Properties

Label 6325.2.a.m.1.3
Level $6325$
Weight $2$
Character 6325.1
Self dual yes
Analytic conductor $50.505$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6325,2,Mod(1,6325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6325 = 5^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.5053792785\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.255514\) of defining polynomial
Character \(\chi\) \(=\) 6325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.25551 q^{2} -0.646163 q^{3} -0.423685 q^{4} +0.811267 q^{6} -0.798084 q^{7} +3.04297 q^{8} -2.58247 q^{9} +1.00000 q^{11} +0.273769 q^{12} +3.19289 q^{13} +1.00201 q^{14} -2.97312 q^{16} -0.503752 q^{17} +3.24233 q^{18} +3.98359 q^{19} +0.515693 q^{21} -1.25551 q^{22} +1.00000 q^{23} -1.96625 q^{24} -4.00871 q^{26} +3.60719 q^{27} +0.338136 q^{28} -6.16897 q^{29} -3.28168 q^{31} -2.35314 q^{32} -0.646163 q^{33} +0.632468 q^{34} +1.09415 q^{36} -5.17919 q^{37} -5.00145 q^{38} -2.06312 q^{39} -11.8209 q^{41} -0.647459 q^{42} +7.08974 q^{43} -0.423685 q^{44} -1.25551 q^{46} -1.22773 q^{47} +1.92112 q^{48} -6.36306 q^{49} +0.325506 q^{51} -1.35278 q^{52} +3.00201 q^{53} -4.52888 q^{54} -2.42855 q^{56} -2.57405 q^{57} +7.74523 q^{58} +9.03304 q^{59} +2.63648 q^{61} +4.12020 q^{62} +2.06103 q^{63} +8.90065 q^{64} +0.811267 q^{66} -8.99026 q^{67} +0.213432 q^{68} -0.646163 q^{69} +9.80465 q^{71} -7.85839 q^{72} -1.31433 q^{73} +6.50255 q^{74} -1.68779 q^{76} -0.798084 q^{77} +2.59028 q^{78} +15.6898 q^{79} +5.41659 q^{81} +14.8413 q^{82} +2.92233 q^{83} -0.218491 q^{84} -8.90127 q^{86} +3.98616 q^{87} +3.04297 q^{88} +6.20642 q^{89} -2.54819 q^{91} -0.423685 q^{92} +2.12050 q^{93} +1.54144 q^{94} +1.52051 q^{96} +15.3359 q^{97} +7.98891 q^{98} -2.58247 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 7 q^{3} + 5 q^{4} + 3 q^{6} + q^{7} - 3 q^{8} + 9 q^{9} + 6 q^{11} - 11 q^{12} + 3 q^{13} - 8 q^{14} - q^{16} - 5 q^{17} + 11 q^{18} + q^{19} - 15 q^{21} - 3 q^{22} + 6 q^{23} - 3 q^{24}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25551 −0.887782 −0.443891 0.896081i \(-0.646402\pi\)
−0.443891 + 0.896081i \(0.646402\pi\)
\(3\) −0.646163 −0.373062 −0.186531 0.982449i \(-0.559725\pi\)
−0.186531 + 0.982449i \(0.559725\pi\)
\(4\) −0.423685 −0.211842
\(5\) 0 0
\(6\) 0.811267 0.331198
\(7\) −0.798084 −0.301647 −0.150824 0.988561i \(-0.548193\pi\)
−0.150824 + 0.988561i \(0.548193\pi\)
\(8\) 3.04297 1.07585
\(9\) −2.58247 −0.860824
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0.273769 0.0790304
\(13\) 3.19289 0.885547 0.442774 0.896633i \(-0.353995\pi\)
0.442774 + 0.896633i \(0.353995\pi\)
\(14\) 1.00201 0.267797
\(15\) 0 0
\(16\) −2.97312 −0.743281
\(17\) −0.503752 −0.122178 −0.0610889 0.998132i \(-0.519457\pi\)
−0.0610889 + 0.998132i \(0.519457\pi\)
\(18\) 3.24233 0.764225
\(19\) 3.98359 0.913898 0.456949 0.889493i \(-0.348942\pi\)
0.456949 + 0.889493i \(0.348942\pi\)
\(20\) 0 0
\(21\) 0.515693 0.112533
\(22\) −1.25551 −0.267676
\(23\) 1.00000 0.208514
\(24\) −1.96625 −0.401360
\(25\) 0 0
\(26\) −4.00871 −0.786173
\(27\) 3.60719 0.694204
\(28\) 0.338136 0.0639017
\(29\) −6.16897 −1.14555 −0.572774 0.819713i \(-0.694133\pi\)
−0.572774 + 0.819713i \(0.694133\pi\)
\(30\) 0 0
\(31\) −3.28168 −0.589407 −0.294704 0.955589i \(-0.595221\pi\)
−0.294704 + 0.955589i \(0.595221\pi\)
\(32\) −2.35314 −0.415981
\(33\) −0.646163 −0.112483
\(34\) 0.632468 0.108467
\(35\) 0 0
\(36\) 1.09415 0.182359
\(37\) −5.17919 −0.851454 −0.425727 0.904852i \(-0.639982\pi\)
−0.425727 + 0.904852i \(0.639982\pi\)
\(38\) −5.00145 −0.811343
\(39\) −2.06312 −0.330364
\(40\) 0 0
\(41\) −11.8209 −1.84611 −0.923056 0.384666i \(-0.874317\pi\)
−0.923056 + 0.384666i \(0.874317\pi\)
\(42\) −0.647459 −0.0999051
\(43\) 7.08974 1.08118 0.540588 0.841288i \(-0.318202\pi\)
0.540588 + 0.841288i \(0.318202\pi\)
\(44\) −0.423685 −0.0638728
\(45\) 0 0
\(46\) −1.25551 −0.185115
\(47\) −1.22773 −0.179083 −0.0895416 0.995983i \(-0.528540\pi\)
−0.0895416 + 0.995983i \(0.528540\pi\)
\(48\) 1.92112 0.277290
\(49\) −6.36306 −0.909009
\(50\) 0 0
\(51\) 0.325506 0.0455800
\(52\) −1.35278 −0.187596
\(53\) 3.00201 0.412357 0.206179 0.978514i \(-0.433897\pi\)
0.206179 + 0.978514i \(0.433897\pi\)
\(54\) −4.52888 −0.616302
\(55\) 0 0
\(56\) −2.42855 −0.324528
\(57\) −2.57405 −0.340941
\(58\) 7.74523 1.01700
\(59\) 9.03304 1.17600 0.588001 0.808861i \(-0.299915\pi\)
0.588001 + 0.808861i \(0.299915\pi\)
\(60\) 0 0
\(61\) 2.63648 0.337567 0.168783 0.985653i \(-0.446016\pi\)
0.168783 + 0.985653i \(0.446016\pi\)
\(62\) 4.12020 0.523266
\(63\) 2.06103 0.259666
\(64\) 8.90065 1.11258
\(65\) 0 0
\(66\) 0.811267 0.0998600
\(67\) −8.99026 −1.09834 −0.549168 0.835712i \(-0.685055\pi\)
−0.549168 + 0.835712i \(0.685055\pi\)
\(68\) 0.213432 0.0258824
\(69\) −0.646163 −0.0777889
\(70\) 0 0
\(71\) 9.80465 1.16360 0.581799 0.813333i \(-0.302349\pi\)
0.581799 + 0.813333i \(0.302349\pi\)
\(72\) −7.85839 −0.926120
\(73\) −1.31433 −0.153830 −0.0769151 0.997038i \(-0.524507\pi\)
−0.0769151 + 0.997038i \(0.524507\pi\)
\(74\) 6.50255 0.755906
\(75\) 0 0
\(76\) −1.68779 −0.193602
\(77\) −0.798084 −0.0909501
\(78\) 2.59028 0.293292
\(79\) 15.6898 1.76524 0.882618 0.470091i \(-0.155779\pi\)
0.882618 + 0.470091i \(0.155779\pi\)
\(80\) 0 0
\(81\) 5.41659 0.601843
\(82\) 14.8413 1.63895
\(83\) 2.92233 0.320767 0.160384 0.987055i \(-0.448727\pi\)
0.160384 + 0.987055i \(0.448727\pi\)
\(84\) −0.218491 −0.0238393
\(85\) 0 0
\(86\) −8.90127 −0.959849
\(87\) 3.98616 0.427361
\(88\) 3.04297 0.324382
\(89\) 6.20642 0.657879 0.328940 0.944351i \(-0.393309\pi\)
0.328940 + 0.944351i \(0.393309\pi\)
\(90\) 0 0
\(91\) −2.54819 −0.267123
\(92\) −0.423685 −0.0441722
\(93\) 2.12050 0.219886
\(94\) 1.54144 0.158987
\(95\) 0 0
\(96\) 1.52051 0.155187
\(97\) 15.3359 1.55712 0.778561 0.627569i \(-0.215950\pi\)
0.778561 + 0.627569i \(0.215950\pi\)
\(98\) 7.98891 0.807002
\(99\) −2.58247 −0.259548
\(100\) 0 0
\(101\) −5.69653 −0.566826 −0.283413 0.958998i \(-0.591467\pi\)
−0.283413 + 0.958998i \(0.591467\pi\)
\(102\) −0.408677 −0.0404651
\(103\) −0.992886 −0.0978319 −0.0489160 0.998803i \(-0.515577\pi\)
−0.0489160 + 0.998803i \(0.515577\pi\)
\(104\) 9.71585 0.952718
\(105\) 0 0
\(106\) −3.76906 −0.366084
\(107\) 5.98921 0.578999 0.289500 0.957178i \(-0.406511\pi\)
0.289500 + 0.957178i \(0.406511\pi\)
\(108\) −1.52831 −0.147062
\(109\) −15.3585 −1.47108 −0.735541 0.677480i \(-0.763072\pi\)
−0.735541 + 0.677480i \(0.763072\pi\)
\(110\) 0 0
\(111\) 3.34660 0.317645
\(112\) 2.37280 0.224209
\(113\) −15.7470 −1.48135 −0.740675 0.671863i \(-0.765494\pi\)
−0.740675 + 0.671863i \(0.765494\pi\)
\(114\) 3.23175 0.302681
\(115\) 0 0
\(116\) 2.61370 0.242676
\(117\) −8.24554 −0.762301
\(118\) −11.3411 −1.04403
\(119\) 0.402037 0.0368546
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −3.31014 −0.299686
\(123\) 7.63822 0.688715
\(124\) 1.39040 0.124861
\(125\) 0 0
\(126\) −2.58765 −0.230526
\(127\) −9.06863 −0.804710 −0.402355 0.915484i \(-0.631808\pi\)
−0.402355 + 0.915484i \(0.631808\pi\)
\(128\) −6.46860 −0.571749
\(129\) −4.58113 −0.403346
\(130\) 0 0
\(131\) 10.9241 0.954442 0.477221 0.878783i \(-0.341644\pi\)
0.477221 + 0.878783i \(0.341644\pi\)
\(132\) 0.273769 0.0238286
\(133\) −3.17924 −0.275675
\(134\) 11.2874 0.975083
\(135\) 0 0
\(136\) −1.53290 −0.131445
\(137\) −22.4269 −1.91606 −0.958029 0.286672i \(-0.907451\pi\)
−0.958029 + 0.286672i \(0.907451\pi\)
\(138\) 0.811267 0.0690596
\(139\) −0.760327 −0.0644901 −0.0322451 0.999480i \(-0.510266\pi\)
−0.0322451 + 0.999480i \(0.510266\pi\)
\(140\) 0 0
\(141\) 0.793315 0.0668092
\(142\) −12.3099 −1.03302
\(143\) 3.19289 0.267002
\(144\) 7.67801 0.639834
\(145\) 0 0
\(146\) 1.65015 0.136568
\(147\) 4.11158 0.339117
\(148\) 2.19434 0.180374
\(149\) 5.59496 0.458357 0.229179 0.973384i \(-0.426396\pi\)
0.229179 + 0.973384i \(0.426396\pi\)
\(150\) 0 0
\(151\) 7.13755 0.580845 0.290423 0.956898i \(-0.406204\pi\)
0.290423 + 0.956898i \(0.406204\pi\)
\(152\) 12.1219 0.983219
\(153\) 1.30093 0.105174
\(154\) 1.00201 0.0807439
\(155\) 0 0
\(156\) 0.874114 0.0699851
\(157\) 18.8473 1.50418 0.752090 0.659061i \(-0.229046\pi\)
0.752090 + 0.659061i \(0.229046\pi\)
\(158\) −19.6987 −1.56715
\(159\) −1.93979 −0.153835
\(160\) 0 0
\(161\) −0.798084 −0.0628978
\(162\) −6.80060 −0.534306
\(163\) 19.5160 1.52861 0.764305 0.644854i \(-0.223082\pi\)
0.764305 + 0.644854i \(0.223082\pi\)
\(164\) 5.00833 0.391084
\(165\) 0 0
\(166\) −3.66903 −0.284772
\(167\) −20.5303 −1.58868 −0.794342 0.607471i \(-0.792184\pi\)
−0.794342 + 0.607471i \(0.792184\pi\)
\(168\) 1.56924 0.121069
\(169\) −2.80548 −0.215806
\(170\) 0 0
\(171\) −10.2875 −0.786706
\(172\) −3.00381 −0.229039
\(173\) −4.67283 −0.355268 −0.177634 0.984097i \(-0.556844\pi\)
−0.177634 + 0.984097i \(0.556844\pi\)
\(174\) −5.00468 −0.379404
\(175\) 0 0
\(176\) −2.97312 −0.224108
\(177\) −5.83681 −0.438722
\(178\) −7.79225 −0.584054
\(179\) −4.68491 −0.350166 −0.175083 0.984554i \(-0.556019\pi\)
−0.175083 + 0.984554i \(0.556019\pi\)
\(180\) 0 0
\(181\) 10.2400 0.761133 0.380566 0.924754i \(-0.375729\pi\)
0.380566 + 0.924754i \(0.375729\pi\)
\(182\) 3.19929 0.237147
\(183\) −1.70360 −0.125933
\(184\) 3.04297 0.224331
\(185\) 0 0
\(186\) −2.66232 −0.195211
\(187\) −0.503752 −0.0368380
\(188\) 0.520171 0.0379374
\(189\) −2.87884 −0.209405
\(190\) 0 0
\(191\) −6.39892 −0.463009 −0.231505 0.972834i \(-0.574365\pi\)
−0.231505 + 0.972834i \(0.574365\pi\)
\(192\) −5.75127 −0.415062
\(193\) −2.17363 −0.156462 −0.0782308 0.996935i \(-0.524927\pi\)
−0.0782308 + 0.996935i \(0.524927\pi\)
\(194\) −19.2544 −1.38238
\(195\) 0 0
\(196\) 2.69593 0.192566
\(197\) 9.15789 0.652473 0.326236 0.945288i \(-0.394219\pi\)
0.326236 + 0.945288i \(0.394219\pi\)
\(198\) 3.24233 0.230422
\(199\) 7.01847 0.497526 0.248763 0.968564i \(-0.419976\pi\)
0.248763 + 0.968564i \(0.419976\pi\)
\(200\) 0 0
\(201\) 5.80917 0.409748
\(202\) 7.15208 0.503218
\(203\) 4.92336 0.345552
\(204\) −0.137912 −0.00965576
\(205\) 0 0
\(206\) 1.24658 0.0868535
\(207\) −2.58247 −0.179494
\(208\) −9.49284 −0.658210
\(209\) 3.98359 0.275551
\(210\) 0 0
\(211\) −14.4490 −0.994707 −0.497354 0.867548i \(-0.665695\pi\)
−0.497354 + 0.867548i \(0.665695\pi\)
\(212\) −1.27190 −0.0873547
\(213\) −6.33540 −0.434095
\(214\) −7.51954 −0.514025
\(215\) 0 0
\(216\) 10.9766 0.746861
\(217\) 2.61906 0.177793
\(218\) 19.2829 1.30600
\(219\) 0.849268 0.0573882
\(220\) 0 0
\(221\) −1.60842 −0.108194
\(222\) −4.20170 −0.282000
\(223\) −24.2905 −1.62661 −0.813305 0.581838i \(-0.802334\pi\)
−0.813305 + 0.581838i \(0.802334\pi\)
\(224\) 1.87801 0.125480
\(225\) 0 0
\(226\) 19.7705 1.31512
\(227\) −21.5364 −1.42942 −0.714709 0.699422i \(-0.753441\pi\)
−0.714709 + 0.699422i \(0.753441\pi\)
\(228\) 1.09058 0.0722257
\(229\) 6.71062 0.443450 0.221725 0.975109i \(-0.428831\pi\)
0.221725 + 0.975109i \(0.428831\pi\)
\(230\) 0 0
\(231\) 0.515693 0.0339301
\(232\) −18.7720 −1.23244
\(233\) 15.0861 0.988326 0.494163 0.869369i \(-0.335475\pi\)
0.494163 + 0.869369i \(0.335475\pi\)
\(234\) 10.3524 0.676757
\(235\) 0 0
\(236\) −3.82716 −0.249127
\(237\) −10.1381 −0.658543
\(238\) −0.504763 −0.0327189
\(239\) −30.6490 −1.98252 −0.991260 0.131919i \(-0.957886\pi\)
−0.991260 + 0.131919i \(0.957886\pi\)
\(240\) 0 0
\(241\) −13.3710 −0.861301 −0.430651 0.902519i \(-0.641716\pi\)
−0.430651 + 0.902519i \(0.641716\pi\)
\(242\) −1.25551 −0.0807075
\(243\) −14.3216 −0.918729
\(244\) −1.11704 −0.0715109
\(245\) 0 0
\(246\) −9.58989 −0.611429
\(247\) 12.7191 0.809300
\(248\) −9.98606 −0.634115
\(249\) −1.88830 −0.119666
\(250\) 0 0
\(251\) 25.4838 1.60852 0.804262 0.594276i \(-0.202561\pi\)
0.804262 + 0.594276i \(0.202561\pi\)
\(252\) −0.873227 −0.0550081
\(253\) 1.00000 0.0628695
\(254\) 11.3858 0.714408
\(255\) 0 0
\(256\) −9.67988 −0.604992
\(257\) 14.1016 0.879634 0.439817 0.898087i \(-0.355043\pi\)
0.439817 + 0.898087i \(0.355043\pi\)
\(258\) 5.75167 0.358083
\(259\) 4.13343 0.256839
\(260\) 0 0
\(261\) 15.9312 0.986117
\(262\) −13.7153 −0.847337
\(263\) 10.5011 0.647527 0.323764 0.946138i \(-0.395052\pi\)
0.323764 + 0.946138i \(0.395052\pi\)
\(264\) −1.96625 −0.121015
\(265\) 0 0
\(266\) 3.99158 0.244739
\(267\) −4.01036 −0.245430
\(268\) 3.80903 0.232674
\(269\) 20.5718 1.25429 0.627143 0.778904i \(-0.284224\pi\)
0.627143 + 0.778904i \(0.284224\pi\)
\(270\) 0 0
\(271\) −28.7365 −1.74562 −0.872810 0.488060i \(-0.837705\pi\)
−0.872810 + 0.488060i \(0.837705\pi\)
\(272\) 1.49772 0.0908124
\(273\) 1.64655 0.0996536
\(274\) 28.1573 1.70104
\(275\) 0 0
\(276\) 0.273769 0.0164790
\(277\) 13.7543 0.826416 0.413208 0.910637i \(-0.364408\pi\)
0.413208 + 0.910637i \(0.364408\pi\)
\(278\) 0.954601 0.0572532
\(279\) 8.47486 0.507376
\(280\) 0 0
\(281\) 7.54904 0.450338 0.225169 0.974320i \(-0.427707\pi\)
0.225169 + 0.974320i \(0.427707\pi\)
\(282\) −0.996019 −0.0593120
\(283\) 27.0020 1.60510 0.802551 0.596584i \(-0.203476\pi\)
0.802551 + 0.596584i \(0.203476\pi\)
\(284\) −4.15408 −0.246499
\(285\) 0 0
\(286\) −4.00871 −0.237040
\(287\) 9.43406 0.556875
\(288\) 6.07693 0.358086
\(289\) −16.7462 −0.985073
\(290\) 0 0
\(291\) −9.90947 −0.580903
\(292\) 0.556859 0.0325877
\(293\) 10.4872 0.612666 0.306333 0.951924i \(-0.400898\pi\)
0.306333 + 0.951924i \(0.400898\pi\)
\(294\) −5.16214 −0.301062
\(295\) 0 0
\(296\) −15.7601 −0.916038
\(297\) 3.60719 0.209310
\(298\) −7.02455 −0.406921
\(299\) 3.19289 0.184649
\(300\) 0 0
\(301\) −5.65821 −0.326134
\(302\) −8.96129 −0.515664
\(303\) 3.68089 0.211462
\(304\) −11.8437 −0.679283
\(305\) 0 0
\(306\) −1.63333 −0.0933714
\(307\) −19.2068 −1.09619 −0.548096 0.836415i \(-0.684647\pi\)
−0.548096 + 0.836415i \(0.684647\pi\)
\(308\) 0.338136 0.0192671
\(309\) 0.641566 0.0364974
\(310\) 0 0
\(311\) −16.6171 −0.942270 −0.471135 0.882061i \(-0.656155\pi\)
−0.471135 + 0.882061i \(0.656155\pi\)
\(312\) −6.27803 −0.355423
\(313\) −20.8071 −1.17609 −0.588044 0.808829i \(-0.700102\pi\)
−0.588044 + 0.808829i \(0.700102\pi\)
\(314\) −23.6631 −1.33538
\(315\) 0 0
\(316\) −6.64751 −0.373952
\(317\) 0.842442 0.0473163 0.0236581 0.999720i \(-0.492469\pi\)
0.0236581 + 0.999720i \(0.492469\pi\)
\(318\) 2.43543 0.136572
\(319\) −6.16897 −0.345396
\(320\) 0 0
\(321\) −3.87001 −0.216003
\(322\) 1.00201 0.0558396
\(323\) −2.00674 −0.111658
\(324\) −2.29492 −0.127496
\(325\) 0 0
\(326\) −24.5026 −1.35707
\(327\) 9.92412 0.548805
\(328\) −35.9706 −1.98614
\(329\) 0.979834 0.0540200
\(330\) 0 0
\(331\) −10.2249 −0.562014 −0.281007 0.959706i \(-0.590668\pi\)
−0.281007 + 0.959706i \(0.590668\pi\)
\(332\) −1.23815 −0.0679521
\(333\) 13.3751 0.732952
\(334\) 25.7761 1.41041
\(335\) 0 0
\(336\) −1.53322 −0.0836438
\(337\) −29.3644 −1.59958 −0.799791 0.600279i \(-0.795056\pi\)
−0.799791 + 0.600279i \(0.795056\pi\)
\(338\) 3.52232 0.191589
\(339\) 10.1751 0.552636
\(340\) 0 0
\(341\) −3.28168 −0.177713
\(342\) 12.9161 0.698424
\(343\) 10.6648 0.575848
\(344\) 21.5739 1.16318
\(345\) 0 0
\(346\) 5.86680 0.315401
\(347\) −24.9778 −1.34088 −0.670438 0.741965i \(-0.733894\pi\)
−0.670438 + 0.741965i \(0.733894\pi\)
\(348\) −1.68887 −0.0905332
\(349\) −30.7570 −1.64638 −0.823191 0.567764i \(-0.807808\pi\)
−0.823191 + 0.567764i \(0.807808\pi\)
\(350\) 0 0
\(351\) 11.5173 0.614750
\(352\) −2.35314 −0.125423
\(353\) 18.1605 0.966588 0.483294 0.875458i \(-0.339440\pi\)
0.483294 + 0.875458i \(0.339440\pi\)
\(354\) 7.32820 0.389490
\(355\) 0 0
\(356\) −2.62956 −0.139367
\(357\) −0.259781 −0.0137491
\(358\) 5.88197 0.310872
\(359\) −0.950635 −0.0501726 −0.0250863 0.999685i \(-0.507986\pi\)
−0.0250863 + 0.999685i \(0.507986\pi\)
\(360\) 0 0
\(361\) −3.13102 −0.164790
\(362\) −12.8565 −0.675720
\(363\) −0.646163 −0.0339148
\(364\) 1.07963 0.0565879
\(365\) 0 0
\(366\) 2.13889 0.111801
\(367\) 28.6929 1.49776 0.748878 0.662708i \(-0.230593\pi\)
0.748878 + 0.662708i \(0.230593\pi\)
\(368\) −2.97312 −0.154985
\(369\) 30.5271 1.58918
\(370\) 0 0
\(371\) −2.39585 −0.124387
\(372\) −0.898424 −0.0465811
\(373\) −8.58485 −0.444507 −0.222253 0.974989i \(-0.571341\pi\)
−0.222253 + 0.974989i \(0.571341\pi\)
\(374\) 0.632468 0.0327041
\(375\) 0 0
\(376\) −3.73595 −0.192667
\(377\) −19.6968 −1.01444
\(378\) 3.61442 0.185906
\(379\) 10.0573 0.516610 0.258305 0.966063i \(-0.416836\pi\)
0.258305 + 0.966063i \(0.416836\pi\)
\(380\) 0 0
\(381\) 5.85981 0.300207
\(382\) 8.03393 0.411052
\(383\) 19.3152 0.986963 0.493481 0.869756i \(-0.335724\pi\)
0.493481 + 0.869756i \(0.335724\pi\)
\(384\) 4.17977 0.213298
\(385\) 0 0
\(386\) 2.72903 0.138904
\(387\) −18.3091 −0.930702
\(388\) −6.49757 −0.329864
\(389\) 15.0719 0.764178 0.382089 0.924126i \(-0.375205\pi\)
0.382089 + 0.924126i \(0.375205\pi\)
\(390\) 0 0
\(391\) −0.503752 −0.0254758
\(392\) −19.3626 −0.977959
\(393\) −7.05874 −0.356066
\(394\) −11.4979 −0.579254
\(395\) 0 0
\(396\) 1.09415 0.0549833
\(397\) −12.9854 −0.651720 −0.325860 0.945418i \(-0.605654\pi\)
−0.325860 + 0.945418i \(0.605654\pi\)
\(398\) −8.81179 −0.441695
\(399\) 2.05431 0.102844
\(400\) 0 0
\(401\) −12.3840 −0.618429 −0.309214 0.950992i \(-0.600066\pi\)
−0.309214 + 0.950992i \(0.600066\pi\)
\(402\) −7.29350 −0.363767
\(403\) −10.4780 −0.521948
\(404\) 2.41353 0.120078
\(405\) 0 0
\(406\) −6.18134 −0.306775
\(407\) −5.17919 −0.256723
\(408\) 0.990505 0.0490373
\(409\) −0.984934 −0.0487019 −0.0243509 0.999703i \(-0.507752\pi\)
−0.0243509 + 0.999703i \(0.507752\pi\)
\(410\) 0 0
\(411\) 14.4914 0.714809
\(412\) 0.420670 0.0207249
\(413\) −7.20912 −0.354738
\(414\) 3.24233 0.159352
\(415\) 0 0
\(416\) −7.51332 −0.368371
\(417\) 0.491295 0.0240588
\(418\) −5.00145 −0.244629
\(419\) −12.0822 −0.590255 −0.295127 0.955458i \(-0.595362\pi\)
−0.295127 + 0.955458i \(0.595362\pi\)
\(420\) 0 0
\(421\) −37.5161 −1.82842 −0.914210 0.405240i \(-0.867188\pi\)
−0.914210 + 0.405240i \(0.867188\pi\)
\(422\) 18.1409 0.883083
\(423\) 3.17059 0.154159
\(424\) 9.13501 0.443635
\(425\) 0 0
\(426\) 7.95419 0.385382
\(427\) −2.10413 −0.101826
\(428\) −2.53754 −0.122657
\(429\) −2.06312 −0.0996086
\(430\) 0 0
\(431\) −8.43869 −0.406478 −0.203239 0.979129i \(-0.565147\pi\)
−0.203239 + 0.979129i \(0.565147\pi\)
\(432\) −10.7246 −0.515988
\(433\) −8.74254 −0.420140 −0.210070 0.977686i \(-0.567369\pi\)
−0.210070 + 0.977686i \(0.567369\pi\)
\(434\) −3.28826 −0.157842
\(435\) 0 0
\(436\) 6.50718 0.311637
\(437\) 3.98359 0.190561
\(438\) −1.06627 −0.0509483
\(439\) 2.75687 0.131578 0.0657891 0.997834i \(-0.479044\pi\)
0.0657891 + 0.997834i \(0.479044\pi\)
\(440\) 0 0
\(441\) 16.4324 0.782497
\(442\) 2.01940 0.0960529
\(443\) −0.793474 −0.0376991 −0.0188496 0.999822i \(-0.506000\pi\)
−0.0188496 + 0.999822i \(0.506000\pi\)
\(444\) −1.41790 −0.0672907
\(445\) 0 0
\(446\) 30.4970 1.44408
\(447\) −3.61526 −0.170996
\(448\) −7.10347 −0.335607
\(449\) −38.9043 −1.83601 −0.918003 0.396574i \(-0.870199\pi\)
−0.918003 + 0.396574i \(0.870199\pi\)
\(450\) 0 0
\(451\) −11.8209 −0.556624
\(452\) 6.67175 0.313813
\(453\) −4.61202 −0.216692
\(454\) 27.0392 1.26901
\(455\) 0 0
\(456\) −7.83275 −0.366802
\(457\) −4.02954 −0.188494 −0.0942470 0.995549i \(-0.530044\pi\)
−0.0942470 + 0.995549i \(0.530044\pi\)
\(458\) −8.42528 −0.393688
\(459\) −1.81713 −0.0848163
\(460\) 0 0
\(461\) −8.05034 −0.374942 −0.187471 0.982270i \(-0.560029\pi\)
−0.187471 + 0.982270i \(0.560029\pi\)
\(462\) −0.647459 −0.0301225
\(463\) 3.83757 0.178347 0.0891735 0.996016i \(-0.471577\pi\)
0.0891735 + 0.996016i \(0.471577\pi\)
\(464\) 18.3411 0.851464
\(465\) 0 0
\(466\) −18.9409 −0.877418
\(467\) −32.1096 −1.48585 −0.742927 0.669372i \(-0.766563\pi\)
−0.742927 + 0.669372i \(0.766563\pi\)
\(468\) 3.49351 0.161487
\(469\) 7.17498 0.331310
\(470\) 0 0
\(471\) −12.1784 −0.561153
\(472\) 27.4873 1.26520
\(473\) 7.08974 0.325987
\(474\) 12.7286 0.584643
\(475\) 0 0
\(476\) −0.170337 −0.00780737
\(477\) −7.75260 −0.354967
\(478\) 38.4803 1.76005
\(479\) −41.4512 −1.89395 −0.946976 0.321305i \(-0.895879\pi\)
−0.946976 + 0.321305i \(0.895879\pi\)
\(480\) 0 0
\(481\) −16.5366 −0.754002
\(482\) 16.7875 0.764648
\(483\) 0.515693 0.0234648
\(484\) −0.423685 −0.0192584
\(485\) 0 0
\(486\) 17.9809 0.815631
\(487\) −21.7836 −0.987109 −0.493554 0.869715i \(-0.664303\pi\)
−0.493554 + 0.869715i \(0.664303\pi\)
\(488\) 8.02273 0.363172
\(489\) −12.6105 −0.570267
\(490\) 0 0
\(491\) 16.5105 0.745110 0.372555 0.928010i \(-0.378482\pi\)
0.372555 + 0.928010i \(0.378482\pi\)
\(492\) −3.23619 −0.145899
\(493\) 3.10763 0.139961
\(494\) −15.9691 −0.718482
\(495\) 0 0
\(496\) 9.75684 0.438095
\(497\) −7.82494 −0.350996
\(498\) 2.37079 0.106238
\(499\) −5.88608 −0.263497 −0.131748 0.991283i \(-0.542059\pi\)
−0.131748 + 0.991283i \(0.542059\pi\)
\(500\) 0 0
\(501\) 13.2659 0.592678
\(502\) −31.9953 −1.42802
\(503\) −25.4624 −1.13531 −0.567656 0.823266i \(-0.692150\pi\)
−0.567656 + 0.823266i \(0.692150\pi\)
\(504\) 6.27166 0.279362
\(505\) 0 0
\(506\) −1.25551 −0.0558144
\(507\) 1.81280 0.0805093
\(508\) 3.84224 0.170472
\(509\) −37.9786 −1.68337 −0.841687 0.539966i \(-0.818437\pi\)
−0.841687 + 0.539966i \(0.818437\pi\)
\(510\) 0 0
\(511\) 1.04894 0.0464025
\(512\) 25.0904 1.10885
\(513\) 14.3696 0.634431
\(514\) −17.7048 −0.780924
\(515\) 0 0
\(516\) 1.94095 0.0854457
\(517\) −1.22773 −0.0539956
\(518\) −5.18958 −0.228017
\(519\) 3.01941 0.132537
\(520\) 0 0
\(521\) 30.5870 1.34004 0.670020 0.742343i \(-0.266286\pi\)
0.670020 + 0.742343i \(0.266286\pi\)
\(522\) −20.0018 −0.875457
\(523\) 2.66147 0.116378 0.0581890 0.998306i \(-0.481467\pi\)
0.0581890 + 0.998306i \(0.481467\pi\)
\(524\) −4.62837 −0.202191
\(525\) 0 0
\(526\) −13.1843 −0.574863
\(527\) 1.65315 0.0720125
\(528\) 1.92112 0.0836061
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −23.3276 −1.01233
\(532\) 1.34699 0.0583996
\(533\) −37.7427 −1.63482
\(534\) 5.03506 0.217888
\(535\) 0 0
\(536\) −27.3571 −1.18165
\(537\) 3.02721 0.130634
\(538\) −25.8282 −1.11353
\(539\) −6.36306 −0.274076
\(540\) 0 0
\(541\) 41.1086 1.76740 0.883698 0.468058i \(-0.155046\pi\)
0.883698 + 0.468058i \(0.155046\pi\)
\(542\) 36.0791 1.54973
\(543\) −6.61670 −0.283950
\(544\) 1.18540 0.0508236
\(545\) 0 0
\(546\) −2.06726 −0.0884707
\(547\) 7.10820 0.303925 0.151962 0.988386i \(-0.451441\pi\)
0.151962 + 0.988386i \(0.451441\pi\)
\(548\) 9.50192 0.405902
\(549\) −6.80864 −0.290586
\(550\) 0 0
\(551\) −24.5746 −1.04691
\(552\) −1.96625 −0.0836894
\(553\) −12.5217 −0.532479
\(554\) −17.2687 −0.733678
\(555\) 0 0
\(556\) 0.322139 0.0136617
\(557\) 17.5181 0.742265 0.371133 0.928580i \(-0.378970\pi\)
0.371133 + 0.928580i \(0.378970\pi\)
\(558\) −10.6403 −0.450440
\(559\) 22.6367 0.957432
\(560\) 0 0
\(561\) 0.325506 0.0137429
\(562\) −9.47793 −0.399802
\(563\) −32.5836 −1.37324 −0.686618 0.727019i \(-0.740905\pi\)
−0.686618 + 0.727019i \(0.740905\pi\)
\(564\) −0.336115 −0.0141530
\(565\) 0 0
\(566\) −33.9014 −1.42498
\(567\) −4.32289 −0.181544
\(568\) 29.8353 1.25186
\(569\) 42.5643 1.78439 0.892194 0.451653i \(-0.149165\pi\)
0.892194 + 0.451653i \(0.149165\pi\)
\(570\) 0 0
\(571\) −3.70786 −0.155169 −0.0775845 0.996986i \(-0.524721\pi\)
−0.0775845 + 0.996986i \(0.524721\pi\)
\(572\) −1.35278 −0.0565624
\(573\) 4.13474 0.172731
\(574\) −11.8446 −0.494384
\(575\) 0 0
\(576\) −22.9857 −0.957737
\(577\) 6.75679 0.281289 0.140644 0.990060i \(-0.455083\pi\)
0.140644 + 0.990060i \(0.455083\pi\)
\(578\) 21.0251 0.874530
\(579\) 1.40452 0.0583700
\(580\) 0 0
\(581\) −2.33227 −0.0967587
\(582\) 12.4415 0.515716
\(583\) 3.00201 0.124330
\(584\) −3.99945 −0.165498
\(585\) 0 0
\(586\) −13.1668 −0.543915
\(587\) −3.71910 −0.153504 −0.0767519 0.997050i \(-0.524455\pi\)
−0.0767519 + 0.997050i \(0.524455\pi\)
\(588\) −1.74201 −0.0718393
\(589\) −13.0729 −0.538658
\(590\) 0 0
\(591\) −5.91749 −0.243413
\(592\) 15.3984 0.632869
\(593\) −22.6333 −0.929439 −0.464719 0.885458i \(-0.653845\pi\)
−0.464719 + 0.885458i \(0.653845\pi\)
\(594\) −4.52888 −0.185822
\(595\) 0 0
\(596\) −2.37050 −0.0970994
\(597\) −4.53508 −0.185608
\(598\) −4.00871 −0.163928
\(599\) −30.4468 −1.24402 −0.622010 0.783009i \(-0.713684\pi\)
−0.622010 + 0.783009i \(0.713684\pi\)
\(600\) 0 0
\(601\) 11.3551 0.463186 0.231593 0.972813i \(-0.425606\pi\)
0.231593 + 0.972813i \(0.425606\pi\)
\(602\) 7.10396 0.289536
\(603\) 23.2171 0.945474
\(604\) −3.02407 −0.123048
\(605\) 0 0
\(606\) −4.62141 −0.187732
\(607\) −9.14323 −0.371112 −0.185556 0.982634i \(-0.559409\pi\)
−0.185556 + 0.982634i \(0.559409\pi\)
\(608\) −9.37396 −0.380164
\(609\) −3.18129 −0.128912
\(610\) 0 0
\(611\) −3.92001 −0.158587
\(612\) −0.551182 −0.0222802
\(613\) 3.40904 0.137690 0.0688449 0.997627i \(-0.478069\pi\)
0.0688449 + 0.997627i \(0.478069\pi\)
\(614\) 24.1145 0.973180
\(615\) 0 0
\(616\) −2.42855 −0.0978489
\(617\) −1.68640 −0.0678919 −0.0339460 0.999424i \(-0.510807\pi\)
−0.0339460 + 0.999424i \(0.510807\pi\)
\(618\) −0.805495 −0.0324018
\(619\) −7.71276 −0.310002 −0.155001 0.987914i \(-0.549538\pi\)
−0.155001 + 0.987914i \(0.549538\pi\)
\(620\) 0 0
\(621\) 3.60719 0.144751
\(622\) 20.8630 0.836530
\(623\) −4.95324 −0.198448
\(624\) 6.13392 0.245553
\(625\) 0 0
\(626\) 26.1237 1.04411
\(627\) −2.57405 −0.102798
\(628\) −7.98532 −0.318649
\(629\) 2.60903 0.104029
\(630\) 0 0
\(631\) −39.9860 −1.59182 −0.795908 0.605417i \(-0.793006\pi\)
−0.795908 + 0.605417i \(0.793006\pi\)
\(632\) 47.7435 1.89913
\(633\) 9.33638 0.371088
\(634\) −1.05770 −0.0420065
\(635\) 0 0
\(636\) 0.821857 0.0325888
\(637\) −20.3165 −0.804970
\(638\) 7.74523 0.306637
\(639\) −25.3202 −1.00165
\(640\) 0 0
\(641\) −8.13445 −0.321291 −0.160646 0.987012i \(-0.551358\pi\)
−0.160646 + 0.987012i \(0.551358\pi\)
\(642\) 4.85885 0.191764
\(643\) 29.6220 1.16818 0.584088 0.811690i \(-0.301452\pi\)
0.584088 + 0.811690i \(0.301452\pi\)
\(644\) 0.338136 0.0133244
\(645\) 0 0
\(646\) 2.51949 0.0991281
\(647\) −18.3325 −0.720727 −0.360363 0.932812i \(-0.617347\pi\)
−0.360363 + 0.932812i \(0.617347\pi\)
\(648\) 16.4825 0.647494
\(649\) 9.03304 0.354578
\(650\) 0 0
\(651\) −1.69234 −0.0663280
\(652\) −8.26863 −0.323824
\(653\) 4.41518 0.172779 0.0863896 0.996261i \(-0.472467\pi\)
0.0863896 + 0.996261i \(0.472467\pi\)
\(654\) −12.4599 −0.487220
\(655\) 0 0
\(656\) 35.1449 1.37218
\(657\) 3.39421 0.132421
\(658\) −1.23020 −0.0479580
\(659\) −10.5431 −0.410703 −0.205351 0.978688i \(-0.565834\pi\)
−0.205351 + 0.978688i \(0.565834\pi\)
\(660\) 0 0
\(661\) −10.2501 −0.398681 −0.199341 0.979930i \(-0.563880\pi\)
−0.199341 + 0.979930i \(0.563880\pi\)
\(662\) 12.8376 0.498946
\(663\) 1.03930 0.0403632
\(664\) 8.89256 0.345098
\(665\) 0 0
\(666\) −16.7927 −0.650702
\(667\) −6.16897 −0.238863
\(668\) 8.69838 0.336550
\(669\) 15.6956 0.606827
\(670\) 0 0
\(671\) 2.63648 0.101780
\(672\) −1.21350 −0.0468117
\(673\) −29.0456 −1.11962 −0.559812 0.828620i \(-0.689127\pi\)
−0.559812 + 0.828620i \(0.689127\pi\)
\(674\) 36.8674 1.42008
\(675\) 0 0
\(676\) 1.18864 0.0457169
\(677\) −21.8323 −0.839084 −0.419542 0.907736i \(-0.637809\pi\)
−0.419542 + 0.907736i \(0.637809\pi\)
\(678\) −12.7750 −0.490621
\(679\) −12.2393 −0.469702
\(680\) 0 0
\(681\) 13.9160 0.533262
\(682\) 4.12020 0.157771
\(683\) −48.4518 −1.85396 −0.926979 0.375114i \(-0.877604\pi\)
−0.926979 + 0.375114i \(0.877604\pi\)
\(684\) 4.35866 0.166658
\(685\) 0 0
\(686\) −13.3899 −0.511227
\(687\) −4.33616 −0.165435
\(688\) −21.0787 −0.803617
\(689\) 9.58506 0.365162
\(690\) 0 0
\(691\) 23.0694 0.877601 0.438800 0.898585i \(-0.355404\pi\)
0.438800 + 0.898585i \(0.355404\pi\)
\(692\) 1.97980 0.0752609
\(693\) 2.06103 0.0782921
\(694\) 31.3599 1.19041
\(695\) 0 0
\(696\) 12.1298 0.459778
\(697\) 5.95480 0.225554
\(698\) 38.6158 1.46163
\(699\) −9.74811 −0.368707
\(700\) 0 0
\(701\) 35.6219 1.34542 0.672711 0.739905i \(-0.265130\pi\)
0.672711 + 0.739905i \(0.265130\pi\)
\(702\) −14.4602 −0.545764
\(703\) −20.6318 −0.778142
\(704\) 8.90065 0.335456
\(705\) 0 0
\(706\) −22.8008 −0.858120
\(707\) 4.54631 0.170982
\(708\) 2.47297 0.0929398
\(709\) 21.1768 0.795312 0.397656 0.917534i \(-0.369824\pi\)
0.397656 + 0.917534i \(0.369824\pi\)
\(710\) 0 0
\(711\) −40.5184 −1.51956
\(712\) 18.8859 0.707781
\(713\) −3.28168 −0.122900
\(714\) 0.326159 0.0122062
\(715\) 0 0
\(716\) 1.98492 0.0741801
\(717\) 19.8043 0.739604
\(718\) 1.19354 0.0445424
\(719\) −47.0596 −1.75503 −0.877513 0.479553i \(-0.840799\pi\)
−0.877513 + 0.479553i \(0.840799\pi\)
\(720\) 0 0
\(721\) 0.792406 0.0295108
\(722\) 3.93104 0.146298
\(723\) 8.63984 0.321319
\(724\) −4.33853 −0.161240
\(725\) 0 0
\(726\) 0.811267 0.0301089
\(727\) 34.5022 1.27961 0.639807 0.768535i \(-0.279014\pi\)
0.639807 + 0.768535i \(0.279014\pi\)
\(728\) −7.75407 −0.287385
\(729\) −6.99570 −0.259100
\(730\) 0 0
\(731\) −3.57147 −0.132096
\(732\) 0.721787 0.0266780
\(733\) 19.9498 0.736863 0.368431 0.929655i \(-0.379895\pi\)
0.368431 + 0.929655i \(0.379895\pi\)
\(734\) −36.0243 −1.32968
\(735\) 0 0
\(736\) −2.35314 −0.0867380
\(737\) −8.99026 −0.331160
\(738\) −38.3272 −1.41084
\(739\) 9.42242 0.346609 0.173305 0.984868i \(-0.444555\pi\)
0.173305 + 0.984868i \(0.444555\pi\)
\(740\) 0 0
\(741\) −8.21864 −0.301919
\(742\) 3.00803 0.110428
\(743\) −7.25579 −0.266189 −0.133095 0.991103i \(-0.542491\pi\)
−0.133095 + 0.991103i \(0.542491\pi\)
\(744\) 6.45262 0.236565
\(745\) 0 0
\(746\) 10.7784 0.394625
\(747\) −7.54684 −0.276124
\(748\) 0.213432 0.00780385
\(749\) −4.77990 −0.174654
\(750\) 0 0
\(751\) −18.9612 −0.691904 −0.345952 0.938252i \(-0.612444\pi\)
−0.345952 + 0.938252i \(0.612444\pi\)
\(752\) 3.65020 0.133109
\(753\) −16.4667 −0.600079
\(754\) 24.7296 0.900600
\(755\) 0 0
\(756\) 1.21972 0.0443608
\(757\) 8.51568 0.309508 0.154754 0.987953i \(-0.450542\pi\)
0.154754 + 0.987953i \(0.450542\pi\)
\(758\) −12.6271 −0.458637
\(759\) −0.646163 −0.0234542
\(760\) 0 0
\(761\) −3.63058 −0.131609 −0.0658043 0.997833i \(-0.520961\pi\)
−0.0658043 + 0.997833i \(0.520961\pi\)
\(762\) −7.35707 −0.266519
\(763\) 12.2574 0.443748
\(764\) 2.71112 0.0980850
\(765\) 0 0
\(766\) −24.2506 −0.876208
\(767\) 28.8414 1.04140
\(768\) 6.25478 0.225700
\(769\) −11.1413 −0.401764 −0.200882 0.979615i \(-0.564381\pi\)
−0.200882 + 0.979615i \(0.564381\pi\)
\(770\) 0 0
\(771\) −9.11194 −0.328158
\(772\) 0.920935 0.0331452
\(773\) −40.1436 −1.44387 −0.721933 0.691963i \(-0.756746\pi\)
−0.721933 + 0.691963i \(0.756746\pi\)
\(774\) 22.9873 0.826261
\(775\) 0 0
\(776\) 46.6666 1.67523
\(777\) −2.67087 −0.0958169
\(778\) −18.9230 −0.678424
\(779\) −47.0895 −1.68716
\(780\) 0 0
\(781\) 9.80465 0.350838
\(782\) 0.632468 0.0226170
\(783\) −22.2526 −0.795244
\(784\) 18.9182 0.675649
\(785\) 0 0
\(786\) 8.86235 0.316109
\(787\) 32.1916 1.14751 0.573754 0.819028i \(-0.305487\pi\)
0.573754 + 0.819028i \(0.305487\pi\)
\(788\) −3.88006 −0.138221
\(789\) −6.78544 −0.241568
\(790\) 0 0
\(791\) 12.5674 0.446846
\(792\) −7.85839 −0.279236
\(793\) 8.41798 0.298931
\(794\) 16.3034 0.578585
\(795\) 0 0
\(796\) −2.97362 −0.105397
\(797\) 10.4731 0.370977 0.185489 0.982646i \(-0.440613\pi\)
0.185489 + 0.982646i \(0.440613\pi\)
\(798\) −2.57921 −0.0913031
\(799\) 0.618473 0.0218800
\(800\) 0 0
\(801\) −16.0279 −0.566318
\(802\) 15.5483 0.549030
\(803\) −1.31433 −0.0463815
\(804\) −2.46126 −0.0868018
\(805\) 0 0
\(806\) 13.1553 0.463376
\(807\) −13.2928 −0.467927
\(808\) −17.3344 −0.609821
\(809\) −2.51048 −0.0882637 −0.0441318 0.999026i \(-0.514052\pi\)
−0.0441318 + 0.999026i \(0.514052\pi\)
\(810\) 0 0
\(811\) −28.1415 −0.988183 −0.494091 0.869410i \(-0.664499\pi\)
−0.494091 + 0.869410i \(0.664499\pi\)
\(812\) −2.08595 −0.0732025
\(813\) 18.5685 0.651225
\(814\) 6.50255 0.227914
\(815\) 0 0
\(816\) −0.967769 −0.0338787
\(817\) 28.2426 0.988084
\(818\) 1.23660 0.0432367
\(819\) 6.58064 0.229946
\(820\) 0 0
\(821\) 9.55356 0.333421 0.166711 0.986006i \(-0.446685\pi\)
0.166711 + 0.986006i \(0.446685\pi\)
\(822\) −18.1942 −0.634595
\(823\) 38.7711 1.35147 0.675737 0.737143i \(-0.263826\pi\)
0.675737 + 0.737143i \(0.263826\pi\)
\(824\) −3.02132 −0.105253
\(825\) 0 0
\(826\) 9.05116 0.314930
\(827\) −28.9099 −1.00530 −0.502648 0.864491i \(-0.667641\pi\)
−0.502648 + 0.864491i \(0.667641\pi\)
\(828\) 1.09415 0.0380245
\(829\) −13.0709 −0.453972 −0.226986 0.973898i \(-0.572887\pi\)
−0.226986 + 0.973898i \(0.572887\pi\)
\(830\) 0 0
\(831\) −8.88752 −0.308305
\(832\) 28.4187 0.985243
\(833\) 3.20541 0.111061
\(834\) −0.616828 −0.0213590
\(835\) 0 0
\(836\) −1.68779 −0.0583733
\(837\) −11.8376 −0.409169
\(838\) 15.1694 0.524018
\(839\) −9.03560 −0.311944 −0.155972 0.987762i \(-0.549851\pi\)
−0.155972 + 0.987762i \(0.549851\pi\)
\(840\) 0 0
\(841\) 9.05619 0.312282
\(842\) 47.1019 1.62324
\(843\) −4.87791 −0.168004
\(844\) 6.12180 0.210721
\(845\) 0 0
\(846\) −3.98072 −0.136860
\(847\) −0.798084 −0.0274225
\(848\) −8.92533 −0.306497
\(849\) −17.4477 −0.598803
\(850\) 0 0
\(851\) −5.17919 −0.177540
\(852\) 2.68421 0.0919596
\(853\) 13.4429 0.460275 0.230137 0.973158i \(-0.426082\pi\)
0.230137 + 0.973158i \(0.426082\pi\)
\(854\) 2.64177 0.0903995
\(855\) 0 0
\(856\) 18.2250 0.622918
\(857\) −40.8692 −1.39607 −0.698033 0.716065i \(-0.745941\pi\)
−0.698033 + 0.716065i \(0.745941\pi\)
\(858\) 2.59028 0.0884308
\(859\) 33.6168 1.14699 0.573495 0.819209i \(-0.305587\pi\)
0.573495 + 0.819209i \(0.305587\pi\)
\(860\) 0 0
\(861\) −6.09594 −0.207749
\(862\) 10.5949 0.360864
\(863\) −6.28825 −0.214055 −0.107027 0.994256i \(-0.534133\pi\)
−0.107027 + 0.994256i \(0.534133\pi\)
\(864\) −8.48823 −0.288775
\(865\) 0 0
\(866\) 10.9764 0.372993
\(867\) 10.8208 0.367494
\(868\) −1.10965 −0.0376641
\(869\) 15.6898 0.532239
\(870\) 0 0
\(871\) −28.7049 −0.972627
\(872\) −46.7356 −1.58267
\(873\) −39.6045 −1.34041
\(874\) −5.00145 −0.169177
\(875\) 0 0
\(876\) −0.359822 −0.0121573
\(877\) 46.4269 1.56773 0.783863 0.620934i \(-0.213246\pi\)
0.783863 + 0.620934i \(0.213246\pi\)
\(878\) −3.46129 −0.116813
\(879\) −6.77642 −0.228563
\(880\) 0 0
\(881\) −6.31123 −0.212631 −0.106315 0.994332i \(-0.533905\pi\)
−0.106315 + 0.994332i \(0.533905\pi\)
\(882\) −20.6312 −0.694687
\(883\) −33.7642 −1.13625 −0.568127 0.822941i \(-0.692332\pi\)
−0.568127 + 0.822941i \(0.692332\pi\)
\(884\) 0.681464 0.0229201
\(885\) 0 0
\(886\) 0.996218 0.0334686
\(887\) −14.5976 −0.490139 −0.245069 0.969506i \(-0.578811\pi\)
−0.245069 + 0.969506i \(0.578811\pi\)
\(888\) 10.1836 0.341739
\(889\) 7.23753 0.242739
\(890\) 0 0
\(891\) 5.41659 0.181463
\(892\) 10.2915 0.344585
\(893\) −4.89078 −0.163664
\(894\) 4.53901 0.151807
\(895\) 0 0
\(896\) 5.16249 0.172467
\(897\) −2.06312 −0.0688857
\(898\) 48.8448 1.62997
\(899\) 20.2446 0.675195
\(900\) 0 0
\(901\) −1.51227 −0.0503809
\(902\) 14.8413 0.494161
\(903\) 3.65613 0.121668
\(904\) −47.9176 −1.59371
\(905\) 0 0
\(906\) 5.79046 0.192375
\(907\) 48.0826 1.59656 0.798278 0.602290i \(-0.205745\pi\)
0.798278 + 0.602290i \(0.205745\pi\)
\(908\) 9.12462 0.302811
\(909\) 14.7111 0.487938
\(910\) 0 0
\(911\) −28.6152 −0.948065 −0.474033 0.880507i \(-0.657202\pi\)
−0.474033 + 0.880507i \(0.657202\pi\)
\(912\) 7.65296 0.253415
\(913\) 2.92233 0.0967150
\(914\) 5.05915 0.167342
\(915\) 0 0
\(916\) −2.84319 −0.0939416
\(917\) −8.71834 −0.287905
\(918\) 2.28143 0.0752984
\(919\) 8.89355 0.293371 0.146686 0.989183i \(-0.453139\pi\)
0.146686 + 0.989183i \(0.453139\pi\)
\(920\) 0 0
\(921\) 12.4108 0.408948
\(922\) 10.1073 0.332866
\(923\) 31.3051 1.03042
\(924\) −0.218491 −0.00718782
\(925\) 0 0
\(926\) −4.81812 −0.158333
\(927\) 2.56410 0.0842161
\(928\) 14.5165 0.476526
\(929\) −18.1893 −0.596771 −0.298385 0.954445i \(-0.596448\pi\)
−0.298385 + 0.954445i \(0.596448\pi\)
\(930\) 0 0
\(931\) −25.3478 −0.830741
\(932\) −6.39176 −0.209369
\(933\) 10.7374 0.351525
\(934\) 40.3140 1.31912
\(935\) 0 0
\(936\) −25.0909 −0.820123
\(937\) −33.3478 −1.08943 −0.544713 0.838623i \(-0.683361\pi\)
−0.544713 + 0.838623i \(0.683361\pi\)
\(938\) −9.00829 −0.294131
\(939\) 13.4448 0.438755
\(940\) 0 0
\(941\) 29.2596 0.953836 0.476918 0.878948i \(-0.341754\pi\)
0.476918 + 0.878948i \(0.341754\pi\)
\(942\) 15.2902 0.498182
\(943\) −11.8209 −0.384941
\(944\) −26.8563 −0.874099
\(945\) 0 0
\(946\) −8.90127 −0.289405
\(947\) −34.5660 −1.12324 −0.561621 0.827394i \(-0.689822\pi\)
−0.561621 + 0.827394i \(0.689822\pi\)
\(948\) 4.29537 0.139507
\(949\) −4.19649 −0.136224
\(950\) 0 0
\(951\) −0.544355 −0.0176519
\(952\) 1.22339 0.0396502
\(953\) −28.4736 −0.922350 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(954\) 9.73350 0.315134
\(955\) 0 0
\(956\) 12.9855 0.419982
\(957\) 3.98616 0.128854
\(958\) 52.0425 1.68142
\(959\) 17.8985 0.577974
\(960\) 0 0
\(961\) −20.2306 −0.652599
\(962\) 20.7619 0.669390
\(963\) −15.4670 −0.498417
\(964\) 5.66508 0.182460
\(965\) 0 0
\(966\) −0.647459 −0.0208317
\(967\) 10.9313 0.351526 0.175763 0.984433i \(-0.443761\pi\)
0.175763 + 0.984433i \(0.443761\pi\)
\(968\) 3.04297 0.0978048
\(969\) 1.29668 0.0416554
\(970\) 0 0
\(971\) −7.59300 −0.243671 −0.121835 0.992550i \(-0.538878\pi\)
−0.121835 + 0.992550i \(0.538878\pi\)
\(972\) 6.06782 0.194626
\(973\) 0.606805 0.0194533
\(974\) 27.3496 0.876338
\(975\) 0 0
\(976\) −7.83858 −0.250907
\(977\) −23.0302 −0.736802 −0.368401 0.929667i \(-0.620095\pi\)
−0.368401 + 0.929667i \(0.620095\pi\)
\(978\) 15.8327 0.506273
\(979\) 6.20642 0.198358
\(980\) 0 0
\(981\) 39.6630 1.26634
\(982\) −20.7292 −0.661496
\(983\) −21.6864 −0.691688 −0.345844 0.938292i \(-0.612407\pi\)
−0.345844 + 0.938292i \(0.612407\pi\)
\(984\) 23.2429 0.740956
\(985\) 0 0
\(986\) −3.90168 −0.124255
\(987\) −0.633133 −0.0201528
\(988\) −5.38890 −0.171444
\(989\) 7.08974 0.225441
\(990\) 0 0
\(991\) 32.0034 1.01662 0.508310 0.861174i \(-0.330270\pi\)
0.508310 + 0.861174i \(0.330270\pi\)
\(992\) 7.72227 0.245182
\(993\) 6.60698 0.209666
\(994\) 9.82432 0.311608
\(995\) 0 0
\(996\) 0.800044 0.0253504
\(997\) 44.7240 1.41642 0.708211 0.706001i \(-0.249502\pi\)
0.708211 + 0.706001i \(0.249502\pi\)
\(998\) 7.39005 0.233928
\(999\) −18.6823 −0.591082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6325.2.a.m.1.3 6
5.4 even 2 253.2.a.d.1.4 6
15.14 odd 2 2277.2.a.m.1.3 6
20.19 odd 2 4048.2.a.bc.1.4 6
55.54 odd 2 2783.2.a.h.1.3 6
115.114 odd 2 5819.2.a.e.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.d.1.4 6 5.4 even 2
2277.2.a.m.1.3 6 15.14 odd 2
2783.2.a.h.1.3 6 55.54 odd 2
4048.2.a.bc.1.4 6 20.19 odd 2
5819.2.a.e.1.4 6 115.114 odd 2
6325.2.a.m.1.3 6 1.1 even 1 trivial