Properties

Label 3025.2.a.bj.1.4
Level $3025$
Weight $2$
Character 3025.1
Self dual yes
Analytic conductor $24.155$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3025,2,Mod(1,3025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-5,1,9,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.1547466114\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 7x^{6} + 18x^{5} + 16x^{4} - 30x^{3} - 12x^{2} + 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 275)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.321622\) of defining polynomial
Character \(\chi\) \(=\) 3025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.32162 q^{2} -2.02642 q^{3} -0.253315 q^{4} +2.67816 q^{6} -0.348258 q^{7} +2.97803 q^{8} +1.10639 q^{9} +0.513323 q^{12} -1.85577 q^{13} +0.460265 q^{14} -3.42920 q^{16} -1.79974 q^{17} -1.46223 q^{18} +7.15813 q^{19} +0.705717 q^{21} -8.41145 q^{23} -6.03475 q^{24} +2.45262 q^{26} +3.83726 q^{27} +0.0882188 q^{28} -5.80070 q^{29} +5.55599 q^{31} -1.42395 q^{32} +2.37858 q^{34} -0.280264 q^{36} -1.84812 q^{37} -9.46035 q^{38} +3.76057 q^{39} +9.03346 q^{41} -0.932691 q^{42} -6.76370 q^{43} +11.1168 q^{46} +7.26198 q^{47} +6.94901 q^{48} -6.87872 q^{49} +3.64704 q^{51} +0.470093 q^{52} -0.342859 q^{53} -5.07141 q^{54} -1.03712 q^{56} -14.5054 q^{57} +7.66633 q^{58} +0.199317 q^{59} +7.79614 q^{61} -7.34292 q^{62} -0.385308 q^{63} +8.74033 q^{64} +12.2451 q^{67} +0.455901 q^{68} +17.0451 q^{69} +9.83305 q^{71} +3.29486 q^{72} +1.01317 q^{73} +2.44251 q^{74} -1.81326 q^{76} -4.97005 q^{78} -6.63314 q^{79} -11.0951 q^{81} -11.9388 q^{82} -11.1253 q^{83} -0.178769 q^{84} +8.93906 q^{86} +11.7547 q^{87} +8.84524 q^{89} +0.646285 q^{91} +2.13074 q^{92} -11.2588 q^{93} -9.59760 q^{94} +2.88553 q^{96} -6.20234 q^{97} +9.09106 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{2} + q^{3} + 9 q^{4} - q^{6} - 8 q^{7} - 12 q^{8} + 9 q^{9} + 3 q^{12} - 9 q^{13} + 9 q^{14} + 23 q^{16} - 19 q^{17} - 22 q^{18} - q^{19} - 5 q^{21} + 2 q^{23} - q^{24} - 2 q^{26} - 2 q^{27}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32162 −0.934528 −0.467264 0.884118i \(-0.654760\pi\)
−0.467264 + 0.884118i \(0.654760\pi\)
\(3\) −2.02642 −1.16996 −0.584978 0.811049i \(-0.698897\pi\)
−0.584978 + 0.811049i \(0.698897\pi\)
\(4\) −0.253315 −0.126657
\(5\) 0 0
\(6\) 2.67816 1.09336
\(7\) −0.348258 −0.131629 −0.0658145 0.997832i \(-0.520965\pi\)
−0.0658145 + 0.997832i \(0.520965\pi\)
\(8\) 2.97803 1.05289
\(9\) 1.10639 0.368796
\(10\) 0 0
\(11\) 0 0
\(12\) 0.513323 0.148183
\(13\) −1.85577 −0.514697 −0.257349 0.966319i \(-0.582849\pi\)
−0.257349 + 0.966319i \(0.582849\pi\)
\(14\) 0.460265 0.123011
\(15\) 0 0
\(16\) −3.42920 −0.857301
\(17\) −1.79974 −0.436502 −0.218251 0.975893i \(-0.570035\pi\)
−0.218251 + 0.975893i \(0.570035\pi\)
\(18\) −1.46223 −0.344650
\(19\) 7.15813 1.64219 0.821094 0.570793i \(-0.193364\pi\)
0.821094 + 0.570793i \(0.193364\pi\)
\(20\) 0 0
\(21\) 0.705717 0.154000
\(22\) 0 0
\(23\) −8.41145 −1.75391 −0.876954 0.480574i \(-0.840428\pi\)
−0.876954 + 0.480574i \(0.840428\pi\)
\(24\) −6.03475 −1.23184
\(25\) 0 0
\(26\) 2.45262 0.480999
\(27\) 3.83726 0.738481
\(28\) 0.0882188 0.0166718
\(29\) −5.80070 −1.07716 −0.538581 0.842573i \(-0.681040\pi\)
−0.538581 + 0.842573i \(0.681040\pi\)
\(30\) 0 0
\(31\) 5.55599 0.997886 0.498943 0.866635i \(-0.333722\pi\)
0.498943 + 0.866635i \(0.333722\pi\)
\(32\) −1.42395 −0.251722
\(33\) 0 0
\(34\) 2.37858 0.407923
\(35\) 0 0
\(36\) −0.280264 −0.0467107
\(37\) −1.84812 −0.303828 −0.151914 0.988394i \(-0.548544\pi\)
−0.151914 + 0.988394i \(0.548544\pi\)
\(38\) −9.46035 −1.53467
\(39\) 3.76057 0.602173
\(40\) 0 0
\(41\) 9.03346 1.41079 0.705394 0.708815i \(-0.250770\pi\)
0.705394 + 0.708815i \(0.250770\pi\)
\(42\) −0.932691 −0.143917
\(43\) −6.76370 −1.03145 −0.515727 0.856753i \(-0.672478\pi\)
−0.515727 + 0.856753i \(0.672478\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 11.1168 1.63908
\(47\) 7.26198 1.05927 0.529634 0.848226i \(-0.322329\pi\)
0.529634 + 0.848226i \(0.322329\pi\)
\(48\) 6.94901 1.00300
\(49\) −6.87872 −0.982674
\(50\) 0 0
\(51\) 3.64704 0.510688
\(52\) 0.470093 0.0651902
\(53\) −0.342859 −0.0470953 −0.0235476 0.999723i \(-0.507496\pi\)
−0.0235476 + 0.999723i \(0.507496\pi\)
\(54\) −5.07141 −0.690131
\(55\) 0 0
\(56\) −1.03712 −0.138591
\(57\) −14.5054 −1.92129
\(58\) 7.66633 1.00664
\(59\) 0.199317 0.0259488 0.0129744 0.999916i \(-0.495870\pi\)
0.0129744 + 0.999916i \(0.495870\pi\)
\(60\) 0 0
\(61\) 7.79614 0.998193 0.499097 0.866546i \(-0.333665\pi\)
0.499097 + 0.866546i \(0.333665\pi\)
\(62\) −7.34292 −0.932552
\(63\) −0.385308 −0.0485442
\(64\) 8.74033 1.09254
\(65\) 0 0
\(66\) 0 0
\(67\) 12.2451 1.49597 0.747986 0.663715i \(-0.231021\pi\)
0.747986 + 0.663715i \(0.231021\pi\)
\(68\) 0.455901 0.0552862
\(69\) 17.0451 2.05199
\(70\) 0 0
\(71\) 9.83305 1.16697 0.583484 0.812125i \(-0.301689\pi\)
0.583484 + 0.812125i \(0.301689\pi\)
\(72\) 3.29486 0.388302
\(73\) 1.01317 0.118582 0.0592910 0.998241i \(-0.481116\pi\)
0.0592910 + 0.998241i \(0.481116\pi\)
\(74\) 2.44251 0.283936
\(75\) 0 0
\(76\) −1.81326 −0.207995
\(77\) 0 0
\(78\) −4.97005 −0.562748
\(79\) −6.63314 −0.746286 −0.373143 0.927774i \(-0.621720\pi\)
−0.373143 + 0.927774i \(0.621720\pi\)
\(80\) 0 0
\(81\) −11.0951 −1.23279
\(82\) −11.9388 −1.31842
\(83\) −11.1253 −1.22116 −0.610582 0.791953i \(-0.709064\pi\)
−0.610582 + 0.791953i \(0.709064\pi\)
\(84\) −0.178769 −0.0195052
\(85\) 0 0
\(86\) 8.93906 0.963923
\(87\) 11.7547 1.26023
\(88\) 0 0
\(89\) 8.84524 0.937594 0.468797 0.883306i \(-0.344688\pi\)
0.468797 + 0.883306i \(0.344688\pi\)
\(90\) 0 0
\(91\) 0.646285 0.0677491
\(92\) 2.13074 0.222145
\(93\) −11.2588 −1.16748
\(94\) −9.59760 −0.989917
\(95\) 0 0
\(96\) 2.88553 0.294503
\(97\) −6.20234 −0.629752 −0.314876 0.949133i \(-0.601963\pi\)
−0.314876 + 0.949133i \(0.601963\pi\)
\(98\) 9.09106 0.918336
\(99\) 0 0
\(100\) 0 0
\(101\) 3.66784 0.364963 0.182482 0.983209i \(-0.441587\pi\)
0.182482 + 0.983209i \(0.441587\pi\)
\(102\) −4.82001 −0.477252
\(103\) 19.6820 1.93932 0.969661 0.244454i \(-0.0786087\pi\)
0.969661 + 0.244454i \(0.0786087\pi\)
\(104\) −5.52653 −0.541921
\(105\) 0 0
\(106\) 0.453130 0.0440118
\(107\) −0.301384 −0.0291359 −0.0145679 0.999894i \(-0.504637\pi\)
−0.0145679 + 0.999894i \(0.504637\pi\)
\(108\) −0.972034 −0.0935341
\(109\) 10.9371 1.04759 0.523794 0.851845i \(-0.324516\pi\)
0.523794 + 0.851845i \(0.324516\pi\)
\(110\) 0 0
\(111\) 3.74506 0.355466
\(112\) 1.19425 0.112846
\(113\) 5.80228 0.545833 0.272916 0.962038i \(-0.412012\pi\)
0.272916 + 0.962038i \(0.412012\pi\)
\(114\) 19.1707 1.79550
\(115\) 0 0
\(116\) 1.46940 0.136431
\(117\) −2.05320 −0.189818
\(118\) −0.263422 −0.0242499
\(119\) 0.626774 0.0574563
\(120\) 0 0
\(121\) 0 0
\(122\) −10.3035 −0.932839
\(123\) −18.3056 −1.65056
\(124\) −1.40742 −0.126390
\(125\) 0 0
\(126\) 0.509231 0.0453659
\(127\) −12.3505 −1.09593 −0.547964 0.836502i \(-0.684597\pi\)
−0.547964 + 0.836502i \(0.684597\pi\)
\(128\) −8.70351 −0.769289
\(129\) 13.7061 1.20676
\(130\) 0 0
\(131\) −7.81632 −0.682915 −0.341458 0.939897i \(-0.610921\pi\)
−0.341458 + 0.939897i \(0.610921\pi\)
\(132\) 0 0
\(133\) −2.49287 −0.216160
\(134\) −16.1833 −1.39803
\(135\) 0 0
\(136\) −5.35969 −0.459590
\(137\) 9.58073 0.818537 0.409269 0.912414i \(-0.365784\pi\)
0.409269 + 0.912414i \(0.365784\pi\)
\(138\) −22.5272 −1.91765
\(139\) −19.1306 −1.62264 −0.811319 0.584604i \(-0.801250\pi\)
−0.811319 + 0.584604i \(0.801250\pi\)
\(140\) 0 0
\(141\) −14.7158 −1.23930
\(142\) −12.9956 −1.09056
\(143\) 0 0
\(144\) −3.79403 −0.316169
\(145\) 0 0
\(146\) −1.33902 −0.110818
\(147\) 13.9392 1.14968
\(148\) 0.468155 0.0384821
\(149\) −5.77501 −0.473107 −0.236554 0.971618i \(-0.576018\pi\)
−0.236554 + 0.971618i \(0.576018\pi\)
\(150\) 0 0
\(151\) −13.3681 −1.08788 −0.543942 0.839123i \(-0.683069\pi\)
−0.543942 + 0.839123i \(0.683069\pi\)
\(152\) 21.3171 1.72905
\(153\) −1.99121 −0.160980
\(154\) 0 0
\(155\) 0 0
\(156\) −0.952608 −0.0762697
\(157\) 13.4451 1.07303 0.536516 0.843890i \(-0.319740\pi\)
0.536516 + 0.843890i \(0.319740\pi\)
\(158\) 8.76650 0.697425
\(159\) 0.694776 0.0550994
\(160\) 0 0
\(161\) 2.92935 0.230865
\(162\) 14.6635 1.15207
\(163\) −3.13538 −0.245582 −0.122791 0.992433i \(-0.539184\pi\)
−0.122791 + 0.992433i \(0.539184\pi\)
\(164\) −2.28831 −0.178687
\(165\) 0 0
\(166\) 14.7035 1.14121
\(167\) 2.62877 0.203420 0.101710 0.994814i \(-0.467569\pi\)
0.101710 + 0.994814i \(0.467569\pi\)
\(168\) 2.10165 0.162146
\(169\) −9.55613 −0.735087
\(170\) 0 0
\(171\) 7.91967 0.605632
\(172\) 1.71335 0.130641
\(173\) −3.92271 −0.298238 −0.149119 0.988819i \(-0.547644\pi\)
−0.149119 + 0.988819i \(0.547644\pi\)
\(174\) −15.5352 −1.17772
\(175\) 0 0
\(176\) 0 0
\(177\) −0.403900 −0.0303590
\(178\) −11.6901 −0.876207
\(179\) −3.31488 −0.247766 −0.123883 0.992297i \(-0.539535\pi\)
−0.123883 + 0.992297i \(0.539535\pi\)
\(180\) 0 0
\(181\) 16.9048 1.25652 0.628262 0.778002i \(-0.283767\pi\)
0.628262 + 0.778002i \(0.283767\pi\)
\(182\) −0.854145 −0.0633134
\(183\) −15.7983 −1.16784
\(184\) −25.0495 −1.84668
\(185\) 0 0
\(186\) 14.8799 1.09104
\(187\) 0 0
\(188\) −1.83957 −0.134164
\(189\) −1.33635 −0.0972055
\(190\) 0 0
\(191\) −21.0157 −1.52064 −0.760320 0.649549i \(-0.774958\pi\)
−0.760320 + 0.649549i \(0.774958\pi\)
\(192\) −17.7116 −1.27822
\(193\) 3.31329 0.238496 0.119248 0.992864i \(-0.461952\pi\)
0.119248 + 0.992864i \(0.461952\pi\)
\(194\) 8.19715 0.588521
\(195\) 0 0
\(196\) 1.74248 0.124463
\(197\) −6.97218 −0.496747 −0.248374 0.968664i \(-0.579896\pi\)
−0.248374 + 0.968664i \(0.579896\pi\)
\(198\) 0 0
\(199\) −19.2184 −1.36236 −0.681178 0.732118i \(-0.738532\pi\)
−0.681178 + 0.732118i \(0.738532\pi\)
\(200\) 0 0
\(201\) −24.8136 −1.75022
\(202\) −4.84749 −0.341068
\(203\) 2.02014 0.141786
\(204\) −0.923849 −0.0646824
\(205\) 0 0
\(206\) −26.0121 −1.81235
\(207\) −9.30632 −0.646834
\(208\) 6.36380 0.441250
\(209\) 0 0
\(210\) 0 0
\(211\) −4.29419 −0.295624 −0.147812 0.989015i \(-0.547223\pi\)
−0.147812 + 0.989015i \(0.547223\pi\)
\(212\) 0.0868512 0.00596496
\(213\) −19.9259 −1.36530
\(214\) 0.398315 0.0272283
\(215\) 0 0
\(216\) 11.4275 0.777541
\(217\) −1.93492 −0.131351
\(218\) −14.4548 −0.979000
\(219\) −2.05310 −0.138736
\(220\) 0 0
\(221\) 3.33991 0.224666
\(222\) −4.94956 −0.332193
\(223\) −10.5884 −0.709053 −0.354526 0.935046i \(-0.615358\pi\)
−0.354526 + 0.935046i \(0.615358\pi\)
\(224\) 0.495902 0.0331339
\(225\) 0 0
\(226\) −7.66843 −0.510096
\(227\) −5.77505 −0.383303 −0.191652 0.981463i \(-0.561384\pi\)
−0.191652 + 0.981463i \(0.561384\pi\)
\(228\) 3.67443 0.243345
\(229\) −5.10650 −0.337447 −0.168723 0.985663i \(-0.553964\pi\)
−0.168723 + 0.985663i \(0.553964\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −17.2747 −1.13414
\(233\) −27.7861 −1.82033 −0.910164 0.414248i \(-0.864045\pi\)
−0.910164 + 0.414248i \(0.864045\pi\)
\(234\) 2.71355 0.177390
\(235\) 0 0
\(236\) −0.0504899 −0.00328661
\(237\) 13.4415 0.873122
\(238\) −0.828359 −0.0536945
\(239\) 6.74725 0.436444 0.218222 0.975899i \(-0.429974\pi\)
0.218222 + 0.975899i \(0.429974\pi\)
\(240\) 0 0
\(241\) 13.0610 0.841331 0.420666 0.907216i \(-0.361797\pi\)
0.420666 + 0.907216i \(0.361797\pi\)
\(242\) 0 0
\(243\) 10.9715 0.703823
\(244\) −1.97488 −0.126429
\(245\) 0 0
\(246\) 24.1931 1.54249
\(247\) −13.2838 −0.845230
\(248\) 16.5459 1.05067
\(249\) 22.5446 1.42871
\(250\) 0 0
\(251\) −30.1456 −1.90277 −0.951386 0.308000i \(-0.900340\pi\)
−0.951386 + 0.308000i \(0.900340\pi\)
\(252\) 0.0976041 0.00614848
\(253\) 0 0
\(254\) 16.3227 1.02418
\(255\) 0 0
\(256\) −5.97791 −0.373619
\(257\) −0.362964 −0.0226411 −0.0113205 0.999936i \(-0.503604\pi\)
−0.0113205 + 0.999936i \(0.503604\pi\)
\(258\) −18.1143 −1.12775
\(259\) 0.643620 0.0399926
\(260\) 0 0
\(261\) −6.41782 −0.397253
\(262\) 10.3302 0.638203
\(263\) −22.5498 −1.39048 −0.695239 0.718779i \(-0.744701\pi\)
−0.695239 + 0.718779i \(0.744701\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.29464 0.202007
\(267\) −17.9242 −1.09694
\(268\) −3.10185 −0.189476
\(269\) −6.14725 −0.374804 −0.187402 0.982283i \(-0.560007\pi\)
−0.187402 + 0.982283i \(0.560007\pi\)
\(270\) 0 0
\(271\) −16.6961 −1.01422 −0.507109 0.861882i \(-0.669286\pi\)
−0.507109 + 0.861882i \(0.669286\pi\)
\(272\) 6.17168 0.374213
\(273\) −1.30965 −0.0792634
\(274\) −12.6621 −0.764946
\(275\) 0 0
\(276\) −4.31779 −0.259900
\(277\) 22.3299 1.34167 0.670835 0.741606i \(-0.265936\pi\)
0.670835 + 0.741606i \(0.265936\pi\)
\(278\) 25.2835 1.51640
\(279\) 6.14708 0.368016
\(280\) 0 0
\(281\) −23.8551 −1.42308 −0.711538 0.702648i \(-0.752001\pi\)
−0.711538 + 0.702648i \(0.752001\pi\)
\(282\) 19.4488 1.15816
\(283\) −0.145890 −0.00867224 −0.00433612 0.999991i \(-0.501380\pi\)
−0.00433612 + 0.999991i \(0.501380\pi\)
\(284\) −2.49086 −0.147805
\(285\) 0 0
\(286\) 0 0
\(287\) −3.14597 −0.185701
\(288\) −1.57544 −0.0928338
\(289\) −13.7609 −0.809466
\(290\) 0 0
\(291\) 12.5686 0.736782
\(292\) −0.256650 −0.0150193
\(293\) 7.67480 0.448367 0.224183 0.974547i \(-0.428029\pi\)
0.224183 + 0.974547i \(0.428029\pi\)
\(294\) −18.4223 −1.07441
\(295\) 0 0
\(296\) −5.50374 −0.319899
\(297\) 0 0
\(298\) 7.63238 0.442132
\(299\) 15.6097 0.902732
\(300\) 0 0
\(301\) 2.35551 0.135769
\(302\) 17.6676 1.01666
\(303\) −7.43258 −0.426991
\(304\) −24.5467 −1.40785
\(305\) 0 0
\(306\) 2.63163 0.150440
\(307\) 9.69537 0.553344 0.276672 0.960964i \(-0.410768\pi\)
0.276672 + 0.960964i \(0.410768\pi\)
\(308\) 0 0
\(309\) −39.8840 −2.26892
\(310\) 0 0
\(311\) 25.1584 1.42660 0.713300 0.700859i \(-0.247200\pi\)
0.713300 + 0.700859i \(0.247200\pi\)
\(312\) 11.1991 0.634024
\(313\) 10.8737 0.614616 0.307308 0.951610i \(-0.400572\pi\)
0.307308 + 0.951610i \(0.400572\pi\)
\(314\) −17.7693 −1.00278
\(315\) 0 0
\(316\) 1.68027 0.0945227
\(317\) −25.4344 −1.42854 −0.714268 0.699872i \(-0.753240\pi\)
−0.714268 + 0.699872i \(0.753240\pi\)
\(318\) −0.918232 −0.0514919
\(319\) 0 0
\(320\) 0 0
\(321\) 0.610730 0.0340876
\(322\) −3.87149 −0.215750
\(323\) −12.8828 −0.716818
\(324\) 2.81054 0.156141
\(325\) 0 0
\(326\) 4.14379 0.229503
\(327\) −22.1632 −1.22563
\(328\) 26.9019 1.48541
\(329\) −2.52904 −0.139431
\(330\) 0 0
\(331\) −10.3091 −0.566638 −0.283319 0.959026i \(-0.591435\pi\)
−0.283319 + 0.959026i \(0.591435\pi\)
\(332\) 2.81821 0.154669
\(333\) −2.04473 −0.112051
\(334\) −3.47424 −0.190102
\(335\) 0 0
\(336\) −2.42005 −0.132024
\(337\) 2.30404 0.125509 0.0627544 0.998029i \(-0.480012\pi\)
0.0627544 + 0.998029i \(0.480012\pi\)
\(338\) 12.6296 0.686959
\(339\) −11.7579 −0.638600
\(340\) 0 0
\(341\) 0 0
\(342\) −10.4668 −0.565980
\(343\) 4.83337 0.260977
\(344\) −20.1425 −1.08601
\(345\) 0 0
\(346\) 5.18434 0.278712
\(347\) −20.7387 −1.11331 −0.556655 0.830744i \(-0.687915\pi\)
−0.556655 + 0.830744i \(0.687915\pi\)
\(348\) −2.97763 −0.159618
\(349\) −3.71251 −0.198726 −0.0993630 0.995051i \(-0.531680\pi\)
−0.0993630 + 0.995051i \(0.531680\pi\)
\(350\) 0 0
\(351\) −7.12106 −0.380094
\(352\) 0 0
\(353\) 3.01441 0.160441 0.0802203 0.996777i \(-0.474438\pi\)
0.0802203 + 0.996777i \(0.474438\pi\)
\(354\) 0.533803 0.0283713
\(355\) 0 0
\(356\) −2.24063 −0.118753
\(357\) −1.27011 −0.0672213
\(358\) 4.38102 0.231544
\(359\) 22.7391 1.20013 0.600063 0.799953i \(-0.295142\pi\)
0.600063 + 0.799953i \(0.295142\pi\)
\(360\) 0 0
\(361\) 32.2389 1.69678
\(362\) −22.3418 −1.17426
\(363\) 0 0
\(364\) −0.163714 −0.00858092
\(365\) 0 0
\(366\) 20.8793 1.09138
\(367\) −13.5435 −0.706964 −0.353482 0.935441i \(-0.615002\pi\)
−0.353482 + 0.935441i \(0.615002\pi\)
\(368\) 28.8446 1.50363
\(369\) 9.99450 0.520293
\(370\) 0 0
\(371\) 0.119403 0.00619910
\(372\) 2.85202 0.147870
\(373\) 24.8281 1.28555 0.642774 0.766056i \(-0.277783\pi\)
0.642774 + 0.766056i \(0.277783\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 21.6264 1.11530
\(377\) 10.7648 0.554413
\(378\) 1.76616 0.0908413
\(379\) 6.16065 0.316451 0.158226 0.987403i \(-0.449423\pi\)
0.158226 + 0.987403i \(0.449423\pi\)
\(380\) 0 0
\(381\) 25.0273 1.28219
\(382\) 27.7748 1.42108
\(383\) 0.363669 0.0185826 0.00929131 0.999957i \(-0.497042\pi\)
0.00929131 + 0.999957i \(0.497042\pi\)
\(384\) 17.6370 0.900034
\(385\) 0 0
\(386\) −4.37892 −0.222881
\(387\) −7.48327 −0.380396
\(388\) 1.57114 0.0797628
\(389\) −1.86786 −0.0947044 −0.0473522 0.998878i \(-0.515078\pi\)
−0.0473522 + 0.998878i \(0.515078\pi\)
\(390\) 0 0
\(391\) 15.1384 0.765584
\(392\) −20.4850 −1.03465
\(393\) 15.8392 0.798980
\(394\) 9.21459 0.464224
\(395\) 0 0
\(396\) 0 0
\(397\) 0.384172 0.0192811 0.00964053 0.999954i \(-0.496931\pi\)
0.00964053 + 0.999954i \(0.496931\pi\)
\(398\) 25.3995 1.27316
\(399\) 5.05162 0.252897
\(400\) 0 0
\(401\) −22.6534 −1.13126 −0.565628 0.824660i \(-0.691366\pi\)
−0.565628 + 0.824660i \(0.691366\pi\)
\(402\) 32.7943 1.63563
\(403\) −10.3106 −0.513609
\(404\) −0.929117 −0.0462253
\(405\) 0 0
\(406\) −2.66986 −0.132503
\(407\) 0 0
\(408\) 10.8610 0.537699
\(409\) 29.2142 1.44455 0.722275 0.691606i \(-0.243097\pi\)
0.722275 + 0.691606i \(0.243097\pi\)
\(410\) 0 0
\(411\) −19.4146 −0.957652
\(412\) −4.98573 −0.245629
\(413\) −0.0694136 −0.00341562
\(414\) 12.2994 0.604484
\(415\) 0 0
\(416\) 2.64252 0.129560
\(417\) 38.7667 1.89841
\(418\) 0 0
\(419\) −0.720765 −0.0352117 −0.0176058 0.999845i \(-0.505604\pi\)
−0.0176058 + 0.999845i \(0.505604\pi\)
\(420\) 0 0
\(421\) −23.4569 −1.14322 −0.571610 0.820525i \(-0.693681\pi\)
−0.571610 + 0.820525i \(0.693681\pi\)
\(422\) 5.67530 0.276269
\(423\) 8.03456 0.390654
\(424\) −1.02104 −0.0495863
\(425\) 0 0
\(426\) 26.3345 1.27591
\(427\) −2.71506 −0.131391
\(428\) 0.0763449 0.00369027
\(429\) 0 0
\(430\) 0 0
\(431\) −3.75868 −0.181049 −0.0905246 0.995894i \(-0.528854\pi\)
−0.0905246 + 0.995894i \(0.528854\pi\)
\(432\) −13.1587 −0.633100
\(433\) 13.6069 0.653906 0.326953 0.945041i \(-0.393978\pi\)
0.326953 + 0.945041i \(0.393978\pi\)
\(434\) 2.55723 0.122751
\(435\) 0 0
\(436\) −2.77054 −0.132685
\(437\) −60.2103 −2.88025
\(438\) 2.71342 0.129652
\(439\) −15.6217 −0.745584 −0.372792 0.927915i \(-0.621600\pi\)
−0.372792 + 0.927915i \(0.621600\pi\)
\(440\) 0 0
\(441\) −7.61052 −0.362406
\(442\) −4.41409 −0.209957
\(443\) 1.41582 0.0672676 0.0336338 0.999434i \(-0.489292\pi\)
0.0336338 + 0.999434i \(0.489292\pi\)
\(444\) −0.948679 −0.0450223
\(445\) 0 0
\(446\) 13.9939 0.662630
\(447\) 11.7026 0.553514
\(448\) −3.04389 −0.143810
\(449\) 6.90886 0.326049 0.163025 0.986622i \(-0.447875\pi\)
0.163025 + 0.986622i \(0.447875\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.46980 −0.0691338
\(453\) 27.0895 1.27278
\(454\) 7.63243 0.358208
\(455\) 0 0
\(456\) −43.1975 −2.02291
\(457\) −42.3537 −1.98122 −0.990612 0.136706i \(-0.956348\pi\)
−0.990612 + 0.136706i \(0.956348\pi\)
\(458\) 6.74886 0.315353
\(459\) −6.90608 −0.322348
\(460\) 0 0
\(461\) −25.1563 −1.17165 −0.585823 0.810439i \(-0.699228\pi\)
−0.585823 + 0.810439i \(0.699228\pi\)
\(462\) 0 0
\(463\) −7.89251 −0.366796 −0.183398 0.983039i \(-0.558710\pi\)
−0.183398 + 0.983039i \(0.558710\pi\)
\(464\) 19.8918 0.923452
\(465\) 0 0
\(466\) 36.7227 1.70115
\(467\) 15.9711 0.739057 0.369528 0.929219i \(-0.379519\pi\)
0.369528 + 0.929219i \(0.379519\pi\)
\(468\) 0.520105 0.0240419
\(469\) −4.26443 −0.196913
\(470\) 0 0
\(471\) −27.2454 −1.25540
\(472\) 0.593572 0.0273214
\(473\) 0 0
\(474\) −17.7646 −0.815957
\(475\) 0 0
\(476\) −0.158771 −0.00727726
\(477\) −0.379334 −0.0173685
\(478\) −8.91732 −0.407869
\(479\) −14.3625 −0.656241 −0.328121 0.944636i \(-0.606415\pi\)
−0.328121 + 0.944636i \(0.606415\pi\)
\(480\) 0 0
\(481\) 3.42967 0.156380
\(482\) −17.2617 −0.786248
\(483\) −5.93610 −0.270102
\(484\) 0 0
\(485\) 0 0
\(486\) −14.5002 −0.657742
\(487\) −35.9315 −1.62821 −0.814105 0.580718i \(-0.802772\pi\)
−0.814105 + 0.580718i \(0.802772\pi\)
\(488\) 23.2171 1.05099
\(489\) 6.35360 0.287320
\(490\) 0 0
\(491\) −35.2176 −1.58935 −0.794673 0.607038i \(-0.792358\pi\)
−0.794673 + 0.607038i \(0.792358\pi\)
\(492\) 4.63708 0.209056
\(493\) 10.4398 0.470183
\(494\) 17.5562 0.789891
\(495\) 0 0
\(496\) −19.0526 −0.855488
\(497\) −3.42443 −0.153607
\(498\) −29.7955 −1.33517
\(499\) 26.4922 1.18595 0.592977 0.805219i \(-0.297952\pi\)
0.592977 + 0.805219i \(0.297952\pi\)
\(500\) 0 0
\(501\) −5.32699 −0.237992
\(502\) 39.8411 1.77819
\(503\) −17.7436 −0.791146 −0.395573 0.918435i \(-0.629454\pi\)
−0.395573 + 0.918435i \(0.629454\pi\)
\(504\) −1.14746 −0.0511119
\(505\) 0 0
\(506\) 0 0
\(507\) 19.3647 0.860019
\(508\) 3.12856 0.138807
\(509\) −13.7539 −0.609630 −0.304815 0.952412i \(-0.598595\pi\)
−0.304815 + 0.952412i \(0.598595\pi\)
\(510\) 0 0
\(511\) −0.352843 −0.0156088
\(512\) 25.3076 1.11845
\(513\) 27.4676 1.21272
\(514\) 0.479701 0.0211587
\(515\) 0 0
\(516\) −3.47196 −0.152845
\(517\) 0 0
\(518\) −0.850623 −0.0373742
\(519\) 7.94907 0.348925
\(520\) 0 0
\(521\) 12.5792 0.551106 0.275553 0.961286i \(-0.411139\pi\)
0.275553 + 0.961286i \(0.411139\pi\)
\(522\) 8.48193 0.371244
\(523\) 40.7967 1.78392 0.891958 0.452118i \(-0.149331\pi\)
0.891958 + 0.452118i \(0.149331\pi\)
\(524\) 1.97999 0.0864962
\(525\) 0 0
\(526\) 29.8023 1.29944
\(527\) −9.99936 −0.435579
\(528\) 0 0
\(529\) 47.7524 2.07619
\(530\) 0 0
\(531\) 0.220522 0.00956982
\(532\) 0.631482 0.0273782
\(533\) −16.7640 −0.726129
\(534\) 23.6890 1.02512
\(535\) 0 0
\(536\) 36.4661 1.57510
\(537\) 6.71735 0.289875
\(538\) 8.12434 0.350265
\(539\) 0 0
\(540\) 0 0
\(541\) −32.6165 −1.40229 −0.701146 0.713018i \(-0.747328\pi\)
−0.701146 + 0.713018i \(0.747328\pi\)
\(542\) 22.0660 0.947815
\(543\) −34.2563 −1.47008
\(544\) 2.56275 0.109877
\(545\) 0 0
\(546\) 1.73086 0.0740739
\(547\) −5.72986 −0.244991 −0.122496 0.992469i \(-0.539090\pi\)
−0.122496 + 0.992469i \(0.539090\pi\)
\(548\) −2.42694 −0.103674
\(549\) 8.62555 0.368129
\(550\) 0 0
\(551\) −41.5222 −1.76890
\(552\) 50.7610 2.16053
\(553\) 2.31004 0.0982329
\(554\) −29.5116 −1.25383
\(555\) 0 0
\(556\) 4.84607 0.205519
\(557\) −40.6304 −1.72157 −0.860783 0.508971i \(-0.830026\pi\)
−0.860783 + 0.508971i \(0.830026\pi\)
\(558\) −8.12412 −0.343921
\(559\) 12.5519 0.530887
\(560\) 0 0
\(561\) 0 0
\(562\) 31.5274 1.32990
\(563\) 14.6876 0.619009 0.309504 0.950898i \(-0.399837\pi\)
0.309504 + 0.950898i \(0.399837\pi\)
\(564\) 3.72774 0.156966
\(565\) 0 0
\(566\) 0.192811 0.00810446
\(567\) 3.86394 0.162270
\(568\) 29.2831 1.22869
\(569\) 24.5949 1.03107 0.515536 0.856868i \(-0.327593\pi\)
0.515536 + 0.856868i \(0.327593\pi\)
\(570\) 0 0
\(571\) 22.4923 0.941273 0.470637 0.882327i \(-0.344024\pi\)
0.470637 + 0.882327i \(0.344024\pi\)
\(572\) 0 0
\(573\) 42.5866 1.77908
\(574\) 4.15778 0.173543
\(575\) 0 0
\(576\) 9.67019 0.402925
\(577\) 37.5334 1.56254 0.781268 0.624196i \(-0.214573\pi\)
0.781268 + 0.624196i \(0.214573\pi\)
\(578\) 18.1867 0.756469
\(579\) −6.71413 −0.279030
\(580\) 0 0
\(581\) 3.87448 0.160741
\(582\) −16.6109 −0.688543
\(583\) 0 0
\(584\) 3.01724 0.124854
\(585\) 0 0
\(586\) −10.1432 −0.419011
\(587\) −28.0102 −1.15611 −0.578053 0.816000i \(-0.696187\pi\)
−0.578053 + 0.816000i \(0.696187\pi\)
\(588\) −3.53100 −0.145616
\(589\) 39.7705 1.63872
\(590\) 0 0
\(591\) 14.1286 0.581172
\(592\) 6.33756 0.260472
\(593\) 17.7522 0.728996 0.364498 0.931204i \(-0.381241\pi\)
0.364498 + 0.931204i \(0.381241\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.46289 0.0599225
\(597\) 38.9446 1.59390
\(598\) −20.6301 −0.843628
\(599\) −24.4240 −0.997937 −0.498968 0.866620i \(-0.666288\pi\)
−0.498968 + 0.866620i \(0.666288\pi\)
\(600\) 0 0
\(601\) 4.35978 0.177839 0.0889195 0.996039i \(-0.471659\pi\)
0.0889195 + 0.996039i \(0.471659\pi\)
\(602\) −3.11309 −0.126880
\(603\) 13.5478 0.551708
\(604\) 3.38635 0.137789
\(605\) 0 0
\(606\) 9.82307 0.399035
\(607\) −39.6180 −1.60804 −0.804022 0.594599i \(-0.797311\pi\)
−0.804022 + 0.594599i \(0.797311\pi\)
\(608\) −10.1928 −0.413374
\(609\) −4.09365 −0.165883
\(610\) 0 0
\(611\) −13.4766 −0.545203
\(612\) 0.504404 0.0203893
\(613\) 2.60921 0.105385 0.0526926 0.998611i \(-0.483220\pi\)
0.0526926 + 0.998611i \(0.483220\pi\)
\(614\) −12.8136 −0.517115
\(615\) 0 0
\(616\) 0 0
\(617\) −3.53110 −0.142157 −0.0710783 0.997471i \(-0.522644\pi\)
−0.0710783 + 0.997471i \(0.522644\pi\)
\(618\) 52.7115 2.12037
\(619\) −6.03555 −0.242589 −0.121295 0.992617i \(-0.538705\pi\)
−0.121295 + 0.992617i \(0.538705\pi\)
\(620\) 0 0
\(621\) −32.2769 −1.29523
\(622\) −33.2498 −1.33320
\(623\) −3.08042 −0.123415
\(624\) −12.8958 −0.516243
\(625\) 0 0
\(626\) −14.3709 −0.574376
\(627\) 0 0
\(628\) −3.40583 −0.135907
\(629\) 3.32613 0.132622
\(630\) 0 0
\(631\) 1.08000 0.0429943 0.0214971 0.999769i \(-0.493157\pi\)
0.0214971 + 0.999769i \(0.493157\pi\)
\(632\) −19.7537 −0.785760
\(633\) 8.70184 0.345867
\(634\) 33.6146 1.33501
\(635\) 0 0
\(636\) −0.175997 −0.00697874
\(637\) 12.7653 0.505780
\(638\) 0 0
\(639\) 10.8792 0.430373
\(640\) 0 0
\(641\) 9.88535 0.390448 0.195224 0.980759i \(-0.437457\pi\)
0.195224 + 0.980759i \(0.437457\pi\)
\(642\) −0.807155 −0.0318559
\(643\) 28.8003 1.13577 0.567886 0.823108i \(-0.307762\pi\)
0.567886 + 0.823108i \(0.307762\pi\)
\(644\) −0.742048 −0.0292408
\(645\) 0 0
\(646\) 17.0262 0.669887
\(647\) 18.3084 0.719776 0.359888 0.932995i \(-0.382815\pi\)
0.359888 + 0.932995i \(0.382815\pi\)
\(648\) −33.0415 −1.29799
\(649\) 0 0
\(650\) 0 0
\(651\) 3.92096 0.153674
\(652\) 0.794238 0.0311048
\(653\) −31.9408 −1.24994 −0.624970 0.780649i \(-0.714889\pi\)
−0.624970 + 0.780649i \(0.714889\pi\)
\(654\) 29.2914 1.14539
\(655\) 0 0
\(656\) −30.9775 −1.20947
\(657\) 1.12095 0.0437326
\(658\) 3.34244 0.130302
\(659\) −27.0408 −1.05336 −0.526679 0.850064i \(-0.676563\pi\)
−0.526679 + 0.850064i \(0.676563\pi\)
\(660\) 0 0
\(661\) 47.2504 1.83783 0.918915 0.394456i \(-0.129067\pi\)
0.918915 + 0.394456i \(0.129067\pi\)
\(662\) 13.6247 0.529539
\(663\) −6.76806 −0.262850
\(664\) −33.1316 −1.28575
\(665\) 0 0
\(666\) 2.70236 0.104714
\(667\) 48.7923 1.88924
\(668\) −0.665906 −0.0257647
\(669\) 21.4566 0.829560
\(670\) 0 0
\(671\) 0 0
\(672\) −1.00491 −0.0387651
\(673\) 37.8762 1.46002 0.730011 0.683435i \(-0.239515\pi\)
0.730011 + 0.683435i \(0.239515\pi\)
\(674\) −3.04507 −0.117292
\(675\) 0 0
\(676\) 2.42071 0.0931041
\(677\) 33.9038 1.30303 0.651514 0.758637i \(-0.274134\pi\)
0.651514 + 0.758637i \(0.274134\pi\)
\(678\) 15.5395 0.596790
\(679\) 2.16001 0.0828937
\(680\) 0 0
\(681\) 11.7027 0.448448
\(682\) 0 0
\(683\) −38.6515 −1.47896 −0.739480 0.673178i \(-0.764929\pi\)
−0.739480 + 0.673178i \(0.764929\pi\)
\(684\) −2.00617 −0.0767078
\(685\) 0 0
\(686\) −6.38789 −0.243891
\(687\) 10.3479 0.394798
\(688\) 23.1941 0.884267
\(689\) 0.636266 0.0242398
\(690\) 0 0
\(691\) 26.3748 1.00334 0.501672 0.865058i \(-0.332718\pi\)
0.501672 + 0.865058i \(0.332718\pi\)
\(692\) 0.993680 0.0377741
\(693\) 0 0
\(694\) 27.4087 1.04042
\(695\) 0 0
\(696\) 35.0058 1.32689
\(697\) −16.2579 −0.615812
\(698\) 4.90653 0.185715
\(699\) 56.3064 2.12970
\(700\) 0 0
\(701\) −18.5841 −0.701910 −0.350955 0.936392i \(-0.614143\pi\)
−0.350955 + 0.936392i \(0.614143\pi\)
\(702\) 9.41135 0.355209
\(703\) −13.2291 −0.498943
\(704\) 0 0
\(705\) 0 0
\(706\) −3.98391 −0.149936
\(707\) −1.27735 −0.0480398
\(708\) 0.102314 0.00384519
\(709\) 23.7065 0.890315 0.445158 0.895452i \(-0.353148\pi\)
0.445158 + 0.895452i \(0.353148\pi\)
\(710\) 0 0
\(711\) −7.33882 −0.275227
\(712\) 26.3414 0.987186
\(713\) −46.7339 −1.75020
\(714\) 1.67860 0.0628202
\(715\) 0 0
\(716\) 0.839708 0.0313814
\(717\) −13.6728 −0.510619
\(718\) −30.0525 −1.12155
\(719\) −30.8533 −1.15063 −0.575317 0.817930i \(-0.695121\pi\)
−0.575317 + 0.817930i \(0.695121\pi\)
\(720\) 0 0
\(721\) −6.85439 −0.255271
\(722\) −42.6076 −1.58569
\(723\) −26.4671 −0.984320
\(724\) −4.28224 −0.159148
\(725\) 0 0
\(726\) 0 0
\(727\) 24.1222 0.894642 0.447321 0.894373i \(-0.352378\pi\)
0.447321 + 0.894373i \(0.352378\pi\)
\(728\) 1.92466 0.0713326
\(729\) 11.0523 0.409344
\(730\) 0 0
\(731\) 12.1729 0.450232
\(732\) 4.00193 0.147916
\(733\) −13.8477 −0.511475 −0.255738 0.966746i \(-0.582318\pi\)
−0.255738 + 0.966746i \(0.582318\pi\)
\(734\) 17.8994 0.660677
\(735\) 0 0
\(736\) 11.9775 0.441496
\(737\) 0 0
\(738\) −13.2090 −0.486228
\(739\) −27.5086 −1.01192 −0.505961 0.862557i \(-0.668862\pi\)
−0.505961 + 0.862557i \(0.668862\pi\)
\(740\) 0 0
\(741\) 26.9187 0.988881
\(742\) −0.157806 −0.00579323
\(743\) −2.69535 −0.0988828 −0.0494414 0.998777i \(-0.515744\pi\)
−0.0494414 + 0.998777i \(0.515744\pi\)
\(744\) −33.5290 −1.22923
\(745\) 0 0
\(746\) −32.8133 −1.20138
\(747\) −12.3089 −0.450360
\(748\) 0 0
\(749\) 0.104959 0.00383512
\(750\) 0 0
\(751\) 22.9844 0.838713 0.419357 0.907822i \(-0.362256\pi\)
0.419357 + 0.907822i \(0.362256\pi\)
\(752\) −24.9028 −0.908112
\(753\) 61.0877 2.22616
\(754\) −14.2269 −0.518114
\(755\) 0 0
\(756\) 0.338518 0.0123118
\(757\) −34.9560 −1.27050 −0.635249 0.772307i \(-0.719103\pi\)
−0.635249 + 0.772307i \(0.719103\pi\)
\(758\) −8.14205 −0.295733
\(759\) 0 0
\(760\) 0 0
\(761\) −37.2243 −1.34938 −0.674690 0.738102i \(-0.735723\pi\)
−0.674690 + 0.738102i \(0.735723\pi\)
\(762\) −33.0766 −1.19824
\(763\) −3.80894 −0.137893
\(764\) 5.32358 0.192600
\(765\) 0 0
\(766\) −0.480633 −0.0173660
\(767\) −0.369886 −0.0133558
\(768\) 12.1138 0.437118
\(769\) −30.1272 −1.08642 −0.543208 0.839598i \(-0.682790\pi\)
−0.543208 + 0.839598i \(0.682790\pi\)
\(770\) 0 0
\(771\) 0.735518 0.0264890
\(772\) −0.839306 −0.0302073
\(773\) −30.9081 −1.11169 −0.555844 0.831287i \(-0.687605\pi\)
−0.555844 + 0.831287i \(0.687605\pi\)
\(774\) 9.89006 0.355491
\(775\) 0 0
\(776\) −18.4708 −0.663062
\(777\) −1.30425 −0.0467896
\(778\) 2.46861 0.0885039
\(779\) 64.6627 2.31678
\(780\) 0 0
\(781\) 0 0
\(782\) −20.0073 −0.715460
\(783\) −22.2588 −0.795464
\(784\) 23.5885 0.842447
\(785\) 0 0
\(786\) −20.9334 −0.746669
\(787\) 34.5178 1.23043 0.615214 0.788360i \(-0.289070\pi\)
0.615214 + 0.788360i \(0.289070\pi\)
\(788\) 1.76616 0.0629167
\(789\) 45.6953 1.62680
\(790\) 0 0
\(791\) −2.02069 −0.0718474
\(792\) 0 0
\(793\) −14.4678 −0.513767
\(794\) −0.507731 −0.0180187
\(795\) 0 0
\(796\) 4.86831 0.172552
\(797\) 10.2353 0.362554 0.181277 0.983432i \(-0.441977\pi\)
0.181277 + 0.983432i \(0.441977\pi\)
\(798\) −6.67633 −0.236339
\(799\) −13.0697 −0.462373
\(800\) 0 0
\(801\) 9.78626 0.345780
\(802\) 29.9392 1.05719
\(803\) 0 0
\(804\) 6.28566 0.221678
\(805\) 0 0
\(806\) 13.6268 0.479982
\(807\) 12.4569 0.438504
\(808\) 10.9229 0.384267
\(809\) −35.8637 −1.26090 −0.630450 0.776230i \(-0.717130\pi\)
−0.630450 + 0.776230i \(0.717130\pi\)
\(810\) 0 0
\(811\) −18.5001 −0.649625 −0.324813 0.945778i \(-0.605301\pi\)
−0.324813 + 0.945778i \(0.605301\pi\)
\(812\) −0.511731 −0.0179582
\(813\) 33.8334 1.18659
\(814\) 0 0
\(815\) 0 0
\(816\) −12.5064 −0.437813
\(817\) −48.4155 −1.69384
\(818\) −38.6101 −1.34997
\(819\) 0.715042 0.0249856
\(820\) 0 0
\(821\) 27.2802 0.952086 0.476043 0.879422i \(-0.342071\pi\)
0.476043 + 0.879422i \(0.342071\pi\)
\(822\) 25.6588 0.894953
\(823\) −1.98450 −0.0691752 −0.0345876 0.999402i \(-0.511012\pi\)
−0.0345876 + 0.999402i \(0.511012\pi\)
\(824\) 58.6135 2.04190
\(825\) 0 0
\(826\) 0.0917386 0.00319199
\(827\) 12.3307 0.428782 0.214391 0.976748i \(-0.431223\pi\)
0.214391 + 0.976748i \(0.431223\pi\)
\(828\) 2.35743 0.0819263
\(829\) 0.309635 0.0107541 0.00537704 0.999986i \(-0.498288\pi\)
0.00537704 + 0.999986i \(0.498288\pi\)
\(830\) 0 0
\(831\) −45.2497 −1.56970
\(832\) −16.2200 −0.562328
\(833\) 12.3799 0.428939
\(834\) −51.2350 −1.77412
\(835\) 0 0
\(836\) 0 0
\(837\) 21.3198 0.736920
\(838\) 0.952579 0.0329063
\(839\) −6.70348 −0.231430 −0.115715 0.993282i \(-0.536916\pi\)
−0.115715 + 0.993282i \(0.536916\pi\)
\(840\) 0 0
\(841\) 4.64811 0.160280
\(842\) 31.0012 1.06837
\(843\) 48.3405 1.66493
\(844\) 1.08778 0.0374430
\(845\) 0 0
\(846\) −10.6187 −0.365077
\(847\) 0 0
\(848\) 1.17573 0.0403748
\(849\) 0.295634 0.0101461
\(850\) 0 0
\(851\) 15.5453 0.532887
\(852\) 5.04753 0.172925
\(853\) −44.5713 −1.52609 −0.763047 0.646343i \(-0.776297\pi\)
−0.763047 + 0.646343i \(0.776297\pi\)
\(854\) 3.58829 0.122789
\(855\) 0 0
\(856\) −0.897530 −0.0306769
\(857\) −32.2444 −1.10145 −0.550723 0.834688i \(-0.685648\pi\)
−0.550723 + 0.834688i \(0.685648\pi\)
\(858\) 0 0
\(859\) −18.1192 −0.618220 −0.309110 0.951026i \(-0.600031\pi\)
−0.309110 + 0.951026i \(0.600031\pi\)
\(860\) 0 0
\(861\) 6.37506 0.217262
\(862\) 4.96755 0.169196
\(863\) 8.21590 0.279672 0.139836 0.990175i \(-0.455342\pi\)
0.139836 + 0.990175i \(0.455342\pi\)
\(864\) −5.46407 −0.185892
\(865\) 0 0
\(866\) −17.9832 −0.611093
\(867\) 27.8854 0.947039
\(868\) 0.490143 0.0166365
\(869\) 0 0
\(870\) 0 0
\(871\) −22.7240 −0.769973
\(872\) 32.5711 1.10300
\(873\) −6.86219 −0.232250
\(874\) 79.5752 2.69167
\(875\) 0 0
\(876\) 0.520081 0.0175719
\(877\) 33.0314 1.11539 0.557695 0.830046i \(-0.311686\pi\)
0.557695 + 0.830046i \(0.311686\pi\)
\(878\) 20.6460 0.696769
\(879\) −15.5524 −0.524569
\(880\) 0 0
\(881\) 30.1182 1.01471 0.507354 0.861738i \(-0.330624\pi\)
0.507354 + 0.861738i \(0.330624\pi\)
\(882\) 10.0582 0.338678
\(883\) −19.0574 −0.641332 −0.320666 0.947192i \(-0.603907\pi\)
−0.320666 + 0.947192i \(0.603907\pi\)
\(884\) −0.846047 −0.0284556
\(885\) 0 0
\(886\) −1.87118 −0.0628634
\(887\) −22.3685 −0.751059 −0.375530 0.926810i \(-0.622539\pi\)
−0.375530 + 0.926810i \(0.622539\pi\)
\(888\) 11.1529 0.374267
\(889\) 4.30115 0.144256
\(890\) 0 0
\(891\) 0 0
\(892\) 2.68220 0.0898068
\(893\) 51.9822 1.73952
\(894\) −15.4664 −0.517275
\(895\) 0 0
\(896\) 3.03106 0.101261
\(897\) −31.6318 −1.05616
\(898\) −9.13091 −0.304702
\(899\) −32.2286 −1.07489
\(900\) 0 0
\(901\) 0.617057 0.0205572
\(902\) 0 0
\(903\) −4.77326 −0.158844
\(904\) 17.2794 0.574703
\(905\) 0 0
\(906\) −35.8021 −1.18944
\(907\) −42.6593 −1.41648 −0.708240 0.705972i \(-0.750511\pi\)
−0.708240 + 0.705972i \(0.750511\pi\)
\(908\) 1.46290 0.0485482
\(909\) 4.05805 0.134597
\(910\) 0 0
\(911\) −37.1240 −1.22997 −0.614987 0.788537i \(-0.710839\pi\)
−0.614987 + 0.788537i \(0.710839\pi\)
\(912\) 49.7419 1.64712
\(913\) 0 0
\(914\) 55.9756 1.85151
\(915\) 0 0
\(916\) 1.29355 0.0427401
\(917\) 2.72209 0.0898914
\(918\) 9.12723 0.301243
\(919\) −3.35848 −0.110786 −0.0553930 0.998465i \(-0.517641\pi\)
−0.0553930 + 0.998465i \(0.517641\pi\)
\(920\) 0 0
\(921\) −19.6469 −0.647388
\(922\) 33.2471 1.09494
\(923\) −18.2479 −0.600636
\(924\) 0 0
\(925\) 0 0
\(926\) 10.4309 0.342781
\(927\) 21.7759 0.715214
\(928\) 8.25992 0.271145
\(929\) −20.1391 −0.660742 −0.330371 0.943851i \(-0.607174\pi\)
−0.330371 + 0.943851i \(0.607174\pi\)
\(930\) 0 0
\(931\) −49.2388 −1.61374
\(932\) 7.03863 0.230558
\(933\) −50.9815 −1.66906
\(934\) −21.1078 −0.690669
\(935\) 0 0
\(936\) −6.11449 −0.199858
\(937\) −10.5300 −0.344000 −0.172000 0.985097i \(-0.555023\pi\)
−0.172000 + 0.985097i \(0.555023\pi\)
\(938\) 5.63597 0.184021
\(939\) −22.0346 −0.719073
\(940\) 0 0
\(941\) 19.3745 0.631589 0.315795 0.948828i \(-0.397729\pi\)
0.315795 + 0.948828i \(0.397729\pi\)
\(942\) 36.0081 1.17321
\(943\) −75.9844 −2.47439
\(944\) −0.683498 −0.0222460
\(945\) 0 0
\(946\) 0 0
\(947\) −3.79793 −0.123416 −0.0617081 0.998094i \(-0.519655\pi\)
−0.0617081 + 0.998094i \(0.519655\pi\)
\(948\) −3.40494 −0.110587
\(949\) −1.88020 −0.0610339
\(950\) 0 0
\(951\) 51.5407 1.67132
\(952\) 1.86655 0.0604953
\(953\) −0.535767 −0.0173552 −0.00867760 0.999962i \(-0.502762\pi\)
−0.00867760 + 0.999962i \(0.502762\pi\)
\(954\) 0.501337 0.0162314
\(955\) 0 0
\(956\) −1.70918 −0.0552788
\(957\) 0 0
\(958\) 18.9819 0.613276
\(959\) −3.33656 −0.107743
\(960\) 0 0
\(961\) −0.130938 −0.00422380
\(962\) −4.53273 −0.146141
\(963\) −0.333447 −0.0107452
\(964\) −3.30854 −0.106561
\(965\) 0 0
\(966\) 7.84528 0.252418
\(967\) −36.5291 −1.17470 −0.587348 0.809335i \(-0.699828\pi\)
−0.587348 + 0.809335i \(0.699828\pi\)
\(968\) 0 0
\(969\) 26.1060 0.838645
\(970\) 0 0
\(971\) 20.6281 0.661986 0.330993 0.943633i \(-0.392616\pi\)
0.330993 + 0.943633i \(0.392616\pi\)
\(972\) −2.77925 −0.0891444
\(973\) 6.66238 0.213586
\(974\) 47.4878 1.52161
\(975\) 0 0
\(976\) −26.7345 −0.855752
\(977\) 23.5349 0.752950 0.376475 0.926427i \(-0.377136\pi\)
0.376475 + 0.926427i \(0.377136\pi\)
\(978\) −8.39706 −0.268508
\(979\) 0 0
\(980\) 0 0
\(981\) 12.1007 0.386346
\(982\) 46.5443 1.48529
\(983\) 40.6736 1.29729 0.648643 0.761093i \(-0.275337\pi\)
0.648643 + 0.761093i \(0.275337\pi\)
\(984\) −54.5146 −1.73786
\(985\) 0 0
\(986\) −13.7974 −0.439400
\(987\) 5.12490 0.163127
\(988\) 3.36499 0.107055
\(989\) 56.8925 1.80908
\(990\) 0 0
\(991\) 23.1498 0.735377 0.367688 0.929949i \(-0.380149\pi\)
0.367688 + 0.929949i \(0.380149\pi\)
\(992\) −7.91147 −0.251189
\(993\) 20.8905 0.662941
\(994\) 4.52581 0.143550
\(995\) 0 0
\(996\) −5.71088 −0.180956
\(997\) 5.32844 0.168753 0.0843767 0.996434i \(-0.473110\pi\)
0.0843767 + 0.996434i \(0.473110\pi\)
\(998\) −35.0127 −1.10831
\(999\) −7.09170 −0.224371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3025.2.a.bj.1.4 8
5.4 even 2 3025.2.a.bm.1.5 8
11.2 odd 10 275.2.h.e.26.2 yes 16
11.6 odd 10 275.2.h.e.201.2 yes 16
11.10 odd 2 3025.2.a.bn.1.5 8
55.2 even 20 275.2.z.c.224.6 32
55.13 even 20 275.2.z.c.224.3 32
55.17 even 20 275.2.z.c.124.3 32
55.24 odd 10 275.2.h.c.26.3 16
55.28 even 20 275.2.z.c.124.6 32
55.39 odd 10 275.2.h.c.201.3 yes 16
55.54 odd 2 3025.2.a.bi.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.3 16 55.24 odd 10
275.2.h.c.201.3 yes 16 55.39 odd 10
275.2.h.e.26.2 yes 16 11.2 odd 10
275.2.h.e.201.2 yes 16 11.6 odd 10
275.2.z.c.124.3 32 55.17 even 20
275.2.z.c.124.6 32 55.28 even 20
275.2.z.c.224.3 32 55.13 even 20
275.2.z.c.224.6 32 55.2 even 20
3025.2.a.bi.1.4 8 55.54 odd 2
3025.2.a.bj.1.4 8 1.1 even 1 trivial
3025.2.a.bm.1.5 8 5.4 even 2
3025.2.a.bn.1.5 8 11.10 odd 2