i −0.820698 0.571362i \(-0.806415\pi\)
0.289788 + 0.957091i \(0.406415\pi\)
\(480\) 0 0
\(481\) −1.05983 + 3.26181i −0.0483240 + 0.148726i
\(482\) −13.9650 10.1462i −0.636088 0.462145i
\(483\) −5.93610 −0.270102
\(484\) 0.203602 2.77901i 0.00925465 0.126319i
\(485\) 0 0
\(486\) −11.7309 8.52300i −0.532125 0.386611i
\(487\) 11.1034 34.1729i 0.503145 1.54852i −0.300723 0.953712i \(-0.597228\pi\)
0.803868 0.594808i \(-0.202772\pi\)
\(488\) −7.17449 22.0808i −0.324774 0.999551i
\(489\) −5.14017 + 3.73455i −0.232447 + 0.168882i
\(490\) 0 0
\(491\) 10.8828 + 33.4939i 0.491135 + 1.51156i 0.822895 + 0.568194i \(0.192358\pi\)
−0.331760 + 0.943364i \(0.607642\pi\)
\(492\) 1.43294 4.41012i 0.0646017 0.198824i
\(493\) 8.44595 + 6.13634i 0.380386 + 0.276367i
\(494\) −17.5562 −0.789891
\(495\) 0 0
\(496\) −19.0526 −0.855488
\(497\) 2.77043 + 2.01283i 0.124271 + 0.0902879i
\(498\) 9.20731 28.3372i 0.412589 1.26982i
\(499\) 8.18654 + 25.1956i 0.366480 + 1.12791i 0.949049 + 0.315128i \(0.102048\pi\)
−0.582569 + 0.812781i \(0.697952\pi\)
\(500\) 0 0
\(501\) −4.30963 + 3.13113i −0.192540 + 0.139888i
\(502\) 12.3116 + 37.8911i 0.549492 + 1.69116i
\(503\) −5.48306 + 16.8751i −0.244478 + 0.752424i 0.751244 + 0.660024i \(0.229454\pi\)
−0.995722 + 0.0924004i \(0.970546\pi\)
\(504\) 0.928313 + 0.674459i 0.0413504 + 0.0300428i
\(505\) 0 0
\(506\) −25.1005 27.0068i −1.11586 1.20060i
\(507\) −19.3647 −0.860019
\(508\) −2.53106 1.83892i −0.112298 0.0815889i
\(509\) −4.25018 + 13.0807i −0.188386 + 0.579793i −0.999990 0.00441502i \(-0.998595\pi\)
0.811604 + 0.584208i \(0.198595\pi\)
\(510\) 0 0
\(511\) 0.285456 0.207396i 0.0126278 0.00917465i
\(512\) −20.4742 + 14.8754i −0.904842 + 0.657406i
\(513\) 8.48796 + 26.1232i 0.374753 + 1.15337i
\(514\) −0.148236 + 0.456223i −0.00653840 + 0.0201231i
\(515\) 0 0
\(516\) 3.47196 0.152845
\(517\) 11.7117 21.0460i 0.515081 0.925604i
\(518\) 0.850623 0.0373742
\(519\) 6.43093 + 4.67234i 0.282286 + 0.205093i
\(520\) 0 0
\(521\) 3.88720 + 11.9636i 0.170301 + 0.524133i 0.999388 0.0349870i \(-0.0111390\pi\)
−0.829087 + 0.559120i \(0.811139\pi\)
\(522\) 6.86203 4.98555i 0.300343 0.218212i
\(523\) −33.0052 + 23.9797i −1.44322 + 1.04856i −0.455861 + 0.890051i \(0.650669\pi\)
−0.987358 + 0.158508i \(0.949331\pi\)
\(524\) −0.611850 1.88308i −0.0267288 0.0822628i
\(525\) 0 0
\(526\) −24.1105 17.5173i −1.05127 0.763792i
\(527\) −9.99936 −0.435579
\(528\) 2.77077 + 22.8801i 0.120582 + 0.995729i
\(529\) 47.7524 2.07619
\(530\) 0 0
\(531\) 0.0681449 0.209729i 0.00295724 0.00910144i
\(532\) −0.195139 0.600575i −0.00846033 0.0260382i
\(533\) −13.5624 + 9.85363i −0.587451 + 0.426808i
\(534\) 19.1648 13.9241i 0.829342 0.602553i
\(535\) 0 0
\(536\) −11.2687 + 34.6814i −0.486732 + 1.49801i
\(537\) 5.43445 + 3.94836i 0.234514 + 0.170384i
\(538\) 8.12434 0.350265
\(539\) −20.6926 + 9.60732i −0.891293 + 0.413817i
\(540\) 0 0
\(541\) −26.3873 19.1715i −1.13448 0.824247i −0.148138 0.988967i \(-0.547328\pi\)
−0.986340 + 0.164720i \(0.947328\pi\)
\(542\) −6.81876 + 20.9860i −0.292891 + 0.901425i
\(543\) 10.5858 + 32.5797i 0.454279 + 1.39813i
\(544\) −2.07331 + 1.50635i −0.0888923 + 0.0645840i
\(545\) 0 0
\(546\) −0.534865 1.64614i −0.0228901 0.0704485i
\(547\) −1.77062 + 5.44942i −0.0757064 + 0.233000i −0.981747 0.190190i \(-0.939090\pi\)
0.906041 + 0.423190i \(0.139090\pi\)
\(548\) −1.96344 1.42652i −0.0838739 0.0609379i
\(549\) −8.62555 −0.368129
\(550\) 0 0
\(551\) −41.5222 −1.76890
\(552\) −41.0665 29.8365i −1.74791 1.26993i
\(553\) −0.713842 + 2.19698i −0.0303556 + 0.0934251i
\(554\) −9.11960 28.0672i −0.387454 1.19246i
\(555\) 0 0
\(556\) 3.92055 2.84845i 0.166268 0.120801i
\(557\) −12.5555 38.6418i −0.531993 1.63731i −0.750057 0.661373i \(-0.769974\pi\)
0.218064 0.975935i \(-0.430026\pi\)
\(558\) −2.51049 + 7.72649i −0.106278 + 0.327089i
\(559\) −10.1547 7.37780i −0.429497 0.312048i
\(560\) 0 0
\(561\) 1.45418 + 12.0081i 0.0613955 + 0.506984i
\(562\) −31.5274 −1.32990
\(563\) −11.8825 8.63316i −0.500788 0.363844i 0.308530 0.951215i \(-0.400163\pi\)
−0.809318 + 0.587371i \(0.800163\pi\)
\(564\) 1.15194 3.54529i 0.0485052 0.149284i
\(565\) 0 0
\(566\) −0.155987 + 0.113332i −0.00655664 + 0.00476368i
\(567\) −3.12600 + 2.27117i −0.131279 + 0.0953801i
\(568\) 9.04898 + 27.8499i 0.379687 + 1.16856i
\(569\) −7.60025 + 23.3912i −0.318619 + 0.980609i 0.655620 + 0.755091i \(0.272407\pi\)
−0.974239 + 0.225518i \(0.927593\pi\)
\(570\) 0 0
\(571\) −22.4923 −0.941273 −0.470637 0.882327i \(-0.655976\pi\)
−0.470637 + 0.882327i \(0.655976\pi\)
\(572\) −0.758141 + 1.36238i −0.0316995 + 0.0569641i
\(573\) −42.5866 −1.77908
\(574\) 3.36372 + 2.44388i 0.140399 + 0.102006i
\(575\) 0 0
\(576\) 2.98825 + 9.19690i 0.124511 + 0.383204i
\(577\) 30.3652 22.0616i 1.26412 0.918435i 0.265166 0.964203i \(-0.414573\pi\)
0.998952 + 0.0457674i \(0.0145733\pi\)
\(578\) −14.7134 + 10.6899i −0.611996 + 0.444641i
\(579\) 2.07478 + 6.38552i 0.0862249 + 0.265373i
\(580\) 0 0
\(581\) −3.13452 2.27736i −0.130042 0.0944809i
\(582\) −16.6109 −0.688543
\(583\) 0.774141 + 0.832933i 0.0320617 + 0.0344966i
\(584\) 3.01724 0.124854
\(585\) 0 0
\(586\) −3.13442 + 9.64675i −0.129482 + 0.398503i
\(587\) 8.65563 + 26.6393i 0.357256 + 1.09952i 0.954690 + 0.297603i \(0.0961871\pi\)
−0.597434 + 0.801918i \(0.703813\pi\)
\(588\) −2.85664 + 2.07547i −0.117806 + 0.0855910i
\(589\) 32.1750 23.3765i 1.32575 0.963213i
\(590\) 0 0
\(591\) −4.36597 + 13.4371i −0.179592 + 0.552728i
\(592\) 5.12719 + 3.72512i 0.210726 + 0.153102i
\(593\) 17.7522 0.728996 0.364498 0.931204i \(-0.381241\pi\)
0.364498 + 0.931204i \(0.381241\pi\)
\(594\) −16.5056 3.23681i −0.677232 0.132808i
\(595\) 0 0
\(596\) 1.18351 + 0.859868i 0.0484783 + 0.0352216i
\(597\) −12.0345 + 37.0385i −0.492541 + 1.51589i
\(598\) 6.37506 + 19.6204i 0.260695 + 0.802338i
\(599\) 19.7594 14.3561i 0.807348 0.586573i −0.105713 0.994397i \(-0.533712\pi\)
0.913061 + 0.407824i \(0.133712\pi\)
\(600\) 0 0
\(601\) −1.34725 4.14640i −0.0549553 0.169135i 0.919812 0.392360i \(-0.128341\pi\)
−0.974767 + 0.223225i \(0.928341\pi\)
\(602\) −0.961999 + 2.96073i −0.0392082 + 0.120670i
\(603\) 10.9604 + 7.96318i 0.446341 + 0.324286i
\(604\) −3.38635 −0.137789
\(605\) 0 0
\(606\) 9.82307 0.399035
\(607\) 32.0516 + 23.2869i 1.30094 + 0.945185i 0.999964 0.00844827i \(-0.00268920\pi\)
0.300971 + 0.953633i \(0.402689\pi\)
\(608\) 3.14976 9.69396i 0.127740 0.393142i
\(609\) −1.26501 3.89329i −0.0512607 0.157764i
\(610\) 0 0
\(611\) −10.9028 + 7.92132i −0.441078 + 0.320462i
\(612\) 0.155869 + 0.479716i 0.00630064 + 0.0193914i
\(613\) 0.806291 2.48151i 0.0325658 0.100227i −0.933452 0.358701i \(-0.883220\pi\)
0.966018 + 0.258474i \(0.0832197\pi\)
\(614\) 10.3664 + 7.53165i 0.418355 + 0.303953i
\(615\) 0 0
\(616\) 3.37545 + 0.661939i 0.136001 + 0.0266703i
\(617\) 3.53110 0.142157 0.0710783 0.997471i \(-0.477356\pi\)
0.0710783 + 0.997471i \(0.477356\pi\)
\(618\) −42.6445 30.9831i −1.71541 1.24632i
\(619\) −1.86509 + 5.74014i −0.0749641 + 0.230716i −0.981517 0.191377i \(-0.938705\pi\)
0.906552 + 0.422093i \(0.138705\pi\)
\(620\) 0 0
\(621\) 26.1126 18.9719i 1.04786 0.761316i
\(622\) 26.8997 19.5438i 1.07858 0.783634i
\(623\) −0.951903 2.92966i −0.0381372 0.117374i
\(624\) 3.98501 12.2646i 0.159528 0.490977i
\(625\) 0 0
\(626\) 14.3709 0.574376
\(627\) −32.7518 35.2391i −1.30798 1.40731i
\(628\) 3.40583 0.135907
\(629\) 2.69090 + 1.95505i 0.107293 + 0.0779530i
\(630\) 0 0
\(631\) 0.333740 + 1.02714i 0.0132860 + 0.0408900i 0.957480 0.288501i \(-0.0931567\pi\)
−0.944194 + 0.329391i \(0.893157\pi\)
\(632\) −15.9811 + 11.6109i −0.635693 + 0.461858i
\(633\) −7.03994 + 5.11481i −0.279812 + 0.203296i
\(634\) −10.3875 31.9694i −0.412540 1.26967i
\(635\) 0 0
\(636\) 0.142385 + 0.103449i 0.00564592 + 0.00410200i
\(637\) 12.7653 0.505780
\(638\) 12.3638 22.2179i 0.489489 0.879615i
\(639\) 10.8792 0.430373
\(640\) 0 0
\(641\) 3.05474 9.40153i 0.120655 0.371338i −0.872429 0.488740i \(-0.837457\pi\)
0.993084 + 0.117402i \(0.0374566\pi\)
\(642\) 0.249425 + 0.767650i 0.00984400 + 0.0302967i
\(643\) 23.2999 16.9284i 0.918858 0.667589i −0.0243814 0.999703i \(-0.507762\pi\)
0.943240 + 0.332113i \(0.107762\pi\)
\(644\) −0.600329 + 0.436165i −0.0236563 + 0.0171873i
\(645\) 0 0
\(646\) −5.26138 + 16.1929i −0.207006 + 0.637100i
\(647\) 14.8118 + 10.7614i 0.582311 + 0.423074i 0.839557 0.543272i \(-0.182815\pi\)
−0.257245 + 0.966346i \(0.582815\pi\)
\(648\) −33.0415 −1.29799
\(649\) −0.0794734 0.656265i −0.00311961 0.0257606i
\(650\) 0 0
\(651\) 3.17212 + 2.30468i 0.124325 + 0.0903276i
\(652\) −0.245433 + 0.755365i −0.00961190 + 0.0295824i
\(653\) 9.87025 + 30.3775i 0.386253 + 1.18876i 0.935567 + 0.353148i \(0.114889\pi\)
−0.549315 + 0.835616i \(0.685111\pi\)
\(654\) −23.6973 + 17.2171i −0.926637 + 0.673241i
\(655\) 0 0
\(656\) 9.57259 + 29.4614i 0.373747 + 1.15027i
\(657\) 0.346394 1.06609i 0.0135141 0.0415921i
\(658\) 2.70409 + 1.96463i 0.105416 + 0.0765894i
\(659\) 27.0408 1.05336 0.526679 0.850064i \(-0.323437\pi\)
0.526679 + 0.850064i \(0.323437\pi\)
\(660\) 0 0
\(661\) 47.2504 1.83783 0.918915 0.394456i \(-0.129067\pi\)
0.918915 + 0.394456i \(0.129067\pi\)
\(662\) −11.0226 8.00839i −0.428406 0.311255i
\(663\) 2.09144 6.43681i 0.0812250 0.249985i
\(664\) −10.2382 31.5100i −0.397320 1.22283i
\(665\) 0 0
\(666\) 2.18626 1.58841i 0.0847157 0.0615496i
\(667\) 15.0776 + 46.4042i 0.583809 + 1.79678i
\(668\) −0.205776 + 0.633314i −0.00796172 + 0.0245036i
\(669\) −17.3588 12.6119i −0.671128 0.487603i
\(670\) 0 0
\(671\) −23.4524 + 10.8887i −0.905369 + 0.420352i
\(672\) 1.00491 0.0387651
\(673\) −30.6425 22.2631i −1.18118 0.858179i −0.188878 0.982001i \(-0.560485\pi\)
−0.992305 + 0.123821i \(0.960485\pi\)
\(674\) −0.940977 + 2.89603i −0.0362451 + 0.111551i
\(675\) 0 0
\(676\) −1.95839 + 1.42286i −0.0753228 + 0.0547252i
\(677\) −27.4287 + 19.9281i −1.05417 + 0.765900i −0.973001 0.230800i \(-0.925866\pi\)
−0.0811701 + 0.996700i \(0.525866\pi\)
\(678\) 4.80196 + 14.7789i 0.184418 + 0.567581i
\(679\) −0.667481 + 2.05429i −0.0256156 + 0.0788366i
\(680\) 0 0
\(681\) −11.7027 −0.448448
\(682\) 2.92784 + 24.1771i 0.112113 + 0.925789i
\(683\) 38.6515 1.47896 0.739480 0.673178i \(-0.235071\pi\)
0.739480 + 0.673178i \(0.235071\pi\)
\(684\) −1.62302 1.17920i −0.0620579 0.0450877i
\(685\) 0 0
\(686\) −1.97397 6.07524i −0.0753664 0.231954i
\(687\) 8.37164 6.08235i 0.319398 0.232056i
\(688\) −18.7644 + 13.6331i −0.715387 + 0.519759i
\(689\) −0.196617 0.605125i −0.00749051 0.0230534i
\(690\) 0 0
\(691\) −21.3377 15.5027i −0.811723 0.589751i 0.102607 0.994722i \(-0.467282\pi\)
−0.914330 + 0.404971i \(0.867282\pi\)
\(692\) 0.993680 0.0377741
\(693\) 0.621403 1.11666i 0.0236052 0.0424186i
\(694\) 27.4087 1.04042
\(695\) 0 0
\(696\) 10.8174 33.2925i 0.410032 1.26195i
\(697\) 5.02397 + 15.4622i 0.190296 + 0.585672i
\(698\) 3.96947 2.88399i 0.150247 0.109161i
\(699\) 45.5528 33.0961i 1.72297 1.25181i
\(700\) 0 0
\(701\) 5.74279 17.6745i 0.216902 0.667556i −0.782111 0.623139i \(-0.785857\pi\)
0.999013 0.0444171i \(-0.0141430\pi\)
\(702\) 7.61395 + 5.53186i 0.287370 + 0.208786i
\(703\) −13.2291 −0.498943
\(704\) 19.7348 + 21.2336i 0.743784 + 0.800270i
\(705\) 0 0
\(706\) −3.22305 2.34168i −0.121301 0.0881303i
\(707\) 0.394723 1.21483i 0.0148451 0.0456885i
\(708\) −0.0316167 0.0973063i −0.00118823 0.00365699i
\(709\) −19.1789 + 13.9343i −0.720280 + 0.523314i −0.886474 0.462779i \(-0.846852\pi\)
0.166194 + 0.986093i \(0.446852\pi\)
\(710\) 0 0
\(711\) 2.26782 + 6.97963i 0.0850499 + 0.261757i
\(712\) 8.13994 25.0522i 0.305057 0.938869i
\(713\) −37.8086 27.4695i −1.41594 1.02874i
\(714\) −1.67860 −0.0628202
\(715\) 0 0
\(716\) 0.839708 0.0313814
\(717\) 11.0615 + 8.03666i 0.413100 + 0.300135i
\(718\) 9.28674 28.5817i 0.346578 1.06666i
\(719\) −9.53420 29.3432i −0.355566 1.09432i −0.955681 0.294405i \(-0.904879\pi\)
0.600115 0.799914i \(-0.295121\pi\)
\(720\) 0 0
\(721\) −5.54532 + 4.02891i −0.206519 + 0.150045i
\(722\) −13.1665 40.5222i −0.490005 1.50808i
\(723\) −8.17877 + 25.1717i −0.304172 + 0.936144i
\(724\) 3.46440 + 2.51704i 0.128754 + 0.0935449i
\(725\) 0 0
\(726\) 28.6082 7.03202i 1.06175 0.260983i
\(727\) −24.1222 −0.894642 −0.447321 0.894373i \(-0.647622\pi\)
−0.447321 + 0.894373i \(0.647622\pi\)
\(728\) −1.55708 1.13129i −0.0577092 0.0419282i
\(729\) 3.41534 10.5113i 0.126494 0.389309i
\(730\) 0 0
\(731\) −9.84810 + 7.15506i −0.364245 + 0.264640i
\(732\) −3.23763 + 2.35228i −0.119666 + 0.0869427i
\(733\) −4.27917 13.1699i −0.158055 0.486442i 0.840403 0.541962i \(-0.182318\pi\)
−0.998458 + 0.0555200i \(0.982318\pi\)
\(734\) −5.53120 + 17.0233i −0.204160 + 0.628341i
\(735\) 0 0
\(736\) −11.9775 −0.441496
\(737\) 39.8532 + 7.81536i 1.46801 + 0.287882i
\(738\) 13.2090 0.486228
\(739\) −22.2549 16.1692i −0.818661 0.594792i 0.0976674 0.995219i \(-0.468862\pi\)
−0.916329 + 0.400427i \(0.868862\pi\)
\(740\) 0 0
\(741\) 8.31832 + 25.6012i 0.305581 + 0.940482i
\(742\) −0.127668 + 0.0927559i −0.00468683 + 0.00340518i
\(743\) 2.18058 1.58429i 0.0799979 0.0581218i −0.547067 0.837089i \(-0.684256\pi\)
0.627065 + 0.778967i \(0.284256\pi\)
\(744\) 10.3610 + 31.8880i 0.379854 + 1.16907i
\(745\) 0 0
\(746\) 26.5465 + 19.2872i 0.971937 + 0.706154i
\(747\) −12.3089 −0.450360
\(748\) 1.02938 + 1.10756i 0.0376379 + 0.0404963i
\(749\) 0.104959 0.00383512
\(750\) 0 0
\(751\) 7.10258 21.8595i 0.259177 0.797664i −0.733801 0.679364i \(-0.762256\pi\)
0.992978 0.118300i \(-0.0377443\pi\)
\(752\) 7.69539 + 23.6840i 0.280622 + 0.863666i
\(753\) 49.4210 35.9064i 1.80100 1.30850i
\(754\) −11.5098 + 8.36238i −0.419163 + 0.304540i
\(755\) 0 0
\(756\) −0.104608 + 0.321950i −0.00380455 + 0.0117092i
\(757\) −28.2800 20.5466i −1.02785 0.746780i −0.0599765 0.998200i \(-0.519103\pi\)
−0.967878 + 0.251420i \(0.919103\pi\)
\(758\) −8.14205 −0.295733
\(759\) −27.4895 + 49.3987i −0.997805 + 1.79306i
\(760\) 0 0
\(761\) −30.1151 21.8799i −1.09167 0.793145i −0.111990 0.993709i \(-0.535723\pi\)
−0.979681 + 0.200564i \(0.935723\pi\)
\(762\) 10.2212 31.4577i 0.370276 1.13959i
\(763\) 1.17703 + 3.62252i 0.0426112 + 0.131144i
\(764\) −4.30686 + 3.12912i −0.155817 + 0.113208i
\(765\) 0 0
\(766\) 0.148524 + 0.457109i 0.00536638 + 0.0165160i
\(767\) −0.114301 + 0.351782i −0.00412717 + 0.0127021i
\(768\) 9.80024 + 7.12029i 0.353636 + 0.256931i
\(769\) 30.1272 1.08642 0.543208 0.839598i \(-0.317210\pi\)
0.543208 + 0.839598i \(0.317210\pi\)
\(770\) 0 0
\(771\) 0.735518 0.0264890
\(772\) 0.679013 + 0.493332i 0.0244382 + 0.0177554i
\(773\) 9.55113 29.3954i 0.343530 1.05728i −0.618836 0.785521i \(-0.712395\pi\)
0.962366 0.271757i \(-0.0876047\pi\)
\(774\) 3.05620 + 9.40600i 0.109853 + 0.338092i
\(775\) 0 0
\(776\) −14.9432 + 10.8568i −0.536428 + 0.389738i
\(777\) −0.403034 1.24041i −0.0144588 0.0444995i
\(778\) 0.762842 2.34779i 0.0273492 0.0841722i
\(779\) −52.3132 38.0078i −1.87431 1.36177i
\(780\) 0 0
\(781\) 29.5798 13.7336i 1.05845 0.491426i
\(782\) 20.0073 0.715460
\(783\) 18.0077 + 13.0834i 0.643544 + 0.467562i
\(784\) 7.28925 22.4340i 0.260330 0.801214i
\(785\) 0 0
\(786\) 16.9355 12.3043i 0.604068 0.438881i
\(787\) −27.9255 + 20.2891i −0.995437 + 0.723227i −0.961105 0.276183i \(-0.910930\pi\)
−0.0343320 + 0.999410i \(0.510930\pi\)
\(788\) 0.545773 + 1.67972i 0.0194423 + 0.0598374i
\(789\) −14.1206 + 43.4588i −0.502708 + 1.54718i
\(790\) 0 0
\(791\) 2.02069 0.0718474
\(792\) 9.91160 4.60184i 0.352193 0.163519i
\(793\) 14.4678 0.513767
\(794\) −0.410763 0.298437i −0.0145774 0.0105911i
\(795\) 0 0
\(796\) 1.50439 + 4.63003i 0.0533217 + 0.164107i
\(797\) 8.28055 6.01617i 0.293312 0.213104i −0.431391 0.902165i \(-0.641977\pi\)
0.724703 + 0.689061i \(0.241977\pi\)
\(798\) 5.40126 3.92425i 0.191203 0.138917i
\(799\) 4.03876 + 12.4300i 0.142881 + 0.439743i
\(800\) 0 0
\(801\) −7.91725 5.75222i −0.279742 0.203245i
\(802\) 29.9392 1.05719
\(803\) −0.403979 3.33592i −0.0142561 0.117722i
\(804\) 6.28566 0.221678
\(805\) 0 0
\(806\) 4.21090 12.9598i 0.148323 0.456490i
\(807\) −3.84940 11.8472i −0.135505 0.417043i
\(808\) 8.83683 6.42034i 0.310879 0.225867i
\(809\) −29.0143 + 21.0801i −1.02009 + 0.741139i −0.966301 0.257414i \(-0.917130\pi\)
−0.0537884 + 0.998552i \(0.517130\pi\)
\(810\) 0 0
\(811\) 5.71683 17.5946i 0.200745 0.617830i −0.799116 0.601177i \(-0.794699\pi\)
0.999861 0.0166535i \(-0.00530122\pi\)
\(812\) −0.413999 0.300788i −0.0145285 0.0105556i
\(813\) 33.8334 1.18659
\(814\) 3.93915 7.07867i 0.138067 0.248107i
\(815\) 0 0
\(816\) −10.1179 7.35110i −0.354198 0.257340i
\(817\) 14.9612 46.0458i 0.523426 1.61094i
\(818\) 11.9312 + 36.7204i 0.417164 + 1.28390i
\(819\) −0.578481 + 0.420291i −0.0202138 + 0.0146862i
\(820\) 0 0
\(821\) −8.43005 25.9450i −0.294211 0.905488i −0.983485 0.180987i \(-0.942071\pi\)
0.689275 0.724500i \(-0.257929\pi\)
\(822\) 7.92900 24.4030i 0.276556 0.851151i
\(823\) −1.60549 1.16646i −0.0559639 0.0406602i 0.559452 0.828863i \(-0.311012\pi\)
−0.615416 + 0.788203i \(0.711012\pi\)
\(824\) −58.6135 −2.04190
\(825\) 0 0
\(826\) 0.0917386 0.00319199
\(827\) −9.97578 7.24783i −0.346892 0.252032i 0.400672 0.916222i \(-0.368777\pi\)
−0.747564 + 0.664190i \(0.768777\pi\)
\(828\) −0.728485 + 2.24205i −0.0253166 + 0.0779165i
\(829\) 0.0956826 + 0.294481i 0.00332319 + 0.0102277i 0.952704 0.303899i \(-0.0982884\pi\)
−0.949381 + 0.314126i \(0.898288\pi\)
\(830\) 0 0
\(831\) −36.6078 + 26.5971i −1.26991 + 0.922644i
\(832\) −5.01226 15.4262i −0.173769 0.534806i
\(833\) 3.82561 11.7740i 0.132549 0.407945i
\(834\) 41.4499 + 30.1151i 1.43529 + 1.04280i
\(835\) 0 0
\(836\) −5.90150 1.15731i −0.204108 0.0400263i
\(837\) −21.3198 −0.736920
\(838\) −0.770653 0.559912i −0.0266218 0.0193418i
\(839\) −2.07149 + 6.37539i −0.0715158 + 0.220103i −0.980426 0.196890i \(-0.936916\pi\)
0.908910 + 0.416993i \(0.136916\pi\)
\(840\) 0 0
\(841\) −3.76040 + 2.73209i −0.129669 + 0.0942101i
\(842\) −25.0805 + 18.2220i −0.864331 + 0.627973i
\(843\) 14.9380 + 45.9745i 0.514493 + 1.58345i
\(844\) −0.336143 + 1.03454i −0.0115705 + 0.0356104i
\(845\) 0 0
\(846\) 10.6187 0.365077
\(847\) 0.279913 3.82059i 0.00961792 0.131277i
\(848\) −1.17573 −0.0403748
\(849\) 0.239173 + 0.173769i 0.00820840 + 0.00596375i
\(850\) 0 0
\(851\) 4.80377 + 14.7845i 0.164671 + 0.506806i
\(852\) 4.08354 2.96686i 0.139900 0.101643i
\(853\) 36.0590 26.1984i 1.23464 0.897015i 0.237407 0.971410i \(-0.423703\pi\)
0.997229 + 0.0743953i \(0.0237027\pi\)
\(854\) −1.10884 3.41267i −0.0379438 0.116779i
\(855\) 0 0
\(856\) 0.726117 + 0.527555i 0.0248182 + 0.0180314i
\(857\) −32.2444 −1.10145 −0.550723 0.834688i \(-0.685648\pi\)
−0.550723 + 0.834688i \(0.685648\pi\)
\(858\) −16.1757 3.17212i −0.552229 0.108294i
\(859\) −18.1192 −0.618220 −0.309110 0.951026i \(-0.600031\pi\)
−0.309110 + 0.951026i \(0.600031\pi\)
\(860\) 0 0
\(861\) 1.97000 6.06305i 0.0671375 0.206628i
\(862\) −1.53506 4.72442i −0.0522843 0.160915i
\(863\) 6.64680 4.82918i 0.226260 0.164387i −0.468880 0.883262i \(-0.655342\pi\)
0.695140 + 0.718874i \(0.255342\pi\)
\(864\) −4.42053 + 3.21170i −0.150389 + 0.109264i
\(865\) 0 0
\(866\) 5.55711 17.1030i 0.188838 0.581184i
\(867\) 22.5598 + 16.3907i 0.766171 + 0.556656i
\(868\) 0.490143 0.0166365
\(869\) 14.9770 + 16.1144i 0.508059 + 0.546643i
\(870\) 0 0
\(871\) −18.3841 13.3568i −0.622921 0.452579i
\(872\) −10.0650 + 30.9770i −0.340845 + 1.04901i
\(873\) 2.12053 + 6.52633i 0.0717692 + 0.220883i
\(874\) −64.3777 + 46.7731i −2.17761 + 1.58212i
\(875\) 0 0
\(876\) −0.160714 0.494626i −0.00543002 0.0167119i
\(877\) 10.2073 31.4147i 0.344675 1.06080i −0.617083 0.786898i \(-0.711686\pi\)
0.961758 0.273901i \(-0.0883142\pi\)
\(878\) 16.7030 + 12.1354i 0.563698 + 0.409551i
\(879\) 15.5524 0.524569
\(880\) 0 0
\(881\) 30.1182 1.01471 0.507354 0.861738i \(-0.330624\pi\)
0.507354 + 0.861738i \(0.330624\pi\)
\(882\) −8.13728 5.91208i −0.273997 0.199070i
\(883\) 5.88905 18.1246i 0.198182 0.609943i −0.801742 0.597670i \(-0.796093\pi\)
0.999925 0.0122728i \(-0.00390665\pi\)
\(884\) −0.261443 0.804639i −0.00879328 0.0270629i
\(885\) 0 0
\(886\) −1.51381 + 1.09985i −0.0508576 + 0.0369502i
\(887\) −6.91223 21.2737i −0.232090 0.714300i −0.997494 0.0707497i \(-0.977461\pi\)
0.765404 0.643550i \(-0.222539\pi\)
\(888\) 3.44644 10.6070i 0.115655 0.355949i
\(889\) −3.47970 2.52815i −0.116706 0.0847915i
\(890\) 0 0
\(891\) 4.42393 + 36.5313i 0.148207 + 1.22384i
\(892\) −2.68220 −0.0898068
\(893\) −42.0545 30.5544i −1.40730 1.02246i
\(894\) −4.77939 + 14.7094i −0.159847 + 0.491957i
\(895\) 0 0
\(896\) −2.45218 + 1.78161i −0.0819217 + 0.0595196i
\(897\) 25.5907 18.5927i 0.854448 0.620793i
\(898\) −2.82161 8.68401i −0.0941582 0.289789i
\(899\) 9.95920 30.6513i 0.332158 1.02228i
\(900\) 0 0
\(901\) −0.617057 −0.0205572
\(902\) 35.9144 16.6746i 1.19582 0.555204i
\(903\) 4.77326 0.158844
\(904\) 13.9793 + 10.1566i 0.464945 + 0.337802i
\(905\) 0 0
\(906\) −11.0635 34.0498i −0.367559 1.13123i
\(907\) −34.5121 + 25.0745i −1.14596 + 0.832586i −0.987938 0.154850i \(-0.950511\pi\)
−0.158019 + 0.987436i \(0.550511\pi\)
\(908\) −1.18351 + 0.859874i −0.0392763 + 0.0285359i
\(909\) −1.25401 3.85943i −0.0415927 0.128009i
\(910\) 0 0
\(911\) 30.0340 + 21.8210i 0.995070 + 0.722960i 0.961025 0.276460i \(-0.0891613\pi\)
0.0340443 + 0.999420i \(0.489161\pi\)
\(912\) 49.7419 1.64712
\(913\) −33.4673 + 15.5385i −1.10761 + 0.514248i
\(914\) 55.9756 1.85151
\(915\) 0 0
\(916\) 0.399729 1.23024i 0.0132074 0.0406483i
\(917\) −0.841173 2.58886i −0.0277780 0.0854918i
\(918\) 7.38408 5.36485i 0.243711 0.177066i
\(919\) −2.71707 + 1.97406i −0.0896278 + 0.0651184i −0.631697 0.775216i \(-0.717641\pi\)
0.542069 + 0.840334i \(0.317641\pi\)
\(920\) 0 0
\(921\) 6.07123 18.6853i 0.200054 0.615702i
\(922\) 26.8975 + 19.5422i 0.885821 + 0.643587i
\(923\) −18.2479 −0.600636
\(924\) −0.0712802 0.588608i −0.00234495 0.0193638i
\(925\) 0 0
\(926\) 8.43879 + 6.13114i 0.277316 + 0.201482i
\(927\) −6.72912 + 20.7101i −0.221013 + 0.680209i
\(928\) −2.55245 7.85565i −0.0837884 0.257874i
\(929\) 16.2929 11.8375i 0.534552 0.388375i −0.287506 0.957779i \(-0.592826\pi\)
0.822058 + 0.569404i \(0.192826\pi\)
\(930\) 0 0
\(931\) 15.2156 + 46.8288i 0.498672 + 1.53475i
\(932\) 2.17506 6.69414i 0.0712463 0.219274i
\(933\) −41.2449 29.9661i −1.35030 0.981048i
\(934\) 21.1078 0.690669
\(935\) 0 0
\(936\) −6.11449 −0.199858
\(937\) 8.51894 + 6.18937i 0.278302 + 0.202198i 0.718176 0.695861i \(-0.244977\pi\)
−0.439875 + 0.898059i \(0.644977\pi\)
\(938\) −1.74161 + 5.36013i −0.0568656 + 0.175014i
\(939\) −6.80908 20.9562i −0.222206 0.683879i
\(940\) 0 0
\(941\) 15.6743 11.3880i 0.510966 0.371239i −0.302224 0.953237i \(-0.597729\pi\)
0.813190 + 0.581998i \(0.197729\pi\)
\(942\) 11.1271 + 34.2457i 0.362541 + 1.11579i
\(943\) −23.4805 + 72.2655i −0.764630 + 2.35329i
\(944\) 0.552961 + 0.401750i 0.0179974 + 0.0130758i
\(945\) 0 0
\(946\) 20.1835 + 21.7163i 0.656223 + 0.706059i
\(947\) 3.79793 0.123416 0.0617081 0.998094i \(-0.480345\pi\)
0.0617081 + 0.998094i \(0.480345\pi\)
\(948\) 2.75465 + 2.00137i 0.0894670 + 0.0650016i
\(949\) −0.581014 + 1.78818i −0.0188605 + 0.0580467i
\(950\) 0 0
\(951\) −41.6973 + 30.2949i −1.35213 + 0.982379i
\(952\) −1.51007 + 1.09713i −0.0489417 + 0.0355583i
\(953\) −0.165561 0.509545i −0.00536305 0.0165058i 0.948339 0.317258i \(-0.102762\pi\)
−0.953702 + 0.300752i \(0.902762\pi\)
\(954\) −0.154922 + 0.476800i −0.00501577 + 0.0154370i
\(955\) 0 0
\(956\) 1.70918 0.0552788
\(957\) −38.2571 7.50237i −1.23668 0.242517i
\(958\) −18.9819 −0.613276
\(959\) −2.69934 1.96118i −0.0871661 0.0633299i
\(960\) 0 0
\(961\) −0.0404620 0.124529i −0.00130523 0.00401707i
\(962\) −3.66706 + 2.66427i −0.118231 + 0.0858996i
\(963\) 0.269764 0.195995i 0.00869303 0.00631586i
\(964\) 1.02239 + 3.14661i 0.0329291 + 0.101345i
\(965\) 0 0
\(966\) −6.34697 4.61134i −0.204210 0.148367i
\(967\) −36.5291 −1.17470 −0.587348 0.809335i \(-0.699828\pi\)
−0.587348 + 0.809335i \(0.699828\pi\)
\(968\) 21.1399 25.0243i 0.679461 0.804311i
\(969\) 26.1060 0.838645
\(970\) 0 0
\(971\) 6.37443 19.6185i 0.204565 0.629587i −0.795166 0.606392i \(-0.792616\pi\)
0.999731 0.0231946i \(-0.00738372\pi\)
\(972\) 0.858835 + 2.64322i 0.0275471 + 0.0847814i
\(973\) 5.38998 3.91605i 0.172795 0.125543i
\(974\) 38.4185 27.9126i 1.23101 0.894379i
\(975\) 0 0
\(976\) 8.26142 25.4261i 0.264442 0.813868i
\(977\) 19.0402 + 13.8335i 0.609149 + 0.442573i 0.849115 0.528209i \(-0.177136\pi\)
−0.239965 + 0.970781i \(0.577136\pi\)
\(978\) −8.39706 −0.268508
\(979\) −28.7880 5.64544i −0.920069 0.180429i
\(980\) 0 0
\(981\) 9.78967 + 7.11261i 0.312560 + 0.227088i
\(982\) −14.3830 + 44.2663i −0.458979 + 1.41259i
\(983\) −12.5688 38.6829i −0.400883 1.23379i −0.924284 0.381706i \(-0.875337\pi\)
0.523400 0.852087i \(-0.324663\pi\)
\(984\) 44.1033 32.0429i 1.40596 1.02149i
\(985\) 0 0
\(986\) 4.26364 + 13.1221i 0.135782 + 0.417894i
\(987\) 1.58368 4.87407i 0.0504092 0.155143i
\(988\) 2.72233 + 1.97789i 0.0866090 + 0.0629251i
\(989\) −56.8925 −1.80908
\(990\) 0 0
\(991\) 23.1498 0.735377 0.367688 0.929949i \(-0.380149\pi\)
0.367688 + 0.929949i \(0.380149\pi\)
\(992\) 6.40051 + 4.65024i 0.203216 + 0.147645i
\(993\) −6.45553 + 19.8681i −0.204860 + 0.630494i
\(994\) 1.39855 + 4.30430i 0.0443594 + 0.136524i
\(995\) 0 0
\(996\) −4.62020 + 3.35677i −0.146397 + 0.106363i
\(997\) 1.64658 + 5.06765i 0.0521477 + 0.160494i 0.973739 0.227668i \(-0.0731101\pi\)
−0.921591 + 0.388162i \(0.873110\pi\)
\(998\) −10.8195 + 33.2991i −0.342486 + 1.05406i
\(999\) 5.73730 + 4.16840i 0.181520 + 0.131882i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.c.26.3 16
5.2 odd 4 275.2.z.c.224.3 32
5.3 odd 4 275.2.z.c.224.6 32
5.4 even 2 275.2.h.e.26.2 yes 16
11.3 even 5 inner 275.2.h.c.201.3 yes 16
11.5 even 5 3025.2.a.bi.1.4 8
11.6 odd 10 3025.2.a.bm.1.5 8
55.3 odd 20 275.2.z.c.124.3 32
55.14 even 10 275.2.h.e.201.2 yes 16
55.39 odd 10 3025.2.a.bj.1.4 8
55.47 odd 20 275.2.z.c.124.6 32
55.49 even 10 3025.2.a.bn.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.3 16 1.1 even 1 trivial
275.2.h.c.201.3 yes 16 11.3 even 5 inner
275.2.h.e.26.2 yes 16 5.4 even 2
275.2.h.e.201.2 yes 16 55.14 even 10
275.2.z.c.124.3 32 55.3 odd 20
275.2.z.c.124.6 32 55.47 odd 20
275.2.z.c.224.3 32 5.2 odd 4
275.2.z.c.224.6 32 5.3 odd 4
3025.2.a.bi.1.4 8 11.5 even 5
3025.2.a.bj.1.4 8 55.39 odd 10
3025.2.a.bm.1.5 8 11.6 odd 10
3025.2.a.bn.1.5 8 55.49 even 10