Properties

Label 3025.2.a.bn.1.5
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,2,Mod(1,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,5,1,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 7x^{6} + 18x^{5} + 16x^{4} - 30x^{3} - 12x^{2} + 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 275)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.321622\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.32162 q^{2} -2.02642 q^{3} -0.253315 q^{4} -2.67816 q^{6} +0.348258 q^{7} -2.97803 q^{8} +1.10639 q^{9} +0.513323 q^{12} +1.85577 q^{13} +0.460265 q^{14} -3.42920 q^{16} +1.79974 q^{17} +1.46223 q^{18} -7.15813 q^{19} -0.705717 q^{21} -8.41145 q^{23} +6.03475 q^{24} +2.45262 q^{26} +3.83726 q^{27} -0.0882188 q^{28} +5.80070 q^{29} +5.55599 q^{31} +1.42395 q^{32} +2.37858 q^{34} -0.280264 q^{36} -1.84812 q^{37} -9.46035 q^{38} -3.76057 q^{39} -9.03346 q^{41} -0.932691 q^{42} +6.76370 q^{43} -11.1168 q^{46} +7.26198 q^{47} +6.94901 q^{48} -6.87872 q^{49} -3.64704 q^{51} -0.470093 q^{52} -0.342859 q^{53} +5.07141 q^{54} -1.03712 q^{56} +14.5054 q^{57} +7.66633 q^{58} +0.199317 q^{59} -7.79614 q^{61} +7.34292 q^{62} +0.385308 q^{63} +8.74033 q^{64} +12.2451 q^{67} -0.455901 q^{68} +17.0451 q^{69} +9.83305 q^{71} -3.29486 q^{72} -1.01317 q^{73} -2.44251 q^{74} +1.81326 q^{76} -4.97005 q^{78} +6.63314 q^{79} -11.0951 q^{81} -11.9388 q^{82} +11.1253 q^{83} +0.178769 q^{84} +8.93906 q^{86} -11.7547 q^{87} +8.84524 q^{89} +0.646285 q^{91} +2.13074 q^{92} -11.2588 q^{93} +9.59760 q^{94} -2.88553 q^{96} -6.20234 q^{97} -9.09106 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{2} + q^{3} + 9 q^{4} + q^{6} + 8 q^{7} + 12 q^{8} + 9 q^{9} + 3 q^{12} + 9 q^{13} + 9 q^{14} + 23 q^{16} + 19 q^{17} + 22 q^{18} + q^{19} + 5 q^{21} + 2 q^{23} + q^{24} - 2 q^{26} - 2 q^{27}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32162 0.934528 0.467264 0.884118i \(-0.345240\pi\)
0.467264 + 0.884118i \(0.345240\pi\)
\(3\) −2.02642 −1.16996 −0.584978 0.811049i \(-0.698897\pi\)
−0.584978 + 0.811049i \(0.698897\pi\)
\(4\) −0.253315 −0.126657
\(5\) 0 0
\(6\) −2.67816 −1.09336
\(7\) 0.348258 0.131629 0.0658145 0.997832i \(-0.479035\pi\)
0.0658145 + 0.997832i \(0.479035\pi\)
\(8\) −2.97803 −1.05289
\(9\) 1.10639 0.368796
\(10\) 0 0
\(11\) 0 0
\(12\) 0.513323 0.148183
\(13\) 1.85577 0.514697 0.257349 0.966319i \(-0.417151\pi\)
0.257349 + 0.966319i \(0.417151\pi\)
\(14\) 0.460265 0.123011
\(15\) 0 0
\(16\) −3.42920 −0.857301
\(17\) 1.79974 0.436502 0.218251 0.975893i \(-0.429965\pi\)
0.218251 + 0.975893i \(0.429965\pi\)
\(18\) 1.46223 0.344650
\(19\) −7.15813 −1.64219 −0.821094 0.570793i \(-0.806636\pi\)
−0.821094 + 0.570793i \(0.806636\pi\)
\(20\) 0 0
\(21\) −0.705717 −0.154000
\(22\) 0 0
\(23\) −8.41145 −1.75391 −0.876954 0.480574i \(-0.840428\pi\)
−0.876954 + 0.480574i \(0.840428\pi\)
\(24\) 6.03475 1.23184
\(25\) 0 0
\(26\) 2.45262 0.480999
\(27\) 3.83726 0.738481
\(28\) −0.0882188 −0.0166718
\(29\) 5.80070 1.07716 0.538581 0.842573i \(-0.318960\pi\)
0.538581 + 0.842573i \(0.318960\pi\)
\(30\) 0 0
\(31\) 5.55599 0.997886 0.498943 0.866635i \(-0.333722\pi\)
0.498943 + 0.866635i \(0.333722\pi\)
\(32\) 1.42395 0.251722
\(33\) 0 0
\(34\) 2.37858 0.407923
\(35\) 0 0
\(36\) −0.280264 −0.0467107
\(37\) −1.84812 −0.303828 −0.151914 0.988394i \(-0.548544\pi\)
−0.151914 + 0.988394i \(0.548544\pi\)
\(38\) −9.46035 −1.53467
\(39\) −3.76057 −0.602173
\(40\) 0 0
\(41\) −9.03346 −1.41079 −0.705394 0.708815i \(-0.749230\pi\)
−0.705394 + 0.708815i \(0.749230\pi\)
\(42\) −0.932691 −0.143917
\(43\) 6.76370 1.03145 0.515727 0.856753i \(-0.327522\pi\)
0.515727 + 0.856753i \(0.327522\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −11.1168 −1.63908
\(47\) 7.26198 1.05927 0.529634 0.848226i \(-0.322329\pi\)
0.529634 + 0.848226i \(0.322329\pi\)
\(48\) 6.94901 1.00300
\(49\) −6.87872 −0.982674
\(50\) 0 0
\(51\) −3.64704 −0.510688
\(52\) −0.470093 −0.0651902
\(53\) −0.342859 −0.0470953 −0.0235476 0.999723i \(-0.507496\pi\)
−0.0235476 + 0.999723i \(0.507496\pi\)
\(54\) 5.07141 0.690131
\(55\) 0 0
\(56\) −1.03712 −0.138591
\(57\) 14.5054 1.92129
\(58\) 7.66633 1.00664
\(59\) 0.199317 0.0259488 0.0129744 0.999916i \(-0.495870\pi\)
0.0129744 + 0.999916i \(0.495870\pi\)
\(60\) 0 0
\(61\) −7.79614 −0.998193 −0.499097 0.866546i \(-0.666335\pi\)
−0.499097 + 0.866546i \(0.666335\pi\)
\(62\) 7.34292 0.932552
\(63\) 0.385308 0.0485442
\(64\) 8.74033 1.09254
\(65\) 0 0
\(66\) 0 0
\(67\) 12.2451 1.49597 0.747986 0.663715i \(-0.231021\pi\)
0.747986 + 0.663715i \(0.231021\pi\)
\(68\) −0.455901 −0.0552862
\(69\) 17.0451 2.05199
\(70\) 0 0
\(71\) 9.83305 1.16697 0.583484 0.812125i \(-0.301689\pi\)
0.583484 + 0.812125i \(0.301689\pi\)
\(72\) −3.29486 −0.388302
\(73\) −1.01317 −0.118582 −0.0592910 0.998241i \(-0.518884\pi\)
−0.0592910 + 0.998241i \(0.518884\pi\)
\(74\) −2.44251 −0.283936
\(75\) 0 0
\(76\) 1.81326 0.207995
\(77\) 0 0
\(78\) −4.97005 −0.562748
\(79\) 6.63314 0.746286 0.373143 0.927774i \(-0.378280\pi\)
0.373143 + 0.927774i \(0.378280\pi\)
\(80\) 0 0
\(81\) −11.0951 −1.23279
\(82\) −11.9388 −1.31842
\(83\) 11.1253 1.22116 0.610582 0.791953i \(-0.290936\pi\)
0.610582 + 0.791953i \(0.290936\pi\)
\(84\) 0.178769 0.0195052
\(85\) 0 0
\(86\) 8.93906 0.963923
\(87\) −11.7547 −1.26023
\(88\) 0 0
\(89\) 8.84524 0.937594 0.468797 0.883306i \(-0.344688\pi\)
0.468797 + 0.883306i \(0.344688\pi\)
\(90\) 0 0
\(91\) 0.646285 0.0677491
\(92\) 2.13074 0.222145
\(93\) −11.2588 −1.16748
\(94\) 9.59760 0.989917
\(95\) 0 0
\(96\) −2.88553 −0.294503
\(97\) −6.20234 −0.629752 −0.314876 0.949133i \(-0.601963\pi\)
−0.314876 + 0.949133i \(0.601963\pi\)
\(98\) −9.09106 −0.918336
\(99\) 0 0
\(100\) 0 0
\(101\) −3.66784 −0.364963 −0.182482 0.983209i \(-0.558413\pi\)
−0.182482 + 0.983209i \(0.558413\pi\)
\(102\) −4.82001 −0.477252
\(103\) 19.6820 1.93932 0.969661 0.244454i \(-0.0786087\pi\)
0.969661 + 0.244454i \(0.0786087\pi\)
\(104\) −5.52653 −0.541921
\(105\) 0 0
\(106\) −0.453130 −0.0440118
\(107\) 0.301384 0.0291359 0.0145679 0.999894i \(-0.495363\pi\)
0.0145679 + 0.999894i \(0.495363\pi\)
\(108\) −0.972034 −0.0935341
\(109\) −10.9371 −1.04759 −0.523794 0.851845i \(-0.675484\pi\)
−0.523794 + 0.851845i \(0.675484\pi\)
\(110\) 0 0
\(111\) 3.74506 0.355466
\(112\) −1.19425 −0.112846
\(113\) 5.80228 0.545833 0.272916 0.962038i \(-0.412012\pi\)
0.272916 + 0.962038i \(0.412012\pi\)
\(114\) 19.1707 1.79550
\(115\) 0 0
\(116\) −1.46940 −0.136431
\(117\) 2.05320 0.189818
\(118\) 0.263422 0.0242499
\(119\) 0.626774 0.0574563
\(120\) 0 0
\(121\) 0 0
\(122\) −10.3035 −0.932839
\(123\) 18.3056 1.65056
\(124\) −1.40742 −0.126390
\(125\) 0 0
\(126\) 0.509231 0.0453659
\(127\) 12.3505 1.09593 0.547964 0.836502i \(-0.315403\pi\)
0.547964 + 0.836502i \(0.315403\pi\)
\(128\) 8.70351 0.769289
\(129\) −13.7061 −1.20676
\(130\) 0 0
\(131\) 7.81632 0.682915 0.341458 0.939897i \(-0.389079\pi\)
0.341458 + 0.939897i \(0.389079\pi\)
\(132\) 0 0
\(133\) −2.49287 −0.216160
\(134\) 16.1833 1.39803
\(135\) 0 0
\(136\) −5.35969 −0.459590
\(137\) 9.58073 0.818537 0.409269 0.912414i \(-0.365784\pi\)
0.409269 + 0.912414i \(0.365784\pi\)
\(138\) 22.5272 1.91765
\(139\) 19.1306 1.62264 0.811319 0.584604i \(-0.198750\pi\)
0.811319 + 0.584604i \(0.198750\pi\)
\(140\) 0 0
\(141\) −14.7158 −1.23930
\(142\) 12.9956 1.09056
\(143\) 0 0
\(144\) −3.79403 −0.316169
\(145\) 0 0
\(146\) −1.33902 −0.110818
\(147\) 13.9392 1.14968
\(148\) 0.468155 0.0384821
\(149\) 5.77501 0.473107 0.236554 0.971618i \(-0.423982\pi\)
0.236554 + 0.971618i \(0.423982\pi\)
\(150\) 0 0
\(151\) 13.3681 1.08788 0.543942 0.839123i \(-0.316931\pi\)
0.543942 + 0.839123i \(0.316931\pi\)
\(152\) 21.3171 1.72905
\(153\) 1.99121 0.160980
\(154\) 0 0
\(155\) 0 0
\(156\) 0.952608 0.0762697
\(157\) 13.4451 1.07303 0.536516 0.843890i \(-0.319740\pi\)
0.536516 + 0.843890i \(0.319740\pi\)
\(158\) 8.76650 0.697425
\(159\) 0.694776 0.0550994
\(160\) 0 0
\(161\) −2.92935 −0.230865
\(162\) −14.6635 −1.15207
\(163\) −3.13538 −0.245582 −0.122791 0.992433i \(-0.539184\pi\)
−0.122791 + 0.992433i \(0.539184\pi\)
\(164\) 2.28831 0.178687
\(165\) 0 0
\(166\) 14.7035 1.14121
\(167\) −2.62877 −0.203420 −0.101710 0.994814i \(-0.532431\pi\)
−0.101710 + 0.994814i \(0.532431\pi\)
\(168\) 2.10165 0.162146
\(169\) −9.55613 −0.735087
\(170\) 0 0
\(171\) −7.91967 −0.605632
\(172\) −1.71335 −0.130641
\(173\) 3.92271 0.298238 0.149119 0.988819i \(-0.452356\pi\)
0.149119 + 0.988819i \(0.452356\pi\)
\(174\) −15.5352 −1.17772
\(175\) 0 0
\(176\) 0 0
\(177\) −0.403900 −0.0303590
\(178\) 11.6901 0.876207
\(179\) −3.31488 −0.247766 −0.123883 0.992297i \(-0.539535\pi\)
−0.123883 + 0.992297i \(0.539535\pi\)
\(180\) 0 0
\(181\) 16.9048 1.25652 0.628262 0.778002i \(-0.283767\pi\)
0.628262 + 0.778002i \(0.283767\pi\)
\(182\) 0.854145 0.0633134
\(183\) 15.7983 1.16784
\(184\) 25.0495 1.84668
\(185\) 0 0
\(186\) −14.8799 −1.09104
\(187\) 0 0
\(188\) −1.83957 −0.134164
\(189\) 1.33635 0.0972055
\(190\) 0 0
\(191\) −21.0157 −1.52064 −0.760320 0.649549i \(-0.774958\pi\)
−0.760320 + 0.649549i \(0.774958\pi\)
\(192\) −17.7116 −1.27822
\(193\) −3.31329 −0.238496 −0.119248 0.992864i \(-0.538048\pi\)
−0.119248 + 0.992864i \(0.538048\pi\)
\(194\) −8.19715 −0.588521
\(195\) 0 0
\(196\) 1.74248 0.124463
\(197\) 6.97218 0.496747 0.248374 0.968664i \(-0.420104\pi\)
0.248374 + 0.968664i \(0.420104\pi\)
\(198\) 0 0
\(199\) −19.2184 −1.36236 −0.681178 0.732118i \(-0.738532\pi\)
−0.681178 + 0.732118i \(0.738532\pi\)
\(200\) 0 0
\(201\) −24.8136 −1.75022
\(202\) −4.84749 −0.341068
\(203\) 2.02014 0.141786
\(204\) 0.923849 0.0646824
\(205\) 0 0
\(206\) 26.0121 1.81235
\(207\) −9.30632 −0.646834
\(208\) −6.36380 −0.441250
\(209\) 0 0
\(210\) 0 0
\(211\) 4.29419 0.295624 0.147812 0.989015i \(-0.452777\pi\)
0.147812 + 0.989015i \(0.452777\pi\)
\(212\) 0.0868512 0.00596496
\(213\) −19.9259 −1.36530
\(214\) 0.398315 0.0272283
\(215\) 0 0
\(216\) −11.4275 −0.777541
\(217\) 1.93492 0.131351
\(218\) −14.4548 −0.979000
\(219\) 2.05310 0.138736
\(220\) 0 0
\(221\) 3.33991 0.224666
\(222\) 4.94956 0.332193
\(223\) −10.5884 −0.709053 −0.354526 0.935046i \(-0.615358\pi\)
−0.354526 + 0.935046i \(0.615358\pi\)
\(224\) 0.495902 0.0331339
\(225\) 0 0
\(226\) 7.66843 0.510096
\(227\) 5.77505 0.383303 0.191652 0.981463i \(-0.438616\pi\)
0.191652 + 0.981463i \(0.438616\pi\)
\(228\) −3.67443 −0.243345
\(229\) −5.10650 −0.337447 −0.168723 0.985663i \(-0.553964\pi\)
−0.168723 + 0.985663i \(0.553964\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −17.2747 −1.13414
\(233\) 27.7861 1.82033 0.910164 0.414248i \(-0.135955\pi\)
0.910164 + 0.414248i \(0.135955\pi\)
\(234\) 2.71355 0.177390
\(235\) 0 0
\(236\) −0.0504899 −0.00328661
\(237\) −13.4415 −0.873122
\(238\) 0.828359 0.0536945
\(239\) −6.74725 −0.436444 −0.218222 0.975899i \(-0.570026\pi\)
−0.218222 + 0.975899i \(0.570026\pi\)
\(240\) 0 0
\(241\) −13.0610 −0.841331 −0.420666 0.907216i \(-0.638203\pi\)
−0.420666 + 0.907216i \(0.638203\pi\)
\(242\) 0 0
\(243\) 10.9715 0.703823
\(244\) 1.97488 0.126429
\(245\) 0 0
\(246\) 24.1931 1.54249
\(247\) −13.2838 −0.845230
\(248\) −16.5459 −1.05067
\(249\) −22.5446 −1.42871
\(250\) 0 0
\(251\) −30.1456 −1.90277 −0.951386 0.308000i \(-0.900340\pi\)
−0.951386 + 0.308000i \(0.900340\pi\)
\(252\) −0.0976041 −0.00614848
\(253\) 0 0
\(254\) 16.3227 1.02418
\(255\) 0 0
\(256\) −5.97791 −0.373619
\(257\) −0.362964 −0.0226411 −0.0113205 0.999936i \(-0.503604\pi\)
−0.0113205 + 0.999936i \(0.503604\pi\)
\(258\) −18.1143 −1.12775
\(259\) −0.643620 −0.0399926
\(260\) 0 0
\(261\) 6.41782 0.397253
\(262\) 10.3302 0.638203
\(263\) 22.5498 1.39048 0.695239 0.718779i \(-0.255299\pi\)
0.695239 + 0.718779i \(0.255299\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.29464 −0.202007
\(267\) −17.9242 −1.09694
\(268\) −3.10185 −0.189476
\(269\) −6.14725 −0.374804 −0.187402 0.982283i \(-0.560007\pi\)
−0.187402 + 0.982283i \(0.560007\pi\)
\(270\) 0 0
\(271\) 16.6961 1.01422 0.507109 0.861882i \(-0.330714\pi\)
0.507109 + 0.861882i \(0.330714\pi\)
\(272\) −6.17168 −0.374213
\(273\) −1.30965 −0.0792634
\(274\) 12.6621 0.764946
\(275\) 0 0
\(276\) −4.31779 −0.259900
\(277\) −22.3299 −1.34167 −0.670835 0.741606i \(-0.734064\pi\)
−0.670835 + 0.741606i \(0.734064\pi\)
\(278\) 25.2835 1.51640
\(279\) 6.14708 0.368016
\(280\) 0 0
\(281\) 23.8551 1.42308 0.711538 0.702648i \(-0.247999\pi\)
0.711538 + 0.702648i \(0.247999\pi\)
\(282\) −19.4488 −1.15816
\(283\) 0.145890 0.00867224 0.00433612 0.999991i \(-0.498620\pi\)
0.00433612 + 0.999991i \(0.498620\pi\)
\(284\) −2.49086 −0.147805
\(285\) 0 0
\(286\) 0 0
\(287\) −3.14597 −0.185701
\(288\) 1.57544 0.0928338
\(289\) −13.7609 −0.809466
\(290\) 0 0
\(291\) 12.5686 0.736782
\(292\) 0.256650 0.0150193
\(293\) −7.67480 −0.448367 −0.224183 0.974547i \(-0.571971\pi\)
−0.224183 + 0.974547i \(0.571971\pi\)
\(294\) 18.4223 1.07441
\(295\) 0 0
\(296\) 5.50374 0.319899
\(297\) 0 0
\(298\) 7.63238 0.442132
\(299\) −15.6097 −0.902732
\(300\) 0 0
\(301\) 2.35551 0.135769
\(302\) 17.6676 1.01666
\(303\) 7.43258 0.426991
\(304\) 24.5467 1.40785
\(305\) 0 0
\(306\) 2.63163 0.150440
\(307\) −9.69537 −0.553344 −0.276672 0.960964i \(-0.589232\pi\)
−0.276672 + 0.960964i \(0.589232\pi\)
\(308\) 0 0
\(309\) −39.8840 −2.26892
\(310\) 0 0
\(311\) 25.1584 1.42660 0.713300 0.700859i \(-0.247200\pi\)
0.713300 + 0.700859i \(0.247200\pi\)
\(312\) 11.1991 0.634024
\(313\) 10.8737 0.614616 0.307308 0.951610i \(-0.400572\pi\)
0.307308 + 0.951610i \(0.400572\pi\)
\(314\) 17.7693 1.00278
\(315\) 0 0
\(316\) −1.68027 −0.0945227
\(317\) −25.4344 −1.42854 −0.714268 0.699872i \(-0.753240\pi\)
−0.714268 + 0.699872i \(0.753240\pi\)
\(318\) 0.918232 0.0514919
\(319\) 0 0
\(320\) 0 0
\(321\) −0.610730 −0.0340876
\(322\) −3.87149 −0.215750
\(323\) −12.8828 −0.716818
\(324\) 2.81054 0.156141
\(325\) 0 0
\(326\) −4.14379 −0.229503
\(327\) 22.1632 1.22563
\(328\) 26.9019 1.48541
\(329\) 2.52904 0.139431
\(330\) 0 0
\(331\) −10.3091 −0.566638 −0.283319 0.959026i \(-0.591435\pi\)
−0.283319 + 0.959026i \(0.591435\pi\)
\(332\) −2.81821 −0.154669
\(333\) −2.04473 −0.112051
\(334\) −3.47424 −0.190102
\(335\) 0 0
\(336\) 2.42005 0.132024
\(337\) −2.30404 −0.125509 −0.0627544 0.998029i \(-0.519988\pi\)
−0.0627544 + 0.998029i \(0.519988\pi\)
\(338\) −12.6296 −0.686959
\(339\) −11.7579 −0.638600
\(340\) 0 0
\(341\) 0 0
\(342\) −10.4668 −0.565980
\(343\) −4.83337 −0.260977
\(344\) −20.1425 −1.08601
\(345\) 0 0
\(346\) 5.18434 0.278712
\(347\) 20.7387 1.11331 0.556655 0.830744i \(-0.312085\pi\)
0.556655 + 0.830744i \(0.312085\pi\)
\(348\) 2.97763 0.159618
\(349\) 3.71251 0.198726 0.0993630 0.995051i \(-0.468320\pi\)
0.0993630 + 0.995051i \(0.468320\pi\)
\(350\) 0 0
\(351\) 7.12106 0.380094
\(352\) 0 0
\(353\) 3.01441 0.160441 0.0802203 0.996777i \(-0.474438\pi\)
0.0802203 + 0.996777i \(0.474438\pi\)
\(354\) −0.533803 −0.0283713
\(355\) 0 0
\(356\) −2.24063 −0.118753
\(357\) −1.27011 −0.0672213
\(358\) −4.38102 −0.231544
\(359\) −22.7391 −1.20013 −0.600063 0.799953i \(-0.704858\pi\)
−0.600063 + 0.799953i \(0.704858\pi\)
\(360\) 0 0
\(361\) 32.2389 1.69678
\(362\) 22.3418 1.17426
\(363\) 0 0
\(364\) −0.163714 −0.00858092
\(365\) 0 0
\(366\) 20.8793 1.09138
\(367\) −13.5435 −0.706964 −0.353482 0.935441i \(-0.615002\pi\)
−0.353482 + 0.935441i \(0.615002\pi\)
\(368\) 28.8446 1.50363
\(369\) −9.99450 −0.520293
\(370\) 0 0
\(371\) −0.119403 −0.00619910
\(372\) 2.85202 0.147870
\(373\) −24.8281 −1.28555 −0.642774 0.766056i \(-0.722217\pi\)
−0.642774 + 0.766056i \(0.722217\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −21.6264 −1.11530
\(377\) 10.7648 0.554413
\(378\) 1.76616 0.0908413
\(379\) 6.16065 0.316451 0.158226 0.987403i \(-0.449423\pi\)
0.158226 + 0.987403i \(0.449423\pi\)
\(380\) 0 0
\(381\) −25.0273 −1.28219
\(382\) −27.7748 −1.42108
\(383\) 0.363669 0.0185826 0.00929131 0.999957i \(-0.497042\pi\)
0.00929131 + 0.999957i \(0.497042\pi\)
\(384\) −17.6370 −0.900034
\(385\) 0 0
\(386\) −4.37892 −0.222881
\(387\) 7.48327 0.380396
\(388\) 1.57114 0.0797628
\(389\) −1.86786 −0.0947044 −0.0473522 0.998878i \(-0.515078\pi\)
−0.0473522 + 0.998878i \(0.515078\pi\)
\(390\) 0 0
\(391\) −15.1384 −0.765584
\(392\) 20.4850 1.03465
\(393\) −15.8392 −0.798980
\(394\) 9.21459 0.464224
\(395\) 0 0
\(396\) 0 0
\(397\) 0.384172 0.0192811 0.00964053 0.999954i \(-0.496931\pi\)
0.00964053 + 0.999954i \(0.496931\pi\)
\(398\) −25.3995 −1.27316
\(399\) 5.05162 0.252897
\(400\) 0 0
\(401\) −22.6534 −1.13126 −0.565628 0.824660i \(-0.691366\pi\)
−0.565628 + 0.824660i \(0.691366\pi\)
\(402\) −32.7943 −1.63563
\(403\) 10.3106 0.513609
\(404\) 0.929117 0.0462253
\(405\) 0 0
\(406\) 2.66986 0.132503
\(407\) 0 0
\(408\) 10.8610 0.537699
\(409\) −29.2142 −1.44455 −0.722275 0.691606i \(-0.756903\pi\)
−0.722275 + 0.691606i \(0.756903\pi\)
\(410\) 0 0
\(411\) −19.4146 −0.957652
\(412\) −4.98573 −0.245629
\(413\) 0.0694136 0.00341562
\(414\) −12.2994 −0.604484
\(415\) 0 0
\(416\) 2.64252 0.129560
\(417\) −38.7667 −1.89841
\(418\) 0 0
\(419\) −0.720765 −0.0352117 −0.0176058 0.999845i \(-0.505604\pi\)
−0.0176058 + 0.999845i \(0.505604\pi\)
\(420\) 0 0
\(421\) −23.4569 −1.14322 −0.571610 0.820525i \(-0.693681\pi\)
−0.571610 + 0.820525i \(0.693681\pi\)
\(422\) 5.67530 0.276269
\(423\) 8.03456 0.390654
\(424\) 1.02104 0.0495863
\(425\) 0 0
\(426\) −26.3345 −1.27591
\(427\) −2.71506 −0.131391
\(428\) −0.0763449 −0.00369027
\(429\) 0 0
\(430\) 0 0
\(431\) 3.75868 0.181049 0.0905246 0.995894i \(-0.471146\pi\)
0.0905246 + 0.995894i \(0.471146\pi\)
\(432\) −13.1587 −0.633100
\(433\) 13.6069 0.653906 0.326953 0.945041i \(-0.393978\pi\)
0.326953 + 0.945041i \(0.393978\pi\)
\(434\) 2.55723 0.122751
\(435\) 0 0
\(436\) 2.77054 0.132685
\(437\) 60.2103 2.88025
\(438\) 2.71342 0.129652
\(439\) 15.6217 0.745584 0.372792 0.927915i \(-0.378400\pi\)
0.372792 + 0.927915i \(0.378400\pi\)
\(440\) 0 0
\(441\) −7.61052 −0.362406
\(442\) 4.41409 0.209957
\(443\) 1.41582 0.0672676 0.0336338 0.999434i \(-0.489292\pi\)
0.0336338 + 0.999434i \(0.489292\pi\)
\(444\) −0.948679 −0.0450223
\(445\) 0 0
\(446\) −13.9939 −0.662630
\(447\) −11.7026 −0.553514
\(448\) 3.04389 0.143810
\(449\) 6.90886 0.326049 0.163025 0.986622i \(-0.447875\pi\)
0.163025 + 0.986622i \(0.447875\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.46980 −0.0691338
\(453\) −27.0895 −1.27278
\(454\) 7.63243 0.358208
\(455\) 0 0
\(456\) −43.1975 −2.02291
\(457\) 42.3537 1.98122 0.990612 0.136706i \(-0.0436516\pi\)
0.990612 + 0.136706i \(0.0436516\pi\)
\(458\) −6.74886 −0.315353
\(459\) 6.90608 0.322348
\(460\) 0 0
\(461\) 25.1563 1.17165 0.585823 0.810439i \(-0.300772\pi\)
0.585823 + 0.810439i \(0.300772\pi\)
\(462\) 0 0
\(463\) −7.89251 −0.366796 −0.183398 0.983039i \(-0.558710\pi\)
−0.183398 + 0.983039i \(0.558710\pi\)
\(464\) −19.8918 −0.923452
\(465\) 0 0
\(466\) 36.7227 1.70115
\(467\) 15.9711 0.739057 0.369528 0.929219i \(-0.379519\pi\)
0.369528 + 0.929219i \(0.379519\pi\)
\(468\) −0.520105 −0.0240419
\(469\) 4.26443 0.196913
\(470\) 0 0
\(471\) −27.2454 −1.25540
\(472\) −0.593572 −0.0273214
\(473\) 0 0
\(474\) −17.7646 −0.815957
\(475\) 0 0
\(476\) −0.158771 −0.00727726
\(477\) −0.379334 −0.0173685
\(478\) −8.91732 −0.407869
\(479\) 14.3625 0.656241 0.328121 0.944636i \(-0.393585\pi\)
0.328121 + 0.944636i \(0.393585\pi\)
\(480\) 0 0
\(481\) −3.42967 −0.156380
\(482\) −17.2617 −0.786248
\(483\) 5.93610 0.270102
\(484\) 0 0
\(485\) 0 0
\(486\) 14.5002 0.657742
\(487\) −35.9315 −1.62821 −0.814105 0.580718i \(-0.802772\pi\)
−0.814105 + 0.580718i \(0.802772\pi\)
\(488\) 23.2171 1.05099
\(489\) 6.35360 0.287320
\(490\) 0 0
\(491\) 35.2176 1.58935 0.794673 0.607038i \(-0.207642\pi\)
0.794673 + 0.607038i \(0.207642\pi\)
\(492\) −4.63708 −0.209056
\(493\) 10.4398 0.470183
\(494\) −17.5562 −0.789891
\(495\) 0 0
\(496\) −19.0526 −0.855488
\(497\) 3.42443 0.153607
\(498\) −29.7955 −1.33517
\(499\) 26.4922 1.18595 0.592977 0.805219i \(-0.297952\pi\)
0.592977 + 0.805219i \(0.297952\pi\)
\(500\) 0 0
\(501\) 5.32699 0.237992
\(502\) −39.8411 −1.77819
\(503\) 17.7436 0.791146 0.395573 0.918435i \(-0.370546\pi\)
0.395573 + 0.918435i \(0.370546\pi\)
\(504\) −1.14746 −0.0511119
\(505\) 0 0
\(506\) 0 0
\(507\) 19.3647 0.860019
\(508\) −3.12856 −0.138807
\(509\) −13.7539 −0.609630 −0.304815 0.952412i \(-0.598595\pi\)
−0.304815 + 0.952412i \(0.598595\pi\)
\(510\) 0 0
\(511\) −0.352843 −0.0156088
\(512\) −25.3076 −1.11845
\(513\) −27.4676 −1.21272
\(514\) −0.479701 −0.0211587
\(515\) 0 0
\(516\) 3.47196 0.152845
\(517\) 0 0
\(518\) −0.850623 −0.0373742
\(519\) −7.94907 −0.348925
\(520\) 0 0
\(521\) 12.5792 0.551106 0.275553 0.961286i \(-0.411139\pi\)
0.275553 + 0.961286i \(0.411139\pi\)
\(522\) 8.48193 0.371244
\(523\) −40.7967 −1.78392 −0.891958 0.452118i \(-0.850669\pi\)
−0.891958 + 0.452118i \(0.850669\pi\)
\(524\) −1.97999 −0.0864962
\(525\) 0 0
\(526\) 29.8023 1.29944
\(527\) 9.99936 0.435579
\(528\) 0 0
\(529\) 47.7524 2.07619
\(530\) 0 0
\(531\) 0.220522 0.00956982
\(532\) 0.631482 0.0273782
\(533\) −16.7640 −0.726129
\(534\) −23.6890 −1.02512
\(535\) 0 0
\(536\) −36.4661 −1.57510
\(537\) 6.71735 0.289875
\(538\) −8.12434 −0.350265
\(539\) 0 0
\(540\) 0 0
\(541\) 32.6165 1.40229 0.701146 0.713018i \(-0.252672\pi\)
0.701146 + 0.713018i \(0.252672\pi\)
\(542\) 22.0660 0.947815
\(543\) −34.2563 −1.47008
\(544\) 2.56275 0.109877
\(545\) 0 0
\(546\) −1.73086 −0.0740739
\(547\) 5.72986 0.244991 0.122496 0.992469i \(-0.460910\pi\)
0.122496 + 0.992469i \(0.460910\pi\)
\(548\) −2.42694 −0.103674
\(549\) −8.62555 −0.368129
\(550\) 0 0
\(551\) −41.5222 −1.76890
\(552\) −50.7610 −2.16053
\(553\) 2.31004 0.0982329
\(554\) −29.5116 −1.25383
\(555\) 0 0
\(556\) −4.84607 −0.205519
\(557\) 40.6304 1.72157 0.860783 0.508971i \(-0.169974\pi\)
0.860783 + 0.508971i \(0.169974\pi\)
\(558\) 8.12412 0.343921
\(559\) 12.5519 0.530887
\(560\) 0 0
\(561\) 0 0
\(562\) 31.5274 1.32990
\(563\) −14.6876 −0.619009 −0.309504 0.950898i \(-0.600163\pi\)
−0.309504 + 0.950898i \(0.600163\pi\)
\(564\) 3.72774 0.156966
\(565\) 0 0
\(566\) 0.192811 0.00810446
\(567\) −3.86394 −0.162270
\(568\) −29.2831 −1.22869
\(569\) −24.5949 −1.03107 −0.515536 0.856868i \(-0.672407\pi\)
−0.515536 + 0.856868i \(0.672407\pi\)
\(570\) 0 0
\(571\) −22.4923 −0.941273 −0.470637 0.882327i \(-0.655976\pi\)
−0.470637 + 0.882327i \(0.655976\pi\)
\(572\) 0 0
\(573\) 42.5866 1.77908
\(574\) −4.15778 −0.173543
\(575\) 0 0
\(576\) 9.67019 0.402925
\(577\) 37.5334 1.56254 0.781268 0.624196i \(-0.214573\pi\)
0.781268 + 0.624196i \(0.214573\pi\)
\(578\) −18.1867 −0.756469
\(579\) 6.71413 0.279030
\(580\) 0 0
\(581\) 3.87448 0.160741
\(582\) 16.6109 0.688543
\(583\) 0 0
\(584\) 3.01724 0.124854
\(585\) 0 0
\(586\) −10.1432 −0.419011
\(587\) −28.0102 −1.15611 −0.578053 0.816000i \(-0.696187\pi\)
−0.578053 + 0.816000i \(0.696187\pi\)
\(588\) −3.53100 −0.145616
\(589\) −39.7705 −1.63872
\(590\) 0 0
\(591\) −14.1286 −0.581172
\(592\) 6.33756 0.260472
\(593\) −17.7522 −0.728996 −0.364498 0.931204i \(-0.618759\pi\)
−0.364498 + 0.931204i \(0.618759\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.46289 −0.0599225
\(597\) 38.9446 1.59390
\(598\) −20.6301 −0.843628
\(599\) −24.4240 −0.997937 −0.498968 0.866620i \(-0.666288\pi\)
−0.498968 + 0.866620i \(0.666288\pi\)
\(600\) 0 0
\(601\) −4.35978 −0.177839 −0.0889195 0.996039i \(-0.528341\pi\)
−0.0889195 + 0.996039i \(0.528341\pi\)
\(602\) 3.11309 0.126880
\(603\) 13.5478 0.551708
\(604\) −3.38635 −0.137789
\(605\) 0 0
\(606\) 9.82307 0.399035
\(607\) 39.6180 1.60804 0.804022 0.594599i \(-0.202689\pi\)
0.804022 + 0.594599i \(0.202689\pi\)
\(608\) −10.1928 −0.413374
\(609\) −4.09365 −0.165883
\(610\) 0 0
\(611\) 13.4766 0.545203
\(612\) −0.504404 −0.0203893
\(613\) −2.60921 −0.105385 −0.0526926 0.998611i \(-0.516780\pi\)
−0.0526926 + 0.998611i \(0.516780\pi\)
\(614\) −12.8136 −0.517115
\(615\) 0 0
\(616\) 0 0
\(617\) −3.53110 −0.142157 −0.0710783 0.997471i \(-0.522644\pi\)
−0.0710783 + 0.997471i \(0.522644\pi\)
\(618\) −52.7115 −2.12037
\(619\) −6.03555 −0.242589 −0.121295 0.992617i \(-0.538705\pi\)
−0.121295 + 0.992617i \(0.538705\pi\)
\(620\) 0 0
\(621\) −32.2769 −1.29523
\(622\) 33.2498 1.33320
\(623\) 3.08042 0.123415
\(624\) 12.8958 0.516243
\(625\) 0 0
\(626\) 14.3709 0.574376
\(627\) 0 0
\(628\) −3.40583 −0.135907
\(629\) −3.32613 −0.132622
\(630\) 0 0
\(631\) 1.08000 0.0429943 0.0214971 0.999769i \(-0.493157\pi\)
0.0214971 + 0.999769i \(0.493157\pi\)
\(632\) −19.7537 −0.785760
\(633\) −8.70184 −0.345867
\(634\) −33.6146 −1.33501
\(635\) 0 0
\(636\) −0.175997 −0.00697874
\(637\) −12.7653 −0.505780
\(638\) 0 0
\(639\) 10.8792 0.430373
\(640\) 0 0
\(641\) 9.88535 0.390448 0.195224 0.980759i \(-0.437457\pi\)
0.195224 + 0.980759i \(0.437457\pi\)
\(642\) −0.807155 −0.0318559
\(643\) 28.8003 1.13577 0.567886 0.823108i \(-0.307762\pi\)
0.567886 + 0.823108i \(0.307762\pi\)
\(644\) 0.742048 0.0292408
\(645\) 0 0
\(646\) −17.0262 −0.669887
\(647\) 18.3084 0.719776 0.359888 0.932995i \(-0.382815\pi\)
0.359888 + 0.932995i \(0.382815\pi\)
\(648\) 33.0415 1.29799
\(649\) 0 0
\(650\) 0 0
\(651\) −3.92096 −0.153674
\(652\) 0.794238 0.0311048
\(653\) −31.9408 −1.24994 −0.624970 0.780649i \(-0.714889\pi\)
−0.624970 + 0.780649i \(0.714889\pi\)
\(654\) 29.2914 1.14539
\(655\) 0 0
\(656\) 30.9775 1.20947
\(657\) −1.12095 −0.0437326
\(658\) 3.34244 0.130302
\(659\) 27.0408 1.05336 0.526679 0.850064i \(-0.323437\pi\)
0.526679 + 0.850064i \(0.323437\pi\)
\(660\) 0 0
\(661\) 47.2504 1.83783 0.918915 0.394456i \(-0.129067\pi\)
0.918915 + 0.394456i \(0.129067\pi\)
\(662\) −13.6247 −0.529539
\(663\) −6.76806 −0.262850
\(664\) −33.1316 −1.28575
\(665\) 0 0
\(666\) −2.70236 −0.104714
\(667\) −48.7923 −1.88924
\(668\) 0.665906 0.0257647
\(669\) 21.4566 0.829560
\(670\) 0 0
\(671\) 0 0
\(672\) −1.00491 −0.0387651
\(673\) −37.8762 −1.46002 −0.730011 0.683435i \(-0.760485\pi\)
−0.730011 + 0.683435i \(0.760485\pi\)
\(674\) −3.04507 −0.117292
\(675\) 0 0
\(676\) 2.42071 0.0931041
\(677\) −33.9038 −1.30303 −0.651514 0.758637i \(-0.725866\pi\)
−0.651514 + 0.758637i \(0.725866\pi\)
\(678\) −15.5395 −0.596790
\(679\) −2.16001 −0.0828937
\(680\) 0 0
\(681\) −11.7027 −0.448448
\(682\) 0 0
\(683\) −38.6515 −1.47896 −0.739480 0.673178i \(-0.764929\pi\)
−0.739480 + 0.673178i \(0.764929\pi\)
\(684\) 2.00617 0.0767078
\(685\) 0 0
\(686\) −6.38789 −0.243891
\(687\) 10.3479 0.394798
\(688\) −23.1941 −0.884267
\(689\) −0.636266 −0.0242398
\(690\) 0 0
\(691\) 26.3748 1.00334 0.501672 0.865058i \(-0.332718\pi\)
0.501672 + 0.865058i \(0.332718\pi\)
\(692\) −0.993680 −0.0377741
\(693\) 0 0
\(694\) 27.4087 1.04042
\(695\) 0 0
\(696\) 35.0058 1.32689
\(697\) −16.2579 −0.615812
\(698\) 4.90653 0.185715
\(699\) −56.3064 −2.12970
\(700\) 0 0
\(701\) 18.5841 0.701910 0.350955 0.936392i \(-0.385857\pi\)
0.350955 + 0.936392i \(0.385857\pi\)
\(702\) 9.41135 0.355209
\(703\) 13.2291 0.498943
\(704\) 0 0
\(705\) 0 0
\(706\) 3.98391 0.149936
\(707\) −1.27735 −0.0480398
\(708\) 0.102314 0.00384519
\(709\) 23.7065 0.890315 0.445158 0.895452i \(-0.353148\pi\)
0.445158 + 0.895452i \(0.353148\pi\)
\(710\) 0 0
\(711\) 7.33882 0.275227
\(712\) −26.3414 −0.987186
\(713\) −46.7339 −1.75020
\(714\) −1.67860 −0.0628202
\(715\) 0 0
\(716\) 0.839708 0.0313814
\(717\) 13.6728 0.510619
\(718\) −30.0525 −1.12155
\(719\) −30.8533 −1.15063 −0.575317 0.817930i \(-0.695121\pi\)
−0.575317 + 0.817930i \(0.695121\pi\)
\(720\) 0 0
\(721\) 6.85439 0.255271
\(722\) 42.6076 1.58569
\(723\) 26.4671 0.984320
\(724\) −4.28224 −0.159148
\(725\) 0 0
\(726\) 0 0
\(727\) 24.1222 0.894642 0.447321 0.894373i \(-0.352378\pi\)
0.447321 + 0.894373i \(0.352378\pi\)
\(728\) −1.92466 −0.0713326
\(729\) 11.0523 0.409344
\(730\) 0 0
\(731\) 12.1729 0.450232
\(732\) −4.00193 −0.147916
\(733\) 13.8477 0.511475 0.255738 0.966746i \(-0.417682\pi\)
0.255738 + 0.966746i \(0.417682\pi\)
\(734\) −17.8994 −0.660677
\(735\) 0 0
\(736\) −11.9775 −0.441496
\(737\) 0 0
\(738\) −13.2090 −0.486228
\(739\) 27.5086 1.01192 0.505961 0.862557i \(-0.331138\pi\)
0.505961 + 0.862557i \(0.331138\pi\)
\(740\) 0 0
\(741\) 26.9187 0.988881
\(742\) −0.157806 −0.00579323
\(743\) 2.69535 0.0988828 0.0494414 0.998777i \(-0.484256\pi\)
0.0494414 + 0.998777i \(0.484256\pi\)
\(744\) 33.5290 1.22923
\(745\) 0 0
\(746\) −32.8133 −1.20138
\(747\) 12.3089 0.450360
\(748\) 0 0
\(749\) 0.104959 0.00383512
\(750\) 0 0
\(751\) 22.9844 0.838713 0.419357 0.907822i \(-0.362256\pi\)
0.419357 + 0.907822i \(0.362256\pi\)
\(752\) −24.9028 −0.908112
\(753\) 61.0877 2.22616
\(754\) 14.2269 0.518114
\(755\) 0 0
\(756\) −0.338518 −0.0123118
\(757\) −34.9560 −1.27050 −0.635249 0.772307i \(-0.719103\pi\)
−0.635249 + 0.772307i \(0.719103\pi\)
\(758\) 8.14205 0.295733
\(759\) 0 0
\(760\) 0 0
\(761\) 37.2243 1.34938 0.674690 0.738102i \(-0.264277\pi\)
0.674690 + 0.738102i \(0.264277\pi\)
\(762\) −33.0766 −1.19824
\(763\) −3.80894 −0.137893
\(764\) 5.32358 0.192600
\(765\) 0 0
\(766\) 0.480633 0.0173660
\(767\) 0.369886 0.0133558
\(768\) 12.1138 0.437118
\(769\) 30.1272 1.08642 0.543208 0.839598i \(-0.317210\pi\)
0.543208 + 0.839598i \(0.317210\pi\)
\(770\) 0 0
\(771\) 0.735518 0.0264890
\(772\) 0.839306 0.0302073
\(773\) −30.9081 −1.11169 −0.555844 0.831287i \(-0.687605\pi\)
−0.555844 + 0.831287i \(0.687605\pi\)
\(774\) 9.89006 0.355491
\(775\) 0 0
\(776\) 18.4708 0.663062
\(777\) 1.30425 0.0467896
\(778\) −2.46861 −0.0885039
\(779\) 64.6627 2.31678
\(780\) 0 0
\(781\) 0 0
\(782\) −20.0073 −0.715460
\(783\) 22.2588 0.795464
\(784\) 23.5885 0.842447
\(785\) 0 0
\(786\) −20.9334 −0.746669
\(787\) −34.5178 −1.23043 −0.615214 0.788360i \(-0.710930\pi\)
−0.615214 + 0.788360i \(0.710930\pi\)
\(788\) −1.76616 −0.0629167
\(789\) −45.6953 −1.62680
\(790\) 0 0
\(791\) 2.02069 0.0718474
\(792\) 0 0
\(793\) −14.4678 −0.513767
\(794\) 0.507731 0.0180187
\(795\) 0 0
\(796\) 4.86831 0.172552
\(797\) 10.2353 0.362554 0.181277 0.983432i \(-0.441977\pi\)
0.181277 + 0.983432i \(0.441977\pi\)
\(798\) 6.67633 0.236339
\(799\) 13.0697 0.462373
\(800\) 0 0
\(801\) 9.78626 0.345780
\(802\) −29.9392 −1.05719
\(803\) 0 0
\(804\) 6.28566 0.221678
\(805\) 0 0
\(806\) 13.6268 0.479982
\(807\) 12.4569 0.438504
\(808\) 10.9229 0.384267
\(809\) 35.8637 1.26090 0.630450 0.776230i \(-0.282870\pi\)
0.630450 + 0.776230i \(0.282870\pi\)
\(810\) 0 0
\(811\) 18.5001 0.649625 0.324813 0.945778i \(-0.394699\pi\)
0.324813 + 0.945778i \(0.394699\pi\)
\(812\) −0.511731 −0.0179582
\(813\) −33.8334 −1.18659
\(814\) 0 0
\(815\) 0 0
\(816\) 12.5064 0.437813
\(817\) −48.4155 −1.69384
\(818\) −38.6101 −1.34997
\(819\) 0.715042 0.0249856
\(820\) 0 0
\(821\) −27.2802 −0.952086 −0.476043 0.879422i \(-0.657929\pi\)
−0.476043 + 0.879422i \(0.657929\pi\)
\(822\) −25.6588 −0.894953
\(823\) −1.98450 −0.0691752 −0.0345876 0.999402i \(-0.511012\pi\)
−0.0345876 + 0.999402i \(0.511012\pi\)
\(824\) −58.6135 −2.04190
\(825\) 0 0
\(826\) 0.0917386 0.00319199
\(827\) −12.3307 −0.428782 −0.214391 0.976748i \(-0.568777\pi\)
−0.214391 + 0.976748i \(0.568777\pi\)
\(828\) 2.35743 0.0819263
\(829\) 0.309635 0.0107541 0.00537704 0.999986i \(-0.498288\pi\)
0.00537704 + 0.999986i \(0.498288\pi\)
\(830\) 0 0
\(831\) 45.2497 1.56970
\(832\) 16.2200 0.562328
\(833\) −12.3799 −0.428939
\(834\) −51.2350 −1.77412
\(835\) 0 0
\(836\) 0 0
\(837\) 21.3198 0.736920
\(838\) −0.952579 −0.0329063
\(839\) −6.70348 −0.231430 −0.115715 0.993282i \(-0.536916\pi\)
−0.115715 + 0.993282i \(0.536916\pi\)
\(840\) 0 0
\(841\) 4.64811 0.160280
\(842\) −31.0012 −1.06837
\(843\) −48.3405 −1.66493
\(844\) −1.08778 −0.0374430
\(845\) 0 0
\(846\) 10.6187 0.365077
\(847\) 0 0
\(848\) 1.17573 0.0403748
\(849\) −0.295634 −0.0101461
\(850\) 0 0
\(851\) 15.5453 0.532887
\(852\) 5.04753 0.172925
\(853\) 44.5713 1.52609 0.763047 0.646343i \(-0.223703\pi\)
0.763047 + 0.646343i \(0.223703\pi\)
\(854\) −3.58829 −0.122789
\(855\) 0 0
\(856\) −0.897530 −0.0306769
\(857\) 32.2444 1.10145 0.550723 0.834688i \(-0.314352\pi\)
0.550723 + 0.834688i \(0.314352\pi\)
\(858\) 0 0
\(859\) −18.1192 −0.618220 −0.309110 0.951026i \(-0.600031\pi\)
−0.309110 + 0.951026i \(0.600031\pi\)
\(860\) 0 0
\(861\) 6.37506 0.217262
\(862\) 4.96755 0.169196
\(863\) 8.21590 0.279672 0.139836 0.990175i \(-0.455342\pi\)
0.139836 + 0.990175i \(0.455342\pi\)
\(864\) 5.46407 0.185892
\(865\) 0 0
\(866\) 17.9832 0.611093
\(867\) 27.8854 0.947039
\(868\) −0.490143 −0.0166365
\(869\) 0 0
\(870\) 0 0
\(871\) 22.7240 0.769973
\(872\) 32.5711 1.10300
\(873\) −6.86219 −0.232250
\(874\) 79.5752 2.69167
\(875\) 0 0
\(876\) −0.520081 −0.0175719
\(877\) −33.0314 −1.11539 −0.557695 0.830046i \(-0.688314\pi\)
−0.557695 + 0.830046i \(0.688314\pi\)
\(878\) 20.6460 0.696769
\(879\) 15.5524 0.524569
\(880\) 0 0
\(881\) 30.1182 1.01471 0.507354 0.861738i \(-0.330624\pi\)
0.507354 + 0.861738i \(0.330624\pi\)
\(882\) −10.0582 −0.338678
\(883\) −19.0574 −0.641332 −0.320666 0.947192i \(-0.603907\pi\)
−0.320666 + 0.947192i \(0.603907\pi\)
\(884\) −0.846047 −0.0284556
\(885\) 0 0
\(886\) 1.87118 0.0628634
\(887\) 22.3685 0.751059 0.375530 0.926810i \(-0.377461\pi\)
0.375530 + 0.926810i \(0.377461\pi\)
\(888\) −11.1529 −0.374267
\(889\) 4.30115 0.144256
\(890\) 0 0
\(891\) 0 0
\(892\) 2.68220 0.0898068
\(893\) −51.9822 −1.73952
\(894\) −15.4664 −0.517275
\(895\) 0 0
\(896\) 3.03106 0.101261
\(897\) 31.6318 1.05616
\(898\) 9.13091 0.304702
\(899\) 32.2286 1.07489
\(900\) 0 0
\(901\) −0.617057 −0.0205572
\(902\) 0 0
\(903\) −4.77326 −0.158844
\(904\) −17.2794 −0.574703
\(905\) 0 0
\(906\) −35.8021 −1.18944
\(907\) −42.6593 −1.41648 −0.708240 0.705972i \(-0.750511\pi\)
−0.708240 + 0.705972i \(0.750511\pi\)
\(908\) −1.46290 −0.0485482
\(909\) −4.05805 −0.134597
\(910\) 0 0
\(911\) −37.1240 −1.22997 −0.614987 0.788537i \(-0.710839\pi\)
−0.614987 + 0.788537i \(0.710839\pi\)
\(912\) −49.7419 −1.64712
\(913\) 0 0
\(914\) 55.9756 1.85151
\(915\) 0 0
\(916\) 1.29355 0.0427401
\(917\) 2.72209 0.0898914
\(918\) 9.12723 0.301243
\(919\) 3.35848 0.110786 0.0553930 0.998465i \(-0.482359\pi\)
0.0553930 + 0.998465i \(0.482359\pi\)
\(920\) 0 0
\(921\) 19.6469 0.647388
\(922\) 33.2471 1.09494
\(923\) 18.2479 0.600636
\(924\) 0 0
\(925\) 0 0
\(926\) −10.4309 −0.342781
\(927\) 21.7759 0.715214
\(928\) 8.25992 0.271145
\(929\) −20.1391 −0.660742 −0.330371 0.943851i \(-0.607174\pi\)
−0.330371 + 0.943851i \(0.607174\pi\)
\(930\) 0 0
\(931\) 49.2388 1.61374
\(932\) −7.03863 −0.230558
\(933\) −50.9815 −1.66906
\(934\) 21.1078 0.690669
\(935\) 0 0
\(936\) −6.11449 −0.199858
\(937\) 10.5300 0.344000 0.172000 0.985097i \(-0.444977\pi\)
0.172000 + 0.985097i \(0.444977\pi\)
\(938\) 5.63597 0.184021
\(939\) −22.0346 −0.719073
\(940\) 0 0
\(941\) −19.3745 −0.631589 −0.315795 0.948828i \(-0.602271\pi\)
−0.315795 + 0.948828i \(0.602271\pi\)
\(942\) −36.0081 −1.17321
\(943\) 75.9844 2.47439
\(944\) −0.683498 −0.0222460
\(945\) 0 0
\(946\) 0 0
\(947\) −3.79793 −0.123416 −0.0617081 0.998094i \(-0.519655\pi\)
−0.0617081 + 0.998094i \(0.519655\pi\)
\(948\) 3.40494 0.110587
\(949\) −1.88020 −0.0610339
\(950\) 0 0
\(951\) 51.5407 1.67132
\(952\) −1.86655 −0.0604953
\(953\) 0.535767 0.0173552 0.00867760 0.999962i \(-0.497238\pi\)
0.00867760 + 0.999962i \(0.497238\pi\)
\(954\) −0.501337 −0.0162314
\(955\) 0 0
\(956\) 1.70918 0.0552788
\(957\) 0 0
\(958\) 18.9819 0.613276
\(959\) 3.33656 0.107743
\(960\) 0 0
\(961\) −0.130938 −0.00422380
\(962\) −4.53273 −0.146141
\(963\) 0.333447 0.0107452
\(964\) 3.30854 0.106561
\(965\) 0 0
\(966\) 7.84528 0.252418
\(967\) 36.5291 1.17470 0.587348 0.809335i \(-0.300172\pi\)
0.587348 + 0.809335i \(0.300172\pi\)
\(968\) 0 0
\(969\) 26.1060 0.838645
\(970\) 0 0
\(971\) 20.6281 0.661986 0.330993 0.943633i \(-0.392616\pi\)
0.330993 + 0.943633i \(0.392616\pi\)
\(972\) −2.77925 −0.0891444
\(973\) 6.66238 0.213586
\(974\) −47.4878 −1.52161
\(975\) 0 0
\(976\) 26.7345 0.855752
\(977\) 23.5349 0.752950 0.376475 0.926427i \(-0.377136\pi\)
0.376475 + 0.926427i \(0.377136\pi\)
\(978\) 8.39706 0.268508
\(979\) 0 0
\(980\) 0 0
\(981\) −12.1007 −0.386346
\(982\) 46.5443 1.48529
\(983\) 40.6736 1.29729 0.648643 0.761093i \(-0.275337\pi\)
0.648643 + 0.761093i \(0.275337\pi\)
\(984\) −54.5146 −1.73786
\(985\) 0 0
\(986\) 13.7974 0.439400
\(987\) −5.12490 −0.163127
\(988\) 3.36499 0.107055
\(989\) −56.8925 −1.80908
\(990\) 0 0
\(991\) 23.1498 0.735377 0.367688 0.929949i \(-0.380149\pi\)
0.367688 + 0.929949i \(0.380149\pi\)
\(992\) 7.91147 0.251189
\(993\) 20.8905 0.662941
\(994\) 4.52581 0.143550
\(995\) 0 0
\(996\) 5.71088 0.180956
\(997\) −5.32844 −0.168753 −0.0843767 0.996434i \(-0.526890\pi\)
−0.0843767 + 0.996434i \(0.526890\pi\)
\(998\) 35.0127 1.10831
\(999\) −7.09170 −0.224371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.bn.1.5 8
5.4 even 2 3025.2.a.bi.1.4 8
11.5 even 5 275.2.h.e.201.2 yes 16
11.9 even 5 275.2.h.e.26.2 yes 16
11.10 odd 2 3025.2.a.bj.1.4 8
55.9 even 10 275.2.h.c.26.3 16
55.27 odd 20 275.2.z.c.124.3 32
55.38 odd 20 275.2.z.c.124.6 32
55.42 odd 20 275.2.z.c.224.6 32
55.49 even 10 275.2.h.c.201.3 yes 16
55.53 odd 20 275.2.z.c.224.3 32
55.54 odd 2 3025.2.a.bm.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.3 16 55.9 even 10
275.2.h.c.201.3 yes 16 55.49 even 10
275.2.h.e.26.2 yes 16 11.9 even 5
275.2.h.e.201.2 yes 16 11.5 even 5
275.2.z.c.124.3 32 55.27 odd 20
275.2.z.c.124.6 32 55.38 odd 20
275.2.z.c.224.3 32 55.53 odd 20
275.2.z.c.224.6 32 55.42 odd 20
3025.2.a.bi.1.4 8 5.4 even 2
3025.2.a.bj.1.4 8 11.10 odd 2
3025.2.a.bm.1.5 8 55.54 odd 2
3025.2.a.bn.1.5 8 1.1 even 1 trivial