Properties

Label 243.2.g.a.226.7
Level $243$
Weight $2$
Character 243.226
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 226.7
Character \(\chi\) \(=\) 243.226
Dual form 243.2.g.a.100.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32716 - 1.78269i) q^{2} +(-0.843016 - 2.81587i) q^{4} +(-2.46097 - 1.61861i) q^{5} +(-2.02832 - 2.14989i) q^{7} +(-1.96178 - 0.714030i) q^{8} +(-6.15160 + 2.23900i) q^{10} +(4.74276 + 2.38190i) q^{11} +(-0.291219 + 0.675122i) q^{13} +(-6.52450 + 0.762605i) q^{14} +(1.03509 - 0.680789i) q^{16} +(-1.11298 - 0.933897i) q^{17} +(4.21153 - 3.53390i) q^{19} +(-2.48315 + 8.29430i) q^{20} +(10.5406 - 5.29370i) q^{22} +(-0.309397 + 0.327942i) q^{23} +(1.45610 + 3.37562i) q^{25} +(0.817038 + 1.41515i) q^{26} +(-4.34391 + 7.52387i) q^{28} +(3.53065 + 0.412674i) q^{29} +(-1.08263 - 0.256589i) q^{31} +(0.402873 - 6.91707i) q^{32} +(-3.14195 + 0.744656i) q^{34} +(1.51181 + 8.57387i) q^{35} +(-0.643205 + 3.64780i) q^{37} +(-0.710448 - 12.1979i) q^{38} +(3.67216 + 4.93256i) q^{40} +(6.10675 + 8.20279i) q^{41} +(0.461153 + 7.91770i) q^{43} +(2.70891 - 15.3630i) q^{44} +(0.173998 + 0.986793i) q^{46} +(-5.37376 + 1.27360i) q^{47} +(-0.100945 + 1.73316i) q^{49} +(7.95018 + 1.88423i) q^{50} +(2.14656 + 0.250897i) q^{52} +(1.83020 - 3.17001i) q^{53} +(-7.81644 - 13.5385i) q^{55} +(2.44403 + 5.66589i) q^{56} +(5.42142 - 5.74637i) q^{58} +(-6.40358 + 3.21600i) q^{59} +(-1.24903 + 4.17204i) q^{61} +(-1.89425 + 1.58947i) q^{62} +(-9.89820 - 8.30558i) q^{64} +(1.80944 - 1.19009i) q^{65} +(-11.2400 + 1.31377i) q^{67} +(-1.69148 + 3.92129i) q^{68} +(17.2910 + 8.68386i) q^{70} +(12.6408 - 4.60088i) q^{71} +(3.72979 + 1.35753i) q^{73} +(5.64926 + 5.98787i) q^{74} +(-13.5014 - 8.88000i) q^{76} +(-4.49899 - 15.0277i) q^{77} +(1.69751 - 2.28015i) q^{79} -3.64926 q^{80} +22.7277 q^{82} +(-0.210107 + 0.282223i) q^{83} +(1.22739 + 4.09977i) q^{85} +(14.7268 + 9.68599i) q^{86} +(-7.60351 - 8.05925i) q^{88} +(-5.34347 - 1.94487i) q^{89} +(2.04212 - 0.743272i) q^{91} +(1.18427 + 0.594763i) q^{92} +(-4.86142 + 11.2700i) q^{94} +(-16.0845 + 1.88000i) q^{95} +(5.88981 - 3.87379i) q^{97} +(2.95571 + 2.48014i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{19}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32716 1.78269i 0.938447 1.26055i −0.0269146 0.999638i \(-0.508568\pi\)
0.965362 0.260915i \(-0.0840244\pi\)
\(3\) 0 0
\(4\) −0.843016 2.81587i −0.421508 1.40794i
\(5\) −2.46097 1.61861i −1.10058 0.723864i −0.136811 0.990597i \(-0.543685\pi\)
−0.963770 + 0.266734i \(0.914056\pi\)
\(6\) 0 0
\(7\) −2.02832 2.14989i −0.766632 0.812582i 0.220008 0.975498i \(-0.429392\pi\)
−0.986640 + 0.162916i \(0.947910\pi\)
\(8\) −1.96178 0.714030i −0.693594 0.252448i
\(9\) 0 0
\(10\) −6.15160 + 2.23900i −1.94531 + 0.708033i
\(11\) 4.74276 + 2.38190i 1.43000 + 0.718171i 0.984216 0.176971i \(-0.0566299\pi\)
0.445781 + 0.895142i \(0.352926\pi\)
\(12\) 0 0
\(13\) −0.291219 + 0.675122i −0.0807696 + 0.187245i −0.953816 0.300393i \(-0.902882\pi\)
0.873046 + 0.487638i \(0.162141\pi\)
\(14\) −6.52450 + 0.762605i −1.74375 + 0.203815i
\(15\) 0 0
\(16\) 1.03509 0.680789i 0.258772 0.170197i
\(17\) −1.11298 0.933897i −0.269936 0.226503i 0.497764 0.867312i \(-0.334155\pi\)
−0.767700 + 0.640809i \(0.778599\pi\)
\(18\) 0 0
\(19\) 4.21153 3.53390i 0.966192 0.810731i −0.0157573 0.999876i \(-0.505016\pi\)
0.981949 + 0.189145i \(0.0605715\pi\)
\(20\) −2.48315 + 8.29430i −0.555249 + 1.85466i
\(21\) 0 0
\(22\) 10.5406 5.29370i 2.24727 1.12862i
\(23\) −0.309397 + 0.327942i −0.0645138 + 0.0683806i −0.758827 0.651293i \(-0.774227\pi\)
0.694313 + 0.719673i \(0.255708\pi\)
\(24\) 0 0
\(25\) 1.45610 + 3.37562i 0.291220 + 0.675125i
\(26\) 0.817038 + 1.41515i 0.160234 + 0.277534i
\(27\) 0 0
\(28\) −4.34391 + 7.52387i −0.820921 + 1.42188i
\(29\) 3.53065 + 0.412674i 0.655625 + 0.0766316i 0.437400 0.899267i \(-0.355899\pi\)
0.218225 + 0.975898i \(0.429973\pi\)
\(30\) 0 0
\(31\) −1.08263 0.256589i −0.194447 0.0460847i 0.132238 0.991218i \(-0.457784\pi\)
−0.326685 + 0.945133i \(0.605932\pi\)
\(32\) 0.402873 6.91707i 0.0712186 1.22278i
\(33\) 0 0
\(34\) −3.14195 + 0.744656i −0.538840 + 0.127707i
\(35\) 1.51181 + 8.57387i 0.255542 + 1.44925i
\(36\) 0 0
\(37\) −0.643205 + 3.64780i −0.105742 + 0.599695i 0.885179 + 0.465251i \(0.154036\pi\)
−0.990921 + 0.134444i \(0.957075\pi\)
\(38\) −0.710448 12.1979i −0.115250 1.97876i
\(39\) 0 0
\(40\) 3.67216 + 4.93256i 0.580619 + 0.779907i
\(41\) 6.10675 + 8.20279i 0.953714 + 1.28106i 0.959685 + 0.281078i \(0.0906921\pi\)
−0.00597066 + 0.999982i \(0.501901\pi\)
\(42\) 0 0
\(43\) 0.461153 + 7.91770i 0.0703252 + 1.20744i 0.830237 + 0.557411i \(0.188205\pi\)
−0.759912 + 0.650026i \(0.774758\pi\)
\(44\) 2.70891 15.3630i 0.408383 2.31606i
\(45\) 0 0
\(46\) 0.173998 + 0.986793i 0.0256546 + 0.145495i
\(47\) −5.37376 + 1.27360i −0.783843 + 0.185774i −0.603004 0.797738i \(-0.706030\pi\)
−0.180840 + 0.983513i \(0.557881\pi\)
\(48\) 0 0
\(49\) −0.100945 + 1.73316i −0.0144207 + 0.247594i
\(50\) 7.95018 + 1.88423i 1.12433 + 0.266470i
\(51\) 0 0
\(52\) 2.14656 + 0.250897i 0.297674 + 0.0347931i
\(53\) 1.83020 3.17001i 0.251398 0.435434i −0.712513 0.701659i \(-0.752443\pi\)
0.963911 + 0.266225i \(0.0857764\pi\)
\(54\) 0 0
\(55\) −7.81644 13.5385i −1.05397 1.82553i
\(56\) 2.44403 + 5.66589i 0.326597 + 0.757136i
\(57\) 0 0
\(58\) 5.42142 5.74637i 0.711868 0.754536i
\(59\) −6.40358 + 3.21600i −0.833675 + 0.418687i −0.813821 0.581116i \(-0.802616\pi\)
−0.0198540 + 0.999803i \(0.506320\pi\)
\(60\) 0 0
\(61\) −1.24903 + 4.17204i −0.159922 + 0.534175i −0.999965 0.00834355i \(-0.997344\pi\)
0.840044 + 0.542519i \(0.182529\pi\)
\(62\) −1.89425 + 1.58947i −0.240570 + 0.201862i
\(63\) 0 0
\(64\) −9.89820 8.30558i −1.23728 1.03820i
\(65\) 1.80944 1.19009i 0.224433 0.147612i
\(66\) 0 0
\(67\) −11.2400 + 1.31377i −1.37318 + 0.160502i −0.770481 0.637463i \(-0.779984\pi\)
−0.602704 + 0.797965i \(0.705910\pi\)
\(68\) −1.69148 + 3.92129i −0.205122 + 0.475526i
\(69\) 0 0
\(70\) 17.2910 + 8.68386i 2.06667 + 1.03792i
\(71\) 12.6408 4.60088i 1.50019 0.546024i 0.544079 0.839034i \(-0.316879\pi\)
0.956109 + 0.293010i \(0.0946568\pi\)
\(72\) 0 0
\(73\) 3.72979 + 1.35753i 0.436538 + 0.158887i 0.550935 0.834548i \(-0.314271\pi\)
−0.114397 + 0.993435i \(0.536493\pi\)
\(74\) 5.64926 + 5.98787i 0.656713 + 0.696075i
\(75\) 0 0
\(76\) −13.5014 8.88000i −1.54872 1.01861i
\(77\) −4.49899 15.0277i −0.512707 1.71256i
\(78\) 0 0
\(79\) 1.69751 2.28015i 0.190985 0.256537i −0.696308 0.717743i \(-0.745175\pi\)
0.887293 + 0.461205i \(0.152583\pi\)
\(80\) −3.64926 −0.408000
\(81\) 0 0
\(82\) 22.7277 2.50986
\(83\) −0.210107 + 0.282223i −0.0230623 + 0.0309780i −0.813505 0.581558i \(-0.802443\pi\)
0.790442 + 0.612536i \(0.209851\pi\)
\(84\) 0 0
\(85\) 1.22739 + 4.09977i 0.133129 + 0.444682i
\(86\) 14.7268 + 9.68599i 1.58804 + 1.04447i
\(87\) 0 0
\(88\) −7.60351 8.05925i −0.810537 0.859119i
\(89\) −5.34347 1.94487i −0.566407 0.206155i 0.0429141 0.999079i \(-0.486336\pi\)
−0.609321 + 0.792923i \(0.708558\pi\)
\(90\) 0 0
\(91\) 2.04212 0.743272i 0.214073 0.0779160i
\(92\) 1.18427 + 0.594763i 0.123469 + 0.0620083i
\(93\) 0 0
\(94\) −4.86142 + 11.2700i −0.501417 + 1.16242i
\(95\) −16.0845 + 1.88000i −1.65023 + 0.192884i
\(96\) 0 0
\(97\) 5.88981 3.87379i 0.598019 0.393323i −0.214103 0.976811i \(-0.568683\pi\)
0.812122 + 0.583488i \(0.198312\pi\)
\(98\) 2.95571 + 2.48014i 0.298572 + 0.250532i
\(99\) 0 0
\(100\) 8.27780 6.94590i 0.827780 0.694590i
\(101\) 3.04350 10.1660i 0.302839 1.01155i −0.662174 0.749351i \(-0.730366\pi\)
0.965013 0.262203i \(-0.0844490\pi\)
\(102\) 0 0
\(103\) −15.9257 + 7.99820i −1.56921 + 0.788086i −0.999432 0.0337138i \(-0.989267\pi\)
−0.569776 + 0.821800i \(0.692970\pi\)
\(104\) 1.05336 1.11650i 0.103291 0.109482i
\(105\) 0 0
\(106\) −3.22216 7.46981i −0.312964 0.725532i
\(107\) −0.0249146 0.0431534i −0.00240859 0.00417180i 0.864819 0.502084i \(-0.167433\pi\)
−0.867227 + 0.497913i \(0.834100\pi\)
\(108\) 0 0
\(109\) 0.202520 0.350775i 0.0193979 0.0335981i −0.856164 0.516705i \(-0.827158\pi\)
0.875561 + 0.483107i \(0.160492\pi\)
\(110\) −34.5086 4.03348i −3.29027 0.384577i
\(111\) 0 0
\(112\) −3.56311 0.844473i −0.336682 0.0797952i
\(113\) −0.661442 + 11.3565i −0.0622232 + 1.06833i 0.812266 + 0.583287i \(0.198234\pi\)
−0.874490 + 0.485044i \(0.838803\pi\)
\(114\) 0 0
\(115\) 1.29223 0.306264i 0.120501 0.0285592i
\(116\) −1.81436 10.2897i −0.168459 0.955379i
\(117\) 0 0
\(118\) −2.76547 + 15.6838i −0.254582 + 1.44381i
\(119\) 0.249690 + 4.28701i 0.0228891 + 0.392990i
\(120\) 0 0
\(121\) 10.2516 + 13.7703i 0.931962 + 1.25184i
\(122\) 5.77980 + 7.76362i 0.523278 + 0.702885i
\(123\) 0 0
\(124\) 0.190157 + 3.26486i 0.0170766 + 0.293193i
\(125\) −0.677067 + 3.83984i −0.0605587 + 0.343445i
\(126\) 0 0
\(127\) 2.26532 + 12.8473i 0.201015 + 1.14001i 0.903589 + 0.428401i \(0.140923\pi\)
−0.702574 + 0.711611i \(0.747966\pi\)
\(128\) −14.4588 + 3.42680i −1.27799 + 0.302889i
\(129\) 0 0
\(130\) 0.279866 4.80512i 0.0245459 0.421436i
\(131\) −7.79184 1.84670i −0.680776 0.161347i −0.124343 0.992239i \(-0.539682\pi\)
−0.556433 + 0.830892i \(0.687830\pi\)
\(132\) 0 0
\(133\) −16.1398 1.88647i −1.39950 0.163578i
\(134\) −12.5753 + 21.7810i −1.08634 + 1.88160i
\(135\) 0 0
\(136\) 1.51658 + 2.62680i 0.130046 + 0.225246i
\(137\) 4.08774 + 9.47644i 0.349239 + 0.809627i 0.998784 + 0.0493036i \(0.0157002\pi\)
−0.649545 + 0.760323i \(0.725041\pi\)
\(138\) 0 0
\(139\) 11.9776 12.6956i 1.01593 1.07682i 0.0188987 0.999821i \(-0.493984\pi\)
0.997031 0.0770012i \(-0.0245345\pi\)
\(140\) 22.8684 11.4850i 1.93274 0.970656i
\(141\) 0 0
\(142\) 8.57449 28.6408i 0.719555 2.40348i
\(143\) −2.98926 + 2.50829i −0.249974 + 0.209753i
\(144\) 0 0
\(145\) −8.02088 6.73032i −0.666098 0.558923i
\(146\) 7.37010 4.84739i 0.609954 0.401173i
\(147\) 0 0
\(148\) 10.8140 1.26397i 0.888902 0.103898i
\(149\) 3.29309 7.63423i 0.269780 0.625421i −0.728437 0.685113i \(-0.759753\pi\)
0.998217 + 0.0596926i \(0.0190120\pi\)
\(150\) 0 0
\(151\) −15.7285 7.89913i −1.27996 0.642822i −0.326748 0.945111i \(-0.605953\pi\)
−0.953216 + 0.302289i \(0.902249\pi\)
\(152\) −10.7854 + 3.92557i −0.874812 + 0.318406i
\(153\) 0 0
\(154\) −32.7606 11.9239i −2.63992 0.960854i
\(155\) 2.24902 + 2.38382i 0.180645 + 0.191473i
\(156\) 0 0
\(157\) 1.80033 + 1.18409i 0.143682 + 0.0945009i 0.619315 0.785143i \(-0.287411\pi\)
−0.475633 + 0.879644i \(0.657781\pi\)
\(158\) −1.81193 6.05228i −0.144150 0.481493i
\(159\) 0 0
\(160\) −12.1875 + 16.3706i −0.963505 + 1.29421i
\(161\) 1.33260 0.105023
\(162\) 0 0
\(163\) 9.47594 0.742213 0.371106 0.928590i \(-0.378979\pi\)
0.371106 + 0.928590i \(0.378979\pi\)
\(164\) 17.9499 24.1109i 1.40165 1.88275i
\(165\) 0 0
\(166\) 0.224270 + 0.749113i 0.0174067 + 0.0581424i
\(167\) −3.19286 2.09998i −0.247071 0.162501i 0.419933 0.907555i \(-0.362053\pi\)
−0.667005 + 0.745054i \(0.732424\pi\)
\(168\) 0 0
\(169\) 8.55016 + 9.06264i 0.657705 + 0.697126i
\(170\) 8.93757 + 3.25301i 0.685480 + 0.249494i
\(171\) 0 0
\(172\) 21.9064 7.97329i 1.67035 0.607958i
\(173\) −7.47680 3.75499i −0.568451 0.285487i 0.141269 0.989971i \(-0.454882\pi\)
−0.709719 + 0.704485i \(0.751178\pi\)
\(174\) 0 0
\(175\) 4.30378 9.97729i 0.325336 0.754213i
\(176\) 6.53076 0.763336i 0.492274 0.0575386i
\(177\) 0 0
\(178\) −10.5588 + 6.94461i −0.791413 + 0.520521i
\(179\) −4.19854 3.52299i −0.313814 0.263321i 0.472252 0.881463i \(-0.343441\pi\)
−0.786066 + 0.618142i \(0.787886\pi\)
\(180\) 0 0
\(181\) 16.7963 14.0938i 1.24846 1.04758i 0.251645 0.967820i \(-0.419028\pi\)
0.996814 0.0797621i \(-0.0254161\pi\)
\(182\) 1.38521 4.62692i 0.102678 0.342970i
\(183\) 0 0
\(184\) 0.841130 0.422431i 0.0620089 0.0311421i
\(185\) 7.48727 7.93604i 0.550475 0.583469i
\(186\) 0 0
\(187\) −3.05412 7.08025i −0.223340 0.517759i
\(188\) 8.11647 + 14.0581i 0.591955 + 1.02530i
\(189\) 0 0
\(190\) −17.9953 + 31.1687i −1.30551 + 2.26122i
\(191\) −12.6562 1.47930i −0.915772 0.107038i −0.354865 0.934917i \(-0.615473\pi\)
−0.560907 + 0.827879i \(0.689547\pi\)
\(192\) 0 0
\(193\) 19.7847 + 4.68906i 1.42413 + 0.337526i 0.869238 0.494394i \(-0.164610\pi\)
0.554896 + 0.831920i \(0.312758\pi\)
\(194\) 0.910976 15.6409i 0.0654043 1.12295i
\(195\) 0 0
\(196\) 4.96544 1.17683i 0.354674 0.0840594i
\(197\) 0.696981 + 3.95277i 0.0496578 + 0.281623i 0.999518 0.0310522i \(-0.00988582\pi\)
−0.949860 + 0.312676i \(0.898775\pi\)
\(198\) 0 0
\(199\) 0.667809 3.78734i 0.0473398 0.268477i −0.951946 0.306266i \(-0.900920\pi\)
0.999286 + 0.0377889i \(0.0120314\pi\)
\(200\) −0.446257 7.66194i −0.0315551 0.541781i
\(201\) 0 0
\(202\) −14.0836 18.9176i −0.990918 1.33103i
\(203\) −6.27407 8.42754i −0.440354 0.591497i
\(204\) 0 0
\(205\) −1.75145 30.0713i −0.122327 2.10027i
\(206\) −6.87773 + 39.0056i −0.479195 + 2.71765i
\(207\) 0 0
\(208\) 0.158178 + 0.897070i 0.0109676 + 0.0622006i
\(209\) 28.3917 6.72896i 1.96390 0.465452i
\(210\) 0 0
\(211\) −0.414462 + 7.11605i −0.0285328 + 0.489889i 0.953526 + 0.301312i \(0.0974245\pi\)
−0.982058 + 0.188577i \(0.939613\pi\)
\(212\) −10.4692 2.48125i −0.719029 0.170413i
\(213\) 0 0
\(214\) −0.109995 0.0128566i −0.00751911 0.000878858i
\(215\) 11.6808 20.2317i 0.796621 1.37979i
\(216\) 0 0
\(217\) 1.64429 + 2.84799i 0.111621 + 0.193334i
\(218\) −0.356546 0.826566i −0.0241483 0.0559821i
\(219\) 0 0
\(220\) −31.5332 + 33.4233i −2.12597 + 2.25340i
\(221\) 0.954614 0.479425i 0.0642143 0.0322496i
\(222\) 0 0
\(223\) −4.25881 + 14.2254i −0.285191 + 0.952604i 0.688596 + 0.725145i \(0.258227\pi\)
−0.973788 + 0.227460i \(0.926958\pi\)
\(224\) −15.6881 + 13.1639i −1.04820 + 0.879548i
\(225\) 0 0
\(226\) 19.3673 + 16.2511i 1.28829 + 1.08101i
\(227\) −11.2427 + 7.39441i −0.746201 + 0.490784i −0.864774 0.502161i \(-0.832538\pi\)
0.118573 + 0.992945i \(0.462168\pi\)
\(228\) 0 0
\(229\) 3.23737 0.378394i 0.213931 0.0250050i −0.00845203 0.999964i \(-0.502690\pi\)
0.222383 + 0.974959i \(0.428616\pi\)
\(230\) 1.16903 2.71011i 0.0770833 0.178699i
\(231\) 0 0
\(232\) −6.63170 3.33056i −0.435392 0.218662i
\(233\) −7.77413 + 2.82955i −0.509300 + 0.185370i −0.583872 0.811846i \(-0.698463\pi\)
0.0745722 + 0.997216i \(0.476241\pi\)
\(234\) 0 0
\(235\) 15.2861 + 5.56370i 0.997158 + 0.362936i
\(236\) 14.4542 + 15.3205i 0.940886 + 0.997280i
\(237\) 0 0
\(238\) 7.97380 + 5.24445i 0.516865 + 0.339947i
\(239\) 3.74646 + 12.5141i 0.242339 + 0.809467i 0.989463 + 0.144783i \(0.0462485\pi\)
−0.747125 + 0.664684i \(0.768566\pi\)
\(240\) 0 0
\(241\) −0.377857 + 0.507550i −0.0243399 + 0.0326941i −0.814127 0.580687i \(-0.802784\pi\)
0.789787 + 0.613382i \(0.210191\pi\)
\(242\) 38.1537 2.45261
\(243\) 0 0
\(244\) 12.8009 0.819493
\(245\) 3.05372 4.10186i 0.195095 0.262058i
\(246\) 0 0
\(247\) 1.15933 + 3.87244i 0.0737665 + 0.246397i
\(248\) 1.94068 + 1.27640i 0.123233 + 0.0810517i
\(249\) 0 0
\(250\) 5.94666 + 6.30310i 0.376100 + 0.398643i
\(251\) −12.9984 4.73104i −0.820454 0.298621i −0.102519 0.994731i \(-0.532690\pi\)
−0.717935 + 0.696110i \(0.754912\pi\)
\(252\) 0 0
\(253\) −2.24852 + 0.818396i −0.141364 + 0.0514521i
\(254\) 25.9092 + 13.0121i 1.62569 + 0.816451i
\(255\) 0 0
\(256\) −2.84463 + 6.59459i −0.177789 + 0.412162i
\(257\) 26.0284 3.04229i 1.62361 0.189773i 0.744916 0.667158i \(-0.232490\pi\)
0.878694 + 0.477386i \(0.158415\pi\)
\(258\) 0 0
\(259\) 9.14699 6.01607i 0.568366 0.373820i
\(260\) −4.87652 4.09189i −0.302429 0.253768i
\(261\) 0 0
\(262\) −13.6332 + 11.4396i −0.842259 + 0.706739i
\(263\) 0.407994 1.36280i 0.0251580 0.0840336i −0.944489 0.328544i \(-0.893442\pi\)
0.969647 + 0.244510i \(0.0786272\pi\)
\(264\) 0 0
\(265\) −9.63508 + 4.83892i −0.591878 + 0.297252i
\(266\) −24.7832 + 26.2686i −1.51955 + 1.61063i
\(267\) 0 0
\(268\) 13.1749 + 30.5429i 0.804785 + 1.86570i
\(269\) 2.73320 + 4.73405i 0.166646 + 0.288640i 0.937239 0.348688i \(-0.113373\pi\)
−0.770592 + 0.637328i \(0.780039\pi\)
\(270\) 0 0
\(271\) −15.3667 + 26.6158i −0.933458 + 1.61680i −0.156099 + 0.987741i \(0.549892\pi\)
−0.777360 + 0.629056i \(0.783442\pi\)
\(272\) −1.78782 0.208966i −0.108402 0.0126704i
\(273\) 0 0
\(274\) 22.3187 + 5.28962i 1.34832 + 0.319558i
\(275\) −1.13447 + 19.4781i −0.0684111 + 1.17457i
\(276\) 0 0
\(277\) 4.43276 1.05058i 0.266339 0.0631234i −0.0952766 0.995451i \(-0.530374\pi\)
0.361615 + 0.932327i \(0.382225\pi\)
\(278\) −6.73596 38.2015i −0.403996 2.29117i
\(279\) 0 0
\(280\) 3.15617 17.8995i 0.188617 1.06970i
\(281\) 1.06252 + 18.2428i 0.0633848 + 1.08827i 0.868671 + 0.495389i \(0.164974\pi\)
−0.805287 + 0.592886i \(0.797989\pi\)
\(282\) 0 0
\(283\) −14.1444 18.9992i −0.840794 1.12938i −0.990068 0.140587i \(-0.955101\pi\)
0.149274 0.988796i \(-0.452306\pi\)
\(284\) −23.6119 31.7163i −1.40111 1.88202i
\(285\) 0 0
\(286\) 0.504261 + 8.65783i 0.0298176 + 0.511948i
\(287\) 5.24867 29.7667i 0.309819 1.75707i
\(288\) 0 0
\(289\) −2.58547 14.6629i −0.152086 0.862525i
\(290\) −22.6431 + 5.36652i −1.32965 + 0.315133i
\(291\) 0 0
\(292\) 0.678361 11.6470i 0.0396981 0.681590i
\(293\) 4.63951 + 1.09958i 0.271043 + 0.0642384i 0.363890 0.931442i \(-0.381448\pi\)
−0.0928467 + 0.995680i \(0.529597\pi\)
\(294\) 0 0
\(295\) 20.9645 + 2.45040i 1.22060 + 0.142668i
\(296\) 3.86647 6.69691i 0.224734 0.389250i
\(297\) 0 0
\(298\) −9.23901 16.0024i −0.535202 0.926996i
\(299\) −0.131298 0.304384i −0.00759318 0.0176030i
\(300\) 0 0
\(301\) 16.0868 17.0510i 0.927228 0.982804i
\(302\) −34.9560 + 17.5556i −2.01149 + 1.01021i
\(303\) 0 0
\(304\) 1.95348 6.52506i 0.112040 0.374238i
\(305\) 9.82673 8.24560i 0.562677 0.472142i
\(306\) 0 0
\(307\) −8.26674 6.93662i −0.471808 0.395894i 0.375646 0.926763i \(-0.377421\pi\)
−0.847453 + 0.530870i \(0.821865\pi\)
\(308\) −38.5233 + 25.3371i −2.19507 + 1.44372i
\(309\) 0 0
\(310\) 7.23443 0.845583i 0.410888 0.0480259i
\(311\) −3.83460 + 8.88961i −0.217440 + 0.504083i −0.991667 0.128825i \(-0.958880\pi\)
0.774227 + 0.632908i \(0.218139\pi\)
\(312\) 0 0
\(313\) −5.70772 2.86653i −0.322620 0.162026i 0.280117 0.959966i \(-0.409627\pi\)
−0.602737 + 0.797940i \(0.705923\pi\)
\(314\) 4.50020 1.63794i 0.253961 0.0924343i
\(315\) 0 0
\(316\) −7.85165 2.85777i −0.441690 0.160762i
\(317\) −14.1442 14.9919i −0.794416 0.842032i 0.195935 0.980617i \(-0.437226\pi\)
−0.990351 + 0.138585i \(0.955745\pi\)
\(318\) 0 0
\(319\) 15.7621 + 10.3669i 0.882507 + 0.580434i
\(320\) 10.9157 + 36.4611i 0.610209 + 2.03824i
\(321\) 0 0
\(322\) 1.76857 2.37561i 0.0985587 0.132387i
\(323\) −7.98763 −0.444444
\(324\) 0 0
\(325\) −2.70300 −0.149936
\(326\) 12.5761 16.8927i 0.696527 0.935599i
\(327\) 0 0
\(328\) −6.12307 20.4525i −0.338090 1.12930i
\(329\) 13.6378 + 8.96972i 0.751876 + 0.494517i
\(330\) 0 0
\(331\) −13.9290 14.7639i −0.765610 0.811499i 0.220884 0.975300i \(-0.429106\pi\)
−0.986493 + 0.163801i \(0.947624\pi\)
\(332\) 0.971828 + 0.353716i 0.0533360 + 0.0194127i
\(333\) 0 0
\(334\) −7.98107 + 2.90487i −0.436705 + 0.158948i
\(335\) 29.7878 + 14.9600i 1.62748 + 0.817353i
\(336\) 0 0
\(337\) −1.44819 + 3.35728i −0.0788880 + 0.182883i −0.953096 0.302669i \(-0.902122\pi\)
0.874208 + 0.485552i \(0.161381\pi\)
\(338\) 27.5034 3.21468i 1.49599 0.174856i
\(339\) 0 0
\(340\) 10.5097 6.91234i 0.569969 0.374874i
\(341\) −4.52350 3.79567i −0.244961 0.205547i
\(342\) 0 0
\(343\) −11.9185 + 10.0008i −0.643537 + 0.539992i
\(344\) 4.74879 15.8621i 0.256038 0.855225i
\(345\) 0 0
\(346\) −16.6169 + 8.34534i −0.893332 + 0.448648i
\(347\) 20.0082 21.2074i 1.07410 1.13848i 0.0842334 0.996446i \(-0.473156\pi\)
0.989862 0.142029i \(-0.0453627\pi\)
\(348\) 0 0
\(349\) 6.70643 + 15.5473i 0.358987 + 0.832225i 0.998011 + 0.0630387i \(0.0200792\pi\)
−0.639024 + 0.769187i \(0.720662\pi\)
\(350\) −12.0746 20.9138i −0.645415 1.11789i
\(351\) 0 0
\(352\) 18.3865 31.8464i 0.980005 1.69742i
\(353\) −22.5947 2.64094i −1.20259 0.140563i −0.508894 0.860829i \(-0.669946\pi\)
−0.693698 + 0.720266i \(0.744020\pi\)
\(354\) 0 0
\(355\) −38.5557 9.13788i −2.04633 0.484988i
\(356\) −0.971854 + 16.6861i −0.0515082 + 0.884361i
\(357\) 0 0
\(358\) −11.8526 + 2.80911i −0.626428 + 0.148466i
\(359\) 2.65948 + 15.0826i 0.140362 + 0.796032i 0.970975 + 0.239182i \(0.0768791\pi\)
−0.830613 + 0.556850i \(0.812010\pi\)
\(360\) 0 0
\(361\) 1.94928 11.0549i 0.102593 0.581836i
\(362\) −2.83339 48.6474i −0.148920 2.55685i
\(363\) 0 0
\(364\) −3.81450 5.12376i −0.199934 0.268558i
\(365\) −6.98160 9.37791i −0.365433 0.490862i
\(366\) 0 0
\(367\) −0.816173 14.0131i −0.0426039 0.731480i −0.950201 0.311638i \(-0.899122\pi\)
0.907597 0.419842i \(-0.137915\pi\)
\(368\) −0.0969946 + 0.550084i −0.00505619 + 0.0286751i
\(369\) 0 0
\(370\) −4.21068 23.8799i −0.218903 1.24146i
\(371\) −10.5274 + 2.49504i −0.546555 + 0.129536i
\(372\) 0 0
\(373\) 1.58424 27.2004i 0.0820290 1.40838i −0.666610 0.745406i \(-0.732255\pi\)
0.748639 0.662978i \(-0.230708\pi\)
\(374\) −16.6752 3.95210i −0.862256 0.204358i
\(375\) 0 0
\(376\) 11.4515 + 1.33849i 0.590567 + 0.0690274i
\(377\) −1.30680 + 2.26344i −0.0673035 + 0.116573i
\(378\) 0 0
\(379\) −4.29852 7.44526i −0.220800 0.382437i 0.734251 0.678878i \(-0.237534\pi\)
−0.955051 + 0.296441i \(0.904200\pi\)
\(380\) 18.8533 + 43.7069i 0.967155 + 2.24212i
\(381\) 0 0
\(382\) −19.4340 + 20.5989i −0.994331 + 1.05393i
\(383\) 17.2369 8.65669i 0.880764 0.442336i 0.0498624 0.998756i \(-0.484122\pi\)
0.830901 + 0.556420i \(0.187825\pi\)
\(384\) 0 0
\(385\) −13.2520 + 44.2648i −0.675385 + 2.25594i
\(386\) 34.6167 29.0469i 1.76194 1.47845i
\(387\) 0 0
\(388\) −15.8733 13.3193i −0.805844 0.676183i
\(389\) −26.0189 + 17.1129i −1.31921 + 0.867659i −0.996877 0.0789664i \(-0.974838\pi\)
−0.322335 + 0.946626i \(0.604468\pi\)
\(390\) 0 0
\(391\) 0.650616 0.0760461i 0.0329031 0.00384582i
\(392\) 1.43556 3.32799i 0.0725066 0.168089i
\(393\) 0 0
\(394\) 7.97158 + 4.00348i 0.401603 + 0.201692i
\(395\) −7.86821 + 2.86379i −0.395893 + 0.144093i
\(396\) 0 0
\(397\) −10.0204 3.64712i −0.502908 0.183044i 0.0780935 0.996946i \(-0.475117\pi\)
−0.581002 + 0.813902i \(0.697339\pi\)
\(398\) −5.86536 6.21692i −0.294004 0.311626i
\(399\) 0 0
\(400\) 3.80528 + 2.50277i 0.190264 + 0.125139i
\(401\) −2.32332 7.76042i −0.116021 0.387537i 0.880178 0.474644i \(-0.157423\pi\)
−0.996199 + 0.0871067i \(0.972238\pi\)
\(402\) 0 0
\(403\) 0.488512 0.656186i 0.0243345 0.0326869i
\(404\) −31.1918 −1.55185
\(405\) 0 0
\(406\) −23.3504 −1.15886
\(407\) −11.7393 + 15.7686i −0.581895 + 0.781620i
\(408\) 0 0
\(409\) 10.7499 + 35.9072i 0.531549 + 1.77550i 0.625839 + 0.779952i \(0.284757\pi\)
−0.0942897 + 0.995545i \(0.530058\pi\)
\(410\) −55.9323 36.7872i −2.76230 1.81679i
\(411\) 0 0
\(412\) 35.9475 + 38.1022i 1.77101 + 1.87716i
\(413\) 19.9025 + 7.24393i 0.979339 + 0.356450i
\(414\) 0 0
\(415\) 0.973877 0.354462i 0.0478058 0.0173999i
\(416\) 4.55254 + 2.28637i 0.223207 + 0.112099i
\(417\) 0 0
\(418\) 25.6848 59.5441i 1.25629 2.91240i
\(419\) −12.8086 + 1.49711i −0.625739 + 0.0731384i −0.423052 0.906105i \(-0.639041\pi\)
−0.202687 + 0.979244i \(0.564967\pi\)
\(420\) 0 0
\(421\) −19.3273 + 12.7118i −0.941955 + 0.619533i −0.924855 0.380320i \(-0.875814\pi\)
−0.0171000 + 0.999854i \(0.505443\pi\)
\(422\) 12.1357 + 10.1830i 0.590754 + 0.495702i
\(423\) 0 0
\(424\) −5.85394 + 4.91204i −0.284292 + 0.238550i
\(425\) 1.53188 5.11684i 0.0743071 0.248203i
\(426\) 0 0
\(427\) 11.5029 5.77695i 0.556662 0.279566i
\(428\) −0.100511 + 0.106535i −0.00485838 + 0.00514959i
\(429\) 0 0
\(430\) −20.5645 47.6739i −0.991710 2.29904i
\(431\) −11.3499 19.6586i −0.546706 0.946923i −0.998497 0.0547992i \(-0.982548\pi\)
0.451791 0.892124i \(-0.350785\pi\)
\(432\) 0 0
\(433\) 9.10550 15.7712i 0.437583 0.757915i −0.559920 0.828547i \(-0.689168\pi\)
0.997502 + 0.0706315i \(0.0225015\pi\)
\(434\) 7.25932 + 0.848493i 0.348458 + 0.0407289i
\(435\) 0 0
\(436\) −1.15846 0.274561i −0.0554803 0.0131491i
\(437\) −0.144124 + 2.47452i −0.00689440 + 0.118372i
\(438\) 0 0
\(439\) 26.7551 6.34107i 1.27695 0.302643i 0.464448 0.885600i \(-0.346253\pi\)
0.812503 + 0.582958i \(0.198105\pi\)
\(440\) 5.66727 + 32.1407i 0.270177 + 1.53225i
\(441\) 0 0
\(442\) 0.412263 2.33806i 0.0196093 0.111210i
\(443\) 0.712965 + 12.2411i 0.0338740 + 0.581594i 0.971953 + 0.235173i \(0.0755658\pi\)
−0.938079 + 0.346420i \(0.887397\pi\)
\(444\) 0 0
\(445\) 10.0022 + 13.4353i 0.474149 + 0.636892i
\(446\) 19.7074 + 26.4716i 0.933172 + 1.25347i
\(447\) 0 0
\(448\) 2.22061 + 38.1264i 0.104914 + 1.80130i
\(449\) 1.20505 6.83416i 0.0568697 0.322524i −0.943080 0.332566i \(-0.892085\pi\)
0.999950 + 0.0100422i \(0.00319658\pi\)
\(450\) 0 0
\(451\) 9.42460 + 53.4496i 0.443787 + 2.51684i
\(452\) 32.5361 7.71119i 1.53037 0.362704i
\(453\) 0 0
\(454\) −1.73890 + 29.8558i −0.0816107 + 1.40120i
\(455\) −6.22867 1.47622i −0.292005 0.0692064i
\(456\) 0 0
\(457\) −29.6629 3.46709i −1.38757 0.162184i −0.610709 0.791855i \(-0.709116\pi\)
−0.776862 + 0.629671i \(0.783190\pi\)
\(458\) 3.62196 6.27342i 0.169243 0.293138i
\(459\) 0 0
\(460\) −1.95177 3.38056i −0.0910017 0.157620i
\(461\) −0.324961 0.753345i −0.0151350 0.0350868i 0.910481 0.413551i \(-0.135712\pi\)
−0.925616 + 0.378464i \(0.876452\pi\)
\(462\) 0 0
\(463\) 19.6398 20.8169i 0.912738 0.967445i −0.0868483 0.996222i \(-0.527680\pi\)
0.999586 + 0.0287763i \(0.00916103\pi\)
\(464\) 3.93548 1.97647i 0.182700 0.0917555i
\(465\) 0 0
\(466\) −5.27333 + 17.6141i −0.244282 + 0.815960i
\(467\) −9.57011 + 8.03027i −0.442852 + 0.371597i −0.836775 0.547546i \(-0.815562\pi\)
0.393924 + 0.919143i \(0.371117\pi\)
\(468\) 0 0
\(469\) 25.6227 + 21.5000i 1.18315 + 0.992779i
\(470\) 30.2056 19.8665i 1.39328 0.916375i
\(471\) 0 0
\(472\) 14.8587 1.73674i 0.683929 0.0799398i
\(473\) −16.6721 + 38.6502i −0.766582 + 1.77714i
\(474\) 0 0
\(475\) 18.0615 + 9.07084i 0.828720 + 0.416199i
\(476\) 11.8612 4.31712i 0.543656 0.197875i
\(477\) 0 0
\(478\) 27.2809 + 9.92943i 1.24780 + 0.454161i
\(479\) 3.11272 + 3.29929i 0.142224 + 0.150749i 0.794570 0.607173i \(-0.207696\pi\)
−0.652346 + 0.757922i \(0.726215\pi\)
\(480\) 0 0
\(481\) −2.27539 1.49655i −0.103749 0.0682368i
\(482\) 0.403326 + 1.34720i 0.0183710 + 0.0613634i
\(483\) 0 0
\(484\) 30.1330 40.4757i 1.36968 1.83980i
\(485\) −20.7648 −0.942881
\(486\) 0 0
\(487\) −28.2887 −1.28188 −0.640941 0.767590i \(-0.721456\pi\)
−0.640941 + 0.767590i \(0.721456\pi\)
\(488\) 5.42928 7.29279i 0.245772 0.330129i
\(489\) 0 0
\(490\) −3.25956 10.8877i −0.147252 0.491856i
\(491\) −16.3623 10.7617i −0.738421 0.485667i 0.123732 0.992316i \(-0.460514\pi\)
−0.862153 + 0.506649i \(0.830884\pi\)
\(492\) 0 0
\(493\) −3.54413 3.75656i −0.159620 0.169187i
\(494\) 8.44198 + 3.07263i 0.379823 + 0.138244i
\(495\) 0 0
\(496\) −1.29531 + 0.471453i −0.0581609 + 0.0211688i
\(497\) −35.5310 17.8443i −1.59378 0.800427i
\(498\) 0 0
\(499\) −11.7236 + 27.1785i −0.524823 + 1.21668i 0.425372 + 0.905019i \(0.360143\pi\)
−0.950195 + 0.311657i \(0.899116\pi\)
\(500\) 11.3833 1.33051i 0.509075 0.0595023i
\(501\) 0 0
\(502\) −25.6851 + 16.8933i −1.14638 + 0.753986i
\(503\) 18.2284 + 15.2955i 0.812765 + 0.681991i 0.951266 0.308371i \(-0.0997839\pi\)
−0.138501 + 0.990362i \(0.544228\pi\)
\(504\) 0 0
\(505\) −23.9447 + 20.0920i −1.06553 + 0.894082i
\(506\) −1.52521 + 5.09457i −0.0678041 + 0.226481i
\(507\) 0 0
\(508\) 34.2666 17.2093i 1.52033 0.763541i
\(509\) −8.53666 + 9.04834i −0.378381 + 0.401060i −0.888376 0.459117i \(-0.848166\pi\)
0.509995 + 0.860178i \(0.329647\pi\)
\(510\) 0 0
\(511\) −4.64664 10.7721i −0.205555 0.476531i
\(512\) −6.87849 11.9139i −0.303989 0.526525i
\(513\) 0 0
\(514\) 29.1206 50.4383i 1.28445 2.22474i
\(515\) 52.1387 + 6.09414i 2.29751 + 0.268540i
\(516\) 0 0
\(517\) −28.5201 6.75938i −1.25431 0.297277i
\(518\) 1.41477 24.2906i 0.0621612 1.06727i
\(519\) 0 0
\(520\) −4.39948 + 1.04270i −0.192930 + 0.0457253i
\(521\) 6.26330 + 35.5209i 0.274400 + 1.55620i 0.740861 + 0.671659i \(0.234418\pi\)
−0.466461 + 0.884542i \(0.654471\pi\)
\(522\) 0 0
\(523\) −3.40284 + 19.2985i −0.148796 + 0.843864i 0.815445 + 0.578835i \(0.196493\pi\)
−0.964241 + 0.265029i \(0.914619\pi\)
\(524\) 1.36858 + 23.4976i 0.0597867 + 1.02650i
\(525\) 0 0
\(526\) −1.88797 2.53598i −0.0823194 0.110574i
\(527\) 0.965317 + 1.29665i 0.0420499 + 0.0564828i
\(528\) 0 0
\(529\) 1.32551 + 22.7582i 0.0576309 + 0.989485i
\(530\) −4.16104 + 23.5984i −0.180744 + 1.02505i
\(531\) 0 0
\(532\) 8.29406 + 47.0379i 0.359593 + 2.03935i
\(533\) −7.31628 + 1.73399i −0.316903 + 0.0751075i
\(534\) 0 0
\(535\) −0.00853420 + 0.146527i −0.000368966 + 0.00633489i
\(536\) 22.9885 + 5.44837i 0.992951 + 0.235334i
\(537\) 0 0
\(538\) 12.0668 + 1.41040i 0.520235 + 0.0608068i
\(539\) −4.60697 + 7.97951i −0.198436 + 0.343702i
\(540\) 0 0
\(541\) 9.81665 + 17.0029i 0.422051 + 0.731013i 0.996140 0.0877794i \(-0.0279771\pi\)
−0.574089 + 0.818793i \(0.694644\pi\)
\(542\) 27.0537 + 62.7176i 1.16206 + 2.69395i
\(543\) 0 0
\(544\) −6.90822 + 7.32228i −0.296187 + 0.313940i
\(545\) −1.06616 + 0.535447i −0.0456694 + 0.0229360i
\(546\) 0 0
\(547\) 8.77306 29.3041i 0.375109 1.25295i −0.537202 0.843453i \(-0.680519\pi\)
0.912311 0.409497i \(-0.134296\pi\)
\(548\) 23.2384 19.4993i 0.992695 0.832970i
\(549\) 0 0
\(550\) 33.2178 + 27.8730i 1.41641 + 1.18851i
\(551\) 16.3278 10.7390i 0.695588 0.457495i
\(552\) 0 0
\(553\) −8.34517 + 0.975411i −0.354873 + 0.0414787i
\(554\) 4.01014 9.29654i 0.170374 0.394972i
\(555\) 0 0
\(556\) −45.8464 23.0249i −1.94432 0.976474i
\(557\) −31.4323 + 11.4404i −1.33183 + 0.484746i −0.907230 0.420636i \(-0.861807\pi\)
−0.424599 + 0.905382i \(0.639585\pi\)
\(558\) 0 0
\(559\) −5.47970 1.99445i −0.231767 0.0843562i
\(560\) 7.40185 + 7.84550i 0.312785 + 0.331533i
\(561\) 0 0
\(562\) 33.9314 + 22.3171i 1.43131 + 0.941388i
\(563\) 0.0602063 + 0.201103i 0.00253739 + 0.00847548i 0.959249 0.282563i \(-0.0911845\pi\)
−0.956711 + 0.291038i \(0.905999\pi\)
\(564\) 0 0
\(565\) 20.0095 26.8775i 0.841808 1.13074i
\(566\) −52.6415 −2.21269
\(567\) 0 0
\(568\) −28.0837 −1.17836
\(569\) 24.4396 32.8281i 1.02456 1.37623i 0.100089 0.994978i \(-0.468087\pi\)
0.924473 0.381248i \(-0.124505\pi\)
\(570\) 0 0
\(571\) −8.06199 26.9289i −0.337384 1.12694i −0.943447 0.331523i \(-0.892437\pi\)
0.606063 0.795416i \(-0.292748\pi\)
\(572\) 9.58300 + 6.30284i 0.400685 + 0.263535i
\(573\) 0 0
\(574\) −46.0990 48.8621i −1.92413 2.03946i
\(575\) −1.55752 0.566892i −0.0649532 0.0236410i
\(576\) 0 0
\(577\) −12.8095 + 4.66227i −0.533266 + 0.194093i −0.594596 0.804025i \(-0.702688\pi\)
0.0613301 + 0.998118i \(0.480466\pi\)
\(578\) −29.5708 14.8510i −1.22998 0.617721i
\(579\) 0 0
\(580\) −12.1900 + 28.2595i −0.506161 + 1.17341i
\(581\) 1.03291 0.120730i 0.0428524 0.00500873i
\(582\) 0 0
\(583\) 16.2309 10.6752i 0.672214 0.442122i
\(584\) −6.34770 5.32636i −0.262670 0.220406i
\(585\) 0 0
\(586\) 8.11761 6.81149i 0.335336 0.281380i
\(587\) 8.05995 26.9221i 0.332670 1.11119i −0.614086 0.789239i \(-0.710475\pi\)
0.946755 0.321954i \(-0.104340\pi\)
\(588\) 0 0
\(589\) −5.46631 + 2.74528i −0.225235 + 0.113117i
\(590\) 32.1916 34.1211i 1.32531 1.40474i
\(591\) 0 0
\(592\) 1.81761 + 4.21369i 0.0747032 + 0.173181i
\(593\) 2.12487 + 3.68039i 0.0872581 + 0.151135i 0.906351 0.422525i \(-0.138856\pi\)
−0.819093 + 0.573661i \(0.805523\pi\)
\(594\) 0 0
\(595\) 6.32451 10.9544i 0.259280 0.449086i
\(596\) −24.2731 2.83712i −0.994266 0.116213i
\(597\) 0 0
\(598\) −0.716877 0.169903i −0.0293153 0.00694785i
\(599\) 1.23410 21.1887i 0.0504239 0.865746i −0.874366 0.485267i \(-0.838722\pi\)
0.924790 0.380478i \(-0.124241\pi\)
\(600\) 0 0
\(601\) −37.9901 + 9.00383i −1.54965 + 0.367274i −0.914328 0.404974i \(-0.867281\pi\)
−0.635322 + 0.772247i \(0.719133\pi\)
\(602\) −9.04687 51.3073i −0.368723 2.09113i
\(603\) 0 0
\(604\) −8.98358 + 50.9484i −0.365537 + 2.07306i
\(605\) −2.94021 50.4815i −0.119537 2.05237i
\(606\) 0 0
\(607\) 26.6915 + 35.8529i 1.08337 + 1.45522i 0.879299 + 0.476270i \(0.158011\pi\)
0.204076 + 0.978955i \(0.434581\pi\)
\(608\) −22.7475 30.5552i −0.922532 1.23918i
\(609\) 0 0
\(610\) −1.65768 28.4613i −0.0671176 1.15236i
\(611\) 0.705103 3.99884i 0.0285254 0.161776i
\(612\) 0 0
\(613\) −7.96425 45.1675i −0.321673 1.82430i −0.532091 0.846687i \(-0.678594\pi\)
0.210418 0.977611i \(-0.432517\pi\)
\(614\) −23.3372 + 5.53101i −0.941812 + 0.223213i
\(615\) 0 0
\(616\) −1.90417 + 32.6934i −0.0767214 + 1.31725i
\(617\) 21.1271 + 5.00721i 0.850544 + 0.201583i 0.632696 0.774400i \(-0.281948\pi\)
0.217848 + 0.975983i \(0.430096\pi\)
\(618\) 0 0
\(619\) 29.2625 + 3.42030i 1.17616 + 0.137473i 0.681636 0.731691i \(-0.261269\pi\)
0.494523 + 0.869164i \(0.335343\pi\)
\(620\) 4.81657 8.34254i 0.193438 0.335044i
\(621\) 0 0
\(622\) 10.7583 + 18.6339i 0.431368 + 0.747151i
\(623\) 6.65701 + 15.4327i 0.266708 + 0.618297i
\(624\) 0 0
\(625\) 20.4955 21.7240i 0.819821 0.868960i
\(626\) −12.6852 + 6.37076i −0.507003 + 0.254627i
\(627\) 0 0
\(628\) 1.81655 6.06770i 0.0724882 0.242127i
\(629\) 4.12254 3.45922i 0.164376 0.137928i
\(630\) 0 0
\(631\) −23.1628 19.4359i −0.922098 0.773732i 0.0522840 0.998632i \(-0.483350\pi\)
−0.974382 + 0.224900i \(0.927794\pi\)
\(632\) −4.95824 + 3.26109i −0.197228 + 0.129719i
\(633\) 0 0
\(634\) −45.4977 + 5.31791i −1.80694 + 0.211201i
\(635\) 15.2198 35.2835i 0.603980 1.40018i
\(636\) 0 0
\(637\) −1.14069 0.572878i −0.0451960 0.0226983i
\(638\) 39.3998 14.3404i 1.55985 0.567741i
\(639\) 0 0
\(640\) 41.1293 + 14.9699i 1.62578 + 0.591735i
\(641\) −0.420317 0.445510i −0.0166015 0.0175966i 0.719020 0.694990i \(-0.244591\pi\)
−0.735621 + 0.677393i \(0.763110\pi\)
\(642\) 0 0
\(643\) −15.5963 10.2578i −0.615056 0.404529i 0.203402 0.979095i \(-0.434800\pi\)
−0.818458 + 0.574566i \(0.805171\pi\)
\(644\) −1.12340 3.75242i −0.0442681 0.147866i
\(645\) 0 0
\(646\) −10.6009 + 14.2395i −0.417087 + 0.560245i
\(647\) 44.8197 1.76204 0.881022 0.473075i \(-0.156856\pi\)
0.881022 + 0.473075i \(0.156856\pi\)
\(648\) 0 0
\(649\) −38.0309 −1.49284
\(650\) −3.58733 + 4.81862i −0.140707 + 0.189002i
\(651\) 0 0
\(652\) −7.98837 26.6830i −0.312849 1.04499i
\(653\) 41.3488 + 27.1956i 1.61810 + 1.06424i 0.946188 + 0.323618i \(0.104899\pi\)
0.671917 + 0.740626i \(0.265471\pi\)
\(654\) 0 0
\(655\) 16.1864 + 17.1566i 0.632456 + 0.670365i
\(656\) 11.9054 + 4.33321i 0.464828 + 0.169183i
\(657\) 0 0
\(658\) 34.0898 12.4077i 1.32896 0.483702i
\(659\) −10.1695 5.10730i −0.396146 0.198952i 0.239563 0.970881i \(-0.422996\pi\)
−0.635709 + 0.771929i \(0.719292\pi\)
\(660\) 0 0
\(661\) 1.04678 2.42670i 0.0407149 0.0943878i −0.896645 0.442750i \(-0.854003\pi\)
0.937360 + 0.348362i \(0.113262\pi\)
\(662\) −44.8057 + 5.23703i −1.74142 + 0.203543i
\(663\) 0 0
\(664\) 0.613700 0.403637i 0.0238162 0.0156642i
\(665\) 36.6662 + 30.7666i 1.42185 + 1.19308i
\(666\) 0 0
\(667\) −1.22771 + 1.03017i −0.0475370 + 0.0398883i
\(668\) −3.22163 + 10.7610i −0.124649 + 0.416356i
\(669\) 0 0
\(670\) 66.2024 33.2481i 2.55762 1.28449i
\(671\) −15.8612 + 16.8119i −0.612317 + 0.649018i
\(672\) 0 0
\(673\) −0.928417 2.15231i −0.0357878 0.0829655i 0.899385 0.437158i \(-0.144015\pi\)
−0.935172 + 0.354193i \(0.884756\pi\)
\(674\) 4.06301 + 7.03734i 0.156501 + 0.271068i
\(675\) 0 0
\(676\) 18.3113 31.7161i 0.704281 1.21985i
\(677\) 9.27787 + 1.08443i 0.356578 + 0.0416779i 0.292496 0.956267i \(-0.405514\pi\)
0.0640815 + 0.997945i \(0.479588\pi\)
\(678\) 0 0
\(679\) −20.2746 4.80517i −0.778068 0.184405i
\(680\) 0.519486 8.91924i 0.0199214 0.342037i
\(681\) 0 0
\(682\) −12.7699 + 3.02653i −0.488986 + 0.115892i
\(683\) 5.08900 + 28.8612i 0.194725 + 1.10434i 0.912809 + 0.408386i \(0.133908\pi\)
−0.718084 + 0.695956i \(0.754981\pi\)
\(684\) 0 0
\(685\) 5.27883 29.9377i 0.201694 1.14386i
\(686\) 2.01054 + 34.5197i 0.0767628 + 1.31797i
\(687\) 0 0
\(688\) 5.86761 + 7.88157i 0.223701 + 0.300482i
\(689\) 1.60715 + 2.15878i 0.0612275 + 0.0822428i
\(690\) 0 0
\(691\) 0.791645 + 13.5920i 0.0301156 + 0.517065i 0.979309 + 0.202371i \(0.0648648\pi\)
−0.949193 + 0.314694i \(0.898098\pi\)
\(692\) −4.27050 + 24.2192i −0.162340 + 0.920677i
\(693\) 0 0
\(694\) −11.2522 63.8142i −0.427126 2.42235i
\(695\) −50.0258 + 11.8563i −1.89759 + 0.449736i
\(696\) 0 0
\(697\) 0.863899 14.8326i 0.0327225 0.561824i
\(698\) 36.6165 + 8.67827i 1.38595 + 0.328477i
\(699\) 0 0
\(700\) −31.7229 3.70788i −1.19901 0.140145i
\(701\) −20.8102 + 36.0443i −0.785989 + 1.36137i 0.142418 + 0.989807i \(0.454512\pi\)
−0.928407 + 0.371566i \(0.878821\pi\)
\(702\) 0 0
\(703\) 10.1821 + 17.6358i 0.384024 + 0.665149i
\(704\) −27.1617 62.9680i −1.02370 2.37319i
\(705\) 0 0
\(706\) −34.6948 + 36.7743i −1.30576 + 1.38402i
\(707\) −28.0289 + 14.0767i −1.05414 + 0.529407i
\(708\) 0 0
\(709\) 3.31071 11.0585i 0.124336 0.415312i −0.873045 0.487640i \(-0.837858\pi\)
0.997381 + 0.0723284i \(0.0230430\pi\)
\(710\) −67.4598 + 56.6055i −2.53172 + 2.12437i
\(711\) 0 0
\(712\) 9.09403 + 7.63080i 0.340813 + 0.285976i
\(713\) 0.419110 0.275653i 0.0156958 0.0103233i
\(714\) 0 0
\(715\) 11.4164 1.33439i 0.426950 0.0499033i
\(716\) −6.38086 + 14.7925i −0.238464 + 0.552821i
\(717\) 0 0
\(718\) 30.4173 + 15.2761i 1.13516 + 0.570100i
\(719\) −29.9388 + 10.8968i −1.11653 + 0.406383i −0.833384 0.552695i \(-0.813599\pi\)
−0.283143 + 0.959078i \(0.591377\pi\)
\(720\) 0 0
\(721\) 49.4976 + 18.0157i 1.84339 + 0.670939i
\(722\) −17.1205 18.1466i −0.637157 0.675347i
\(723\) 0 0
\(724\) −53.8458 35.4149i −2.00116 1.31619i
\(725\) 3.74796 + 12.5190i 0.139196 + 0.464946i
\(726\) 0 0
\(727\) −18.0298 + 24.2183i −0.668690 + 0.898206i −0.998956 0.0456817i \(-0.985454\pi\)
0.330266 + 0.943888i \(0.392861\pi\)
\(728\) −4.53691 −0.168149
\(729\) 0 0
\(730\) −25.9836 −0.961698
\(731\) 6.88106 9.24287i 0.254505 0.341860i
\(732\) 0 0
\(733\) 4.58780 + 15.3243i 0.169454 + 0.566017i 0.999959 + 0.00900594i \(0.00286672\pi\)
−0.830505 + 0.557011i \(0.811948\pi\)
\(734\) −26.0643 17.1428i −0.962051 0.632751i
\(735\) 0 0
\(736\) 2.14375 + 2.27224i 0.0790196 + 0.0837559i
\(737\) −56.4379 20.5417i −2.07892 0.756664i
\(738\) 0 0
\(739\) 13.9238 5.06784i 0.512194 0.186423i −0.0729763 0.997334i \(-0.523250\pi\)
0.585171 + 0.810910i \(0.301028\pi\)
\(740\) −28.6588 14.3930i −1.05352 0.529096i
\(741\) 0 0
\(742\) −9.52370 + 22.0784i −0.349626 + 0.810524i
\(743\) −1.03225 + 0.120653i −0.0378695 + 0.00442631i −0.135007 0.990845i \(-0.543106\pi\)
0.0971371 + 0.995271i \(0.469031\pi\)
\(744\) 0 0
\(745\) −20.4610 + 13.4574i −0.749634 + 0.493042i
\(746\) −46.3874 38.9236i −1.69836 1.42510i
\(747\) 0 0
\(748\) −17.3624 + 14.5688i −0.634832 + 0.532688i
\(749\) −0.0422403 + 0.141093i −0.00154343 + 0.00515541i
\(750\) 0 0
\(751\) −29.5011 + 14.8160i −1.07651 + 0.540643i −0.896510 0.443024i \(-0.853906\pi\)
−0.179999 + 0.983667i \(0.557609\pi\)
\(752\) −4.69527 + 4.97669i −0.171219 + 0.181481i
\(753\) 0 0
\(754\) 2.30068 + 5.33357i 0.0837858 + 0.194237i
\(755\) 25.9217 + 44.8978i 0.943389 + 1.63400i
\(756\) 0 0
\(757\) 16.5939 28.7414i 0.603114 1.04462i −0.389232 0.921140i \(-0.627260\pi\)
0.992346 0.123485i \(-0.0394070\pi\)
\(758\) −18.9774 2.21814i −0.689292 0.0805667i
\(759\) 0 0
\(760\) 32.8966 + 7.79663i 1.19328 + 0.282814i
\(761\) 2.17243 37.2992i 0.0787505 1.35209i −0.695185 0.718831i \(-0.744678\pi\)
0.773936 0.633264i \(-0.218285\pi\)
\(762\) 0 0
\(763\) −1.16490 + 0.276087i −0.0421722 + 0.00999501i
\(764\) 6.50388 + 36.8853i 0.235302 + 1.33446i
\(765\) 0 0
\(766\) 7.44398 42.2169i 0.268962 1.52536i
\(767\) −0.306346 5.25976i −0.0110615 0.189919i
\(768\) 0 0
\(769\) −25.5369 34.3020i −0.920884 1.23696i −0.971209 0.238229i \(-0.923433\pi\)
0.0503249 0.998733i \(-0.483974\pi\)
\(770\) 61.3229 + 82.3709i 2.20992 + 2.96844i
\(771\) 0 0
\(772\) −3.47504 59.6641i −0.125069 2.14736i
\(773\) 4.28338 24.2923i 0.154062 0.873732i −0.805575 0.592493i \(-0.798144\pi\)
0.959638 0.281239i \(-0.0907452\pi\)
\(774\) 0 0
\(775\) −0.710278 4.02818i −0.0255139 0.144697i
\(776\) −14.3205 + 3.39402i −0.514076 + 0.121838i
\(777\) 0 0
\(778\) −4.02435 + 69.0954i −0.144280 + 2.47719i
\(779\) 54.7066 + 12.9657i 1.96007 + 0.464544i
\(780\) 0 0
\(781\) 70.9112 + 8.28834i 2.53740 + 0.296580i
\(782\) 0.727908 1.26077i 0.0260299 0.0450851i
\(783\) 0 0
\(784\) 1.07543 + 1.86269i 0.0384081 + 0.0665248i
\(785\) −2.51397 5.82805i −0.0897276 0.208012i
\(786\) 0 0
\(787\) −23.4304 + 24.8348i −0.835205 + 0.885265i −0.994793 0.101918i \(-0.967502\pi\)
0.159588 + 0.987184i \(0.448983\pi\)
\(788\) 10.5429 5.29486i 0.375576 0.188622i
\(789\) 0 0
\(790\) −5.33715 + 17.8273i −0.189887 + 0.634267i
\(791\) 25.7569 21.6126i 0.915809 0.768455i
\(792\) 0 0
\(793\) −2.45290 2.05822i −0.0871049 0.0730897i
\(794\) −19.8004 + 13.0229i −0.702689 + 0.462166i
\(795\) 0 0
\(796\) −11.2276 + 1.31232i −0.397952 + 0.0465140i
\(797\) 6.70953 15.5544i 0.237664 0.550967i −0.757085 0.653317i \(-0.773377\pi\)
0.994748 + 0.102350i \(0.0326362\pi\)
\(798\) 0 0
\(799\) 7.17028 + 3.60105i 0.253666 + 0.127396i
\(800\) 23.9360 8.71201i 0.846267 0.308016i
\(801\) 0 0
\(802\) −16.9179 6.15760i −0.597390 0.217432i
\(803\) 14.4560 + 15.3224i 0.510140 + 0.540717i
\(804\) 0 0
\(805\) −3.27948 2.15695i −0.115587 0.0760225i
\(806\) −0.521441 1.74173i −0.0183670 0.0613499i
\(807\) 0 0
\(808\) −13.2295 + 17.7703i −0.465412 + 0.625157i
\(809\) 18.5465 0.652062 0.326031 0.945359i \(-0.394289\pi\)
0.326031 + 0.945359i \(0.394289\pi\)
\(810\) 0 0
\(811\) 24.9560 0.876325 0.438163 0.898896i \(-0.355629\pi\)
0.438163 + 0.898896i \(0.355629\pi\)
\(812\) −18.4417 + 24.7715i −0.647178 + 0.869310i
\(813\) 0 0
\(814\) 12.5306 + 41.8550i 0.439196 + 1.46702i
\(815\) −23.3200 15.3378i −0.816865 0.537261i
\(816\) 0 0
\(817\) 29.9225 + 31.7160i 1.04685 + 1.10960i
\(818\) 78.2784 + 28.4910i 2.73694 + 0.996164i
\(819\) 0 0
\(820\) −83.2004 + 30.2825i −2.90548 + 1.05751i
\(821\) −1.20736 0.606359i −0.0421372 0.0211621i 0.427606 0.903965i \(-0.359357\pi\)
−0.469743 + 0.882803i \(0.655653\pi\)
\(822\) 0 0
\(823\) 17.3834 40.2993i 0.605948 1.40475i −0.288459 0.957492i \(-0.593143\pi\)
0.894407 0.447254i \(-0.147598\pi\)
\(824\) 36.9537 4.31927i 1.28734 0.150469i
\(825\) 0 0
\(826\) 39.3276 25.8662i 1.36838 0.900000i
\(827\) −43.1798 36.2322i −1.50151 1.25992i −0.878539 0.477670i \(-0.841481\pi\)
−0.622970 0.782246i \(-0.714074\pi\)
\(828\) 0 0
\(829\) 11.2414 9.43268i 0.390431 0.327610i −0.426350 0.904558i \(-0.640201\pi\)
0.816781 + 0.576948i \(0.195756\pi\)
\(830\) 0.660598 2.20655i 0.0229297 0.0765906i
\(831\) 0 0
\(832\) 8.48982 4.26375i 0.294332 0.147819i
\(833\) 1.73094 1.83469i 0.0599735 0.0635682i
\(834\) 0 0
\(835\) 4.45851 + 10.3360i 0.154293 + 0.357692i
\(836\) −42.8825 74.2747i −1.48312 2.56885i
\(837\) 0 0
\(838\) −14.3302 + 24.8206i −0.495028 + 0.857414i
\(839\) 0.941795 + 0.110080i 0.0325144 + 0.00380039i 0.132335 0.991205i \(-0.457753\pi\)
−0.0998202 + 0.995005i \(0.531827\pi\)
\(840\) 0 0
\(841\) −15.9231 3.77385i −0.549073 0.130133i
\(842\) −2.98935 + 51.3252i −0.103020 + 1.76878i
\(843\) 0 0
\(844\) 20.3873 4.83187i 0.701759 0.166320i
\(845\) −6.37286 36.1423i −0.219233 1.24333i
\(846\) 0 0
\(847\) 8.81110 49.9702i 0.302753 1.71700i
\(848\) −0.263681 4.52722i −0.00905483 0.155465i
\(849\) 0 0
\(850\) −7.08868 9.52175i −0.243140 0.326593i
\(851\) −0.997261 1.33955i −0.0341857 0.0459193i
\(852\) 0 0
\(853\) −0.185823 3.19045i −0.00636244 0.109239i 0.993632 0.112677i \(-0.0359426\pi\)
−0.999994 + 0.00343826i \(0.998906\pi\)
\(854\) 4.96766 28.1730i 0.169990 0.964060i
\(855\) 0 0
\(856\) 0.0180642 + 0.102447i 0.000617423 + 0.00350158i
\(857\) 28.8859 6.84607i 0.986722 0.233857i 0.294586 0.955625i \(-0.404818\pi\)
0.692136 + 0.721767i \(0.256670\pi\)
\(858\) 0 0
\(859\) 0.804437 13.8116i 0.0274470 0.471247i −0.956380 0.292126i \(-0.905637\pi\)
0.983827 0.179122i \(-0.0573255\pi\)
\(860\) −66.8168 15.8359i −2.27844 0.539999i
\(861\) 0 0
\(862\) −50.1085 5.85684i −1.70670 0.199485i
\(863\) 28.9772 50.1899i 0.986394 1.70849i 0.350826 0.936440i \(-0.385901\pi\)
0.635568 0.772045i \(-0.280766\pi\)
\(864\) 0 0
\(865\) 12.3224 + 21.3429i 0.418973 + 0.725682i
\(866\) −16.0307 37.1633i −0.544744 1.26286i
\(867\) 0 0
\(868\) 6.63340 7.03099i 0.225152 0.238648i
\(869\) 13.4820 6.77092i 0.457346 0.229688i
\(870\) 0 0
\(871\) 2.38635 7.97096i 0.0808584 0.270086i
\(872\) −0.647763 + 0.543538i −0.0219360 + 0.0184065i
\(873\) 0 0
\(874\) 4.22002 + 3.54102i 0.142744 + 0.119777i
\(875\) 9.62853 6.33278i 0.325504 0.214087i
\(876\) 0 0
\(877\) −13.4759 + 1.57511i −0.455050 + 0.0531877i −0.340531 0.940233i \(-0.610607\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(878\) 24.2042 56.1117i 0.816853 1.89368i
\(879\) 0 0
\(880\) −17.3076 8.69219i −0.583438 0.293014i
\(881\) 2.92937 1.06621i 0.0986931 0.0359214i −0.292202 0.956357i \(-0.594388\pi\)
0.390895 + 0.920435i \(0.372166\pi\)
\(882\) 0 0
\(883\) 5.52287 + 2.01016i 0.185859 + 0.0676472i 0.433273 0.901263i \(-0.357359\pi\)
−0.247414 + 0.968910i \(0.579581\pi\)
\(884\) −2.15475 2.28391i −0.0724722 0.0768161i
\(885\) 0 0
\(886\) 22.7684 + 14.9750i 0.764919 + 0.503095i
\(887\) −1.34266 4.48479i −0.0450821 0.150585i 0.932485 0.361208i \(-0.117636\pi\)
−0.977567 + 0.210624i \(0.932451\pi\)
\(888\) 0 0
\(889\) 23.0255 30.9286i 0.772249 1.03731i
\(890\) 37.2255 1.24780
\(891\) 0 0
\(892\) 43.6472 1.46142
\(893\) −18.1310 + 24.3541i −0.606730 + 0.814980i
\(894\) 0 0
\(895\) 4.63015 + 15.4658i 0.154769 + 0.516964i
\(896\) 36.6942 + 24.1342i 1.22587 + 0.806266i
\(897\) 0 0
\(898\) −10.5839 11.2183i −0.353190 0.374359i
\(899\) −3.71651 1.35270i −0.123953 0.0451151i
\(900\) 0 0
\(901\) −4.99743 + 1.81892i −0.166489 + 0.0605969i
\(902\) 107.792 + 54.1352i 3.58908 + 1.80251i
\(903\) 0 0
\(904\) 9.40649 21.8067i 0.312855 0.725280i
\(905\) −64.1475 + 7.49777i −2.13234 + 0.249234i
\(906\) 0 0
\(907\) −0.779754 + 0.512852i −0.0258913 + 0.0170290i −0.562389 0.826873i \(-0.690118\pi\)
0.536497 + 0.843902i \(0.319747\pi\)
\(908\) 30.2994 + 25.4243i 1.00552 + 0.843734i
\(909\) 0 0
\(910\) −10.8981 + 9.14461i −0.361269 + 0.303141i
\(911\) −13.0328 + 43.5327i −0.431797 + 1.44230i 0.414724 + 0.909947i \(0.363878\pi\)
−0.846521 + 0.532356i \(0.821307\pi\)
\(912\) 0 0
\(913\) −1.66872 + 0.838061i −0.0552265 + 0.0277358i
\(914\) −45.5483 + 48.2784i −1.50660 + 1.59691i
\(915\) 0 0
\(916\) −3.79466 8.79702i −0.125379 0.290662i
\(917\) 11.8341 + 20.4973i 0.390797 + 0.676880i
\(918\) 0 0
\(919\) −20.1320 + 34.8697i −0.664095 + 1.15025i 0.315435 + 0.948947i \(0.397849\pi\)
−0.979530 + 0.201299i \(0.935484\pi\)
\(920\) −2.75375 0.321867i −0.0907885 0.0106116i
\(921\) 0 0
\(922\) −1.77426 0.420507i −0.0584321 0.0138487i
\(923\) −0.575092 + 9.87395i −0.0189294 + 0.325005i
\(924\) 0 0
\(925\) −13.2502 + 3.14035i −0.435663 + 0.103254i
\(926\) −11.0450 62.6392i −0.362960 2.05845i
\(927\) 0 0
\(928\) 4.27690 24.2555i 0.140396 0.796225i
\(929\) 0.761518 + 13.0748i 0.0249846 + 0.428969i 0.987487 + 0.157697i \(0.0504071\pi\)
−0.962503 + 0.271271i \(0.912556\pi\)
\(930\) 0 0
\(931\) 5.69966 + 7.65597i 0.186799 + 0.250914i
\(932\) 14.5214 + 19.5056i 0.475663 + 0.638927i
\(933\) 0 0
\(934\) 1.61439 + 27.7180i 0.0528245 + 0.906962i
\(935\) −3.94404 + 22.3677i −0.128984 + 0.731504i
\(936\) 0 0
\(937\) −5.42867 30.7875i −0.177347 1.00578i −0.935400 0.353591i \(-0.884960\pi\)
0.758053 0.652193i \(-0.226151\pi\)
\(938\) 72.3335 17.1434i 2.36177 0.559750i
\(939\) 0 0
\(940\) 2.78020 47.7341i 0.0906800 1.55691i
\(941\) −45.7331 10.8389i −1.49086 0.353339i −0.597200 0.802093i \(-0.703720\pi\)
−0.893656 + 0.448753i \(0.851868\pi\)
\(942\) 0 0
\(943\) −4.57945 0.535261i −0.149127 0.0174305i
\(944\) −4.43886 + 7.68833i −0.144473 + 0.250234i
\(945\) 0 0
\(946\) 46.7748 + 81.0163i 1.52078 + 2.63407i
\(947\) −12.1510 28.1691i −0.394853 0.915373i −0.993444 0.114318i \(-0.963532\pi\)
0.598591 0.801055i \(-0.295727\pi\)
\(948\) 0 0
\(949\) −2.00268 + 2.12272i −0.0650099 + 0.0689064i
\(950\) 40.1411 20.1596i 1.30235 0.654065i
\(951\) 0 0
\(952\) 2.57122 8.58847i 0.0833336 0.278354i
\(953\) −5.18464 + 4.35043i −0.167947 + 0.140924i −0.722887 0.690966i \(-0.757185\pi\)
0.554940 + 0.831890i \(0.312741\pi\)
\(954\) 0 0
\(955\) 28.7522 + 24.1260i 0.930400 + 0.780698i
\(956\) 32.0796 21.0991i 1.03753 0.682394i
\(957\) 0 0
\(958\) 10.0127 1.17032i 0.323496 0.0378113i
\(959\) 12.0821 28.0094i 0.390151 0.904471i
\(960\) 0 0
\(961\) −26.5964 13.3572i −0.857947 0.430877i
\(962\) −5.68771 + 2.07016i −0.183379 + 0.0667446i
\(963\) 0 0
\(964\) 1.74773 + 0.636123i 0.0562907 + 0.0204881i
\(965\) −41.0999 43.5633i −1.32305 1.40235i
\(966\) 0 0
\(967\) −16.1418 10.6166i −0.519085 0.341407i 0.262780 0.964856i \(-0.415361\pi\)
−0.781864 + 0.623448i \(0.785731\pi\)
\(968\) −10.2790 34.3342i −0.330379 1.10354i
\(969\) 0 0
\(970\) −27.5583 + 37.0172i −0.884844 + 1.18855i
\(971\) 42.4827 1.36333 0.681667 0.731662i \(-0.261255\pi\)
0.681667 + 0.731662i \(0.261255\pi\)
\(972\) 0 0
\(973\) −51.5885 −1.65385
\(974\) −37.5437 + 50.4299i −1.20298 + 1.61588i
\(975\) 0 0
\(976\) 1.54743 + 5.16876i 0.0495319 + 0.165448i
\(977\) 31.7530 + 20.8843i 1.01587 + 0.668147i 0.944231 0.329284i \(-0.106807\pi\)
0.0716371 + 0.997431i \(0.477178\pi\)
\(978\) 0 0
\(979\) −20.7103 21.9517i −0.661906 0.701579i
\(980\) −14.1247 5.14095i −0.451196 0.164222i
\(981\) 0 0
\(982\) −40.9002 + 14.8865i −1.30518 + 0.475046i
\(983\) 4.94761 + 2.48479i 0.157804 + 0.0792524i 0.525949 0.850516i \(-0.323710\pi\)
−0.368144 + 0.929769i \(0.620007\pi\)
\(984\) 0 0
\(985\) 4.68274 10.8558i 0.149204 0.345895i
\(986\) −11.4004 + 1.33252i −0.363064 + 0.0424361i
\(987\) 0 0
\(988\) 9.92694 6.52905i 0.315818 0.207717i
\(989\) −2.73922 2.29848i −0.0871023 0.0730875i
\(990\) 0 0
\(991\) 16.9547 14.2267i 0.538583 0.451925i −0.332470 0.943114i \(-0.607882\pi\)
0.871053 + 0.491189i \(0.163438\pi\)
\(992\) −2.21101 + 7.38528i −0.0701995 + 0.234483i
\(993\) 0 0
\(994\) −78.9663 + 39.6584i −2.50466 + 1.25789i
\(995\) −7.77367 + 8.23961i −0.246442 + 0.261213i
\(996\) 0 0
\(997\) 8.11635 + 18.8158i 0.257048 + 0.595903i 0.997055 0.0766960i \(-0.0244371\pi\)
−0.740007 + 0.672599i \(0.765178\pi\)
\(998\) 32.8916 + 56.9700i 1.04117 + 1.80335i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.226.7 144
3.2 odd 2 81.2.g.a.58.2 yes 144
9.2 odd 6 729.2.g.d.433.7 144
9.4 even 3 729.2.g.b.676.7 144
9.5 odd 6 729.2.g.c.676.2 144
9.7 even 3 729.2.g.a.433.2 144
81.7 even 27 inner 243.2.g.a.100.7 144
81.13 even 27 6561.2.a.d.1.62 72
81.20 odd 54 729.2.g.c.55.2 144
81.34 even 27 729.2.g.a.298.2 144
81.47 odd 54 729.2.g.d.298.7 144
81.61 even 27 729.2.g.b.55.7 144
81.68 odd 54 6561.2.a.c.1.11 72
81.74 odd 54 81.2.g.a.7.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.7.2 144 81.74 odd 54
81.2.g.a.58.2 yes 144 3.2 odd 2
243.2.g.a.100.7 144 81.7 even 27 inner
243.2.g.a.226.7 144 1.1 even 1 trivial
729.2.g.a.298.2 144 81.34 even 27
729.2.g.a.433.2 144 9.7 even 3
729.2.g.b.55.7 144 81.61 even 27
729.2.g.b.676.7 144 9.4 even 3
729.2.g.c.55.2 144 81.20 odd 54
729.2.g.c.676.2 144 9.5 odd 6
729.2.g.d.298.7 144 81.47 odd 54
729.2.g.d.433.7 144 9.2 odd 6
6561.2.a.c.1.11 72 81.68 odd 54
6561.2.a.d.1.62 72 81.13 even 27