Defining parameters
| Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 275.z (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(60\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 144 | 80 | 64 |
| Cusp forms | 96 | 64 | 32 |
| Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 275.2.z.a | $16$ | $2.196$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+(-\beta _{1}-\beta _{11}-\beta _{13}+\beta _{15})q^{3}+\cdots\) |
| 275.2.z.b | $16$ | $2.196$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{6}+\beta _{12}-\beta _{15})q^{2}+(\beta _{14}-\beta _{15})q^{3}+\cdots\) |
| 275.2.z.c | $32$ | $2.196$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(275, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)