Properties

Label 6561.2.a.c.1.11
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22247 q^{2} +2.93935 q^{4} -2.94555 q^{5} +2.95569 q^{7} -2.08768 q^{8} +6.54639 q^{10} -5.30728 q^{11} -0.735254 q^{13} -6.56892 q^{14} -1.23890 q^{16} +1.45289 q^{17} +5.49777 q^{19} -8.65803 q^{20} +11.7953 q^{22} -0.450858 q^{23} +3.67629 q^{25} +1.63408 q^{26} +8.68782 q^{28} +3.55469 q^{29} -1.11262 q^{31} +6.92879 q^{32} -3.22899 q^{34} -8.70614 q^{35} -3.70407 q^{37} -12.2186 q^{38} +6.14938 q^{40} -10.2263 q^{41} -7.93111 q^{43} -15.6000 q^{44} +1.00202 q^{46} +5.52262 q^{47} +1.73609 q^{49} -8.17042 q^{50} -2.16117 q^{52} +3.66041 q^{53} +15.6329 q^{55} -6.17054 q^{56} -7.90017 q^{58} +7.16579 q^{59} +4.35500 q^{61} +2.47277 q^{62} -12.9212 q^{64} +2.16573 q^{65} +11.3165 q^{67} +4.27055 q^{68} +19.3491 q^{70} +13.4521 q^{71} -3.96916 q^{73} +8.23217 q^{74} +16.1599 q^{76} -15.6867 q^{77} +2.84265 q^{79} +3.64926 q^{80} +22.7277 q^{82} +0.351845 q^{83} -4.27955 q^{85} +17.6266 q^{86} +11.0799 q^{88} -5.68641 q^{89} -2.17318 q^{91} -1.32523 q^{92} -12.2738 q^{94} -16.1940 q^{95} -7.04954 q^{97} -3.85841 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22247 −1.57152 −0.785760 0.618531i \(-0.787728\pi\)
−0.785760 + 0.618531i \(0.787728\pi\)
\(3\) 0 0
\(4\) 2.93935 1.46968
\(5\) −2.94555 −1.31729 −0.658646 0.752453i \(-0.728870\pi\)
−0.658646 + 0.752453i \(0.728870\pi\)
\(6\) 0 0
\(7\) 2.95569 1.11715 0.558573 0.829456i \(-0.311349\pi\)
0.558573 + 0.829456i \(0.311349\pi\)
\(8\) −2.08768 −0.738107
\(9\) 0 0
\(10\) 6.54639 2.07015
\(11\) −5.30728 −1.60021 −0.800103 0.599862i \(-0.795222\pi\)
−0.800103 + 0.599862i \(0.795222\pi\)
\(12\) 0 0
\(13\) −0.735254 −0.203923 −0.101961 0.994788i \(-0.532512\pi\)
−0.101961 + 0.994788i \(0.532512\pi\)
\(14\) −6.56892 −1.75562
\(15\) 0 0
\(16\) −1.23890 −0.309726
\(17\) 1.45289 0.352377 0.176188 0.984356i \(-0.443623\pi\)
0.176188 + 0.984356i \(0.443623\pi\)
\(18\) 0 0
\(19\) 5.49777 1.26127 0.630637 0.776078i \(-0.282794\pi\)
0.630637 + 0.776078i \(0.282794\pi\)
\(20\) −8.65803 −1.93599
\(21\) 0 0
\(22\) 11.7953 2.51476
\(23\) −0.450858 −0.0940103 −0.0470052 0.998895i \(-0.514968\pi\)
−0.0470052 + 0.998895i \(0.514968\pi\)
\(24\) 0 0
\(25\) 3.67629 0.735257
\(26\) 1.63408 0.320469
\(27\) 0 0
\(28\) 8.68782 1.64184
\(29\) 3.55469 0.660089 0.330044 0.943965i \(-0.392936\pi\)
0.330044 + 0.943965i \(0.392936\pi\)
\(30\) 0 0
\(31\) −1.11262 −0.199833 −0.0999166 0.994996i \(-0.531858\pi\)
−0.0999166 + 0.994996i \(0.531858\pi\)
\(32\) 6.92879 1.22485
\(33\) 0 0
\(34\) −3.22899 −0.553767
\(35\) −8.70614 −1.47161
\(36\) 0 0
\(37\) −3.70407 −0.608946 −0.304473 0.952521i \(-0.598480\pi\)
−0.304473 + 0.952521i \(0.598480\pi\)
\(38\) −12.2186 −1.98212
\(39\) 0 0
\(40\) 6.14938 0.972303
\(41\) −10.2263 −1.59709 −0.798543 0.601937i \(-0.794396\pi\)
−0.798543 + 0.601937i \(0.794396\pi\)
\(42\) 0 0
\(43\) −7.93111 −1.20948 −0.604742 0.796422i \(-0.706724\pi\)
−0.604742 + 0.796422i \(0.706724\pi\)
\(44\) −15.6000 −2.35179
\(45\) 0 0
\(46\) 1.00202 0.147739
\(47\) 5.52262 0.805557 0.402779 0.915297i \(-0.368044\pi\)
0.402779 + 0.915297i \(0.368044\pi\)
\(48\) 0 0
\(49\) 1.73609 0.248013
\(50\) −8.17042 −1.15547
\(51\) 0 0
\(52\) −2.16117 −0.299700
\(53\) 3.66041 0.502796 0.251398 0.967884i \(-0.419110\pi\)
0.251398 + 0.967884i \(0.419110\pi\)
\(54\) 0 0
\(55\) 15.6329 2.10794
\(56\) −6.17054 −0.824573
\(57\) 0 0
\(58\) −7.90017 −1.03734
\(59\) 7.16579 0.932906 0.466453 0.884546i \(-0.345532\pi\)
0.466453 + 0.884546i \(0.345532\pi\)
\(60\) 0 0
\(61\) 4.35500 0.557600 0.278800 0.960349i \(-0.410063\pi\)
0.278800 + 0.960349i \(0.410063\pi\)
\(62\) 2.47277 0.314042
\(63\) 0 0
\(64\) −12.9212 −1.61515
\(65\) 2.16573 0.268626
\(66\) 0 0
\(67\) 11.3165 1.38253 0.691266 0.722600i \(-0.257053\pi\)
0.691266 + 0.722600i \(0.257053\pi\)
\(68\) 4.27055 0.517880
\(69\) 0 0
\(70\) 19.3491 2.31266
\(71\) 13.4521 1.59647 0.798234 0.602348i \(-0.205768\pi\)
0.798234 + 0.602348i \(0.205768\pi\)
\(72\) 0 0
\(73\) −3.96916 −0.464554 −0.232277 0.972650i \(-0.574618\pi\)
−0.232277 + 0.972650i \(0.574618\pi\)
\(74\) 8.23217 0.956971
\(75\) 0 0
\(76\) 16.1599 1.85367
\(77\) −15.6867 −1.78766
\(78\) 0 0
\(79\) 2.84265 0.319823 0.159911 0.987131i \(-0.448879\pi\)
0.159911 + 0.987131i \(0.448879\pi\)
\(80\) 3.64926 0.408000
\(81\) 0 0
\(82\) 22.7277 2.50986
\(83\) 0.351845 0.0386200 0.0193100 0.999814i \(-0.493853\pi\)
0.0193100 + 0.999814i \(0.493853\pi\)
\(84\) 0 0
\(85\) −4.27955 −0.464183
\(86\) 17.6266 1.90073
\(87\) 0 0
\(88\) 11.0799 1.18112
\(89\) −5.68641 −0.602758 −0.301379 0.953504i \(-0.597447\pi\)
−0.301379 + 0.953504i \(0.597447\pi\)
\(90\) 0 0
\(91\) −2.17318 −0.227811
\(92\) −1.32523 −0.138165
\(93\) 0 0
\(94\) −12.2738 −1.26595
\(95\) −16.1940 −1.66147
\(96\) 0 0
\(97\) −7.04954 −0.715773 −0.357886 0.933765i \(-0.616502\pi\)
−0.357886 + 0.933765i \(0.616502\pi\)
\(98\) −3.85841 −0.389758
\(99\) 0 0
\(100\) 10.8059 1.08059
\(101\) 10.6118 1.05591 0.527956 0.849271i \(-0.322958\pi\)
0.527956 + 0.849271i \(0.322958\pi\)
\(102\) 0 0
\(103\) −17.8213 −1.75599 −0.877994 0.478672i \(-0.841118\pi\)
−0.877994 + 0.478672i \(0.841118\pi\)
\(104\) 1.53498 0.150517
\(105\) 0 0
\(106\) −8.13513 −0.790154
\(107\) −0.0498293 −0.00481718 −0.00240859 0.999997i \(-0.500767\pi\)
−0.00240859 + 0.999997i \(0.500767\pi\)
\(108\) 0 0
\(109\) −0.405040 −0.0387958 −0.0193979 0.999812i \(-0.506175\pi\)
−0.0193979 + 0.999812i \(0.506175\pi\)
\(110\) −34.7436 −3.31267
\(111\) 0 0
\(112\) −3.66181 −0.346009
\(113\) −11.3758 −1.07014 −0.535071 0.844807i \(-0.679715\pi\)
−0.535071 + 0.844807i \(0.679715\pi\)
\(114\) 0 0
\(115\) 1.32803 0.123839
\(116\) 10.4485 0.970117
\(117\) 0 0
\(118\) −15.9257 −1.46608
\(119\) 4.29428 0.393656
\(120\) 0 0
\(121\) 17.1673 1.56066
\(122\) −9.67884 −0.876281
\(123\) 0 0
\(124\) −3.27040 −0.293690
\(125\) 3.89907 0.348744
\(126\) 0 0
\(127\) 13.0455 1.15760 0.578800 0.815470i \(-0.303521\pi\)
0.578800 + 0.815470i \(0.303521\pi\)
\(128\) 14.8593 1.31339
\(129\) 0 0
\(130\) −4.81326 −0.422151
\(131\) 8.00769 0.699635 0.349818 0.936818i \(-0.386244\pi\)
0.349818 + 0.936818i \(0.386244\pi\)
\(132\) 0 0
\(133\) 16.2497 1.40903
\(134\) −25.1506 −2.17268
\(135\) 0 0
\(136\) −3.03317 −0.260092
\(137\) −10.3205 −0.881739 −0.440869 0.897571i \(-0.645330\pi\)
−0.440869 + 0.897571i \(0.645330\pi\)
\(138\) 0 0
\(139\) −17.4540 −1.48043 −0.740213 0.672373i \(-0.765275\pi\)
−0.740213 + 0.672373i \(0.765275\pi\)
\(140\) −25.5904 −2.16279
\(141\) 0 0
\(142\) −29.8968 −2.50888
\(143\) 3.90220 0.326318
\(144\) 0 0
\(145\) −10.4705 −0.869529
\(146\) 8.82131 0.730057
\(147\) 0 0
\(148\) −10.8876 −0.894954
\(149\) −8.31420 −0.681126 −0.340563 0.940222i \(-0.610618\pi\)
−0.340563 + 0.940222i \(0.610618\pi\)
\(150\) 0 0
\(151\) −17.6006 −1.43232 −0.716158 0.697938i \(-0.754101\pi\)
−0.716158 + 0.697938i \(0.754101\pi\)
\(152\) −11.4776 −0.930956
\(153\) 0 0
\(154\) 34.8631 2.80935
\(155\) 3.27729 0.263239
\(156\) 0 0
\(157\) −2.15482 −0.171973 −0.0859867 0.996296i \(-0.527404\pi\)
−0.0859867 + 0.996296i \(0.527404\pi\)
\(158\) −6.31769 −0.502608
\(159\) 0 0
\(160\) −20.4091 −1.61348
\(161\) −1.33260 −0.105023
\(162\) 0 0
\(163\) 9.47594 0.742213 0.371106 0.928590i \(-0.378979\pi\)
0.371106 + 0.928590i \(0.378979\pi\)
\(164\) −30.0589 −2.34720
\(165\) 0 0
\(166\) −0.781964 −0.0606922
\(167\) −3.82156 −0.295721 −0.147860 0.989008i \(-0.547239\pi\)
−0.147860 + 0.989008i \(0.547239\pi\)
\(168\) 0 0
\(169\) −12.4594 −0.958416
\(170\) 9.51116 0.729473
\(171\) 0 0
\(172\) −23.3124 −1.77755
\(173\) 8.36675 0.636112 0.318056 0.948072i \(-0.396970\pi\)
0.318056 + 0.948072i \(0.396970\pi\)
\(174\) 0 0
\(175\) 10.8660 0.821389
\(176\) 6.57522 0.495626
\(177\) 0 0
\(178\) 12.6378 0.947247
\(179\) 5.48081 0.409655 0.204827 0.978798i \(-0.434337\pi\)
0.204827 + 0.978798i \(0.434337\pi\)
\(180\) 0 0
\(181\) 21.9260 1.62975 0.814874 0.579638i \(-0.196806\pi\)
0.814874 + 0.579638i \(0.196806\pi\)
\(182\) 4.82982 0.358010
\(183\) 0 0
\(184\) 0.941248 0.0693897
\(185\) 10.9105 0.802159
\(186\) 0 0
\(187\) −7.71088 −0.563875
\(188\) 16.2329 1.18391
\(189\) 0 0
\(190\) 35.9905 2.61103
\(191\) −12.7424 −0.922006 −0.461003 0.887399i \(-0.652510\pi\)
−0.461003 + 0.887399i \(0.652510\pi\)
\(192\) 0 0
\(193\) 20.3328 1.46358 0.731792 0.681528i \(-0.238684\pi\)
0.731792 + 0.681528i \(0.238684\pi\)
\(194\) 15.6674 1.12485
\(195\) 0 0
\(196\) 5.10299 0.364500
\(197\) −4.01375 −0.285968 −0.142984 0.989725i \(-0.545670\pi\)
−0.142984 + 0.989725i \(0.545670\pi\)
\(198\) 0 0
\(199\) 3.84576 0.272619 0.136309 0.990666i \(-0.456476\pi\)
0.136309 + 0.990666i \(0.456476\pi\)
\(200\) −7.67492 −0.542699
\(201\) 0 0
\(202\) −23.5843 −1.65939
\(203\) 10.5065 0.737415
\(204\) 0 0
\(205\) 30.1222 2.10383
\(206\) 39.6073 2.75957
\(207\) 0 0
\(208\) 0.910909 0.0631602
\(209\) −29.1782 −2.01830
\(210\) 0 0
\(211\) 7.12810 0.490719 0.245359 0.969432i \(-0.421094\pi\)
0.245359 + 0.969432i \(0.421094\pi\)
\(212\) 10.7592 0.738947
\(213\) 0 0
\(214\) 0.110744 0.00757030
\(215\) 23.3615 1.59324
\(216\) 0 0
\(217\) −3.28857 −0.223243
\(218\) 0.900187 0.0609683
\(219\) 0 0
\(220\) 45.9506 3.09799
\(221\) −1.06824 −0.0718576
\(222\) 0 0
\(223\) 14.8492 0.994379 0.497189 0.867642i \(-0.334365\pi\)
0.497189 + 0.867642i \(0.334365\pi\)
\(224\) 20.4793 1.36833
\(225\) 0 0
\(226\) 25.2822 1.68175
\(227\) −13.4564 −0.893132 −0.446566 0.894751i \(-0.647353\pi\)
−0.446566 + 0.894751i \(0.647353\pi\)
\(228\) 0 0
\(229\) −3.25941 −0.215388 −0.107694 0.994184i \(-0.534347\pi\)
−0.107694 + 0.994184i \(0.534347\pi\)
\(230\) −2.95149 −0.194616
\(231\) 0 0
\(232\) −7.42106 −0.487216
\(233\) −8.27305 −0.541986 −0.270993 0.962581i \(-0.587352\pi\)
−0.270993 + 0.962581i \(0.587352\pi\)
\(234\) 0 0
\(235\) −16.2672 −1.06115
\(236\) 21.0628 1.37107
\(237\) 0 0
\(238\) −9.54389 −0.618638
\(239\) 13.0628 0.844965 0.422482 0.906371i \(-0.361159\pi\)
0.422482 + 0.906371i \(0.361159\pi\)
\(240\) 0 0
\(241\) −0.632758 −0.0407595 −0.0203798 0.999792i \(-0.506488\pi\)
−0.0203798 + 0.999792i \(0.506488\pi\)
\(242\) −38.1537 −2.45261
\(243\) 0 0
\(244\) 12.8009 0.819493
\(245\) −5.11376 −0.326706
\(246\) 0 0
\(247\) −4.04225 −0.257202
\(248\) 2.32281 0.147498
\(249\) 0 0
\(250\) −8.66555 −0.548058
\(251\) −13.8326 −0.873109 −0.436554 0.899678i \(-0.643801\pi\)
−0.436554 + 0.899678i \(0.643801\pi\)
\(252\) 0 0
\(253\) 2.39283 0.150436
\(254\) −28.9931 −1.81919
\(255\) 0 0
\(256\) −7.18196 −0.448872
\(257\) 26.2056 1.63466 0.817331 0.576168i \(-0.195453\pi\)
0.817331 + 0.576168i \(0.195453\pi\)
\(258\) 0 0
\(259\) −10.9481 −0.680281
\(260\) 6.36584 0.394793
\(261\) 0 0
\(262\) −17.7968 −1.09949
\(263\) 1.42256 0.0877187 0.0438594 0.999038i \(-0.486035\pi\)
0.0438594 + 0.999038i \(0.486035\pi\)
\(264\) 0 0
\(265\) −10.7819 −0.662328
\(266\) −36.1144 −2.21431
\(267\) 0 0
\(268\) 33.2633 2.03188
\(269\) 5.46641 0.333293 0.166646 0.986017i \(-0.446706\pi\)
0.166646 + 0.986017i \(0.446706\pi\)
\(270\) 0 0
\(271\) 30.7333 1.86692 0.933458 0.358685i \(-0.116775\pi\)
0.933458 + 0.358685i \(0.116775\pi\)
\(272\) −1.79999 −0.109140
\(273\) 0 0
\(274\) 22.9369 1.38567
\(275\) −19.5111 −1.17656
\(276\) 0 0
\(277\) 4.55555 0.273717 0.136858 0.990591i \(-0.456299\pi\)
0.136858 + 0.990591i \(0.456299\pi\)
\(278\) 38.7908 2.32652
\(279\) 0 0
\(280\) 18.1757 1.08620
\(281\) 18.2737 1.09012 0.545059 0.838397i \(-0.316507\pi\)
0.545059 + 0.838397i \(0.316507\pi\)
\(282\) 0 0
\(283\) −23.6861 −1.40799 −0.703996 0.710204i \(-0.748603\pi\)
−0.703996 + 0.710204i \(0.748603\pi\)
\(284\) 39.5404 2.34629
\(285\) 0 0
\(286\) −8.67251 −0.512816
\(287\) −30.2259 −1.78418
\(288\) 0 0
\(289\) −14.8891 −0.875831
\(290\) 23.2704 1.36648
\(291\) 0 0
\(292\) −11.6668 −0.682745
\(293\) −4.76803 −0.278551 −0.139276 0.990254i \(-0.544477\pi\)
−0.139276 + 0.990254i \(0.544477\pi\)
\(294\) 0 0
\(295\) −21.1072 −1.22891
\(296\) 7.73293 0.449467
\(297\) 0 0
\(298\) 18.4780 1.07040
\(299\) 0.331495 0.0191708
\(300\) 0 0
\(301\) −23.4419 −1.35117
\(302\) 39.1167 2.25091
\(303\) 0 0
\(304\) −6.81121 −0.390649
\(305\) −12.8279 −0.734522
\(306\) 0 0
\(307\) −10.7915 −0.615901 −0.307951 0.951402i \(-0.599643\pi\)
−0.307951 + 0.951402i \(0.599643\pi\)
\(308\) −46.1087 −2.62729
\(309\) 0 0
\(310\) −7.28368 −0.413685
\(311\) 9.68139 0.548981 0.274491 0.961590i \(-0.411491\pi\)
0.274491 + 0.961590i \(0.411491\pi\)
\(312\) 0 0
\(313\) −6.38710 −0.361020 −0.180510 0.983573i \(-0.557775\pi\)
−0.180510 + 0.983573i \(0.557775\pi\)
\(314\) 4.78901 0.270260
\(315\) 0 0
\(316\) 8.35555 0.470036
\(317\) −20.6111 −1.15763 −0.578816 0.815458i \(-0.696485\pi\)
−0.578816 + 0.815458i \(0.696485\pi\)
\(318\) 0 0
\(319\) −18.8657 −1.05628
\(320\) 38.0601 2.12762
\(321\) 0 0
\(322\) 2.96165 0.165046
\(323\) 7.98763 0.444444
\(324\) 0 0
\(325\) −2.70300 −0.149936
\(326\) −21.0600 −1.16640
\(327\) 0 0
\(328\) 21.3494 1.17882
\(329\) 16.3231 0.899924
\(330\) 0 0
\(331\) 20.2976 1.11566 0.557828 0.829957i \(-0.311635\pi\)
0.557828 + 0.829957i \(0.311635\pi\)
\(332\) 1.03420 0.0567590
\(333\) 0 0
\(334\) 8.49328 0.464732
\(335\) −33.3334 −1.82120
\(336\) 0 0
\(337\) −3.65631 −0.199172 −0.0995860 0.995029i \(-0.531752\pi\)
−0.0995860 + 0.995029i \(0.531752\pi\)
\(338\) 27.6906 1.50617
\(339\) 0 0
\(340\) −12.5791 −0.682199
\(341\) 5.90501 0.319774
\(342\) 0 0
\(343\) −15.5585 −0.840078
\(344\) 16.5577 0.892729
\(345\) 0 0
\(346\) −18.5948 −0.999664
\(347\) 29.1562 1.56519 0.782593 0.622534i \(-0.213897\pi\)
0.782593 + 0.622534i \(0.213897\pi\)
\(348\) 0 0
\(349\) 16.9320 0.906350 0.453175 0.891421i \(-0.350291\pi\)
0.453175 + 0.891421i \(0.350291\pi\)
\(350\) −24.1492 −1.29083
\(351\) 0 0
\(352\) −36.7730 −1.96001
\(353\) −22.7485 −1.21078 −0.605389 0.795929i \(-0.706983\pi\)
−0.605389 + 0.795929i \(0.706983\pi\)
\(354\) 0 0
\(355\) −39.6238 −2.10301
\(356\) −16.7144 −0.885860
\(357\) 0 0
\(358\) −12.1809 −0.643781
\(359\) −15.3153 −0.808312 −0.404156 0.914690i \(-0.632435\pi\)
−0.404156 + 0.914690i \(0.632435\pi\)
\(360\) 0 0
\(361\) 11.2254 0.590812
\(362\) −48.7298 −2.56118
\(363\) 0 0
\(364\) −6.38775 −0.334809
\(365\) 11.6914 0.611954
\(366\) 0 0
\(367\) 14.0369 0.732720 0.366360 0.930473i \(-0.380604\pi\)
0.366360 + 0.930473i \(0.380604\pi\)
\(368\) 0.558570 0.0291175
\(369\) 0 0
\(370\) −24.2483 −1.26061
\(371\) 10.8190 0.561696
\(372\) 0 0
\(373\) −27.2465 −1.41077 −0.705385 0.708824i \(-0.749226\pi\)
−0.705385 + 0.708824i \(0.749226\pi\)
\(374\) 17.1372 0.886142
\(375\) 0 0
\(376\) −11.5295 −0.594588
\(377\) −2.61360 −0.134607
\(378\) 0 0
\(379\) 8.59704 0.441600 0.220800 0.975319i \(-0.429133\pi\)
0.220800 + 0.975319i \(0.429133\pi\)
\(380\) −47.5998 −2.44182
\(381\) 0 0
\(382\) 28.3195 1.44895
\(383\) −19.2886 −0.985599 −0.492800 0.870143i \(-0.664026\pi\)
−0.492800 + 0.870143i \(0.664026\pi\)
\(384\) 0 0
\(385\) 46.2059 2.35487
\(386\) −45.1889 −2.30005
\(387\) 0 0
\(388\) −20.7211 −1.05195
\(389\) −31.1422 −1.57897 −0.789486 0.613768i \(-0.789653\pi\)
−0.789486 + 0.613768i \(0.789653\pi\)
\(390\) 0 0
\(391\) −0.655045 −0.0331270
\(392\) −3.62441 −0.183061
\(393\) 0 0
\(394\) 8.92042 0.449405
\(395\) −8.37317 −0.421300
\(396\) 0 0
\(397\) 10.6635 0.535184 0.267592 0.963532i \(-0.413772\pi\)
0.267592 + 0.963532i \(0.413772\pi\)
\(398\) −8.54707 −0.428426
\(399\) 0 0
\(400\) −4.55457 −0.227728
\(401\) −8.10074 −0.404532 −0.202266 0.979331i \(-0.564830\pi\)
−0.202266 + 0.979331i \(0.564830\pi\)
\(402\) 0 0
\(403\) 0.818061 0.0407505
\(404\) 31.1918 1.55185
\(405\) 0 0
\(406\) −23.3504 −1.15886
\(407\) 19.6586 0.974439
\(408\) 0 0
\(409\) −37.4818 −1.85336 −0.926679 0.375854i \(-0.877349\pi\)
−0.926679 + 0.375854i \(0.877349\pi\)
\(410\) −66.9457 −3.30621
\(411\) 0 0
\(412\) −52.3832 −2.58074
\(413\) 21.1798 1.04219
\(414\) 0 0
\(415\) −1.03638 −0.0508738
\(416\) −5.09442 −0.249774
\(417\) 0 0
\(418\) 64.8476 3.17180
\(419\) −12.8958 −0.629999 −0.314999 0.949092i \(-0.602004\pi\)
−0.314999 + 0.949092i \(0.602004\pi\)
\(420\) 0 0
\(421\) 23.1329 1.12743 0.563715 0.825969i \(-0.309371\pi\)
0.563715 + 0.825969i \(0.309371\pi\)
\(422\) −15.8420 −0.771175
\(423\) 0 0
\(424\) −7.64177 −0.371117
\(425\) 5.34122 0.259087
\(426\) 0 0
\(427\) 12.8720 0.622921
\(428\) −0.146466 −0.00707970
\(429\) 0 0
\(430\) −51.9202 −2.50381
\(431\) −22.6998 −1.09341 −0.546706 0.837324i \(-0.684119\pi\)
−0.546706 + 0.837324i \(0.684119\pi\)
\(432\) 0 0
\(433\) −18.2110 −0.875165 −0.437583 0.899178i \(-0.644165\pi\)
−0.437583 + 0.899178i \(0.644165\pi\)
\(434\) 7.30874 0.350831
\(435\) 0 0
\(436\) −1.19055 −0.0570172
\(437\) −2.47871 −0.118573
\(438\) 0 0
\(439\) 27.4963 1.31232 0.656162 0.754620i \(-0.272179\pi\)
0.656162 + 0.754620i \(0.272179\pi\)
\(440\) −32.6365 −1.55589
\(441\) 0 0
\(442\) 2.37413 0.112926
\(443\) 12.2619 0.582579 0.291290 0.956635i \(-0.405916\pi\)
0.291290 + 0.956635i \(0.405916\pi\)
\(444\) 0 0
\(445\) 16.7496 0.794008
\(446\) −33.0019 −1.56269
\(447\) 0 0
\(448\) −38.1910 −1.80436
\(449\) −6.93959 −0.327500 −0.163750 0.986502i \(-0.552359\pi\)
−0.163750 + 0.986502i \(0.552359\pi\)
\(450\) 0 0
\(451\) 54.2741 2.55567
\(452\) −33.4374 −1.57276
\(453\) 0 0
\(454\) 29.9064 1.40358
\(455\) 6.40122 0.300094
\(456\) 0 0
\(457\) 29.8648 1.39702 0.698509 0.715602i \(-0.253847\pi\)
0.698509 + 0.715602i \(0.253847\pi\)
\(458\) 7.24392 0.338486
\(459\) 0 0
\(460\) 3.90354 0.182003
\(461\) 0.820444 0.0382119 0.0191059 0.999817i \(-0.493918\pi\)
0.0191059 + 0.999817i \(0.493918\pi\)
\(462\) 0 0
\(463\) −28.6193 −1.33005 −0.665026 0.746820i \(-0.731580\pi\)
−0.665026 + 0.746820i \(0.731580\pi\)
\(464\) −4.40392 −0.204447
\(465\) 0 0
\(466\) 18.3866 0.851742
\(467\) 12.4929 0.578102 0.289051 0.957314i \(-0.406660\pi\)
0.289051 + 0.957314i \(0.406660\pi\)
\(468\) 0 0
\(469\) 33.4481 1.54449
\(470\) 36.1532 1.66763
\(471\) 0 0
\(472\) −14.9599 −0.688585
\(473\) 42.0927 1.93542
\(474\) 0 0
\(475\) 20.2114 0.927361
\(476\) 12.6224 0.578547
\(477\) 0 0
\(478\) −29.0317 −1.32788
\(479\) 4.53590 0.207251 0.103625 0.994616i \(-0.466956\pi\)
0.103625 + 0.994616i \(0.466956\pi\)
\(480\) 0 0
\(481\) 2.72343 0.124178
\(482\) 1.40628 0.0640544
\(483\) 0 0
\(484\) 50.4607 2.29367
\(485\) 20.7648 0.942881
\(486\) 0 0
\(487\) −28.2887 −1.28188 −0.640941 0.767590i \(-0.721456\pi\)
−0.640941 + 0.767590i \(0.721456\pi\)
\(488\) −9.09186 −0.411569
\(489\) 0 0
\(490\) 11.3651 0.513425
\(491\) −19.5841 −0.883820 −0.441910 0.897059i \(-0.645699\pi\)
−0.441910 + 0.897059i \(0.645699\pi\)
\(492\) 0 0
\(493\) 5.16455 0.232600
\(494\) 8.98377 0.404199
\(495\) 0 0
\(496\) 1.37844 0.0618936
\(497\) 39.7601 1.78349
\(498\) 0 0
\(499\) −29.5992 −1.32504 −0.662521 0.749043i \(-0.730514\pi\)
−0.662521 + 0.749043i \(0.730514\pi\)
\(500\) 11.4608 0.512540
\(501\) 0 0
\(502\) 30.7426 1.37211
\(503\) −23.7955 −1.06099 −0.530495 0.847688i \(-0.677994\pi\)
−0.530495 + 0.847688i \(0.677994\pi\)
\(504\) 0 0
\(505\) −31.2576 −1.39095
\(506\) −5.31798 −0.236413
\(507\) 0 0
\(508\) 38.3453 1.70130
\(509\) −12.4397 −0.551382 −0.275691 0.961246i \(-0.588907\pi\)
−0.275691 + 0.961246i \(0.588907\pi\)
\(510\) 0 0
\(511\) −11.7316 −0.518975
\(512\) −13.7570 −0.607979
\(513\) 0 0
\(514\) −58.2411 −2.56891
\(515\) 52.4937 2.31315
\(516\) 0 0
\(517\) −29.3101 −1.28906
\(518\) 24.3317 1.06908
\(519\) 0 0
\(520\) −4.52136 −0.198275
\(521\) −36.0689 −1.58021 −0.790104 0.612973i \(-0.789973\pi\)
−0.790104 + 0.612973i \(0.789973\pi\)
\(522\) 0 0
\(523\) −19.5962 −0.856882 −0.428441 0.903570i \(-0.640937\pi\)
−0.428441 + 0.903570i \(0.640937\pi\)
\(524\) 23.5374 1.02824
\(525\) 0 0
\(526\) −3.16159 −0.137852
\(527\) −1.61652 −0.0704166
\(528\) 0 0
\(529\) −22.7967 −0.991162
\(530\) 23.9625 1.04086
\(531\) 0 0
\(532\) 47.7636 2.07081
\(533\) 7.51896 0.325682
\(534\) 0 0
\(535\) 0.146775 0.00634563
\(536\) −23.6253 −1.02046
\(537\) 0 0
\(538\) −12.1489 −0.523777
\(539\) −9.21394 −0.396873
\(540\) 0 0
\(541\) −19.6333 −0.844102 −0.422051 0.906572i \(-0.638690\pi\)
−0.422051 + 0.906572i \(0.638690\pi\)
\(542\) −68.3038 −2.93390
\(543\) 0 0
\(544\) 10.0667 0.431608
\(545\) 1.19307 0.0511053
\(546\) 0 0
\(547\) −30.5891 −1.30790 −0.653948 0.756539i \(-0.726889\pi\)
−0.653948 + 0.756539i \(0.726889\pi\)
\(548\) −30.3356 −1.29587
\(549\) 0 0
\(550\) 43.3627 1.84899
\(551\) 19.5428 0.832553
\(552\) 0 0
\(553\) 8.40198 0.357289
\(554\) −10.1246 −0.430152
\(555\) 0 0
\(556\) −51.3034 −2.17575
\(557\) −33.4495 −1.41730 −0.708651 0.705559i \(-0.750696\pi\)
−0.708651 + 0.705559i \(0.750696\pi\)
\(558\) 0 0
\(559\) 5.83138 0.246641
\(560\) 10.7861 0.455795
\(561\) 0 0
\(562\) −40.6127 −1.71314
\(563\) 0.209922 0.00884715 0.00442357 0.999990i \(-0.498592\pi\)
0.00442357 + 0.999990i \(0.498592\pi\)
\(564\) 0 0
\(565\) 33.5079 1.40969
\(566\) 52.6415 2.21269
\(567\) 0 0
\(568\) −28.0837 −1.17836
\(569\) −40.9265 −1.71573 −0.857865 0.513876i \(-0.828209\pi\)
−0.857865 + 0.513876i \(0.828209\pi\)
\(570\) 0 0
\(571\) 28.1098 1.17636 0.588180 0.808730i \(-0.299845\pi\)
0.588180 + 0.808730i \(0.299845\pi\)
\(572\) 11.4699 0.479583
\(573\) 0 0
\(574\) 67.1760 2.80387
\(575\) −1.65748 −0.0691218
\(576\) 0 0
\(577\) 13.6316 0.567490 0.283745 0.958900i \(-0.408423\pi\)
0.283745 + 0.958900i \(0.408423\pi\)
\(578\) 33.0906 1.37639
\(579\) 0 0
\(580\) −30.7766 −1.27793
\(581\) 1.03994 0.0431442
\(582\) 0 0
\(583\) −19.4268 −0.804577
\(584\) 8.28634 0.342891
\(585\) 0 0
\(586\) 10.5968 0.437749
\(587\) 28.1027 1.15992 0.579961 0.814644i \(-0.303068\pi\)
0.579961 + 0.814644i \(0.303068\pi\)
\(588\) 0 0
\(589\) −6.11695 −0.252044
\(590\) 46.9100 1.93126
\(591\) 0 0
\(592\) 4.58899 0.188606
\(593\) 4.24975 0.174516 0.0872581 0.996186i \(-0.472190\pi\)
0.0872581 + 0.996186i \(0.472190\pi\)
\(594\) 0 0
\(595\) −12.6490 −0.518560
\(596\) −24.4384 −1.00103
\(597\) 0 0
\(598\) −0.736736 −0.0301274
\(599\) 21.2246 0.867213 0.433606 0.901102i \(-0.357241\pi\)
0.433606 + 0.901102i \(0.357241\pi\)
\(600\) 0 0
\(601\) −39.0425 −1.59258 −0.796289 0.604916i \(-0.793207\pi\)
−0.796289 + 0.604916i \(0.793207\pi\)
\(602\) 52.0988 2.12339
\(603\) 0 0
\(604\) −51.7344 −2.10504
\(605\) −50.5671 −2.05584
\(606\) 0 0
\(607\) 44.6975 1.81422 0.907108 0.420898i \(-0.138285\pi\)
0.907108 + 0.420898i \(0.138285\pi\)
\(608\) 38.0929 1.54487
\(609\) 0 0
\(610\) 28.5095 1.15432
\(611\) −4.06053 −0.164271
\(612\) 0 0
\(613\) −45.8643 −1.85244 −0.926221 0.376982i \(-0.876962\pi\)
−0.926221 + 0.376982i \(0.876962\pi\)
\(614\) 23.9837 0.967901
\(615\) 0 0
\(616\) 32.7488 1.31949
\(617\) −21.7123 −0.874105 −0.437053 0.899436i \(-0.643978\pi\)
−0.437053 + 0.899436i \(0.643978\pi\)
\(618\) 0 0
\(619\) −29.4617 −1.18417 −0.592083 0.805877i \(-0.701694\pi\)
−0.592083 + 0.805877i \(0.701694\pi\)
\(620\) 9.63313 0.386876
\(621\) 0 0
\(622\) −21.5166 −0.862735
\(623\) −16.8072 −0.673368
\(624\) 0 0
\(625\) −29.8664 −1.19465
\(626\) 14.1951 0.567351
\(627\) 0 0
\(628\) −6.33378 −0.252745
\(629\) −5.38160 −0.214578
\(630\) 0 0
\(631\) −30.2369 −1.20371 −0.601857 0.798604i \(-0.705572\pi\)
−0.601857 + 0.798604i \(0.705572\pi\)
\(632\) −5.93455 −0.236064
\(633\) 0 0
\(634\) 45.8074 1.81924
\(635\) −38.4262 −1.52490
\(636\) 0 0
\(637\) −1.27647 −0.0505755
\(638\) 41.9284 1.65996
\(639\) 0 0
\(640\) −43.7689 −1.73012
\(641\) −0.612492 −0.0241920 −0.0120960 0.999927i \(-0.503850\pi\)
−0.0120960 + 0.999927i \(0.503850\pi\)
\(642\) 0 0
\(643\) 18.6672 0.736164 0.368082 0.929793i \(-0.380014\pi\)
0.368082 + 0.929793i \(0.380014\pi\)
\(644\) −3.91697 −0.154350
\(645\) 0 0
\(646\) −17.7522 −0.698452
\(647\) −44.8197 −1.76204 −0.881022 0.473075i \(-0.843144\pi\)
−0.881022 + 0.473075i \(0.843144\pi\)
\(648\) 0 0
\(649\) −38.0309 −1.49284
\(650\) 6.00733 0.235627
\(651\) 0 0
\(652\) 27.8531 1.09081
\(653\) 49.4906 1.93672 0.968359 0.249560i \(-0.0802860\pi\)
0.968359 + 0.249560i \(0.0802860\pi\)
\(654\) 0 0
\(655\) −23.5871 −0.921623
\(656\) 12.6695 0.494659
\(657\) 0 0
\(658\) −36.2776 −1.41425
\(659\) 11.3799 0.443299 0.221649 0.975126i \(-0.428856\pi\)
0.221649 + 0.975126i \(0.428856\pi\)
\(660\) 0 0
\(661\) 2.64285 0.102795 0.0513974 0.998678i \(-0.483632\pi\)
0.0513974 + 0.998678i \(0.483632\pi\)
\(662\) −45.1107 −1.75328
\(663\) 0 0
\(664\) −0.734541 −0.0285057
\(665\) −47.8643 −1.85610
\(666\) 0 0
\(667\) −1.60266 −0.0620552
\(668\) −11.2329 −0.434614
\(669\) 0 0
\(670\) 74.0824 2.86205
\(671\) −23.1132 −0.892276
\(672\) 0 0
\(673\) −2.34401 −0.0903551 −0.0451776 0.998979i \(-0.514385\pi\)
−0.0451776 + 0.998979i \(0.514385\pi\)
\(674\) 8.12603 0.313003
\(675\) 0 0
\(676\) −36.6226 −1.40856
\(677\) 9.34103 0.359005 0.179503 0.983758i \(-0.442551\pi\)
0.179503 + 0.983758i \(0.442551\pi\)
\(678\) 0 0
\(679\) −20.8362 −0.799622
\(680\) 8.93435 0.342617
\(681\) 0 0
\(682\) −13.1237 −0.502532
\(683\) −29.3064 −1.12138 −0.560689 0.828026i \(-0.689464\pi\)
−0.560689 + 0.828026i \(0.689464\pi\)
\(684\) 0 0
\(685\) 30.3996 1.16151
\(686\) 34.5782 1.32020
\(687\) 0 0
\(688\) 9.82589 0.374609
\(689\) −2.69133 −0.102531
\(690\) 0 0
\(691\) −13.6151 −0.517941 −0.258971 0.965885i \(-0.583383\pi\)
−0.258971 + 0.965885i \(0.583383\pi\)
\(692\) 24.5928 0.934880
\(693\) 0 0
\(694\) −64.7986 −2.45972
\(695\) 51.4116 1.95015
\(696\) 0 0
\(697\) −14.8577 −0.562776
\(698\) −37.6308 −1.42435
\(699\) 0 0
\(700\) 31.9389 1.20718
\(701\) −41.6203 −1.57198 −0.785989 0.618241i \(-0.787846\pi\)
−0.785989 + 0.618241i \(0.787846\pi\)
\(702\) 0 0
\(703\) −20.3641 −0.768047
\(704\) 68.5764 2.58457
\(705\) 0 0
\(706\) 50.5577 1.90276
\(707\) 31.3652 1.17961
\(708\) 0 0
\(709\) −11.5435 −0.433524 −0.216762 0.976224i \(-0.569550\pi\)
−0.216762 + 0.976224i \(0.569550\pi\)
\(710\) 88.0626 3.30493
\(711\) 0 0
\(712\) 11.8714 0.444900
\(713\) 0.501635 0.0187864
\(714\) 0 0
\(715\) −11.4941 −0.429856
\(716\) 16.1100 0.602060
\(717\) 0 0
\(718\) 34.0378 1.27028
\(719\) −31.8602 −1.18818 −0.594092 0.804397i \(-0.702488\pi\)
−0.594092 + 0.804397i \(0.702488\pi\)
\(720\) 0 0
\(721\) −52.6743 −1.96169
\(722\) −24.9481 −0.928474
\(723\) 0 0
\(724\) 64.4483 2.39520
\(725\) 13.0680 0.485335
\(726\) 0 0
\(727\) −30.1927 −1.11979 −0.559893 0.828565i \(-0.689158\pi\)
−0.559893 + 0.828565i \(0.689158\pi\)
\(728\) 4.53691 0.168149
\(729\) 0 0
\(730\) −25.9836 −0.961698
\(731\) −11.5230 −0.426194
\(732\) 0 0
\(733\) −15.9963 −0.590838 −0.295419 0.955368i \(-0.595459\pi\)
−0.295419 + 0.955368i \(0.595459\pi\)
\(734\) −31.1965 −1.15148
\(735\) 0 0
\(736\) −3.12390 −0.115148
\(737\) −60.0600 −2.21234
\(738\) 0 0
\(739\) −14.8174 −0.545066 −0.272533 0.962146i \(-0.587861\pi\)
−0.272533 + 0.962146i \(0.587861\pi\)
\(740\) 32.0700 1.17892
\(741\) 0 0
\(742\) −24.0449 −0.882716
\(743\) −1.03928 −0.0381273 −0.0190637 0.999818i \(-0.506069\pi\)
−0.0190637 + 0.999818i \(0.506069\pi\)
\(744\) 0 0
\(745\) 24.4899 0.897241
\(746\) 60.5544 2.21706
\(747\) 0 0
\(748\) −22.6650 −0.828715
\(749\) −0.147280 −0.00538149
\(750\) 0 0
\(751\) −33.0125 −1.20464 −0.602322 0.798253i \(-0.705758\pi\)
−0.602322 + 0.798253i \(0.705758\pi\)
\(752\) −6.84200 −0.249502
\(753\) 0 0
\(754\) 5.80863 0.211538
\(755\) 51.8435 1.88678
\(756\) 0 0
\(757\) −33.1877 −1.20623 −0.603114 0.797655i \(-0.706074\pi\)
−0.603114 + 0.797655i \(0.706074\pi\)
\(758\) −19.1066 −0.693984
\(759\) 0 0
\(760\) 33.8079 1.22634
\(761\) 37.3624 1.35439 0.677193 0.735805i \(-0.263196\pi\)
0.677193 + 0.735805i \(0.263196\pi\)
\(762\) 0 0
\(763\) −1.19717 −0.0433405
\(764\) −37.4544 −1.35505
\(765\) 0 0
\(766\) 42.8682 1.54889
\(767\) −5.26867 −0.190241
\(768\) 0 0
\(769\) −42.7640 −1.54211 −0.771055 0.636769i \(-0.780271\pi\)
−0.771055 + 0.636769i \(0.780271\pi\)
\(770\) −102.691 −3.70073
\(771\) 0 0
\(772\) 59.7652 2.15100
\(773\) −24.6670 −0.887211 −0.443605 0.896222i \(-0.646301\pi\)
−0.443605 + 0.896222i \(0.646301\pi\)
\(774\) 0 0
\(775\) −4.09033 −0.146929
\(776\) 14.7172 0.528317
\(777\) 0 0
\(778\) 69.2125 2.48139
\(779\) −56.2221 −2.01436
\(780\) 0 0
\(781\) −71.3940 −2.55468
\(782\) 1.45582 0.0520598
\(783\) 0 0
\(784\) −2.15085 −0.0768162
\(785\) 6.34714 0.226539
\(786\) 0 0
\(787\) 34.1431 1.21707 0.608535 0.793527i \(-0.291757\pi\)
0.608535 + 0.793527i \(0.291757\pi\)
\(788\) −11.7978 −0.420281
\(789\) 0 0
\(790\) 18.6091 0.662082
\(791\) −33.6232 −1.19550
\(792\) 0 0
\(793\) −3.20203 −0.113707
\(794\) −23.6992 −0.841052
\(795\) 0 0
\(796\) 11.3041 0.400662
\(797\) −16.9399 −0.600040 −0.300020 0.953933i \(-0.596993\pi\)
−0.300020 + 0.953933i \(0.596993\pi\)
\(798\) 0 0
\(799\) 8.02374 0.283860
\(800\) 25.4722 0.900578
\(801\) 0 0
\(802\) 18.0036 0.635730
\(803\) 21.0654 0.743383
\(804\) 0 0
\(805\) 3.92523 0.138346
\(806\) −1.81811 −0.0640403
\(807\) 0 0
\(808\) −22.1541 −0.779377
\(809\) −18.5465 −0.652062 −0.326031 0.945359i \(-0.605711\pi\)
−0.326031 + 0.945359i \(0.605711\pi\)
\(810\) 0 0
\(811\) 24.9560 0.876325 0.438163 0.898896i \(-0.355629\pi\)
0.438163 + 0.898896i \(0.355629\pi\)
\(812\) 30.8825 1.08376
\(813\) 0 0
\(814\) −43.6905 −1.53135
\(815\) −27.9119 −0.977711
\(816\) 0 0
\(817\) −43.6034 −1.52549
\(818\) 83.3021 2.91259
\(819\) 0 0
\(820\) 88.5400 3.09195
\(821\) 1.35107 0.0471527 0.0235763 0.999722i \(-0.492495\pi\)
0.0235763 + 0.999722i \(0.492495\pi\)
\(822\) 0 0
\(823\) 43.8887 1.52986 0.764932 0.644111i \(-0.222772\pi\)
0.764932 + 0.644111i \(0.222772\pi\)
\(824\) 37.2053 1.29611
\(825\) 0 0
\(826\) −47.0714 −1.63783
\(827\) 56.3672 1.96008 0.980041 0.198798i \(-0.0637037\pi\)
0.980041 + 0.198798i \(0.0637037\pi\)
\(828\) 0 0
\(829\) 14.6746 0.509671 0.254836 0.966984i \(-0.417979\pi\)
0.254836 + 0.966984i \(0.417979\pi\)
\(830\) 2.30332 0.0799493
\(831\) 0 0
\(832\) 9.50035 0.329365
\(833\) 2.52235 0.0873941
\(834\) 0 0
\(835\) 11.2566 0.389551
\(836\) −85.7651 −2.96625
\(837\) 0 0
\(838\) 28.6604 0.990056
\(839\) 0.948206 0.0327357 0.0163679 0.999866i \(-0.494790\pi\)
0.0163679 + 0.999866i \(0.494790\pi\)
\(840\) 0 0
\(841\) −16.3642 −0.564283
\(842\) −51.4122 −1.77178
\(843\) 0 0
\(844\) 20.9520 0.721199
\(845\) 36.6998 1.26251
\(846\) 0 0
\(847\) 50.7411 1.74348
\(848\) −4.53489 −0.155729
\(849\) 0 0
\(850\) −11.8707 −0.407161
\(851\) 1.67001 0.0572472
\(852\) 0 0
\(853\) 3.19586 0.109424 0.0547120 0.998502i \(-0.482576\pi\)
0.0547120 + 0.998502i \(0.482576\pi\)
\(854\) −28.6076 −0.978933
\(855\) 0 0
\(856\) 0.104028 0.00355560
\(857\) −29.6860 −1.01406 −0.507028 0.861930i \(-0.669256\pi\)
−0.507028 + 0.861930i \(0.669256\pi\)
\(858\) 0 0
\(859\) −13.8351 −0.472046 −0.236023 0.971747i \(-0.575844\pi\)
−0.236023 + 0.971747i \(0.575844\pi\)
\(860\) 68.6678 2.34155
\(861\) 0 0
\(862\) 50.4496 1.71832
\(863\) 57.9543 1.97279 0.986394 0.164396i \(-0.0525674\pi\)
0.986394 + 0.164396i \(0.0525674\pi\)
\(864\) 0 0
\(865\) −24.6447 −0.837945
\(866\) 40.4733 1.37534
\(867\) 0 0
\(868\) −9.66628 −0.328095
\(869\) −15.0867 −0.511783
\(870\) 0 0
\(871\) −8.32051 −0.281930
\(872\) 0.845594 0.0286354
\(873\) 0 0
\(874\) 5.50885 0.186340
\(875\) 11.5244 0.389597
\(876\) 0 0
\(877\) 13.5677 0.458148 0.229074 0.973409i \(-0.426430\pi\)
0.229074 + 0.973409i \(0.426430\pi\)
\(878\) −61.1095 −2.06235
\(879\) 0 0
\(880\) −19.3677 −0.652883
\(881\) 3.11738 0.105027 0.0525135 0.998620i \(-0.483277\pi\)
0.0525135 + 0.998620i \(0.483277\pi\)
\(882\) 0 0
\(883\) −5.87731 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(884\) −3.13994 −0.105607
\(885\) 0 0
\(886\) −27.2516 −0.915535
\(887\) −4.68146 −0.157188 −0.0785941 0.996907i \(-0.525043\pi\)
−0.0785941 + 0.996907i \(0.525043\pi\)
\(888\) 0 0
\(889\) 38.5584 1.29321
\(890\) −37.2255 −1.24780
\(891\) 0 0
\(892\) 43.6472 1.46142
\(893\) 30.3621 1.01603
\(894\) 0 0
\(895\) −16.1440 −0.539635
\(896\) 43.9195 1.46725
\(897\) 0 0
\(898\) 15.4230 0.514672
\(899\) −3.95503 −0.131908
\(900\) 0 0
\(901\) 5.31816 0.177173
\(902\) −120.622 −4.01629
\(903\) 0 0
\(904\) 23.7490 0.789879
\(905\) −64.5842 −2.14685
\(906\) 0 0
\(907\) 0.933292 0.0309895 0.0154947 0.999880i \(-0.495068\pi\)
0.0154947 + 0.999880i \(0.495068\pi\)
\(908\) −39.5531 −1.31262
\(909\) 0 0
\(910\) −14.2265 −0.471604
\(911\) −45.4417 −1.50555 −0.752776 0.658277i \(-0.771286\pi\)
−0.752776 + 0.658277i \(0.771286\pi\)
\(912\) 0 0
\(913\) −1.86734 −0.0618000
\(914\) −66.3735 −2.19544
\(915\) 0 0
\(916\) −9.58056 −0.316550
\(917\) 23.6682 0.781594
\(918\) 0 0
\(919\) 40.2641 1.32819 0.664095 0.747648i \(-0.268817\pi\)
0.664095 + 0.747648i \(0.268817\pi\)
\(920\) −2.77250 −0.0914065
\(921\) 0 0
\(922\) −1.82341 −0.0600508
\(923\) −9.89069 −0.325556
\(924\) 0 0
\(925\) −13.6172 −0.447732
\(926\) 63.6055 2.09021
\(927\) 0 0
\(928\) 24.6297 0.808508
\(929\) 13.0969 0.429696 0.214848 0.976648i \(-0.431074\pi\)
0.214848 + 0.976648i \(0.431074\pi\)
\(930\) 0 0
\(931\) 9.54464 0.312813
\(932\) −24.3174 −0.796544
\(933\) 0 0
\(934\) −27.7650 −0.908499
\(935\) 22.7128 0.742788
\(936\) 0 0
\(937\) −31.2625 −1.02130 −0.510650 0.859789i \(-0.670595\pi\)
−0.510650 + 0.859789i \(0.670595\pi\)
\(938\) −74.3373 −2.42720
\(939\) 0 0
\(940\) −47.8150 −1.55955
\(941\) 47.0000 1.53215 0.766077 0.642748i \(-0.222206\pi\)
0.766077 + 0.642748i \(0.222206\pi\)
\(942\) 0 0
\(943\) 4.61063 0.150143
\(944\) −8.87772 −0.288945
\(945\) 0 0
\(946\) −93.5495 −3.04156
\(947\) 30.6781 0.996903 0.498452 0.866917i \(-0.333902\pi\)
0.498452 + 0.866917i \(0.333902\pi\)
\(948\) 0 0
\(949\) 2.91834 0.0947332
\(950\) −44.9191 −1.45737
\(951\) 0 0
\(952\) −8.96509 −0.290560
\(953\) 6.76806 0.219239 0.109620 0.993974i \(-0.465037\pi\)
0.109620 + 0.993974i \(0.465037\pi\)
\(954\) 0 0
\(955\) 37.5334 1.21455
\(956\) 38.3963 1.24183
\(957\) 0 0
\(958\) −10.0809 −0.325699
\(959\) −30.5042 −0.985030
\(960\) 0 0
\(961\) −29.7621 −0.960067
\(962\) −6.05274 −0.195148
\(963\) 0 0
\(964\) −1.85990 −0.0599033
\(965\) −59.8912 −1.92797
\(966\) 0 0
\(967\) 19.3202 0.621296 0.310648 0.950525i \(-0.399454\pi\)
0.310648 + 0.950525i \(0.399454\pi\)
\(968\) −35.8398 −1.15193
\(969\) 0 0
\(970\) −46.1491 −1.48176
\(971\) −42.4827 −1.36333 −0.681667 0.731662i \(-0.738745\pi\)
−0.681667 + 0.731662i \(0.738745\pi\)
\(972\) 0 0
\(973\) −51.5885 −1.65385
\(974\) 62.8706 2.01450
\(975\) 0 0
\(976\) −5.39543 −0.172703
\(977\) 38.0053 1.21590 0.607949 0.793976i \(-0.291992\pi\)
0.607949 + 0.793976i \(0.291992\pi\)
\(978\) 0 0
\(979\) 30.1794 0.964537
\(980\) −15.0311 −0.480152
\(981\) 0 0
\(982\) 43.5251 1.38894
\(983\) −5.53652 −0.176588 −0.0882938 0.996094i \(-0.528141\pi\)
−0.0882938 + 0.996094i \(0.528141\pi\)
\(984\) 0 0
\(985\) 11.8227 0.376703
\(986\) −11.4780 −0.365535
\(987\) 0 0
\(988\) −11.8816 −0.378004
\(989\) 3.57580 0.113704
\(990\) 0 0
\(991\) 22.1328 0.703070 0.351535 0.936175i \(-0.385660\pi\)
0.351535 + 0.936175i \(0.385660\pi\)
\(992\) −7.70914 −0.244765
\(993\) 0 0
\(994\) −88.3656 −2.80279
\(995\) −11.3279 −0.359118
\(996\) 0 0
\(997\) 20.4917 0.648979 0.324490 0.945889i \(-0.394807\pi\)
0.324490 + 0.945889i \(0.394807\pi\)
\(998\) 65.7832 2.08233
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.11 72
3.2 odd 2 6561.2.a.d.1.62 72
81.2 odd 54 729.2.g.a.433.2 144
81.13 even 27 81.2.g.a.7.2 144
81.14 odd 54 729.2.g.b.55.7 144
81.25 even 27 81.2.g.a.58.2 yes 144
81.29 odd 54 729.2.g.b.676.7 144
81.40 even 27 729.2.g.d.298.7 144
81.41 odd 54 729.2.g.a.298.2 144
81.52 even 27 729.2.g.c.676.2 144
81.56 odd 54 243.2.g.a.226.7 144
81.67 even 27 729.2.g.c.55.2 144
81.68 odd 54 243.2.g.a.100.7 144
81.79 even 27 729.2.g.d.433.7 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.7.2 144 81.13 even 27
81.2.g.a.58.2 yes 144 81.25 even 27
243.2.g.a.100.7 144 81.68 odd 54
243.2.g.a.226.7 144 81.56 odd 54
729.2.g.a.298.2 144 81.41 odd 54
729.2.g.a.433.2 144 81.2 odd 54
729.2.g.b.55.7 144 81.14 odd 54
729.2.g.b.676.7 144 81.29 odd 54
729.2.g.c.55.2 144 81.67 even 27
729.2.g.c.676.2 144 81.52 even 27
729.2.g.d.298.7 144 81.40 even 27
729.2.g.d.433.7 144 81.79 even 27
6561.2.a.c.1.11 72 1.1 even 1 trivial
6561.2.a.d.1.62 72 3.2 odd 2