Properties

Label 81.2.g.a.7.2
Level $81$
Weight $2$
Character 81.7
Analytic conductor $0.647$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,2,Mod(4,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.g (of order \(27\), degree \(18\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.646788256372\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 81.7
Dual form 81.2.g.a.58.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32716 - 1.78269i) q^{2} +(1.62274 - 0.605570i) q^{3} +(-0.843016 + 2.81587i) q^{4} +(2.46097 - 1.61861i) q^{5} +(-3.23319 - 2.08915i) q^{6} +(-2.02832 + 2.14989i) q^{7} +(1.96178 - 0.714030i) q^{8} +(2.26657 - 1.96536i) q^{9} +O(q^{10})\) \(q+(-1.32716 - 1.78269i) q^{2} +(1.62274 - 0.605570i) q^{3} +(-0.843016 + 2.81587i) q^{4} +(2.46097 - 1.61861i) q^{5} +(-3.23319 - 2.08915i) q^{6} +(-2.02832 + 2.14989i) q^{7} +(1.96178 - 0.714030i) q^{8} +(2.26657 - 1.96536i) q^{9} +(-6.15160 - 2.23900i) q^{10} +(-4.74276 + 2.38190i) q^{11} +(0.337209 + 5.07993i) q^{12} +(-0.291219 - 0.675122i) q^{13} +(6.52450 + 0.762605i) q^{14} +(3.01334 - 4.11687i) q^{15} +(1.03509 + 0.680789i) q^{16} +(1.11298 - 0.933897i) q^{17} +(-6.51175 - 1.43223i) q^{18} +(4.21153 + 3.53390i) q^{19} +(2.48315 + 8.29430i) q^{20} +(-1.98952 + 4.71700i) q^{21} +(10.5406 + 5.29370i) q^{22} +(0.309397 + 0.327942i) q^{23} +(2.75107 - 2.34668i) q^{24} +(1.45610 - 3.37562i) q^{25} +(-0.817038 + 1.41515i) q^{26} +(2.48789 - 4.56184i) q^{27} +(-4.34391 - 7.52387i) q^{28} +(-3.53065 + 0.412674i) q^{29} +(-11.3383 + 0.0919079i) q^{30} +(-1.08263 + 0.256589i) q^{31} +(-0.402873 - 6.91707i) q^{32} +(-6.25386 + 6.73728i) q^{33} +(-3.14195 - 0.744656i) q^{34} +(-1.51181 + 8.57387i) q^{35} +(3.62345 + 8.03920i) q^{36} +(-0.643205 - 3.64780i) q^{37} +(0.710448 - 12.1979i) q^{38} +(-0.881406 - 0.919194i) q^{39} +(3.67216 - 4.93256i) q^{40} +(-6.10675 + 8.20279i) q^{41} +(11.0494 - 2.71353i) q^{42} +(0.461153 - 7.91770i) q^{43} +(-2.70891 - 15.3630i) q^{44} +(2.39682 - 8.50540i) q^{45} +(0.173998 - 0.986793i) q^{46} +(5.37376 + 1.27360i) q^{47} +(2.09195 + 0.477925i) q^{48} +(-0.100945 - 1.73316i) q^{49} +(-7.95018 + 1.88423i) q^{50} +(1.24053 - 2.18946i) q^{51} +(2.14656 - 0.250897i) q^{52} +(-1.83020 - 3.17001i) q^{53} +(-11.4342 + 1.61917i) q^{54} +(-7.81644 + 13.5385i) q^{55} +(-2.44403 + 5.66589i) q^{56} +(8.97424 + 3.18422i) q^{57} +(5.42142 + 5.74637i) q^{58} +(6.40358 + 3.21600i) q^{59} +(9.05228 + 11.9558i) q^{60} +(-1.24903 - 4.17204i) q^{61} +(1.89425 + 1.58947i) q^{62} +(-0.372007 + 8.85926i) q^{63} +(-9.89820 + 8.30558i) q^{64} +(-1.80944 - 1.19009i) q^{65} +(20.3104 + 2.20722i) q^{66} +(-11.2400 - 1.31377i) q^{67} +(1.69148 + 3.92129i) q^{68} +(0.700663 + 0.344803i) q^{69} +(17.2910 - 8.68386i) q^{70} +(-12.6408 - 4.60088i) q^{71} +(3.04319 - 5.47401i) q^{72} +(3.72979 - 1.35753i) q^{73} +(-5.64926 + 5.98787i) q^{74} +(0.318700 - 6.35953i) q^{75} +(-13.5014 + 8.88000i) q^{76} +(4.49899 - 15.0277i) q^{77} +(-0.468868 + 2.79120i) q^{78} +(1.69751 + 2.28015i) q^{79} +3.64926 q^{80} +(1.27469 - 8.90927i) q^{81} +22.7277 q^{82} +(0.210107 + 0.282223i) q^{83} +(-11.6053 - 9.57875i) q^{84} +(1.22739 - 4.09977i) q^{85} +(-14.7268 + 9.68599i) q^{86} +(-5.47943 + 2.80772i) q^{87} +(-7.60351 + 8.05925i) q^{88} +(5.34347 - 1.94487i) q^{89} +(-18.3435 + 7.01528i) q^{90} +(2.04212 + 0.743272i) q^{91} +(-1.18427 + 0.594763i) q^{92} +(-1.60145 + 1.07199i) q^{93} +(-4.86142 - 11.2700i) q^{94} +(16.0845 + 1.88000i) q^{95} +(-4.84252 - 10.9806i) q^{96} +(5.88981 + 3.87379i) q^{97} +(-2.95571 + 2.48014i) q^{98} +(-6.06850 + 14.7200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 18 q^{5} - 18 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 18 q^{10} - 18 q^{11} - 18 q^{12} - 18 q^{13} - 18 q^{14} - 18 q^{15} - 18 q^{16} - 18 q^{17} - 9 q^{18} - 18 q^{19} + 18 q^{20} + 9 q^{21} - 18 q^{22} + 9 q^{23} + 36 q^{24} - 18 q^{25} + 45 q^{26} + 9 q^{27} - 9 q^{28} + 9 q^{29} + 36 q^{30} - 18 q^{31} + 36 q^{32} + 9 q^{33} - 18 q^{34} + 9 q^{35} + 18 q^{36} - 18 q^{37} - 9 q^{38} - 18 q^{39} - 18 q^{40} + 27 q^{42} - 18 q^{43} + 54 q^{44} + 36 q^{45} - 18 q^{46} + 36 q^{47} + 81 q^{48} - 18 q^{49} + 99 q^{50} + 45 q^{51} + 45 q^{53} + 108 q^{54} - 9 q^{55} + 126 q^{56} + 36 q^{57} - 18 q^{58} + 45 q^{59} + 99 q^{60} - 18 q^{61} + 81 q^{62} + 36 q^{63} - 18 q^{64} - 18 q^{66} + 9 q^{67} - 99 q^{68} - 72 q^{69} + 36 q^{70} - 90 q^{71} - 234 q^{72} - 18 q^{73} - 162 q^{74} - 108 q^{75} + 63 q^{76} - 162 q^{77} - 135 q^{78} + 36 q^{79} - 288 q^{80} - 90 q^{81} - 36 q^{82} - 90 q^{83} - 243 q^{84} + 36 q^{85} - 162 q^{86} - 162 q^{87} + 63 q^{88} - 81 q^{89} - 99 q^{90} - 18 q^{91} - 144 q^{92} + 36 q^{94} + 18 q^{95} - 27 q^{96} + 9 q^{97} + 81 q^{98} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32716 1.78269i −0.938447 1.26055i −0.965362 0.260915i \(-0.915976\pi\)
0.0269146 0.999638i \(-0.491432\pi\)
\(3\) 1.62274 0.605570i 0.936889 0.349626i
\(4\) −0.843016 + 2.81587i −0.421508 + 1.40794i
\(5\) 2.46097 1.61861i 1.10058 0.723864i 0.136811 0.990597i \(-0.456315\pi\)
0.963770 + 0.266734i \(0.0859444\pi\)
\(6\) −3.23319 2.08915i −1.31994 0.852894i
\(7\) −2.02832 + 2.14989i −0.766632 + 0.812582i −0.986640 0.162916i \(-0.947910\pi\)
0.220008 + 0.975498i \(0.429392\pi\)
\(8\) 1.96178 0.714030i 0.693594 0.252448i
\(9\) 2.26657 1.96536i 0.755524 0.655121i
\(10\) −6.15160 2.23900i −1.94531 0.708033i
\(11\) −4.74276 + 2.38190i −1.43000 + 0.718171i −0.984216 0.176971i \(-0.943370\pi\)
−0.445781 + 0.895142i \(0.647074\pi\)
\(12\) 0.337209 + 5.07993i 0.0973439 + 1.46645i
\(13\) −0.291219 0.675122i −0.0807696 0.187245i 0.873046 0.487638i \(-0.162141\pi\)
−0.953816 + 0.300393i \(0.902882\pi\)
\(14\) 6.52450 + 0.762605i 1.74375 + 0.203815i
\(15\) 3.01334 4.11687i 0.778041 1.06297i
\(16\) 1.03509 + 0.680789i 0.258772 + 0.170197i
\(17\) 1.11298 0.933897i 0.269936 0.226503i −0.497764 0.867312i \(-0.665845\pi\)
0.767700 + 0.640809i \(0.221401\pi\)
\(18\) −6.51175 1.43223i −1.53483 0.337581i
\(19\) 4.21153 + 3.53390i 0.966192 + 0.810731i 0.981949 0.189145i \(-0.0605715\pi\)
−0.0157573 + 0.999876i \(0.505016\pi\)
\(20\) 2.48315 + 8.29430i 0.555249 + 1.85466i
\(21\) −1.98952 + 4.71700i −0.434149 + 1.02933i
\(22\) 10.5406 + 5.29370i 2.24727 + 1.12862i
\(23\) 0.309397 + 0.327942i 0.0645138 + 0.0683806i 0.758827 0.651293i \(-0.225773\pi\)
−0.694313 + 0.719673i \(0.744292\pi\)
\(24\) 2.75107 2.34668i 0.561559 0.479014i
\(25\) 1.45610 3.37562i 0.291220 0.675125i
\(26\) −0.817038 + 1.41515i −0.160234 + 0.277534i
\(27\) 2.48789 4.56184i 0.478795 0.877927i
\(28\) −4.34391 7.52387i −0.820921 1.42188i
\(29\) −3.53065 + 0.412674i −0.655625 + 0.0766316i −0.437400 0.899267i \(-0.644101\pi\)
−0.218225 + 0.975898i \(0.570027\pi\)
\(30\) −11.3383 + 0.0919079i −2.07008 + 0.0167800i
\(31\) −1.08263 + 0.256589i −0.194447 + 0.0460847i −0.326685 0.945133i \(-0.605932\pi\)
0.132238 + 0.991218i \(0.457784\pi\)
\(32\) −0.402873 6.91707i −0.0712186 1.22278i
\(33\) −6.25386 + 6.73728i −1.08866 + 1.17281i
\(34\) −3.14195 0.744656i −0.538840 0.127707i
\(35\) −1.51181 + 8.57387i −0.255542 + 1.44925i
\(36\) 3.62345 + 8.03920i 0.603909 + 1.33987i
\(37\) −0.643205 3.64780i −0.105742 0.599695i −0.990921 0.134444i \(-0.957075\pi\)
0.885179 0.465251i \(-0.154036\pi\)
\(38\) 0.710448 12.1979i 0.115250 1.97876i
\(39\) −0.881406 0.919194i −0.141138 0.147189i
\(40\) 3.67216 4.93256i 0.580619 0.779907i
\(41\) −6.10675 + 8.20279i −0.953714 + 1.28106i 0.00597066 + 0.999982i \(0.498099\pi\)
−0.959685 + 0.281078i \(0.909308\pi\)
\(42\) 11.0494 2.71353i 1.70496 0.418707i
\(43\) 0.461153 7.91770i 0.0703252 1.20744i −0.759912 0.650026i \(-0.774758\pi\)
0.830237 0.557411i \(-0.188205\pi\)
\(44\) −2.70891 15.3630i −0.408383 2.31606i
\(45\) 2.39682 8.50540i 0.357297 1.26791i
\(46\) 0.173998 0.986793i 0.0256546 0.145495i
\(47\) 5.37376 + 1.27360i 0.783843 + 0.185774i 0.603004 0.797738i \(-0.293970\pi\)
0.180840 + 0.983513i \(0.442119\pi\)
\(48\) 2.09195 + 0.477925i 0.301946 + 0.0689825i
\(49\) −0.100945 1.73316i −0.0144207 0.247594i
\(50\) −7.95018 + 1.88423i −1.12433 + 0.266470i
\(51\) 1.24053 2.18946i 0.173709 0.306585i
\(52\) 2.14656 0.250897i 0.297674 0.0347931i
\(53\) −1.83020 3.17001i −0.251398 0.435434i 0.712513 0.701659i \(-0.247557\pi\)
−0.963911 + 0.266225i \(0.914224\pi\)
\(54\) −11.4342 + 1.61917i −1.55600 + 0.220342i
\(55\) −7.81644 + 13.5385i −1.05397 + 1.82553i
\(56\) −2.44403 + 5.66589i −0.326597 + 0.757136i
\(57\) 8.97424 + 3.18422i 1.18867 + 0.421760i
\(58\) 5.42142 + 5.74637i 0.711868 + 0.754536i
\(59\) 6.40358 + 3.21600i 0.833675 + 0.418687i 0.813821 0.581116i \(-0.197384\pi\)
0.0198540 + 0.999803i \(0.493680\pi\)
\(60\) 9.05228 + 11.9558i 1.16864 + 1.54348i
\(61\) −1.24903 4.17204i −0.159922 0.534175i 0.840044 0.542519i \(-0.182529\pi\)
−0.999965 + 0.00834355i \(0.997344\pi\)
\(62\) 1.89425 + 1.58947i 0.240570 + 0.201862i
\(63\) −0.372007 + 8.85926i −0.0468684 + 1.11616i
\(64\) −9.89820 + 8.30558i −1.23728 + 1.03820i
\(65\) −1.80944 1.19009i −0.224433 0.147612i
\(66\) 20.3104 + 2.20722i 2.50004 + 0.271690i
\(67\) −11.2400 1.31377i −1.37318 0.160502i −0.602704 0.797965i \(-0.705910\pi\)
−0.770481 + 0.637463i \(0.779984\pi\)
\(68\) 1.69148 + 3.92129i 0.205122 + 0.475526i
\(69\) 0.700663 + 0.344803i 0.0843499 + 0.0415094i
\(70\) 17.2910 8.68386i 2.06667 1.03792i
\(71\) −12.6408 4.60088i −1.50019 0.546024i −0.544079 0.839034i \(-0.683121\pi\)
−0.956109 + 0.293010i \(0.905343\pi\)
\(72\) 3.04319 5.47401i 0.358643 0.645119i
\(73\) 3.72979 1.35753i 0.436538 0.158887i −0.114397 0.993435i \(-0.536493\pi\)
0.550935 + 0.834548i \(0.314271\pi\)
\(74\) −5.64926 + 5.98787i −0.656713 + 0.696075i
\(75\) 0.318700 6.35953i 0.0368003 0.734336i
\(76\) −13.5014 + 8.88000i −1.54872 + 1.01861i
\(77\) 4.49899 15.0277i 0.512707 1.71256i
\(78\) −0.468868 + 2.79120i −0.0530888 + 0.316041i
\(79\) 1.69751 + 2.28015i 0.190985 + 0.256537i 0.887293 0.461205i \(-0.152583\pi\)
−0.696308 + 0.717743i \(0.745175\pi\)
\(80\) 3.64926 0.408000
\(81\) 1.27469 8.90927i 0.141632 0.989919i
\(82\) 22.7277 2.50986
\(83\) 0.210107 + 0.282223i 0.0230623 + 0.0309780i 0.813505 0.581558i \(-0.197557\pi\)
−0.790442 + 0.612536i \(0.790149\pi\)
\(84\) −11.6053 9.57875i −1.26624 1.04513i
\(85\) 1.22739 4.09977i 0.133129 0.444682i
\(86\) −14.7268 + 9.68599i −1.58804 + 1.04447i
\(87\) −5.47943 + 2.80772i −0.587456 + 0.301019i
\(88\) −7.60351 + 8.05925i −0.810537 + 0.859119i
\(89\) 5.34347 1.94487i 0.566407 0.206155i −0.0429141 0.999079i \(-0.513664\pi\)
0.609321 + 0.792923i \(0.291442\pi\)
\(90\) −18.3435 + 7.01528i −1.93357 + 0.739475i
\(91\) 2.04212 + 0.743272i 0.214073 + 0.0779160i
\(92\) −1.18427 + 0.594763i −0.123469 + 0.0620083i
\(93\) −1.60145 + 1.07199i −0.166063 + 0.111160i
\(94\) −4.86142 11.2700i −0.501417 1.16242i
\(95\) 16.0845 + 1.88000i 1.65023 + 0.192884i
\(96\) −4.84252 10.9806i −0.494238 1.12071i
\(97\) 5.88981 + 3.87379i 0.598019 + 0.393323i 0.812122 0.583488i \(-0.198312\pi\)
−0.214103 + 0.976811i \(0.568683\pi\)
\(98\) −2.95571 + 2.48014i −0.298572 + 0.250532i
\(99\) −6.06850 + 14.7200i −0.609907 + 1.47942i
\(100\) 8.27780 + 6.94590i 0.827780 + 0.694590i
\(101\) −3.04350 10.1660i −0.302839 1.01155i −0.965013 0.262203i \(-0.915551\pi\)
0.662174 0.749351i \(-0.269634\pi\)
\(102\) −5.54951 + 0.694287i −0.549484 + 0.0687446i
\(103\) −15.9257 7.99820i −1.56921 0.788086i −0.569776 0.821800i \(-0.692970\pi\)
−0.999432 + 0.0337138i \(0.989267\pi\)
\(104\) −1.05336 1.11650i −0.103291 0.109482i
\(105\) 2.73881 + 14.8287i 0.267280 + 1.44713i
\(106\) −3.22216 + 7.46981i −0.312964 + 0.725532i
\(107\) 0.0249146 0.0431534i 0.00240859 0.00417180i −0.864819 0.502084i \(-0.832567\pi\)
0.867227 + 0.497913i \(0.165900\pi\)
\(108\) 10.7482 + 10.8513i 1.03425 + 1.04417i
\(109\) 0.202520 + 0.350775i 0.0193979 + 0.0335981i 0.875561 0.483107i \(-0.160492\pi\)
−0.856164 + 0.516705i \(0.827158\pi\)
\(110\) 34.5086 4.03348i 3.29027 0.384577i
\(111\) −3.25275 5.52992i −0.308738 0.524877i
\(112\) −3.56311 + 0.844473i −0.336682 + 0.0797952i
\(113\) 0.661442 + 11.3565i 0.0622232 + 1.06833i 0.874490 + 0.485044i \(0.161197\pi\)
−0.812266 + 0.583287i \(0.801766\pi\)
\(114\) −6.23382 20.2243i −0.583851 1.89418i
\(115\) 1.29223 + 0.306264i 0.120501 + 0.0285592i
\(116\) 1.81436 10.2897i 0.168459 0.955379i
\(117\) −1.98693 0.957860i −0.183692 0.0885542i
\(118\) −2.76547 15.6838i −0.254582 1.44381i
\(119\) −0.249690 + 4.28701i −0.0228891 + 0.392990i
\(120\) 2.97195 10.2280i 0.271300 0.933686i
\(121\) 10.2516 13.7703i 0.931962 1.25184i
\(122\) −5.77980 + 7.76362i −0.523278 + 0.702885i
\(123\) −4.94231 + 17.0091i −0.445633 + 1.53366i
\(124\) 0.190157 3.26486i 0.0170766 0.293193i
\(125\) 0.677067 + 3.83984i 0.0605587 + 0.343445i
\(126\) 16.2870 11.0945i 1.45096 0.988378i
\(127\) 2.26532 12.8473i 0.201015 1.14001i −0.702574 0.711611i \(-0.747966\pi\)
0.903589 0.428401i \(-0.140923\pi\)
\(128\) 14.4588 + 3.42680i 1.27799 + 0.302889i
\(129\) −4.04638 13.1276i −0.356264 1.15582i
\(130\) 0.279866 + 4.80512i 0.0245459 + 0.421436i
\(131\) 7.79184 1.84670i 0.680776 0.161347i 0.124343 0.992239i \(-0.460318\pi\)
0.556433 + 0.830892i \(0.312170\pi\)
\(132\) −13.6992 23.2897i −1.19236 2.02711i
\(133\) −16.1398 + 1.88647i −1.39950 + 0.163578i
\(134\) 12.5753 + 21.7810i 1.08634 + 1.88160i
\(135\) −1.26120 15.2535i −0.108547 1.31281i
\(136\) 1.51658 2.62680i 0.130046 0.225246i
\(137\) −4.08774 + 9.47644i −0.349239 + 0.809627i 0.649545 + 0.760323i \(0.274959\pi\)
−0.998784 + 0.0493036i \(0.984300\pi\)
\(138\) −0.315218 1.70668i −0.0268331 0.145282i
\(139\) 11.9776 + 12.6956i 1.01593 + 1.07682i 0.997031 + 0.0770012i \(0.0245345\pi\)
0.0188987 + 0.999821i \(0.493984\pi\)
\(140\) −22.8684 11.4850i −1.93274 0.970656i
\(141\) 9.49147 1.18746i 0.799326 0.100002i
\(142\) 8.57449 + 28.6408i 0.719555 + 2.40348i
\(143\) 2.98926 + 2.50829i 0.249974 + 0.209753i
\(144\) 3.68410 0.491271i 0.307008 0.0409392i
\(145\) −8.02088 + 6.73032i −0.666098 + 0.558923i
\(146\) −7.37010 4.84739i −0.609954 0.401173i
\(147\) −1.21335 2.75133i −0.100076 0.226926i
\(148\) 10.8140 + 1.26397i 0.888902 + 0.103898i
\(149\) −3.29309 7.63423i −0.269780 0.625421i 0.728437 0.685113i \(-0.240247\pi\)
−0.998217 + 0.0596926i \(0.980988\pi\)
\(150\) −11.7601 + 7.87200i −0.960204 + 0.642746i
\(151\) −15.7285 + 7.89913i −1.27996 + 0.642822i −0.953216 0.302289i \(-0.902249\pi\)
−0.326748 + 0.945111i \(0.605953\pi\)
\(152\) 10.7854 + 3.92557i 0.874812 + 0.318406i
\(153\) 0.687190 4.30415i 0.0555560 0.347970i
\(154\) −32.7606 + 11.9239i −2.63992 + 0.960854i
\(155\) −2.24902 + 2.38382i −0.180645 + 0.191473i
\(156\) 3.33137 1.70703i 0.266723 0.136672i
\(157\) 1.80033 1.18409i 0.143682 0.0945009i −0.475633 0.879644i \(-0.657781\pi\)
0.619315 + 0.785143i \(0.287411\pi\)
\(158\) 1.81193 6.05228i 0.144150 0.481493i
\(159\) −4.88960 4.03578i −0.387771 0.320058i
\(160\) −12.1875 16.3706i −0.963505 1.29421i
\(161\) −1.33260 −0.105023
\(162\) −17.5742 + 9.55170i −1.38076 + 0.750452i
\(163\) 9.47594 0.742213 0.371106 0.928590i \(-0.378979\pi\)
0.371106 + 0.928590i \(0.378979\pi\)
\(164\) −17.9499 24.1109i −1.40165 1.88275i
\(165\) −4.48557 + 26.7028i −0.349201 + 2.07881i
\(166\) 0.224270 0.749113i 0.0174067 0.0581424i
\(167\) 3.19286 2.09998i 0.247071 0.162501i −0.419933 0.907555i \(-0.637947\pi\)
0.667005 + 0.745054i \(0.267576\pi\)
\(168\) −0.534929 + 10.6743i −0.0412707 + 0.823540i
\(169\) 8.55016 9.06264i 0.657705 0.697126i
\(170\) −8.93757 + 3.25301i −0.685480 + 0.249494i
\(171\) 16.4911 0.267370i 1.26111 0.0204463i
\(172\) 21.9064 + 7.97329i 1.67035 + 0.607958i
\(173\) 7.47680 3.75499i 0.568451 0.285487i −0.141269 0.989971i \(-0.545118\pi\)
0.709719 + 0.704485i \(0.248822\pi\)
\(174\) 12.2774 + 6.04182i 0.930747 + 0.458029i
\(175\) 4.30378 + 9.97729i 0.325336 + 0.754213i
\(176\) −6.53076 0.763336i −0.492274 0.0575386i
\(177\) 12.3389 + 1.34092i 0.927445 + 0.100789i
\(178\) −10.5588 6.94461i −0.791413 0.520521i
\(179\) 4.19854 3.52299i 0.313814 0.263321i −0.472252 0.881463i \(-0.656559\pi\)
0.786066 + 0.618142i \(0.212114\pi\)
\(180\) 21.9296 + 13.9193i 1.63453 + 1.03748i
\(181\) 16.7963 + 14.0938i 1.24846 + 1.04758i 0.996814 + 0.0797621i \(0.0254161\pi\)
0.251645 + 0.967820i \(0.419028\pi\)
\(182\) −1.38521 4.62692i −0.102678 0.342970i
\(183\) −4.55331 6.01377i −0.336590 0.444551i
\(184\) 0.841130 + 0.422431i 0.0620089 + 0.0311421i
\(185\) −7.48727 7.93604i −0.550475 0.583469i
\(186\) 4.03641 + 1.43219i 0.295964 + 0.105013i
\(187\) −3.05412 + 7.08025i −0.223340 + 0.517759i
\(188\) −8.11647 + 14.0581i −0.591955 + 1.02530i
\(189\) 4.76123 + 14.6015i 0.346328 + 1.06211i
\(190\) −17.9953 31.1687i −1.30551 2.26122i
\(191\) 12.6562 1.47930i 0.915772 0.107038i 0.354865 0.934917i \(-0.384527\pi\)
0.560907 + 0.827879i \(0.310453\pi\)
\(192\) −11.0326 + 19.4718i −0.796210 + 1.40526i
\(193\) 19.7847 4.68906i 1.42413 0.337526i 0.554896 0.831920i \(-0.312758\pi\)
0.869238 + 0.494394i \(0.164610\pi\)
\(194\) −0.910976 15.6409i −0.0654043 1.12295i
\(195\) −3.65693 0.835461i −0.261878 0.0598286i
\(196\) 4.96544 + 1.17683i 0.354674 + 0.0840594i
\(197\) −0.696981 + 3.95277i −0.0496578 + 0.281623i −0.999518 0.0310522i \(-0.990114\pi\)
0.949860 + 0.312676i \(0.101225\pi\)
\(198\) 34.2951 8.71762i 2.43725 0.619534i
\(199\) 0.667809 + 3.78734i 0.0473398 + 0.268477i 0.999286 0.0377889i \(-0.0120314\pi\)
−0.951946 + 0.306266i \(0.900920\pi\)
\(200\) 0.446257 7.66194i 0.0315551 0.541781i
\(201\) −19.0352 + 4.67470i −1.34264 + 0.329728i
\(202\) −14.0836 + 18.9176i −0.990918 + 1.33103i
\(203\) 6.27407 8.42754i 0.440354 0.591497i
\(204\) 5.11944 + 5.33892i 0.358432 + 0.373799i
\(205\) −1.75145 + 30.0713i −0.122327 + 2.10027i
\(206\) 6.87773 + 39.0056i 0.479195 + 2.71765i
\(207\) 1.34580 + 0.135225i 0.0935393 + 0.00939882i
\(208\) 0.158178 0.897070i 0.0109676 0.0622006i
\(209\) −28.3917 6.72896i −1.96390 0.465452i
\(210\) 22.8001 24.5625i 1.57336 1.69498i
\(211\) −0.414462 7.11605i −0.0285328 0.489889i −0.982058 0.188577i \(-0.939613\pi\)
0.953526 0.301312i \(-0.0974245\pi\)
\(212\) 10.4692 2.48125i 0.719029 0.170413i
\(213\) −23.2989 + 0.188860i −1.59642 + 0.0129405i
\(214\) −0.109995 + 0.0128566i −0.00751911 + 0.000878858i
\(215\) −11.6808 20.2317i −0.796621 1.37979i
\(216\) 1.62341 10.7258i 0.110459 0.729796i
\(217\) 1.64429 2.84799i 0.111621 0.193334i
\(218\) 0.356546 0.826566i 0.0241483 0.0559821i
\(219\) 5.23039 4.46156i 0.353437 0.301485i
\(220\) −31.5332 33.4233i −2.12597 2.25340i
\(221\) −0.954614 0.479425i −0.0642143 0.0322496i
\(222\) −5.54121 + 13.1378i −0.371902 + 0.881750i
\(223\) −4.25881 14.2254i −0.285191 0.952604i −0.973788 0.227460i \(-0.926958\pi\)
0.688596 0.725145i \(-0.258227\pi\)
\(224\) 15.6881 + 13.1639i 1.04820 + 0.879548i
\(225\) −3.33397 10.5129i −0.222265 0.700858i
\(226\) 19.3673 16.2511i 1.28829 1.08101i
\(227\) 11.2427 + 7.39441i 0.746201 + 0.490784i 0.864774 0.502161i \(-0.167462\pi\)
−0.118573 + 0.992945i \(0.537832\pi\)
\(228\) −16.5318 + 22.5860i −1.09484 + 1.49579i
\(229\) 3.23737 + 0.378394i 0.213931 + 0.0250050i 0.222383 0.974959i \(-0.428616\pi\)
−0.00845203 + 0.999964i \(0.502690\pi\)
\(230\) −1.16903 2.71011i −0.0770833 0.178699i
\(231\) −1.79961 27.1105i −0.118406 1.78374i
\(232\) −6.63170 + 3.33056i −0.435392 + 0.218662i
\(233\) 7.77413 + 2.82955i 0.509300 + 0.185370i 0.583872 0.811846i \(-0.301537\pi\)
−0.0745722 + 0.997216i \(0.523759\pi\)
\(234\) 0.929413 + 4.81332i 0.0607576 + 0.314656i
\(235\) 15.2861 5.56370i 0.997158 0.362936i
\(236\) −14.4542 + 15.3205i −0.940886 + 0.997280i
\(237\) 4.13541 + 2.67214i 0.268624 + 0.173574i
\(238\) 7.97380 5.24445i 0.516865 0.339947i
\(239\) −3.74646 + 12.5141i −0.242339 + 0.809467i 0.747125 + 0.664684i \(0.231434\pi\)
−0.989463 + 0.144783i \(0.953751\pi\)
\(240\) 5.92180 2.20988i 0.382250 0.142647i
\(241\) −0.377857 0.507550i −0.0243399 0.0326941i 0.789787 0.613382i \(-0.210191\pi\)
−0.814127 + 0.580687i \(0.802784\pi\)
\(242\) −38.1537 −2.45261
\(243\) −3.32670 15.2293i −0.213408 0.976963i
\(244\) 12.8009 0.819493
\(245\) −3.05372 4.10186i −0.195095 0.262058i
\(246\) 36.8812 13.7632i 2.35146 0.877510i
\(247\) 1.15933 3.87244i 0.0737665 0.246397i
\(248\) −1.94068 + 1.27640i −0.123233 + 0.0810517i
\(249\) 0.511855 + 0.330740i 0.0324375 + 0.0209598i
\(250\) 5.94666 6.30310i 0.376100 0.398643i
\(251\) 12.9984 4.73104i 0.820454 0.298621i 0.102519 0.994731i \(-0.467310\pi\)
0.717935 + 0.696110i \(0.245088\pi\)
\(252\) −24.6329 8.51602i −1.55173 0.536459i
\(253\) −2.24852 0.818396i −0.141364 0.0514521i
\(254\) −25.9092 + 13.0121i −1.62569 + 0.816451i
\(255\) −0.490960 7.39613i −0.0307451 0.463163i
\(256\) −2.84463 6.59459i −0.177789 0.412162i
\(257\) −26.0284 3.04229i −1.62361 0.189773i −0.744916 0.667158i \(-0.767510\pi\)
−0.878694 + 0.477386i \(0.841585\pi\)
\(258\) −18.0323 + 24.6360i −1.12264 + 1.53377i
\(259\) 9.14699 + 6.01607i 0.568366 + 0.373820i
\(260\) 4.87652 4.09189i 0.302429 0.253768i
\(261\) −7.19141 + 7.87437i −0.445137 + 0.487411i
\(262\) −13.6332 11.4396i −0.842259 0.706739i
\(263\) −0.407994 1.36280i −0.0251580 0.0840336i 0.944489 0.328544i \(-0.106558\pi\)
−0.969647 + 0.244510i \(0.921373\pi\)
\(264\) −7.45808 + 17.6825i −0.459013 + 1.08828i
\(265\) −9.63508 4.83892i −0.591878 0.297252i
\(266\) 24.7832 + 26.2686i 1.51955 + 1.61063i
\(267\) 7.49332 6.39186i 0.458584 0.391175i
\(268\) 13.1749 30.5429i 0.804785 1.86570i
\(269\) −2.73320 + 4.73405i −0.166646 + 0.288640i −0.937239 0.348688i \(-0.886627\pi\)
0.770592 + 0.637328i \(0.219961\pi\)
\(270\) −25.5185 + 22.4922i −1.55300 + 1.36883i
\(271\) −15.3667 26.6158i −0.933458 1.61680i −0.777360 0.629056i \(-0.783442\pi\)
−0.156099 0.987741i \(-0.549892\pi\)
\(272\) 1.78782 0.208966i 0.108402 0.0126704i
\(273\) 3.76394 0.0305103i 0.227804 0.00184657i
\(274\) 22.3187 5.28962i 1.34832 0.319558i
\(275\) 1.13447 + 19.4781i 0.0684111 + 1.17457i
\(276\) −1.56159 + 1.68230i −0.0939968 + 0.101263i
\(277\) 4.43276 + 1.05058i 0.266339 + 0.0631234i 0.361615 0.932327i \(-0.382225\pi\)
−0.0952766 + 0.995451i \(0.530374\pi\)
\(278\) 6.73596 38.2015i 0.403996 2.29117i
\(279\) −1.94958 + 2.70935i −0.116718 + 0.162204i
\(280\) 3.15617 + 17.8995i 0.188617 + 1.06970i
\(281\) −1.06252 + 18.2428i −0.0633848 + 1.08827i 0.805287 + 0.592886i \(0.202011\pi\)
−0.868671 + 0.495389i \(0.835026\pi\)
\(282\) −14.7136 15.3444i −0.876183 0.913746i
\(283\) −14.1444 + 18.9992i −0.840794 + 1.12938i 0.149274 + 0.988796i \(0.452306\pi\)
−0.990068 + 0.140587i \(0.955101\pi\)
\(284\) 23.6119 31.7163i 1.40111 1.88202i
\(285\) 27.2394 6.68951i 1.61352 0.396252i
\(286\) 0.504261 8.65783i 0.0298176 0.511948i
\(287\) −5.24867 29.7667i −0.309819 1.75707i
\(288\) −14.5077 14.8862i −0.854874 0.877179i
\(289\) −2.58547 + 14.6629i −0.152086 + 0.862525i
\(290\) 22.6431 + 5.36652i 1.32965 + 0.315133i
\(291\) 11.9035 + 2.71946i 0.697794 + 0.159418i
\(292\) 0.678361 + 11.6470i 0.0396981 + 0.681590i
\(293\) −4.63951 + 1.09958i −0.271043 + 0.0642384i −0.363890 0.931442i \(-0.618552\pi\)
0.0928467 + 0.995680i \(0.470403\pi\)
\(294\) −3.29446 + 5.81451i −0.192137 + 0.339109i
\(295\) 20.9645 2.45040i 1.22060 0.142668i
\(296\) −3.86647 6.69691i −0.224734 0.389250i
\(297\) −0.933603 + 27.5616i −0.0541731 + 1.59929i
\(298\) −9.23901 + 16.0024i −0.535202 + 0.926996i
\(299\) 0.131298 0.304384i 0.00759318 0.0176030i
\(300\) 17.6390 + 6.25861i 1.01839 + 0.361341i
\(301\) 16.0868 + 17.0510i 0.927228 + 0.982804i
\(302\) 34.9560 + 17.5556i 2.01149 + 1.01021i
\(303\) −11.0950 14.6537i −0.637392 0.841833i
\(304\) 1.95348 + 6.52506i 0.112040 + 0.374238i
\(305\) −9.82673 8.24560i −0.562677 0.472142i
\(306\) −8.58498 + 4.48726i −0.490771 + 0.256520i
\(307\) −8.26674 + 6.93662i −0.471808 + 0.395894i −0.847453 0.530870i \(-0.821865\pi\)
0.375646 + 0.926763i \(0.377421\pi\)
\(308\) 38.5233 + 25.3371i 2.19507 + 1.44372i
\(309\) −30.6868 3.33486i −1.74571 0.189714i
\(310\) 7.23443 + 0.845583i 0.410888 + 0.0480259i
\(311\) 3.83460 + 8.88961i 0.217440 + 0.504083i 0.991667 0.128825i \(-0.0411204\pi\)
−0.774227 + 0.632908i \(0.781861\pi\)
\(312\) −2.38546 1.17391i −0.135050 0.0664593i
\(313\) −5.70772 + 2.86653i −0.322620 + 0.162026i −0.602737 0.797940i \(-0.705923\pi\)
0.280117 + 0.959966i \(0.409627\pi\)
\(314\) −4.50020 1.63794i −0.253961 0.0924343i
\(315\) 13.4242 + 22.4045i 0.756366 + 1.26235i
\(316\) −7.85165 + 2.85777i −0.441690 + 0.160762i
\(317\) 14.1442 14.9919i 0.794416 0.842032i −0.195935 0.980617i \(-0.562774\pi\)
0.990351 + 0.138585i \(0.0442555\pi\)
\(318\) −0.705241 + 14.0728i −0.0395479 + 0.789163i
\(319\) 15.7621 10.3669i 0.882507 0.580434i
\(320\) −10.9157 + 36.4611i −0.610209 + 2.03824i
\(321\) 0.0142976 0.0851144i 0.000798014 0.00475062i
\(322\) 1.76857 + 2.37561i 0.0985587 + 0.132387i
\(323\) 7.98763 0.444444
\(324\) 24.0128 + 11.1000i 1.33404 + 0.616668i
\(325\) −2.70300 −0.149936
\(326\) −12.5761 16.8927i −0.696527 0.935599i
\(327\) 0.541055 + 0.446576i 0.0299204 + 0.0246957i
\(328\) −6.12307 + 20.4525i −0.338090 + 1.12930i
\(329\) −13.6378 + 8.96972i −0.751876 + 0.494517i
\(330\) 53.5560 27.4427i 2.94816 1.51067i
\(331\) −13.9290 + 14.7639i −0.765610 + 0.811499i −0.986493 0.163801i \(-0.947624\pi\)
0.220884 + 0.975300i \(0.429106\pi\)
\(332\) −0.971828 + 0.353716i −0.0533360 + 0.0194127i
\(333\) −8.62712 7.00386i −0.472764 0.383809i
\(334\) −7.98107 2.90487i −0.436705 0.158948i
\(335\) −29.7878 + 14.9600i −1.62748 + 0.817353i
\(336\) −5.27061 + 3.52807i −0.287536 + 0.192472i
\(337\) −1.44819 3.35728i −0.0788880 0.182883i 0.874208 0.485552i \(-0.161381\pi\)
−0.953096 + 0.302669i \(0.902122\pi\)
\(338\) −27.5034 3.21468i −1.49599 0.174856i
\(339\) 7.95051 + 18.0281i 0.431812 + 0.979153i
\(340\) 10.5097 + 6.91234i 0.569969 + 0.374874i
\(341\) 4.52350 3.79567i 0.244961 0.205547i
\(342\) −22.3631 29.0438i −1.20926 1.57051i
\(343\) −11.9185 10.0008i −0.643537 0.539992i
\(344\) −4.74879 15.8621i −0.256038 0.855225i
\(345\) 2.28242 0.285548i 0.122881 0.0153734i
\(346\) −16.6169 8.34534i −0.893332 0.448648i
\(347\) −20.0082 21.2074i −1.07410 1.13848i −0.989862 0.142029i \(-0.954637\pi\)
−0.0842334 0.996446i \(-0.526844\pi\)
\(348\) −3.28692 17.7963i −0.176198 0.953982i
\(349\) 6.70643 15.5473i 0.358987 0.832225i −0.639024 0.769187i \(-0.720662\pi\)
0.998011 0.0630387i \(-0.0200792\pi\)
\(350\) 12.0746 20.9138i 0.645415 1.11789i
\(351\) −3.80432 0.351134i −0.203060 0.0187421i
\(352\) 18.3865 + 31.8464i 0.980005 + 1.69742i
\(353\) 22.5947 2.64094i 1.20259 0.140563i 0.508894 0.860829i \(-0.330054\pi\)
0.693698 + 0.720266i \(0.255980\pi\)
\(354\) −13.9853 23.7760i −0.743308 1.26368i
\(355\) −38.5557 + 9.13788i −2.04633 + 0.484988i
\(356\) 0.971854 + 16.6861i 0.0515082 + 0.884361i
\(357\) 2.19090 + 7.10791i 0.115955 + 0.376191i
\(358\) −11.8526 2.80911i −0.626428 0.148466i
\(359\) −2.65948 + 15.0826i −0.140362 + 0.796032i 0.830613 + 0.556850i \(0.187990\pi\)
−0.970975 + 0.239182i \(0.923121\pi\)
\(360\) −1.37108 18.3971i −0.0722621 0.969614i
\(361\) 1.94928 + 11.0549i 0.102593 + 0.581836i
\(362\) 2.83339 48.6474i 0.148920 2.55685i
\(363\) 8.29680 28.5536i 0.435469 1.49868i
\(364\) −3.81450 + 5.12376i −0.199934 + 0.268558i
\(365\) 6.98160 9.37791i 0.365433 0.490862i
\(366\) −4.67770 + 16.0984i −0.244507 + 0.841477i
\(367\) −0.816173 + 14.0131i −0.0426039 + 0.731480i 0.907597 + 0.419842i \(0.137915\pi\)
−0.950201 + 0.311638i \(0.899122\pi\)
\(368\) 0.0969946 + 0.550084i 0.00505619 + 0.0286751i
\(369\) 2.28008 + 30.5942i 0.118696 + 1.59267i
\(370\) −4.21068 + 23.8799i −0.218903 + 1.24146i
\(371\) 10.5274 + 2.49504i 0.546555 + 0.129536i
\(372\) −1.66853 5.41318i −0.0865091 0.280660i
\(373\) 1.58424 + 27.2004i 0.0820290 + 1.40838i 0.748639 + 0.662978i \(0.230708\pi\)
−0.666610 + 0.745406i \(0.732255\pi\)
\(374\) 16.6752 3.95210i 0.862256 0.204358i
\(375\) 3.42399 + 5.82104i 0.176814 + 0.300597i
\(376\) 11.4515 1.33849i 0.590567 0.0690274i
\(377\) 1.30680 + 2.26344i 0.0673035 + 0.116573i
\(378\) 19.7111 27.8665i 1.01383 1.43330i
\(379\) −4.29852 + 7.44526i −0.220800 + 0.382437i −0.955051 0.296441i \(-0.904200\pi\)
0.734251 + 0.678878i \(0.237534\pi\)
\(380\) −18.8533 + 43.7069i −0.967155 + 2.24212i
\(381\) −4.10390 22.2196i −0.210249 1.13835i
\(382\) −19.4340 20.5989i −0.994331 1.05393i
\(383\) −17.2369 8.65669i −0.880764 0.442336i −0.0498624 0.998756i \(-0.515878\pi\)
−0.830901 + 0.556420i \(0.812175\pi\)
\(384\) 25.5380 3.19500i 1.30323 0.163044i
\(385\) −13.2520 44.2648i −0.675385 2.25594i
\(386\) −34.6167 29.0469i −1.76194 1.47845i
\(387\) −14.5159 18.8524i −0.737886 0.958319i
\(388\) −15.8733 + 13.3193i −0.805844 + 0.676183i
\(389\) 26.0189 + 17.1129i 1.31921 + 0.867659i 0.996877 0.0789664i \(-0.0251620\pi\)
0.322335 + 0.946626i \(0.395532\pi\)
\(390\) 3.36398 + 7.62797i 0.170342 + 0.386258i
\(391\) 0.650616 + 0.0760461i 0.0329031 + 0.00384582i
\(392\) −1.43556 3.32799i −0.0725066 0.168089i
\(393\) 11.5258 7.71522i 0.581401 0.389181i
\(394\) 7.97158 4.00348i 0.401603 0.201692i
\(395\) 7.86821 + 2.86379i 0.395893 + 0.144093i
\(396\) −36.3338 29.4973i −1.82584 1.48230i
\(397\) −10.0204 + 3.64712i −0.502908 + 0.183044i −0.581002 0.813902i \(-0.697339\pi\)
0.0780935 + 0.996946i \(0.475117\pi\)
\(398\) 5.86536 6.21692i 0.294004 0.311626i
\(399\) −25.0483 + 12.8350i −1.25398 + 0.642555i
\(400\) 3.80528 2.50277i 0.190264 0.125139i
\(401\) 2.32332 7.76042i 0.116021 0.387537i −0.880178 0.474644i \(-0.842577\pi\)
0.996199 + 0.0871067i \(0.0277621\pi\)
\(402\) 33.5964 + 27.7298i 1.67563 + 1.38303i
\(403\) 0.488512 + 0.656186i 0.0243345 + 0.0326869i
\(404\) 31.1918 1.55185
\(405\) −11.2837 23.9887i −0.560689 1.19201i
\(406\) −23.3504 −1.15886
\(407\) 11.7393 + 15.7686i 0.581895 + 0.781620i
\(408\) 0.870311 5.18101i 0.0430868 0.256498i
\(409\) 10.7499 35.9072i 0.531549 1.77550i −0.0942897 0.995545i \(-0.530058\pi\)
0.625839 0.779952i \(-0.284757\pi\)
\(410\) 55.9323 36.7872i 2.76230 1.81679i
\(411\) −0.894691 + 17.8532i −0.0441319 + 0.880634i
\(412\) 35.9475 38.1022i 1.77101 1.87716i
\(413\) −19.9025 + 7.24393i −0.979339 + 0.356450i
\(414\) −1.54503 2.57861i −0.0759340 0.126732i
\(415\) 0.973877 + 0.354462i 0.0478058 + 0.0173999i
\(416\) −4.55254 + 2.28637i −0.223207 + 0.112099i
\(417\) 27.1246 + 13.3483i 1.32830 + 0.653669i
\(418\) 25.6848 + 59.5441i 1.25629 + 2.91240i
\(419\) 12.8086 + 1.49711i 0.625739 + 0.0731384i 0.423052 0.906105i \(-0.360959\pi\)
0.202687 + 0.979244i \(0.435033\pi\)
\(420\) −44.0645 4.78868i −2.15013 0.233664i
\(421\) −19.3273 12.7118i −0.941955 0.619533i −0.0171000 0.999854i \(-0.505443\pi\)
−0.924855 + 0.380320i \(0.875814\pi\)
\(422\) −12.1357 + 10.1830i −0.590754 + 0.495702i
\(423\) 14.6831 7.67468i 0.713917 0.373156i
\(424\) −5.85394 4.91204i −0.284292 0.238550i
\(425\) −1.53188 5.11684i −0.0743071 0.248203i
\(426\) 31.2582 + 41.2841i 1.51446 + 2.00022i
\(427\) 11.5029 + 5.77695i 0.556662 + 0.279566i
\(428\) 0.100511 + 0.106535i 0.00485838 + 0.00514959i
\(429\) 6.36973 + 2.26009i 0.307534 + 0.109118i
\(430\) −20.5645 + 47.6739i −0.991710 + 2.29904i
\(431\) 11.3499 19.6586i 0.546706 0.946923i −0.451791 0.892124i \(-0.649215\pi\)
0.998497 0.0547992i \(-0.0174519\pi\)
\(432\) 5.68084 3.02819i 0.273320 0.145694i
\(433\) 9.10550 + 15.7712i 0.437583 + 0.757915i 0.997502 0.0706315i \(-0.0225015\pi\)
−0.559920 + 0.828547i \(0.689168\pi\)
\(434\) −7.25932 + 0.848493i −0.348458 + 0.0407289i
\(435\) −8.94013 + 15.7788i −0.428646 + 0.756534i
\(436\) −1.15846 + 0.274561i −0.0554803 + 0.0131491i
\(437\) 0.144124 + 2.47452i 0.00689440 + 0.118372i
\(438\) −14.8952 3.40295i −0.711720 0.162599i
\(439\) 26.7551 + 6.34107i 1.27695 + 0.302643i 0.812503 0.582958i \(-0.198105\pi\)
0.464448 + 0.885600i \(0.346253\pi\)
\(440\) −5.66727 + 32.1407i −0.270177 + 1.53225i
\(441\) −3.63508 3.72993i −0.173099 0.177616i
\(442\) 0.412263 + 2.33806i 0.0196093 + 0.111210i
\(443\) −0.712965 + 12.2411i −0.0338740 + 0.581594i 0.938079 + 0.346420i \(0.112603\pi\)
−0.971953 + 0.235173i \(0.924434\pi\)
\(444\) 18.3137 4.49751i 0.869129 0.213442i
\(445\) 10.0022 13.4353i 0.474149 0.636892i
\(446\) −19.7074 + 26.4716i −0.933172 + 1.25347i
\(447\) −9.96688 10.3942i −0.471417 0.491628i
\(448\) 2.22061 38.1264i 0.104914 1.80130i
\(449\) −1.20505 6.83416i −0.0568697 0.322524i 0.943080 0.332566i \(-0.107915\pi\)
−0.999950 + 0.0100422i \(0.996803\pi\)
\(450\) −14.3165 + 19.8957i −0.674885 + 0.937894i
\(451\) 9.42460 53.4496i 0.443787 2.51684i
\(452\) −32.5361 7.71119i −1.53037 0.362704i
\(453\) −20.7397 + 22.3429i −0.974438 + 1.04976i
\(454\) −1.73890 29.8558i −0.0816107 1.40120i
\(455\) 6.22867 1.47622i 0.292005 0.0692064i
\(456\) 19.8791 0.161139i 0.930925 0.00754604i
\(457\) −29.6629 + 3.46709i −1.38757 + 0.162184i −0.776862 0.629671i \(-0.783190\pi\)
−0.610709 + 0.791855i \(0.709116\pi\)
\(458\) −3.62196 6.27342i −0.169243 0.293138i
\(459\) −1.49133 7.40065i −0.0696093 0.345433i
\(460\) −1.95177 + 3.38056i −0.0910017 + 0.157620i
\(461\) 0.324961 0.753345i 0.0151350 0.0350868i −0.910481 0.413551i \(-0.864288\pi\)
0.925616 + 0.378464i \(0.123548\pi\)
\(462\) −45.9412 + 39.1882i −2.13738 + 1.82320i
\(463\) 19.6398 + 20.8169i 0.912738 + 0.967445i 0.999586 0.0287763i \(-0.00916103\pi\)
−0.0868483 + 0.996222i \(0.527680\pi\)
\(464\) −3.93548 1.97647i −0.182700 0.0917555i
\(465\) −2.20600 + 5.23025i −0.102301 + 0.242547i
\(466\) −5.27333 17.6141i −0.244282 0.815960i
\(467\) 9.57011 + 8.03027i 0.442852 + 0.371597i 0.836775 0.547546i \(-0.184438\pi\)
−0.393924 + 0.919143i \(0.628883\pi\)
\(468\) 4.37222 4.78744i 0.202106 0.221300i
\(469\) 25.6227 21.5000i 1.18315 0.992779i
\(470\) −30.2056 19.8665i −1.39328 0.916375i
\(471\) 2.20441 3.01170i 0.101574 0.138772i
\(472\) 14.8587 + 1.73674i 0.683929 + 0.0799398i
\(473\) 16.6721 + 38.6502i 0.766582 + 1.77714i
\(474\) −0.724779 10.9185i −0.0332902 0.501505i
\(475\) 18.0615 9.07084i 0.828720 0.416199i
\(476\) −11.8612 4.31712i −0.543656 0.197875i
\(477\) −10.3785 3.58803i −0.475199 0.164284i
\(478\) 27.2809 9.92943i 1.24780 0.454161i
\(479\) −3.11272 + 3.29929i −0.142224 + 0.150749i −0.794570 0.607173i \(-0.792304\pi\)
0.652346 + 0.757922i \(0.273785\pi\)
\(480\) −29.6907 19.1849i −1.35519 0.875667i
\(481\) −2.27539 + 1.49655i −0.103749 + 0.0682368i
\(482\) −0.403326 + 1.34720i −0.0183710 + 0.0613634i
\(483\) −2.16246 + 0.806979i −0.0983951 + 0.0367188i
\(484\) 30.1330 + 40.4757i 1.36968 + 1.83980i
\(485\) 20.7648 0.942881
\(486\) −22.7342 + 26.1423i −1.03124 + 1.18584i
\(487\) −28.2887 −1.28188 −0.640941 0.767590i \(-0.721456\pi\)
−0.640941 + 0.767590i \(0.721456\pi\)
\(488\) −5.42928 7.29279i −0.245772 0.330129i
\(489\) 15.3770 5.73834i 0.695371 0.259497i
\(490\) −3.25956 + 10.8877i −0.147252 + 0.491856i
\(491\) 16.3623 10.7617i 0.738421 0.485667i −0.123732 0.992316i \(-0.539486\pi\)
0.862153 + 0.506649i \(0.169116\pi\)
\(492\) −43.7289 28.2558i −1.97145 1.27387i
\(493\) −3.54413 + 3.75656i −0.159620 + 0.169187i
\(494\) −8.44198 + 3.07263i −0.379823 + 0.138244i
\(495\) 8.89151 + 46.0481i 0.399644 + 2.06971i
\(496\) −1.29531 0.471453i −0.0581609 0.0211688i
\(497\) 35.5310 17.8443i 1.59378 0.800427i
\(498\) −0.0897086 1.35143i −0.00401994 0.0605589i
\(499\) −11.7236 27.1785i −0.524823 1.21668i −0.950195 0.311657i \(-0.899116\pi\)
0.425372 0.905019i \(-0.360143\pi\)
\(500\) −11.3833 1.33051i −0.509075 0.0595023i
\(501\) 3.90950 5.34122i 0.174664 0.238628i
\(502\) −25.6851 16.8933i −1.14638 0.753986i
\(503\) −18.2284 + 15.2955i −0.812765 + 0.681991i −0.951266 0.308371i \(-0.900216\pi\)
0.138501 + 0.990362i \(0.455772\pi\)
\(504\) 5.59598 + 17.6455i 0.249265 + 0.785995i
\(505\) −23.9447 20.0920i −1.06553 0.894082i
\(506\) 1.52521 + 5.09457i 0.0678041 + 0.226481i
\(507\) 8.38663 19.8840i 0.372463 0.883081i
\(508\) 34.2666 + 17.2093i 1.52033 + 0.763541i
\(509\) 8.53666 + 9.04834i 0.378381 + 0.401060i 0.888376 0.459117i \(-0.151834\pi\)
−0.509995 + 0.860178i \(0.670353\pi\)
\(510\) −12.5334 + 10.6911i −0.554990 + 0.473410i
\(511\) −4.64664 + 10.7721i −0.205555 + 0.476531i
\(512\) 6.87849 11.9139i 0.303989 0.526525i
\(513\) 26.5989 10.4204i 1.17437 0.460072i
\(514\) 29.1206 + 50.4383i 1.28445 + 2.22474i
\(515\) −52.1387 + 6.09414i −2.29751 + 0.268540i
\(516\) 40.3769 0.327293i 1.77749 0.0144083i
\(517\) −28.5201 + 6.75938i −1.25431 + 0.297277i
\(518\) −1.41477 24.2906i −0.0621612 1.06727i
\(519\) 9.85900 10.6211i 0.432762 0.466214i
\(520\) −4.39948 1.04270i −0.192930 0.0457253i
\(521\) −6.26330 + 35.5209i −0.274400 + 1.55620i 0.466461 + 0.884542i \(0.345529\pi\)
−0.740861 + 0.671659i \(0.765582\pi\)
\(522\) 23.5818 + 2.36949i 1.03215 + 0.103710i
\(523\) −3.40284 19.2985i −0.148796 0.843864i −0.964241 0.265029i \(-0.914619\pi\)
0.815445 0.578835i \(-0.196493\pi\)
\(524\) −1.36858 + 23.4976i −0.0597867 + 1.02650i
\(525\) 13.0259 + 13.5843i 0.568496 + 0.592868i
\(526\) −1.88797 + 2.53598i −0.0823194 + 0.110574i
\(527\) −0.965317 + 1.29665i −0.0420499 + 0.0564828i
\(528\) −11.0600 + 2.71613i −0.481324 + 0.118204i
\(529\) 1.32551 22.7582i 0.0576309 0.989485i
\(530\) 4.16104 + 23.5984i 0.180744 + 1.02505i
\(531\) 20.8348 5.29608i 0.904152 0.229830i
\(532\) 8.29406 47.0379i 0.359593 2.03935i
\(533\) 7.31628 + 1.73399i 0.316903 + 0.0751075i
\(534\) −21.3396 4.87523i −0.923454 0.210972i
\(535\) −0.00853420 0.146527i −0.000368966 0.00633489i
\(536\) −22.9885 + 5.44837i −0.992951 + 0.235334i
\(537\) 4.67972 8.25941i 0.201945 0.356420i
\(538\) 12.0668 1.41040i 0.520235 0.0608068i
\(539\) 4.60697 + 7.97951i 0.198436 + 0.343702i
\(540\) 44.0151 + 9.30757i 1.89411 + 0.400534i
\(541\) 9.81665 17.0029i 0.422051 0.731013i −0.574089 0.818793i \(-0.694644\pi\)
0.996140 + 0.0877794i \(0.0279771\pi\)
\(542\) −27.0537 + 62.7176i −1.16206 + 2.69395i
\(543\) 35.7908 + 12.6992i 1.53593 + 0.544975i
\(544\) −6.90822 7.32228i −0.296187 0.313940i
\(545\) 1.06616 + 0.535447i 0.0456694 + 0.0229360i
\(546\) −5.04975 6.66944i −0.216109 0.285426i
\(547\) 8.77306 + 29.3041i 0.375109 + 1.25295i 0.912311 + 0.409497i \(0.134296\pi\)
−0.537202 + 0.843453i \(0.680519\pi\)
\(548\) −23.2384 19.4993i −0.992695 0.832970i
\(549\) −11.0306 7.00144i −0.470774 0.298814i
\(550\) 33.2178 27.8730i 1.41641 1.18851i
\(551\) −16.3278 10.7390i −0.695588 0.457495i
\(552\) 1.62075 + 0.176134i 0.0689836 + 0.00749674i
\(553\) −8.34517 0.975411i −0.354873 0.0414787i
\(554\) −4.01014 9.29654i −0.170374 0.394972i
\(555\) −16.9557 8.34407i −0.719730 0.354186i
\(556\) −45.8464 + 23.0249i −1.94432 + 0.976474i
\(557\) 31.4323 + 11.4404i 1.33183 + 0.484746i 0.907230 0.420636i \(-0.138193\pi\)
0.424599 + 0.905382i \(0.360415\pi\)
\(558\) 7.41733 0.120257i 0.314001 0.00509089i
\(559\) −5.47970 + 1.99445i −0.231767 + 0.0843562i
\(560\) −7.40185 + 7.84550i −0.312785 + 0.331533i
\(561\) −0.668462 + 13.3389i −0.0282225 + 0.563169i
\(562\) 33.9314 22.3171i 1.43131 0.941388i
\(563\) −0.0602063 + 0.201103i −0.00253739 + 0.00847548i −0.959249 0.282563i \(-0.908815\pi\)
0.956711 + 0.291038i \(0.0940007\pi\)
\(564\) −4.65774 + 27.7278i −0.196126 + 1.16755i
\(565\) 20.0095 + 26.8775i 0.841808 + 1.13074i
\(566\) 52.6415 2.21269
\(567\) 16.5685 + 20.8113i 0.695811 + 0.873991i
\(568\) −28.0837 −1.17836
\(569\) −24.4396 32.8281i −1.02456 1.37623i −0.924473 0.381248i \(-0.875495\pi\)
−0.100089 0.994978i \(-0.531913\pi\)
\(570\) −48.0765 39.6813i −2.01370 1.66207i
\(571\) −8.06199 + 26.9289i −0.337384 + 1.12694i 0.606063 + 0.795416i \(0.292748\pi\)
−0.943447 + 0.331523i \(0.892437\pi\)
\(572\) −9.58300 + 6.30284i −0.400685 + 0.263535i
\(573\) 19.6419 10.0647i 0.820554 0.420461i
\(574\) −46.0990 + 48.8621i −1.92413 + 2.03946i
\(575\) 1.55752 0.566892i 0.0649532 0.0236410i
\(576\) −6.11149 + 38.2788i −0.254646 + 1.59495i
\(577\) −12.8095 4.66227i −0.533266 0.194093i 0.0613301 0.998118i \(-0.480466\pi\)
−0.594596 + 0.804025i \(0.702688\pi\)
\(578\) 29.5708 14.8510i 1.22998 0.617721i
\(579\) 29.2659 19.5901i 1.21625 0.814138i
\(580\) −12.1900 28.2595i −0.506161 1.17341i
\(581\) −1.03291 0.120730i −0.0428524 0.00500873i
\(582\) −10.9499 24.8294i −0.453888 1.02921i
\(583\) 16.2309 + 10.6752i 0.672214 + 0.442122i
\(584\) 6.34770 5.32636i 0.262670 0.220406i
\(585\) −6.44018 + 0.858791i −0.266269 + 0.0355066i
\(586\) 8.11761 + 6.81149i 0.335336 + 0.281380i
\(587\) −8.05995 26.9221i −0.332670 1.11119i −0.946755 0.321954i \(-0.895660\pi\)
0.614086 0.789239i \(-0.289525\pi\)
\(588\) 8.77028 1.09723i 0.361680 0.0452490i
\(589\) −5.46631 2.74528i −0.225235 0.113117i
\(590\) −32.1916 34.1211i −1.32531 1.40474i
\(591\) 1.26266 + 6.83639i 0.0519389 + 0.281212i
\(592\) 1.81761 4.21369i 0.0747032 0.173181i
\(593\) −2.12487 + 3.68039i −0.0872581 + 0.151135i −0.906351 0.422525i \(-0.861144\pi\)
0.819093 + 0.573661i \(0.194477\pi\)
\(594\) 50.3730 34.9145i 2.06683 1.43256i
\(595\) 6.32451 + 10.9544i 0.259280 + 0.449086i
\(596\) 24.2731 2.83712i 0.994266 0.116213i
\(597\) 3.37718 + 5.74146i 0.138219 + 0.234982i
\(598\) −0.716877 + 0.169903i −0.0293153 + 0.00694785i
\(599\) −1.23410 21.1887i −0.0504239 0.865746i −0.924790 0.380478i \(-0.875759\pi\)
0.874366 0.485267i \(-0.161278\pi\)
\(600\) −3.91568 12.7036i −0.159857 0.518621i
\(601\) −37.9901 9.00383i −1.54965 0.367274i −0.635322 0.772247i \(-0.719133\pi\)
−0.914328 + 0.404974i \(0.867281\pi\)
\(602\) 9.04687 51.3073i 0.368723 2.09113i
\(603\) −28.0583 + 19.1129i −1.14262 + 0.778339i
\(604\) −8.98358 50.9484i −0.365537 2.07306i
\(605\) 2.94021 50.4815i 0.119537 2.05237i
\(606\) −11.3981 + 39.2269i −0.463017 + 1.59348i
\(607\) 26.6915 35.8529i 1.08337 1.45522i 0.204076 0.978955i \(-0.434581\pi\)
0.879299 0.476270i \(-0.158011\pi\)
\(608\) 22.7475 30.5552i 0.922532 1.23918i
\(609\) 5.07773 17.4751i 0.205760 0.708127i
\(610\) −1.65768 + 28.4613i −0.0671176 + 1.15236i
\(611\) −0.705103 3.99884i −0.0285254 0.161776i
\(612\) 11.5406 + 5.56350i 0.466501 + 0.224891i
\(613\) −7.96425 + 45.1675i −0.321673 + 1.82430i 0.210418 + 0.977611i \(0.432517\pi\)
−0.532091 + 0.846687i \(0.678594\pi\)
\(614\) 23.3372 + 5.53101i 0.941812 + 0.223213i
\(615\) 15.3681 + 49.8585i 0.619702 + 2.01049i
\(616\) −1.90417 32.6934i −0.0767214 1.31725i
\(617\) −21.1271 + 5.00721i −0.850544 + 0.201583i −0.632696 0.774400i \(-0.718052\pi\)
−0.217848 + 0.975983i \(0.569904\pi\)
\(618\) 34.7814 + 59.1310i 1.39911 + 2.37860i
\(619\) 29.2625 3.42030i 1.17616 0.137473i 0.494523 0.869164i \(-0.335343\pi\)
0.681636 + 0.731691i \(0.261269\pi\)
\(620\) −4.81657 8.34254i −0.193438 0.335044i
\(621\) 2.26577 0.595538i 0.0909221 0.0238981i
\(622\) 10.7583 18.6339i 0.431368 0.747151i
\(623\) −6.65701 + 15.4327i −0.266708 + 0.618297i
\(624\) −0.286557 1.55150i −0.0114715 0.0621097i
\(625\) 20.4955 + 21.7240i 0.819821 + 0.868960i
\(626\) 12.6852 + 6.37076i 0.507003 + 0.254627i
\(627\) −50.1472 + 6.27380i −2.00269 + 0.250552i
\(628\) 1.81655 + 6.06770i 0.0724882 + 0.242127i
\(629\) −4.12254 3.45922i −0.164376 0.137928i
\(630\) 22.1243 53.6657i 0.881453 2.13809i
\(631\) −23.1628 + 19.4359i −0.922098 + 0.773732i −0.974382 0.224900i \(-0.927794\pi\)
0.0522840 + 0.998632i \(0.483350\pi\)
\(632\) 4.95824 + 3.26109i 0.197228 + 0.129719i
\(633\) −4.98183 11.2965i −0.198010 0.448996i
\(634\) −45.4977 5.31791i −1.80694 0.211201i
\(635\) −15.2198 35.2835i −0.603980 1.40018i
\(636\) 15.4863 10.3663i 0.614070 0.411049i
\(637\) −1.14069 + 0.572878i −0.0451960 + 0.0226983i
\(638\) −39.3998 14.3404i −1.55985 0.567741i
\(639\) −37.6937 + 14.4156i −1.49114 + 0.570272i
\(640\) 41.1293 14.9699i 1.62578 0.591735i
\(641\) 0.420317 0.445510i 0.0166015 0.0175966i −0.719020 0.694990i \(-0.755409\pi\)
0.735621 + 0.677393i \(0.236890\pi\)
\(642\) −0.170708 + 0.0874726i −0.00673730 + 0.00345227i
\(643\) −15.5963 + 10.2578i −0.615056 + 0.404529i −0.818458 0.574566i \(-0.805171\pi\)
0.203402 + 0.979095i \(0.434800\pi\)
\(644\) 1.12340 3.75242i 0.0442681 0.147866i
\(645\) −31.2065 25.7572i −1.22876 1.01419i
\(646\) −10.6009 14.2395i −0.417087 0.560245i
\(647\) −44.8197 −1.76204 −0.881022 0.473075i \(-0.843144\pi\)
−0.881022 + 0.473075i \(0.843144\pi\)
\(648\) −3.86083 18.3882i −0.151668 0.722357i
\(649\) −38.0309 −1.49284
\(650\) 3.58733 + 4.81862i 0.140707 + 0.189002i
\(651\) 0.943594 5.61727i 0.0369824 0.220158i
\(652\) −7.98837 + 26.6830i −0.312849 + 1.04499i
\(653\) −41.3488 + 27.1956i −1.61810 + 1.06424i −0.671917 + 0.740626i \(0.734529\pi\)
−0.946188 + 0.323618i \(0.895101\pi\)
\(654\) 0.0780379 1.55721i 0.00305152 0.0608919i
\(655\) 16.1864 17.1566i 0.632456 0.670365i
\(656\) −11.9054 + 4.33321i −0.464828 + 0.169183i
\(657\) 5.78578 10.4073i 0.225725 0.406029i
\(658\) 34.0898 + 12.4077i 1.32896 + 0.483702i
\(659\) 10.1695 5.10730i 0.396146 0.198952i −0.239563 0.970881i \(-0.577004\pi\)
0.635709 + 0.771929i \(0.280708\pi\)
\(660\) −71.4103 35.1417i −2.77964 1.36789i
\(661\) 1.04678 + 2.42670i 0.0407149 + 0.0943878i 0.937360 0.348362i \(-0.113262\pi\)
−0.896645 + 0.442750i \(0.854003\pi\)
\(662\) 44.8057 + 5.23703i 1.74142 + 0.203543i
\(663\) −1.83942 0.199897i −0.0714370 0.00776337i
\(664\) 0.613700 + 0.403637i 0.0238162 + 0.0156642i
\(665\) −36.6662 + 30.7666i −1.42185 + 1.19308i
\(666\) −1.03611 + 24.6748i −0.0401485 + 0.956128i
\(667\) −1.22771 1.03017i −0.0475370 0.0398883i
\(668\) 3.22163 + 10.7610i 0.124649 + 0.416356i
\(669\) −15.5254 20.5051i −0.600248 0.792775i
\(670\) 66.2024 + 33.2481i 2.55762 + 1.28449i
\(671\) 15.8612 + 16.8119i 0.612317 + 0.649018i
\(672\) 33.4293 + 11.8613i 1.28956 + 0.457560i
\(673\) −0.928417 + 2.15231i −0.0357878 + 0.0829655i −0.935172 0.354193i \(-0.884756\pi\)
0.899385 + 0.437158i \(0.144015\pi\)
\(674\) −4.06301 + 7.03734i −0.156501 + 0.271068i
\(675\) −11.7764 15.0407i −0.453275 0.578917i
\(676\) 18.3113 + 31.7161i 0.704281 + 1.21985i
\(677\) −9.27787 + 1.08443i −0.356578 + 0.0416779i −0.292496 0.956267i \(-0.594486\pi\)
−0.0640815 + 0.997945i \(0.520412\pi\)
\(678\) 21.5869 38.0996i 0.829042 1.46321i
\(679\) −20.2746 + 4.80517i −0.778068 + 0.184405i
\(680\) −0.519486 8.91924i −0.0199214 0.342037i
\(681\) 22.7217 + 5.19100i 0.870699 + 0.198919i
\(682\) −12.7699 3.02653i −0.488986 0.115892i
\(683\) −5.08900 + 28.8612i −0.194725 + 1.10434i 0.718084 + 0.695956i \(0.245019\pi\)
−0.912809 + 0.408386i \(0.866092\pi\)
\(684\) −13.1494 + 46.6623i −0.502780 + 1.78418i
\(685\) 5.27883 + 29.9377i 0.201694 + 1.14386i
\(686\) −2.01054 + 34.5197i −0.0767628 + 1.31797i
\(687\) 5.48255 1.34642i 0.209172 0.0513690i
\(688\) 5.86761 7.88157i 0.223701 0.300482i
\(689\) −1.60715 + 2.15878i −0.0612275 + 0.0822428i
\(690\) −3.53818 3.68987i −0.134696 0.140471i
\(691\) 0.791645 13.5920i 0.0301156 0.517065i −0.949193 0.314694i \(-0.898098\pi\)
0.979309 0.202371i \(-0.0648648\pi\)
\(692\) 4.27050 + 24.2192i 0.162340 + 0.920677i
\(693\) −19.3376 42.9034i −0.734573 1.62977i
\(694\) −11.2522 + 63.8142i −0.427126 + 2.42235i
\(695\) 50.0258 + 11.8563i 1.89759 + 0.449736i
\(696\) −8.74464 + 9.42060i −0.331465 + 0.357087i
\(697\) 0.863899 + 14.8326i 0.0327225 + 0.561824i
\(698\) −36.6165 + 8.67827i −1.38595 + 0.328477i
\(699\) 14.3289 0.116149i 0.541968 0.00439317i
\(700\) −31.7229 + 3.70788i −1.19901 + 0.140145i
\(701\) 20.8102 + 36.0443i 0.785989 + 1.36137i 0.928407 + 0.371566i \(0.121179\pi\)
−0.142418 + 0.989807i \(0.545488\pi\)
\(702\) 4.42300 + 7.24794i 0.166935 + 0.273556i
\(703\) 10.1821 17.6358i 0.384024 0.665149i
\(704\) 27.1617 62.9680i 1.02370 2.37319i
\(705\) 21.4362 18.2853i 0.807335 0.688663i
\(706\) −34.6948 36.7743i −1.30576 1.38402i
\(707\) 28.0289 + 14.0767i 1.05414 + 0.529407i
\(708\) −14.1777 + 33.6142i −0.532831 + 1.26330i
\(709\) 3.31071 + 11.0585i 0.124336 + 0.415312i 0.997381 0.0723284i \(-0.0230430\pi\)
−0.873045 + 0.487640i \(0.837858\pi\)
\(710\) 67.4598 + 56.6055i 2.53172 + 2.12437i
\(711\) 8.32886 + 1.83190i 0.312357 + 0.0687017i
\(712\) 9.09403 7.63080i 0.340813 0.285976i
\(713\) −0.419110 0.275653i −0.0156958 0.0103233i
\(714\) 9.76353 13.3391i 0.365391 0.499202i
\(715\) 11.4164 + 1.33439i 0.426950 + 0.0499033i
\(716\) 6.38086 + 14.7925i 0.238464 + 0.552821i
\(717\) 1.49860 + 22.5758i 0.0559661 + 0.843109i
\(718\) 30.4173 15.2761i 1.13516 0.570100i
\(719\) 29.9388 + 10.8968i 1.11653 + 0.406383i 0.833384 0.552695i \(-0.186401\pi\)
0.283143 + 0.959078i \(0.408623\pi\)
\(720\) 8.27130 7.17212i 0.308253 0.267289i
\(721\) 49.4976 18.0157i 1.84339 0.670939i
\(722\) 17.1205 18.1466i 0.637157 0.675347i
\(723\) −0.920520 0.594803i −0.0342345 0.0221209i
\(724\) −53.8458 + 35.4149i −2.00116 + 1.31619i
\(725\) −3.74796 + 12.5190i −0.139196 + 0.464946i
\(726\) −61.9135 + 23.1047i −2.29782 + 0.857496i
\(727\) −18.0298 24.2183i −0.668690 0.898206i 0.330266 0.943888i \(-0.392861\pi\)
−0.998956 + 0.0456817i \(0.985454\pi\)
\(728\) 4.53691 0.168149
\(729\) −14.6208 22.6987i −0.541511 0.840694i
\(730\) −25.9836 −0.961698
\(731\) −6.88106 9.24287i −0.254505 0.341860i
\(732\) 20.7725 7.75183i 0.767774 0.286516i
\(733\) 4.58780 15.3243i 0.169454 0.566017i −0.830505 0.557011i \(-0.811948\pi\)
0.999959 0.00900594i \(-0.00286672\pi\)
\(734\) 26.0643 17.1428i 0.962051 0.632751i
\(735\) −7.43936 4.80702i −0.274405 0.177309i
\(736\) 2.14375 2.27224i 0.0790196 0.0837559i
\(737\) 56.4379 20.5417i 2.07892 0.756664i
\(738\) 51.5140 44.6682i 1.89625 1.64426i
\(739\) 13.9238 + 5.06784i 0.512194 + 0.186423i 0.585171 0.810910i \(-0.301028\pi\)
−0.0729763 + 0.997334i \(0.523250\pi\)
\(740\) 28.6588 14.3930i 1.05352 0.529096i
\(741\) −0.463736 6.98601i −0.0170358 0.256638i
\(742\) −9.52370 22.0784i −0.349626 0.810524i
\(743\) 1.03225 + 0.120653i 0.0378695 + 0.00442631i 0.135007 0.990845i \(-0.456894\pi\)
−0.0971371 + 0.995271i \(0.530969\pi\)
\(744\) −2.37626 + 3.24649i −0.0871181 + 0.119022i
\(745\) −20.4610 13.4574i −0.749634 0.493042i
\(746\) 46.3874 38.9236i 1.69836 1.42510i
\(747\) 1.03089 + 0.226741i 0.0377185 + 0.00829603i
\(748\) −17.3624 14.5688i −0.634832 0.532688i
\(749\) 0.0422403 + 0.141093i 0.00154343 + 0.00515541i
\(750\) 5.83293 13.8294i 0.212988 0.504978i
\(751\) −29.5011 14.8160i −1.07651 0.540643i −0.179999 0.983667i \(-0.557609\pi\)
−0.896510 + 0.443024i \(0.853906\pi\)
\(752\) 4.69527 + 4.97669i 0.171219 + 0.181481i
\(753\) 18.2281 15.5487i 0.664269 0.566626i
\(754\) 2.30068 5.33357i 0.0837858 0.194237i
\(755\) −25.9217 + 44.8978i −0.943389 + 1.63400i
\(756\) −45.1299 + 1.09765i −1.64136 + 0.0399213i
\(757\) 16.5939 + 28.7414i 0.603114 + 1.04462i 0.992346 + 0.123485i \(0.0394070\pi\)
−0.389232 + 0.921140i \(0.627260\pi\)
\(758\) 18.9774 2.21814i 0.689292 0.0805667i
\(759\) −4.14437 + 0.0335941i −0.150431 + 0.00121939i
\(760\) 32.8966 7.79663i 1.19328 0.282814i
\(761\) −2.17243 37.2992i −0.0787505 1.35209i −0.773936 0.633264i \(-0.781715\pi\)
0.695185 0.718831i \(-0.255322\pi\)
\(762\) −34.1642 + 36.8051i −1.23764 + 1.33331i
\(763\) −1.16490 0.276087i −0.0421722 0.00999501i
\(764\) −6.50388 + 36.8853i −0.235302 + 1.33446i
\(765\) −5.27557 11.7047i −0.190739 0.423184i
\(766\) 7.44398 + 42.2169i 0.268962 + 1.52536i