Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [243,2,Mod(10,243)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(243, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("243.10");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.g (of order \(27\), degree \(18\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.94036476912\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{27})\) |
Twist minimal: | no (minimal twist has level 81) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 | −1.94437 | − | 0.976500i | 0 | 1.63271 | + | 2.19311i | 0.185416 | + | 0.619334i | 0 | −0.724564 | − | 1.67973i | −0.277373 | − | 1.57306i | 0 | 0.244261 | − | 1.38527i | ||||||
10.2 | −1.38037 | − | 0.693250i | 0 | 0.230520 | + | 0.309643i | −0.145961 | − | 0.487543i | 0 | 1.57975 | + | 3.66226i | 0.432916 | + | 2.45519i | 0 | −0.136509 | + | 0.774179i | ||||||
10.3 | −0.744407 | − | 0.373855i | 0 | −0.779943 | − | 1.04765i | −0.345929 | − | 1.15548i | 0 | −0.520803 | − | 1.20736i | 0.478230 | + | 2.71217i | 0 | −0.174471 | + | 0.989477i | ||||||
10.4 | 0.507233 | + | 0.254742i | 0 | −1.00193 | − | 1.34582i | 0.832798 | + | 2.78174i | 0 | 1.23966 | + | 2.87385i | −0.362501 | − | 2.05585i | 0 | −0.286203 | + | 1.62314i | ||||||
10.5 | 0.698417 | + | 0.350758i | 0 | −0.829563 | − | 1.11430i | −0.424677 | − | 1.41852i | 0 | −1.50560 | − | 3.49038i | −0.459961 | − | 2.60857i | 0 | 0.200956 | − | 1.13968i | ||||||
10.6 | 1.07782 | + | 0.541304i | 0 | −0.325622 | − | 0.437386i | −1.12732 | − | 3.76550i | 0 | 0.736444 | + | 1.70727i | −0.533084 | − | 3.02327i | 0 | 0.823230 | − | 4.66877i | ||||||
10.7 | 1.89071 | + | 0.949549i | 0 | 1.47882 | + | 1.98639i | 1.11651 | + | 3.72940i | 0 | −1.32100 | − | 3.06243i | 0.175036 | + | 0.992677i | 0 | −1.43025 | + | 8.11138i | ||||||
10.8 | 2.38576 | + | 1.19817i | 0 | 3.06192 | + | 4.11287i | −0.727126 | − | 2.42877i | 0 | 0.202369 | + | 0.469143i | 1.44988 | + | 8.22270i | 0 | 1.17534 | − | 6.66569i | ||||||
19.1 | −2.43604 | + | 0.284732i | 0 | 3.90713 | − | 0.926007i | 3.57352 | + | 1.79469i | 0 | 0.377600 | + | 1.26127i | −4.64483 | + | 1.69058i | 0 | −9.21624 | − | 3.35444i | ||||||
19.2 | −1.69853 | + | 0.198530i | 0 | 0.899496 | − | 0.213184i | −1.22732 | − | 0.616384i | 0 | 0.0889729 | + | 0.297190i | 1.72842 | − | 0.629095i | 0 | 2.20701 | + | 0.803287i | ||||||
19.3 | −1.04137 | + | 0.121718i | 0 | −0.876460 | + | 0.207725i | 0.681964 | + | 0.342495i | 0 | −0.831257 | − | 2.77659i | 2.85789 | − | 1.04019i | 0 | −0.751863 | − | 0.273656i | ||||||
19.4 | 0.186105 | − | 0.0217526i | 0 | −1.91193 | + | 0.453135i | −1.41557 | − | 0.710926i | 0 | 1.16062 | + | 3.87673i | −0.698107 | + | 0.254090i | 0 | −0.278909 | − | 0.101515i | ||||||
19.5 | 0.702679 | − | 0.0821314i | 0 | −1.45908 | + | 0.345808i | −3.06981 | − | 1.54172i | 0 | −0.775884 | − | 2.59163i | −2.32646 | + | 0.846761i | 0 | −2.28372 | − | 0.831205i | ||||||
19.6 | 0.907715 | − | 0.106097i | 0 | −1.13340 | + | 0.268621i | 3.40320 | + | 1.70915i | 0 | 0.208293 | + | 0.695746i | −2.71786 | + | 0.989221i | 0 | 3.27047 | + | 1.19035i | ||||||
19.7 | 2.10031 | − | 0.245492i | 0 | 2.40496 | − | 0.569987i | 0.401399 | + | 0.201590i | 0 | 0.699754 | + | 2.33734i | 0.937080 | − | 0.341069i | 0 | 0.892552 | + | 0.324862i | ||||||
19.8 | 2.25893 | − | 0.264031i | 0 | 3.08696 | − | 0.731623i | 0.524452 | + | 0.263390i | 0 | −1.09261 | − | 3.64956i | 2.50575 | − | 0.912019i | 0 | 1.25424 | + | 0.456507i | ||||||
37.1 | −0.761699 | + | 2.54425i | 0 | −4.22205 | − | 2.77689i | 1.12810 | − | 2.61524i | 0 | −0.111224 | − | 1.90965i | 6.21207 | − | 5.21255i | 0 | 5.79455 | + | 4.86220i | ||||||
37.2 | −0.587043 | + | 1.96086i | 0 | −1.82938 | − | 1.20320i | −0.00823679 | + | 0.0190950i | 0 | 0.0874756 | + | 1.50190i | 0.297287 | − | 0.249453i | 0 | −0.0326074 | − | 0.0273608i | ||||||
37.3 | −0.423731 | + | 1.41536i | 0 | −0.152717 | − | 0.100444i | −1.03062 | + | 2.38925i | 0 | 0.0288073 | + | 0.494602i | −2.05667 | + | 1.72575i | 0 | −2.94494 | − | 2.47110i | ||||||
37.4 | −0.0876154 | + | 0.292656i | 0 | 1.59300 | + | 1.04774i | 1.04144 | − | 2.41432i | 0 | −0.211661 | − | 3.63407i | −0.914234 | + | 0.767134i | 0 | 0.615319 | + | 0.516314i | ||||||
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 243.2.g.a | 144 | |
3.b | odd | 2 | 1 | 81.2.g.a | ✓ | 144 | |
9.c | even | 3 | 1 | 729.2.g.a | 144 | ||
9.c | even | 3 | 1 | 729.2.g.b | 144 | ||
9.d | odd | 6 | 1 | 729.2.g.c | 144 | ||
9.d | odd | 6 | 1 | 729.2.g.d | 144 | ||
81.g | even | 27 | 1 | inner | 243.2.g.a | 144 | |
81.g | even | 27 | 1 | 729.2.g.a | 144 | ||
81.g | even | 27 | 1 | 729.2.g.b | 144 | ||
81.g | even | 27 | 1 | 6561.2.a.d | 72 | ||
81.h | odd | 54 | 1 | 81.2.g.a | ✓ | 144 | |
81.h | odd | 54 | 1 | 729.2.g.c | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.d | 144 | ||
81.h | odd | 54 | 1 | 6561.2.a.c | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
81.2.g.a | ✓ | 144 | 3.b | odd | 2 | 1 | |
81.2.g.a | ✓ | 144 | 81.h | odd | 54 | 1 | |
243.2.g.a | 144 | 1.a | even | 1 | 1 | trivial | |
243.2.g.a | 144 | 81.g | even | 27 | 1 | inner | |
729.2.g.a | 144 | 9.c | even | 3 | 1 | ||
729.2.g.a | 144 | 81.g | even | 27 | 1 | ||
729.2.g.b | 144 | 9.c | even | 3 | 1 | ||
729.2.g.b | 144 | 81.g | even | 27 | 1 | ||
729.2.g.c | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.c | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.d | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.d | 144 | 81.h | odd | 54 | 1 | ||
6561.2.a.c | 72 | 81.h | odd | 54 | 1 | ||
6561.2.a.d | 72 | 81.g | even | 27 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(243, [\chi])\).