Defining parameters
Level: | \( N \) | = | \( 243 = 3^{5} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 5 \) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(8748\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(243))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2376 | 1824 | 552 |
Cusp forms | 1999 | 1632 | 367 |
Eisenstein series | 377 | 192 | 185 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(243))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(243))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(243)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 1}\)