Properties

Label 2277.2.a.m.1.3
Level $2277$
Weight $2$
Character 2277.1
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,5,-3,0,-1,-3,0,-6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.255514\) of defining polynomial
Character \(\chi\) \(=\) 2277.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.25551 q^{2} -0.423685 q^{4} -4.04297 q^{5} +0.798084 q^{7} +3.04297 q^{8} +5.07601 q^{10} -1.00000 q^{11} -3.19289 q^{13} -1.00201 q^{14} -2.97312 q^{16} -0.503752 q^{17} +3.98359 q^{19} +1.71294 q^{20} +1.25551 q^{22} +1.00000 q^{23} +11.3456 q^{25} +4.00871 q^{26} -0.338136 q^{28} +6.16897 q^{29} -3.28168 q^{31} -2.35314 q^{32} +0.632468 q^{34} -3.22663 q^{35} +5.17919 q^{37} -5.00145 q^{38} -12.3026 q^{40} +11.8209 q^{41} -7.08974 q^{43} +0.423685 q^{44} -1.25551 q^{46} -1.22773 q^{47} -6.36306 q^{49} -14.2446 q^{50} +1.35278 q^{52} +3.00201 q^{53} +4.04297 q^{55} +2.42855 q^{56} -7.74523 q^{58} -9.03304 q^{59} +2.63648 q^{61} +4.12020 q^{62} +8.90065 q^{64} +12.9087 q^{65} +8.99026 q^{67} +0.213432 q^{68} +4.05108 q^{70} -9.80465 q^{71} +1.31433 q^{73} -6.50255 q^{74} -1.68779 q^{76} -0.798084 q^{77} +15.6898 q^{79} +12.0202 q^{80} -14.8413 q^{82} +2.92233 q^{83} +2.03665 q^{85} +8.90127 q^{86} -3.04297 q^{88} -6.20642 q^{89} -2.54819 q^{91} -0.423685 q^{92} +1.54144 q^{94} -16.1055 q^{95} -15.3359 q^{97} +7.98891 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 5 q^{4} - 3 q^{5} - q^{7} - 3 q^{8} - 6 q^{10} - 6 q^{11} - 3 q^{13} + 8 q^{14} - q^{16} - 5 q^{17} + q^{19} + 7 q^{20} + 3 q^{22} + 6 q^{23} + 3 q^{25} - 15 q^{26} - 6 q^{29} - 8 q^{31}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25551 −0.887782 −0.443891 0.896081i \(-0.646402\pi\)
−0.443891 + 0.896081i \(0.646402\pi\)
\(3\) 0 0
\(4\) −0.423685 −0.211842
\(5\) −4.04297 −1.80807 −0.904036 0.427457i \(-0.859409\pi\)
−0.904036 + 0.427457i \(0.859409\pi\)
\(6\) 0 0
\(7\) 0.798084 0.301647 0.150824 0.988561i \(-0.451807\pi\)
0.150824 + 0.988561i \(0.451807\pi\)
\(8\) 3.04297 1.07585
\(9\) 0 0
\(10\) 5.07601 1.60517
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −3.19289 −0.885547 −0.442774 0.896633i \(-0.646005\pi\)
−0.442774 + 0.896633i \(0.646005\pi\)
\(14\) −1.00201 −0.267797
\(15\) 0 0
\(16\) −2.97312 −0.743281
\(17\) −0.503752 −0.122178 −0.0610889 0.998132i \(-0.519457\pi\)
−0.0610889 + 0.998132i \(0.519457\pi\)
\(18\) 0 0
\(19\) 3.98359 0.913898 0.456949 0.889493i \(-0.348942\pi\)
0.456949 + 0.889493i \(0.348942\pi\)
\(20\) 1.71294 0.383026
\(21\) 0 0
\(22\) 1.25551 0.267676
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 11.3456 2.26912
\(26\) 4.00871 0.786173
\(27\) 0 0
\(28\) −0.338136 −0.0639017
\(29\) 6.16897 1.14555 0.572774 0.819713i \(-0.305867\pi\)
0.572774 + 0.819713i \(0.305867\pi\)
\(30\) 0 0
\(31\) −3.28168 −0.589407 −0.294704 0.955589i \(-0.595221\pi\)
−0.294704 + 0.955589i \(0.595221\pi\)
\(32\) −2.35314 −0.415981
\(33\) 0 0
\(34\) 0.632468 0.108467
\(35\) −3.22663 −0.545400
\(36\) 0 0
\(37\) 5.17919 0.851454 0.425727 0.904852i \(-0.360018\pi\)
0.425727 + 0.904852i \(0.360018\pi\)
\(38\) −5.00145 −0.811343
\(39\) 0 0
\(40\) −12.3026 −1.94522
\(41\) 11.8209 1.84611 0.923056 0.384666i \(-0.125683\pi\)
0.923056 + 0.384666i \(0.125683\pi\)
\(42\) 0 0
\(43\) −7.08974 −1.08118 −0.540588 0.841288i \(-0.681798\pi\)
−0.540588 + 0.841288i \(0.681798\pi\)
\(44\) 0.423685 0.0638728
\(45\) 0 0
\(46\) −1.25551 −0.185115
\(47\) −1.22773 −0.179083 −0.0895416 0.995983i \(-0.528540\pi\)
−0.0895416 + 0.995983i \(0.528540\pi\)
\(48\) 0 0
\(49\) −6.36306 −0.909009
\(50\) −14.2446 −2.01449
\(51\) 0 0
\(52\) 1.35278 0.187596
\(53\) 3.00201 0.412357 0.206179 0.978514i \(-0.433897\pi\)
0.206179 + 0.978514i \(0.433897\pi\)
\(54\) 0 0
\(55\) 4.04297 0.545154
\(56\) 2.42855 0.324528
\(57\) 0 0
\(58\) −7.74523 −1.01700
\(59\) −9.03304 −1.17600 −0.588001 0.808861i \(-0.700085\pi\)
−0.588001 + 0.808861i \(0.700085\pi\)
\(60\) 0 0
\(61\) 2.63648 0.337567 0.168783 0.985653i \(-0.446016\pi\)
0.168783 + 0.985653i \(0.446016\pi\)
\(62\) 4.12020 0.523266
\(63\) 0 0
\(64\) 8.90065 1.11258
\(65\) 12.9087 1.60113
\(66\) 0 0
\(67\) 8.99026 1.09834 0.549168 0.835712i \(-0.314945\pi\)
0.549168 + 0.835712i \(0.314945\pi\)
\(68\) 0.213432 0.0258824
\(69\) 0 0
\(70\) 4.05108 0.484197
\(71\) −9.80465 −1.16360 −0.581799 0.813333i \(-0.697651\pi\)
−0.581799 + 0.813333i \(0.697651\pi\)
\(72\) 0 0
\(73\) 1.31433 0.153830 0.0769151 0.997038i \(-0.475493\pi\)
0.0769151 + 0.997038i \(0.475493\pi\)
\(74\) −6.50255 −0.755906
\(75\) 0 0
\(76\) −1.68779 −0.193602
\(77\) −0.798084 −0.0909501
\(78\) 0 0
\(79\) 15.6898 1.76524 0.882618 0.470091i \(-0.155779\pi\)
0.882618 + 0.470091i \(0.155779\pi\)
\(80\) 12.0202 1.34390
\(81\) 0 0
\(82\) −14.8413 −1.63895
\(83\) 2.92233 0.320767 0.160384 0.987055i \(-0.448727\pi\)
0.160384 + 0.987055i \(0.448727\pi\)
\(84\) 0 0
\(85\) 2.03665 0.220906
\(86\) 8.90127 0.959849
\(87\) 0 0
\(88\) −3.04297 −0.324382
\(89\) −6.20642 −0.657879 −0.328940 0.944351i \(-0.606691\pi\)
−0.328940 + 0.944351i \(0.606691\pi\)
\(90\) 0 0
\(91\) −2.54819 −0.267123
\(92\) −0.423685 −0.0441722
\(93\) 0 0
\(94\) 1.54144 0.158987
\(95\) −16.1055 −1.65239
\(96\) 0 0
\(97\) −15.3359 −1.55712 −0.778561 0.627569i \(-0.784050\pi\)
−0.778561 + 0.627569i \(0.784050\pi\)
\(98\) 7.98891 0.807002
\(99\) 0 0
\(100\) −4.80696 −0.480696
\(101\) 5.69653 0.566826 0.283413 0.958998i \(-0.408533\pi\)
0.283413 + 0.958998i \(0.408533\pi\)
\(102\) 0 0
\(103\) 0.992886 0.0978319 0.0489160 0.998803i \(-0.484423\pi\)
0.0489160 + 0.998803i \(0.484423\pi\)
\(104\) −9.71585 −0.952718
\(105\) 0 0
\(106\) −3.76906 −0.366084
\(107\) 5.98921 0.578999 0.289500 0.957178i \(-0.406511\pi\)
0.289500 + 0.957178i \(0.406511\pi\)
\(108\) 0 0
\(109\) −15.3585 −1.47108 −0.735541 0.677480i \(-0.763072\pi\)
−0.735541 + 0.677480i \(0.763072\pi\)
\(110\) −5.07601 −0.483978
\(111\) 0 0
\(112\) −2.37280 −0.224209
\(113\) −15.7470 −1.48135 −0.740675 0.671863i \(-0.765494\pi\)
−0.740675 + 0.671863i \(0.765494\pi\)
\(114\) 0 0
\(115\) −4.04297 −0.377009
\(116\) −2.61370 −0.242676
\(117\) 0 0
\(118\) 11.3411 1.04403
\(119\) −0.402037 −0.0368546
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −3.31014 −0.299686
\(123\) 0 0
\(124\) 1.39040 0.124861
\(125\) −25.6551 −2.29466
\(126\) 0 0
\(127\) 9.06863 0.804710 0.402355 0.915484i \(-0.368192\pi\)
0.402355 + 0.915484i \(0.368192\pi\)
\(128\) −6.46860 −0.571749
\(129\) 0 0
\(130\) −16.2071 −1.42146
\(131\) −10.9241 −0.954442 −0.477221 0.878783i \(-0.658356\pi\)
−0.477221 + 0.878783i \(0.658356\pi\)
\(132\) 0 0
\(133\) 3.17924 0.275675
\(134\) −11.2874 −0.975083
\(135\) 0 0
\(136\) −1.53290 −0.131445
\(137\) −22.4269 −1.91606 −0.958029 0.286672i \(-0.907451\pi\)
−0.958029 + 0.286672i \(0.907451\pi\)
\(138\) 0 0
\(139\) −0.760327 −0.0644901 −0.0322451 0.999480i \(-0.510266\pi\)
−0.0322451 + 0.999480i \(0.510266\pi\)
\(140\) 1.36707 0.115539
\(141\) 0 0
\(142\) 12.3099 1.03302
\(143\) 3.19289 0.267002
\(144\) 0 0
\(145\) −24.9410 −2.07123
\(146\) −1.65015 −0.136568
\(147\) 0 0
\(148\) −2.19434 −0.180374
\(149\) −5.59496 −0.458357 −0.229179 0.973384i \(-0.573604\pi\)
−0.229179 + 0.973384i \(0.573604\pi\)
\(150\) 0 0
\(151\) 7.13755 0.580845 0.290423 0.956898i \(-0.406204\pi\)
0.290423 + 0.956898i \(0.406204\pi\)
\(152\) 12.1219 0.983219
\(153\) 0 0
\(154\) 1.00201 0.0807439
\(155\) 13.2677 1.06569
\(156\) 0 0
\(157\) −18.8473 −1.50418 −0.752090 0.659061i \(-0.770954\pi\)
−0.752090 + 0.659061i \(0.770954\pi\)
\(158\) −19.6987 −1.56715
\(159\) 0 0
\(160\) 9.51369 0.752123
\(161\) 0.798084 0.0628978
\(162\) 0 0
\(163\) −19.5160 −1.52861 −0.764305 0.644854i \(-0.776918\pi\)
−0.764305 + 0.644854i \(0.776918\pi\)
\(164\) −5.00833 −0.391084
\(165\) 0 0
\(166\) −3.66903 −0.284772
\(167\) −20.5303 −1.58868 −0.794342 0.607471i \(-0.792184\pi\)
−0.794342 + 0.607471i \(0.792184\pi\)
\(168\) 0 0
\(169\) −2.80548 −0.215806
\(170\) −2.55705 −0.196117
\(171\) 0 0
\(172\) 3.00381 0.229039
\(173\) −4.67283 −0.355268 −0.177634 0.984097i \(-0.556844\pi\)
−0.177634 + 0.984097i \(0.556844\pi\)
\(174\) 0 0
\(175\) 9.05475 0.684475
\(176\) 2.97312 0.224108
\(177\) 0 0
\(178\) 7.79225 0.584054
\(179\) 4.68491 0.350166 0.175083 0.984554i \(-0.443981\pi\)
0.175083 + 0.984554i \(0.443981\pi\)
\(180\) 0 0
\(181\) 10.2400 0.761133 0.380566 0.924754i \(-0.375729\pi\)
0.380566 + 0.924754i \(0.375729\pi\)
\(182\) 3.19929 0.237147
\(183\) 0 0
\(184\) 3.04297 0.224331
\(185\) −20.9393 −1.53949
\(186\) 0 0
\(187\) 0.503752 0.0368380
\(188\) 0.520171 0.0379374
\(189\) 0 0
\(190\) 20.2207 1.46697
\(191\) 6.39892 0.463009 0.231505 0.972834i \(-0.425635\pi\)
0.231505 + 0.972834i \(0.425635\pi\)
\(192\) 0 0
\(193\) 2.17363 0.156462 0.0782308 0.996935i \(-0.475073\pi\)
0.0782308 + 0.996935i \(0.475073\pi\)
\(194\) 19.2544 1.38238
\(195\) 0 0
\(196\) 2.69593 0.192566
\(197\) 9.15789 0.652473 0.326236 0.945288i \(-0.394219\pi\)
0.326236 + 0.945288i \(0.394219\pi\)
\(198\) 0 0
\(199\) 7.01847 0.497526 0.248763 0.968564i \(-0.419976\pi\)
0.248763 + 0.968564i \(0.419976\pi\)
\(200\) 34.5243 2.44124
\(201\) 0 0
\(202\) −7.15208 −0.503218
\(203\) 4.92336 0.345552
\(204\) 0 0
\(205\) −47.7915 −3.33790
\(206\) −1.24658 −0.0868535
\(207\) 0 0
\(208\) 9.49284 0.658210
\(209\) −3.98359 −0.275551
\(210\) 0 0
\(211\) −14.4490 −0.994707 −0.497354 0.867548i \(-0.665695\pi\)
−0.497354 + 0.867548i \(0.665695\pi\)
\(212\) −1.27190 −0.0873547
\(213\) 0 0
\(214\) −7.51954 −0.514025
\(215\) 28.6636 1.95484
\(216\) 0 0
\(217\) −2.61906 −0.177793
\(218\) 19.2829 1.30600
\(219\) 0 0
\(220\) −1.71294 −0.115487
\(221\) 1.60842 0.108194
\(222\) 0 0
\(223\) 24.2905 1.62661 0.813305 0.581838i \(-0.197666\pi\)
0.813305 + 0.581838i \(0.197666\pi\)
\(224\) −1.87801 −0.125480
\(225\) 0 0
\(226\) 19.7705 1.31512
\(227\) −21.5364 −1.42942 −0.714709 0.699422i \(-0.753441\pi\)
−0.714709 + 0.699422i \(0.753441\pi\)
\(228\) 0 0
\(229\) 6.71062 0.443450 0.221725 0.975109i \(-0.428831\pi\)
0.221725 + 0.975109i \(0.428831\pi\)
\(230\) 5.07601 0.334702
\(231\) 0 0
\(232\) 18.7720 1.23244
\(233\) 15.0861 0.988326 0.494163 0.869369i \(-0.335475\pi\)
0.494163 + 0.869369i \(0.335475\pi\)
\(234\) 0 0
\(235\) 4.96369 0.323795
\(236\) 3.82716 0.249127
\(237\) 0 0
\(238\) 0.504763 0.0327189
\(239\) 30.6490 1.98252 0.991260 0.131919i \(-0.0421140\pi\)
0.991260 + 0.131919i \(0.0421140\pi\)
\(240\) 0 0
\(241\) −13.3710 −0.861301 −0.430651 0.902519i \(-0.641716\pi\)
−0.430651 + 0.902519i \(0.641716\pi\)
\(242\) −1.25551 −0.0807075
\(243\) 0 0
\(244\) −1.11704 −0.0715109
\(245\) 25.7257 1.64355
\(246\) 0 0
\(247\) −12.7191 −0.809300
\(248\) −9.98606 −0.634115
\(249\) 0 0
\(250\) 32.2103 2.03716
\(251\) −25.4838 −1.60852 −0.804262 0.594276i \(-0.797439\pi\)
−0.804262 + 0.594276i \(0.797439\pi\)
\(252\) 0 0
\(253\) −1.00000 −0.0628695
\(254\) −11.3858 −0.714408
\(255\) 0 0
\(256\) −9.67988 −0.604992
\(257\) 14.1016 0.879634 0.439817 0.898087i \(-0.355043\pi\)
0.439817 + 0.898087i \(0.355043\pi\)
\(258\) 0 0
\(259\) 4.13343 0.256839
\(260\) −5.46923 −0.339187
\(261\) 0 0
\(262\) 13.7153 0.847337
\(263\) 10.5011 0.647527 0.323764 0.946138i \(-0.395052\pi\)
0.323764 + 0.946138i \(0.395052\pi\)
\(264\) 0 0
\(265\) −12.1370 −0.745571
\(266\) −3.99158 −0.244739
\(267\) 0 0
\(268\) −3.80903 −0.232674
\(269\) −20.5718 −1.25429 −0.627143 0.778904i \(-0.715776\pi\)
−0.627143 + 0.778904i \(0.715776\pi\)
\(270\) 0 0
\(271\) −28.7365 −1.74562 −0.872810 0.488060i \(-0.837705\pi\)
−0.872810 + 0.488060i \(0.837705\pi\)
\(272\) 1.49772 0.0908124
\(273\) 0 0
\(274\) 28.1573 1.70104
\(275\) −11.3456 −0.684166
\(276\) 0 0
\(277\) −13.7543 −0.826416 −0.413208 0.910637i \(-0.635592\pi\)
−0.413208 + 0.910637i \(0.635592\pi\)
\(278\) 0.954601 0.0572532
\(279\) 0 0
\(280\) −9.81854 −0.586770
\(281\) −7.54904 −0.450338 −0.225169 0.974320i \(-0.572293\pi\)
−0.225169 + 0.974320i \(0.572293\pi\)
\(282\) 0 0
\(283\) −27.0020 −1.60510 −0.802551 0.596584i \(-0.796524\pi\)
−0.802551 + 0.596584i \(0.796524\pi\)
\(284\) 4.15408 0.246499
\(285\) 0 0
\(286\) −4.00871 −0.237040
\(287\) 9.43406 0.556875
\(288\) 0 0
\(289\) −16.7462 −0.985073
\(290\) 31.3137 1.83881
\(291\) 0 0
\(292\) −0.556859 −0.0325877
\(293\) 10.4872 0.612666 0.306333 0.951924i \(-0.400898\pi\)
0.306333 + 0.951924i \(0.400898\pi\)
\(294\) 0 0
\(295\) 36.5203 2.12629
\(296\) 15.7601 0.916038
\(297\) 0 0
\(298\) 7.02455 0.406921
\(299\) −3.19289 −0.184649
\(300\) 0 0
\(301\) −5.65821 −0.326134
\(302\) −8.96129 −0.515664
\(303\) 0 0
\(304\) −11.8437 −0.679283
\(305\) −10.6592 −0.610345
\(306\) 0 0
\(307\) 19.2068 1.09619 0.548096 0.836415i \(-0.315353\pi\)
0.548096 + 0.836415i \(0.315353\pi\)
\(308\) 0.338136 0.0192671
\(309\) 0 0
\(310\) −16.6578 −0.946101
\(311\) 16.6171 0.942270 0.471135 0.882061i \(-0.343845\pi\)
0.471135 + 0.882061i \(0.343845\pi\)
\(312\) 0 0
\(313\) 20.8071 1.17609 0.588044 0.808829i \(-0.299898\pi\)
0.588044 + 0.808829i \(0.299898\pi\)
\(314\) 23.6631 1.33538
\(315\) 0 0
\(316\) −6.64751 −0.373952
\(317\) 0.842442 0.0473163 0.0236581 0.999720i \(-0.492469\pi\)
0.0236581 + 0.999720i \(0.492469\pi\)
\(318\) 0 0
\(319\) −6.16897 −0.345396
\(320\) −35.9851 −2.01163
\(321\) 0 0
\(322\) −1.00201 −0.0558396
\(323\) −2.00674 −0.111658
\(324\) 0 0
\(325\) −36.2252 −2.00941
\(326\) 24.5026 1.35707
\(327\) 0 0
\(328\) 35.9706 1.98614
\(329\) −0.979834 −0.0540200
\(330\) 0 0
\(331\) −10.2249 −0.562014 −0.281007 0.959706i \(-0.590668\pi\)
−0.281007 + 0.959706i \(0.590668\pi\)
\(332\) −1.23815 −0.0679521
\(333\) 0 0
\(334\) 25.7761 1.41041
\(335\) −36.3473 −1.98587
\(336\) 0 0
\(337\) 29.3644 1.59958 0.799791 0.600279i \(-0.204944\pi\)
0.799791 + 0.600279i \(0.204944\pi\)
\(338\) 3.52232 0.191589
\(339\) 0 0
\(340\) −0.862899 −0.0467973
\(341\) 3.28168 0.177713
\(342\) 0 0
\(343\) −10.6648 −0.575848
\(344\) −21.5739 −1.16318
\(345\) 0 0
\(346\) 5.86680 0.315401
\(347\) −24.9778 −1.34088 −0.670438 0.741965i \(-0.733894\pi\)
−0.670438 + 0.741965i \(0.733894\pi\)
\(348\) 0 0
\(349\) −30.7570 −1.64638 −0.823191 0.567764i \(-0.807808\pi\)
−0.823191 + 0.567764i \(0.807808\pi\)
\(350\) −11.3684 −0.607665
\(351\) 0 0
\(352\) 2.35314 0.125423
\(353\) 18.1605 0.966588 0.483294 0.875458i \(-0.339440\pi\)
0.483294 + 0.875458i \(0.339440\pi\)
\(354\) 0 0
\(355\) 39.6399 2.10387
\(356\) 2.62956 0.139367
\(357\) 0 0
\(358\) −5.88197 −0.310872
\(359\) 0.950635 0.0501726 0.0250863 0.999685i \(-0.492014\pi\)
0.0250863 + 0.999685i \(0.492014\pi\)
\(360\) 0 0
\(361\) −3.13102 −0.164790
\(362\) −12.8565 −0.675720
\(363\) 0 0
\(364\) 1.07963 0.0565879
\(365\) −5.31378 −0.278136
\(366\) 0 0
\(367\) −28.6929 −1.49776 −0.748878 0.662708i \(-0.769407\pi\)
−0.748878 + 0.662708i \(0.769407\pi\)
\(368\) −2.97312 −0.154985
\(369\) 0 0
\(370\) 26.2896 1.36673
\(371\) 2.39585 0.124387
\(372\) 0 0
\(373\) 8.58485 0.444507 0.222253 0.974989i \(-0.428659\pi\)
0.222253 + 0.974989i \(0.428659\pi\)
\(374\) −0.632468 −0.0327041
\(375\) 0 0
\(376\) −3.73595 −0.192667
\(377\) −19.6968 −1.01444
\(378\) 0 0
\(379\) 10.0573 0.516610 0.258305 0.966063i \(-0.416836\pi\)
0.258305 + 0.966063i \(0.416836\pi\)
\(380\) 6.82366 0.350047
\(381\) 0 0
\(382\) −8.03393 −0.411052
\(383\) 19.3152 0.986963 0.493481 0.869756i \(-0.335724\pi\)
0.493481 + 0.869756i \(0.335724\pi\)
\(384\) 0 0
\(385\) 3.22663 0.164444
\(386\) −2.72903 −0.138904
\(387\) 0 0
\(388\) 6.49757 0.329864
\(389\) −15.0719 −0.764178 −0.382089 0.924126i \(-0.624795\pi\)
−0.382089 + 0.924126i \(0.624795\pi\)
\(390\) 0 0
\(391\) −0.503752 −0.0254758
\(392\) −19.3626 −0.977959
\(393\) 0 0
\(394\) −11.4979 −0.579254
\(395\) −63.4332 −3.19167
\(396\) 0 0
\(397\) 12.9854 0.651720 0.325860 0.945418i \(-0.394346\pi\)
0.325860 + 0.945418i \(0.394346\pi\)
\(398\) −8.81179 −0.441695
\(399\) 0 0
\(400\) −33.7319 −1.68659
\(401\) 12.3840 0.618429 0.309214 0.950992i \(-0.399934\pi\)
0.309214 + 0.950992i \(0.399934\pi\)
\(402\) 0 0
\(403\) 10.4780 0.521948
\(404\) −2.41353 −0.120078
\(405\) 0 0
\(406\) −6.18134 −0.306775
\(407\) −5.17919 −0.256723
\(408\) 0 0
\(409\) −0.984934 −0.0487019 −0.0243509 0.999703i \(-0.507752\pi\)
−0.0243509 + 0.999703i \(0.507752\pi\)
\(410\) 60.0029 2.96333
\(411\) 0 0
\(412\) −0.420670 −0.0207249
\(413\) −7.20912 −0.354738
\(414\) 0 0
\(415\) −11.8149 −0.579970
\(416\) 7.51332 0.368371
\(417\) 0 0
\(418\) 5.00145 0.244629
\(419\) 12.0822 0.590255 0.295127 0.955458i \(-0.404638\pi\)
0.295127 + 0.955458i \(0.404638\pi\)
\(420\) 0 0
\(421\) −37.5161 −1.82842 −0.914210 0.405240i \(-0.867188\pi\)
−0.914210 + 0.405240i \(0.867188\pi\)
\(422\) 18.1409 0.883083
\(423\) 0 0
\(424\) 9.13501 0.443635
\(425\) −5.71537 −0.277236
\(426\) 0 0
\(427\) 2.10413 0.101826
\(428\) −2.53754 −0.122657
\(429\) 0 0
\(430\) −35.9876 −1.73547
\(431\) 8.43869 0.406478 0.203239 0.979129i \(-0.434853\pi\)
0.203239 + 0.979129i \(0.434853\pi\)
\(432\) 0 0
\(433\) 8.74254 0.420140 0.210070 0.977686i \(-0.432631\pi\)
0.210070 + 0.977686i \(0.432631\pi\)
\(434\) 3.28826 0.157842
\(435\) 0 0
\(436\) 6.50718 0.311637
\(437\) 3.98359 0.190561
\(438\) 0 0
\(439\) 2.75687 0.131578 0.0657891 0.997834i \(-0.479044\pi\)
0.0657891 + 0.997834i \(0.479044\pi\)
\(440\) 12.3026 0.586505
\(441\) 0 0
\(442\) −2.01940 −0.0960529
\(443\) −0.793474 −0.0376991 −0.0188496 0.999822i \(-0.506000\pi\)
−0.0188496 + 0.999822i \(0.506000\pi\)
\(444\) 0 0
\(445\) 25.0924 1.18949
\(446\) −30.4970 −1.44408
\(447\) 0 0
\(448\) 7.10347 0.335607
\(449\) 38.9043 1.83601 0.918003 0.396574i \(-0.129801\pi\)
0.918003 + 0.396574i \(0.129801\pi\)
\(450\) 0 0
\(451\) −11.8209 −0.556624
\(452\) 6.67175 0.313813
\(453\) 0 0
\(454\) 27.0392 1.26901
\(455\) 10.3023 0.482977
\(456\) 0 0
\(457\) 4.02954 0.188494 0.0942470 0.995549i \(-0.469956\pi\)
0.0942470 + 0.995549i \(0.469956\pi\)
\(458\) −8.42528 −0.393688
\(459\) 0 0
\(460\) 1.71294 0.0798664
\(461\) 8.05034 0.374942 0.187471 0.982270i \(-0.439971\pi\)
0.187471 + 0.982270i \(0.439971\pi\)
\(462\) 0 0
\(463\) −3.83757 −0.178347 −0.0891735 0.996016i \(-0.528423\pi\)
−0.0891735 + 0.996016i \(0.528423\pi\)
\(464\) −18.3411 −0.851464
\(465\) 0 0
\(466\) −18.9409 −0.877418
\(467\) −32.1096 −1.48585 −0.742927 0.669372i \(-0.766563\pi\)
−0.742927 + 0.669372i \(0.766563\pi\)
\(468\) 0 0
\(469\) 7.17498 0.331310
\(470\) −6.23198 −0.287460
\(471\) 0 0
\(472\) −27.4873 −1.26520
\(473\) 7.08974 0.325987
\(474\) 0 0
\(475\) 45.1962 2.07375
\(476\) 0.170337 0.00780737
\(477\) 0 0
\(478\) −38.4803 −1.76005
\(479\) 41.4512 1.89395 0.946976 0.321305i \(-0.104121\pi\)
0.946976 + 0.321305i \(0.104121\pi\)
\(480\) 0 0
\(481\) −16.5366 −0.754002
\(482\) 16.7875 0.764648
\(483\) 0 0
\(484\) −0.423685 −0.0192584
\(485\) 62.0024 2.81539
\(486\) 0 0
\(487\) 21.7836 0.987109 0.493554 0.869715i \(-0.335697\pi\)
0.493554 + 0.869715i \(0.335697\pi\)
\(488\) 8.02273 0.363172
\(489\) 0 0
\(490\) −32.2989 −1.45912
\(491\) −16.5105 −0.745110 −0.372555 0.928010i \(-0.621518\pi\)
−0.372555 + 0.928010i \(0.621518\pi\)
\(492\) 0 0
\(493\) −3.10763 −0.139961
\(494\) 15.9691 0.718482
\(495\) 0 0
\(496\) 9.75684 0.438095
\(497\) −7.82494 −0.350996
\(498\) 0 0
\(499\) −5.88608 −0.263497 −0.131748 0.991283i \(-0.542059\pi\)
−0.131748 + 0.991283i \(0.542059\pi\)
\(500\) 10.8697 0.486106
\(501\) 0 0
\(502\) 31.9953 1.42802
\(503\) −25.4624 −1.13531 −0.567656 0.823266i \(-0.692150\pi\)
−0.567656 + 0.823266i \(0.692150\pi\)
\(504\) 0 0
\(505\) −23.0309 −1.02486
\(506\) 1.25551 0.0558144
\(507\) 0 0
\(508\) −3.84224 −0.170472
\(509\) 37.9786 1.68337 0.841687 0.539966i \(-0.181563\pi\)
0.841687 + 0.539966i \(0.181563\pi\)
\(510\) 0 0
\(511\) 1.04894 0.0464025
\(512\) 25.0904 1.10885
\(513\) 0 0
\(514\) −17.7048 −0.780924
\(515\) −4.01421 −0.176887
\(516\) 0 0
\(517\) 1.22773 0.0539956
\(518\) −5.18958 −0.228017
\(519\) 0 0
\(520\) 39.2809 1.72258
\(521\) −30.5870 −1.34004 −0.670020 0.742343i \(-0.733714\pi\)
−0.670020 + 0.742343i \(0.733714\pi\)
\(522\) 0 0
\(523\) −2.66147 −0.116378 −0.0581890 0.998306i \(-0.518533\pi\)
−0.0581890 + 0.998306i \(0.518533\pi\)
\(524\) 4.62837 0.202191
\(525\) 0 0
\(526\) −13.1843 −0.574863
\(527\) 1.65315 0.0720125
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 15.2382 0.661905
\(531\) 0 0
\(532\) −1.34699 −0.0583996
\(533\) −37.7427 −1.63482
\(534\) 0 0
\(535\) −24.2142 −1.04687
\(536\) 27.3571 1.18165
\(537\) 0 0
\(538\) 25.8282 1.11353
\(539\) 6.36306 0.274076
\(540\) 0 0
\(541\) 41.1086 1.76740 0.883698 0.468058i \(-0.155046\pi\)
0.883698 + 0.468058i \(0.155046\pi\)
\(542\) 36.0791 1.54973
\(543\) 0 0
\(544\) 1.18540 0.0508236
\(545\) 62.0941 2.65982
\(546\) 0 0
\(547\) −7.10820 −0.303925 −0.151962 0.988386i \(-0.548559\pi\)
−0.151962 + 0.988386i \(0.548559\pi\)
\(548\) 9.50192 0.405902
\(549\) 0 0
\(550\) 14.2446 0.607390
\(551\) 24.5746 1.04691
\(552\) 0 0
\(553\) 12.5217 0.532479
\(554\) 17.2687 0.733678
\(555\) 0 0
\(556\) 0.322139 0.0136617
\(557\) 17.5181 0.742265 0.371133 0.928580i \(-0.378970\pi\)
0.371133 + 0.928580i \(0.378970\pi\)
\(558\) 0 0
\(559\) 22.6367 0.957432
\(560\) 9.59317 0.405385
\(561\) 0 0
\(562\) 9.47793 0.399802
\(563\) −32.5836 −1.37324 −0.686618 0.727019i \(-0.740905\pi\)
−0.686618 + 0.727019i \(0.740905\pi\)
\(564\) 0 0
\(565\) 63.6645 2.67839
\(566\) 33.9014 1.42498
\(567\) 0 0
\(568\) −29.8353 −1.25186
\(569\) −42.5643 −1.78439 −0.892194 0.451653i \(-0.850835\pi\)
−0.892194 + 0.451653i \(0.850835\pi\)
\(570\) 0 0
\(571\) −3.70786 −0.155169 −0.0775845 0.996986i \(-0.524721\pi\)
−0.0775845 + 0.996986i \(0.524721\pi\)
\(572\) −1.35278 −0.0565624
\(573\) 0 0
\(574\) −11.8446 −0.494384
\(575\) 11.3456 0.473144
\(576\) 0 0
\(577\) −6.75679 −0.281289 −0.140644 0.990060i \(-0.544917\pi\)
−0.140644 + 0.990060i \(0.544917\pi\)
\(578\) 21.0251 0.874530
\(579\) 0 0
\(580\) 10.5671 0.438775
\(581\) 2.33227 0.0967587
\(582\) 0 0
\(583\) −3.00201 −0.124330
\(584\) 3.99945 0.165498
\(585\) 0 0
\(586\) −13.1668 −0.543915
\(587\) −3.71910 −0.153504 −0.0767519 0.997050i \(-0.524455\pi\)
−0.0767519 + 0.997050i \(0.524455\pi\)
\(588\) 0 0
\(589\) −13.0729 −0.538658
\(590\) −45.8517 −1.88769
\(591\) 0 0
\(592\) −15.3984 −0.632869
\(593\) −22.6333 −0.929439 −0.464719 0.885458i \(-0.653845\pi\)
−0.464719 + 0.885458i \(0.653845\pi\)
\(594\) 0 0
\(595\) 1.62542 0.0666358
\(596\) 2.37050 0.0970994
\(597\) 0 0
\(598\) 4.00871 0.163928
\(599\) 30.4468 1.24402 0.622010 0.783009i \(-0.286316\pi\)
0.622010 + 0.783009i \(0.286316\pi\)
\(600\) 0 0
\(601\) 11.3551 0.463186 0.231593 0.972813i \(-0.425606\pi\)
0.231593 + 0.972813i \(0.425606\pi\)
\(602\) 7.10396 0.289536
\(603\) 0 0
\(604\) −3.02407 −0.123048
\(605\) −4.04297 −0.164370
\(606\) 0 0
\(607\) 9.14323 0.371112 0.185556 0.982634i \(-0.440591\pi\)
0.185556 + 0.982634i \(0.440591\pi\)
\(608\) −9.37396 −0.380164
\(609\) 0 0
\(610\) 13.3828 0.541853
\(611\) 3.92001 0.158587
\(612\) 0 0
\(613\) −3.40904 −0.137690 −0.0688449 0.997627i \(-0.521931\pi\)
−0.0688449 + 0.997627i \(0.521931\pi\)
\(614\) −24.1145 −0.973180
\(615\) 0 0
\(616\) −2.42855 −0.0978489
\(617\) −1.68640 −0.0678919 −0.0339460 0.999424i \(-0.510807\pi\)
−0.0339460 + 0.999424i \(0.510807\pi\)
\(618\) 0 0
\(619\) −7.71276 −0.310002 −0.155001 0.987914i \(-0.549538\pi\)
−0.155001 + 0.987914i \(0.549538\pi\)
\(620\) −5.62134 −0.225758
\(621\) 0 0
\(622\) −20.8630 −0.836530
\(623\) −4.95324 −0.198448
\(624\) 0 0
\(625\) 46.9947 1.87979
\(626\) −26.1237 −1.04411
\(627\) 0 0
\(628\) 7.98532 0.318649
\(629\) −2.60903 −0.104029
\(630\) 0 0
\(631\) −39.9860 −1.59182 −0.795908 0.605417i \(-0.793006\pi\)
−0.795908 + 0.605417i \(0.793006\pi\)
\(632\) 47.7435 1.89913
\(633\) 0 0
\(634\) −1.05770 −0.0420065
\(635\) −36.6642 −1.45497
\(636\) 0 0
\(637\) 20.3165 0.804970
\(638\) 7.74523 0.306637
\(639\) 0 0
\(640\) 26.1524 1.03376
\(641\) 8.13445 0.321291 0.160646 0.987012i \(-0.448642\pi\)
0.160646 + 0.987012i \(0.448642\pi\)
\(642\) 0 0
\(643\) −29.6220 −1.16818 −0.584088 0.811690i \(-0.698548\pi\)
−0.584088 + 0.811690i \(0.698548\pi\)
\(644\) −0.338136 −0.0133244
\(645\) 0 0
\(646\) 2.51949 0.0991281
\(647\) −18.3325 −0.720727 −0.360363 0.932812i \(-0.617347\pi\)
−0.360363 + 0.932812i \(0.617347\pi\)
\(648\) 0 0
\(649\) 9.03304 0.354578
\(650\) 45.4813 1.78392
\(651\) 0 0
\(652\) 8.26863 0.323824
\(653\) 4.41518 0.172779 0.0863896 0.996261i \(-0.472467\pi\)
0.0863896 + 0.996261i \(0.472467\pi\)
\(654\) 0 0
\(655\) 44.1657 1.72570
\(656\) −35.1449 −1.37218
\(657\) 0 0
\(658\) 1.23020 0.0479580
\(659\) 10.5431 0.410703 0.205351 0.978688i \(-0.434166\pi\)
0.205351 + 0.978688i \(0.434166\pi\)
\(660\) 0 0
\(661\) −10.2501 −0.398681 −0.199341 0.979930i \(-0.563880\pi\)
−0.199341 + 0.979930i \(0.563880\pi\)
\(662\) 12.8376 0.498946
\(663\) 0 0
\(664\) 8.89256 0.345098
\(665\) −12.8536 −0.498440
\(666\) 0 0
\(667\) 6.16897 0.238863
\(668\) 8.69838 0.336550
\(669\) 0 0
\(670\) 45.6346 1.76302
\(671\) −2.63648 −0.101780
\(672\) 0 0
\(673\) 29.0456 1.11962 0.559812 0.828620i \(-0.310873\pi\)
0.559812 + 0.828620i \(0.310873\pi\)
\(674\) −36.8674 −1.42008
\(675\) 0 0
\(676\) 1.18864 0.0457169
\(677\) −21.8323 −0.839084 −0.419542 0.907736i \(-0.637809\pi\)
−0.419542 + 0.907736i \(0.637809\pi\)
\(678\) 0 0
\(679\) −12.2393 −0.469702
\(680\) 6.19748 0.237663
\(681\) 0 0
\(682\) −4.12020 −0.157771
\(683\) −48.4518 −1.85396 −0.926979 0.375114i \(-0.877604\pi\)
−0.926979 + 0.375114i \(0.877604\pi\)
\(684\) 0 0
\(685\) 90.6712 3.46437
\(686\) 13.3899 0.511227
\(687\) 0 0
\(688\) 21.0787 0.803617
\(689\) −9.58506 −0.365162
\(690\) 0 0
\(691\) 23.0694 0.877601 0.438800 0.898585i \(-0.355404\pi\)
0.438800 + 0.898585i \(0.355404\pi\)
\(692\) 1.97980 0.0752609
\(693\) 0 0
\(694\) 31.3599 1.19041
\(695\) 3.07398 0.116603
\(696\) 0 0
\(697\) −5.95480 −0.225554
\(698\) 38.6158 1.46163
\(699\) 0 0
\(700\) −3.83636 −0.145001
\(701\) −35.6219 −1.34542 −0.672711 0.739905i \(-0.734870\pi\)
−0.672711 + 0.739905i \(0.734870\pi\)
\(702\) 0 0
\(703\) 20.6318 0.778142
\(704\) −8.90065 −0.335456
\(705\) 0 0
\(706\) −22.8008 −0.858120
\(707\) 4.54631 0.170982
\(708\) 0 0
\(709\) 21.1768 0.795312 0.397656 0.917534i \(-0.369824\pi\)
0.397656 + 0.917534i \(0.369824\pi\)
\(710\) −49.7685 −1.86778
\(711\) 0 0
\(712\) −18.8859 −0.707781
\(713\) −3.28168 −0.122900
\(714\) 0 0
\(715\) −12.9087 −0.482759
\(716\) −1.98492 −0.0741801
\(717\) 0 0
\(718\) −1.19354 −0.0445424
\(719\) 47.0596 1.75503 0.877513 0.479553i \(-0.159201\pi\)
0.877513 + 0.479553i \(0.159201\pi\)
\(720\) 0 0
\(721\) 0.792406 0.0295108
\(722\) 3.93104 0.146298
\(723\) 0 0
\(724\) −4.33853 −0.161240
\(725\) 69.9907 2.59939
\(726\) 0 0
\(727\) −34.5022 −1.27961 −0.639807 0.768535i \(-0.720986\pi\)
−0.639807 + 0.768535i \(0.720986\pi\)
\(728\) −7.75407 −0.287385
\(729\) 0 0
\(730\) 6.67152 0.246924
\(731\) 3.57147 0.132096
\(732\) 0 0
\(733\) −19.9498 −0.736863 −0.368431 0.929655i \(-0.620105\pi\)
−0.368431 + 0.929655i \(0.620105\pi\)
\(734\) 36.0243 1.32968
\(735\) 0 0
\(736\) −2.35314 −0.0867380
\(737\) −8.99026 −0.331160
\(738\) 0 0
\(739\) 9.42242 0.346609 0.173305 0.984868i \(-0.444555\pi\)
0.173305 + 0.984868i \(0.444555\pi\)
\(740\) 8.87166 0.326129
\(741\) 0 0
\(742\) −3.00803 −0.110428
\(743\) −7.25579 −0.266189 −0.133095 0.991103i \(-0.542491\pi\)
−0.133095 + 0.991103i \(0.542491\pi\)
\(744\) 0 0
\(745\) 22.6203 0.828742
\(746\) −10.7784 −0.394625
\(747\) 0 0
\(748\) −0.213432 −0.00780385
\(749\) 4.77990 0.174654
\(750\) 0 0
\(751\) −18.9612 −0.691904 −0.345952 0.938252i \(-0.612444\pi\)
−0.345952 + 0.938252i \(0.612444\pi\)
\(752\) 3.65020 0.133109
\(753\) 0 0
\(754\) 24.7296 0.900600
\(755\) −28.8569 −1.05021
\(756\) 0 0
\(757\) −8.51568 −0.309508 −0.154754 0.987953i \(-0.549458\pi\)
−0.154754 + 0.987953i \(0.549458\pi\)
\(758\) −12.6271 −0.458637
\(759\) 0 0
\(760\) −49.0086 −1.77773
\(761\) 3.63058 0.131609 0.0658043 0.997833i \(-0.479039\pi\)
0.0658043 + 0.997833i \(0.479039\pi\)
\(762\) 0 0
\(763\) −12.2574 −0.443748
\(764\) −2.71112 −0.0980850
\(765\) 0 0
\(766\) −24.2506 −0.876208
\(767\) 28.8414 1.04140
\(768\) 0 0
\(769\) −11.1413 −0.401764 −0.200882 0.979615i \(-0.564381\pi\)
−0.200882 + 0.979615i \(0.564381\pi\)
\(770\) −4.05108 −0.145991
\(771\) 0 0
\(772\) −0.920935 −0.0331452
\(773\) −40.1436 −1.44387 −0.721933 0.691963i \(-0.756746\pi\)
−0.721933 + 0.691963i \(0.756746\pi\)
\(774\) 0 0
\(775\) −37.2327 −1.33744
\(776\) −46.6666 −1.67523
\(777\) 0 0
\(778\) 18.9230 0.678424
\(779\) 47.0895 1.68716
\(780\) 0 0
\(781\) 9.80465 0.350838
\(782\) 0.632468 0.0226170
\(783\) 0 0
\(784\) 18.9182 0.675649
\(785\) 76.1991 2.71966
\(786\) 0 0
\(787\) −32.1916 −1.14751 −0.573754 0.819028i \(-0.694513\pi\)
−0.573754 + 0.819028i \(0.694513\pi\)
\(788\) −3.88006 −0.138221
\(789\) 0 0
\(790\) 79.6413 2.83351
\(791\) −12.5674 −0.446846
\(792\) 0 0
\(793\) −8.41798 −0.298931
\(794\) −16.3034 −0.578585
\(795\) 0 0
\(796\) −2.97362 −0.105397
\(797\) 10.4731 0.370977 0.185489 0.982646i \(-0.440613\pi\)
0.185489 + 0.982646i \(0.440613\pi\)
\(798\) 0 0
\(799\) 0.618473 0.0218800
\(800\) −26.6978 −0.943911
\(801\) 0 0
\(802\) −15.5483 −0.549030
\(803\) −1.31433 −0.0463815
\(804\) 0 0
\(805\) −3.22663 −0.113724
\(806\) −13.1553 −0.463376
\(807\) 0 0
\(808\) 17.3344 0.609821
\(809\) 2.51048 0.0882637 0.0441318 0.999026i \(-0.485948\pi\)
0.0441318 + 0.999026i \(0.485948\pi\)
\(810\) 0 0
\(811\) −28.1415 −0.988183 −0.494091 0.869410i \(-0.664499\pi\)
−0.494091 + 0.869410i \(0.664499\pi\)
\(812\) −2.08595 −0.0732025
\(813\) 0 0
\(814\) 6.50255 0.227914
\(815\) 78.9026 2.76384
\(816\) 0 0
\(817\) −28.2426 −0.988084
\(818\) 1.23660 0.0432367
\(819\) 0 0
\(820\) 20.2485 0.707109
\(821\) −9.55356 −0.333421 −0.166711 0.986006i \(-0.553315\pi\)
−0.166711 + 0.986006i \(0.553315\pi\)
\(822\) 0 0
\(823\) −38.7711 −1.35147 −0.675737 0.737143i \(-0.736174\pi\)
−0.675737 + 0.737143i \(0.736174\pi\)
\(824\) 3.02132 0.105253
\(825\) 0 0
\(826\) 9.05116 0.314930
\(827\) −28.9099 −1.00530 −0.502648 0.864491i \(-0.667641\pi\)
−0.502648 + 0.864491i \(0.667641\pi\)
\(828\) 0 0
\(829\) −13.0709 −0.453972 −0.226986 0.973898i \(-0.572887\pi\)
−0.226986 + 0.973898i \(0.572887\pi\)
\(830\) 14.8338 0.514887
\(831\) 0 0
\(832\) −28.4187 −0.985243
\(833\) 3.20541 0.111061
\(834\) 0 0
\(835\) 83.0034 2.87245
\(836\) 1.68779 0.0583733
\(837\) 0 0
\(838\) −15.1694 −0.524018
\(839\) 9.03560 0.311944 0.155972 0.987762i \(-0.450149\pi\)
0.155972 + 0.987762i \(0.450149\pi\)
\(840\) 0 0
\(841\) 9.05619 0.312282
\(842\) 47.1019 1.62324
\(843\) 0 0
\(844\) 6.12180 0.210721
\(845\) 11.3425 0.390193
\(846\) 0 0
\(847\) 0.798084 0.0274225
\(848\) −8.92533 −0.306497
\(849\) 0 0
\(850\) 7.17573 0.246126
\(851\) 5.17919 0.177540
\(852\) 0 0
\(853\) −13.4429 −0.460275 −0.230137 0.973158i \(-0.573918\pi\)
−0.230137 + 0.973158i \(0.573918\pi\)
\(854\) −2.64177 −0.0903995
\(855\) 0 0
\(856\) 18.2250 0.622918
\(857\) −40.8692 −1.39607 −0.698033 0.716065i \(-0.745941\pi\)
−0.698033 + 0.716065i \(0.745941\pi\)
\(858\) 0 0
\(859\) 33.6168 1.14699 0.573495 0.819209i \(-0.305587\pi\)
0.573495 + 0.819209i \(0.305587\pi\)
\(860\) −12.1443 −0.414118
\(861\) 0 0
\(862\) −10.5949 −0.360864
\(863\) −6.28825 −0.214055 −0.107027 0.994256i \(-0.534133\pi\)
−0.107027 + 0.994256i \(0.534133\pi\)
\(864\) 0 0
\(865\) 18.8921 0.642351
\(866\) −10.9764 −0.372993
\(867\) 0 0
\(868\) 1.10965 0.0376641
\(869\) −15.6898 −0.532239
\(870\) 0 0
\(871\) −28.7049 −0.972627
\(872\) −46.7356 −1.58267
\(873\) 0 0
\(874\) −5.00145 −0.169177
\(875\) −20.4749 −0.692179
\(876\) 0 0
\(877\) −46.4269 −1.56773 −0.783863 0.620934i \(-0.786754\pi\)
−0.783863 + 0.620934i \(0.786754\pi\)
\(878\) −3.46129 −0.116813
\(879\) 0 0
\(880\) −12.0202 −0.405202
\(881\) 6.31123 0.212631 0.106315 0.994332i \(-0.466095\pi\)
0.106315 + 0.994332i \(0.466095\pi\)
\(882\) 0 0
\(883\) 33.7642 1.13625 0.568127 0.822941i \(-0.307668\pi\)
0.568127 + 0.822941i \(0.307668\pi\)
\(884\) −0.681464 −0.0229201
\(885\) 0 0
\(886\) 0.996218 0.0334686
\(887\) −14.5976 −0.490139 −0.245069 0.969506i \(-0.578811\pi\)
−0.245069 + 0.969506i \(0.578811\pi\)
\(888\) 0 0
\(889\) 7.23753 0.242739
\(890\) −31.5038 −1.05601
\(891\) 0 0
\(892\) −10.2915 −0.344585
\(893\) −4.89078 −0.163664
\(894\) 0 0
\(895\) −18.9409 −0.633126
\(896\) −5.16249 −0.172467
\(897\) 0 0
\(898\) −48.8448 −1.62997
\(899\) −20.2446 −0.675195
\(900\) 0 0
\(901\) −1.51227 −0.0503809
\(902\) 14.8413 0.494161
\(903\) 0 0
\(904\) −47.9176 −1.59371
\(905\) −41.4000 −1.37618
\(906\) 0 0
\(907\) −48.0826 −1.59656 −0.798278 0.602290i \(-0.794255\pi\)
−0.798278 + 0.602290i \(0.794255\pi\)
\(908\) 9.12462 0.302811
\(909\) 0 0
\(910\) −12.9346 −0.428779
\(911\) 28.6152 0.948065 0.474033 0.880507i \(-0.342798\pi\)
0.474033 + 0.880507i \(0.342798\pi\)
\(912\) 0 0
\(913\) −2.92233 −0.0967150
\(914\) −5.05915 −0.167342
\(915\) 0 0
\(916\) −2.84319 −0.0939416
\(917\) −8.71834 −0.287905
\(918\) 0 0
\(919\) 8.89355 0.293371 0.146686 0.989183i \(-0.453139\pi\)
0.146686 + 0.989183i \(0.453139\pi\)
\(920\) −12.3026 −0.405606
\(921\) 0 0
\(922\) −10.1073 −0.332866
\(923\) 31.3051 1.03042
\(924\) 0 0
\(925\) 58.7610 1.93205
\(926\) 4.81812 0.158333
\(927\) 0 0
\(928\) −14.5165 −0.476526
\(929\) 18.1893 0.596771 0.298385 0.954445i \(-0.403552\pi\)
0.298385 + 0.954445i \(0.403552\pi\)
\(930\) 0 0
\(931\) −25.3478 −0.830741
\(932\) −6.39176 −0.209369
\(933\) 0 0
\(934\) 40.3140 1.31912
\(935\) −2.03665 −0.0666057
\(936\) 0 0
\(937\) 33.3478 1.08943 0.544713 0.838623i \(-0.316639\pi\)
0.544713 + 0.838623i \(0.316639\pi\)
\(938\) −9.00829 −0.294131
\(939\) 0 0
\(940\) −2.10304 −0.0685935
\(941\) −29.2596 −0.953836 −0.476918 0.878948i \(-0.658246\pi\)
−0.476918 + 0.878948i \(0.658246\pi\)
\(942\) 0 0
\(943\) 11.8209 0.384941
\(944\) 26.8563 0.874099
\(945\) 0 0
\(946\) −8.90127 −0.289405
\(947\) −34.5660 −1.12324 −0.561621 0.827394i \(-0.689822\pi\)
−0.561621 + 0.827394i \(0.689822\pi\)
\(948\) 0 0
\(949\) −4.19649 −0.136224
\(950\) −56.7445 −1.84103
\(951\) 0 0
\(952\) −1.22339 −0.0396502
\(953\) −28.4736 −0.922350 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(954\) 0 0
\(955\) −25.8706 −0.837154
\(956\) −12.9855 −0.419982
\(957\) 0 0
\(958\) −52.0425 −1.68142
\(959\) −17.8985 −0.577974
\(960\) 0 0
\(961\) −20.2306 −0.652599
\(962\) 20.7619 0.669390
\(963\) 0 0
\(964\) 5.66508 0.182460
\(965\) −8.78794 −0.282894
\(966\) 0 0
\(967\) −10.9313 −0.351526 −0.175763 0.984433i \(-0.556239\pi\)
−0.175763 + 0.984433i \(0.556239\pi\)
\(968\) 3.04297 0.0978048
\(969\) 0 0
\(970\) −77.8449 −2.49945
\(971\) 7.59300 0.243671 0.121835 0.992550i \(-0.461122\pi\)
0.121835 + 0.992550i \(0.461122\pi\)
\(972\) 0 0
\(973\) −0.606805 −0.0194533
\(974\) −27.3496 −0.876338
\(975\) 0 0
\(976\) −7.83858 −0.250907
\(977\) −23.0302 −0.736802 −0.368401 0.929667i \(-0.620095\pi\)
−0.368401 + 0.929667i \(0.620095\pi\)
\(978\) 0 0
\(979\) 6.20642 0.198358
\(980\) −10.8996 −0.348174
\(981\) 0 0
\(982\) 20.7292 0.661496
\(983\) −21.6864 −0.691688 −0.345844 0.938292i \(-0.612407\pi\)
−0.345844 + 0.938292i \(0.612407\pi\)
\(984\) 0 0
\(985\) −37.0251 −1.17972
\(986\) 3.90168 0.124255
\(987\) 0 0
\(988\) 5.38890 0.171444
\(989\) −7.08974 −0.225441
\(990\) 0 0
\(991\) 32.0034 1.01662 0.508310 0.861174i \(-0.330270\pi\)
0.508310 + 0.861174i \(0.330270\pi\)
\(992\) 7.72227 0.245182
\(993\) 0 0
\(994\) 9.82432 0.311608
\(995\) −28.3755 −0.899563
\(996\) 0 0
\(997\) −44.7240 −1.41642 −0.708211 0.706001i \(-0.750498\pi\)
−0.708211 + 0.706001i \(0.750498\pi\)
\(998\) 7.39005 0.233928
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2277.2.a.m.1.3 6
3.2 odd 2 253.2.a.d.1.4 6
12.11 even 2 4048.2.a.bc.1.4 6
15.14 odd 2 6325.2.a.m.1.3 6
33.32 even 2 2783.2.a.h.1.3 6
69.68 even 2 5819.2.a.e.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.d.1.4 6 3.2 odd 2
2277.2.a.m.1.3 6 1.1 even 1 trivial
2783.2.a.h.1.3 6 33.32 even 2
4048.2.a.bc.1.4 6 12.11 even 2
5819.2.a.e.1.4 6 69.68 even 2
6325.2.a.m.1.3 6 15.14 odd 2