Properties

Label 243.2.g
Level $243$
Weight $2$
Character orbit 243.g
Rep. character $\chi_{243}(10,\cdot)$
Character field $\Q(\zeta_{27})$
Dimension $144$
Newform subspaces $1$
Sturm bound $54$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 81 \)
Character field: \(\Q(\zeta_{27})\)
Newform subspaces: \( 1 \)
Sturm bound: \(54\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(243, [\chi])\).

Total New Old
Modular forms 540 180 360
Cusp forms 432 144 288
Eisenstein series 108 36 72

Trace form

\( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} + O(q^{10}) \) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26} - 9 q^{28} - 9 q^{29} - 18 q^{31} - 36 q^{32} - 18 q^{34} - 9 q^{35} - 18 q^{37} + 9 q^{38} - 18 q^{40} - 18 q^{43} - 54 q^{44} - 18 q^{46} - 36 q^{47} - 18 q^{49} - 99 q^{50} - 45 q^{53} - 9 q^{55} - 126 q^{56} - 18 q^{58} - 45 q^{59} - 18 q^{61} - 81 q^{62} - 18 q^{64} + 9 q^{67} + 99 q^{68} + 36 q^{70} + 90 q^{71} - 18 q^{73} + 162 q^{74} + 63 q^{76} + 162 q^{77} + 36 q^{79} + 288 q^{80} - 36 q^{82} + 90 q^{83} + 36 q^{85} + 162 q^{86} + 63 q^{88} + 81 q^{89} - 18 q^{91} + 144 q^{92} + 36 q^{94} - 18 q^{95} + 9 q^{97} - 81 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(243, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
243.2.g.a 243.g 81.g $144$ $1.940$ None 81.2.g.a \(18\) \(0\) \(18\) \(-18\) $\mathrm{SU}(2)[C_{27}]$

Decomposition of \(S_{2}^{\mathrm{old}}(243, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)