Defining parameters
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.g (of order \(27\) and degree \(18\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 81 \) |
Character field: | \(\Q(\zeta_{27})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(243, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 540 | 180 | 360 |
Cusp forms | 432 | 144 | 288 |
Eisenstein series | 108 | 36 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(243, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
243.2.g.a | $144$ | $1.940$ | None | \(18\) | \(0\) | \(18\) | \(-18\) |
Decomposition of \(S_{2}^{\mathrm{old}}(243, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)