Properties

Label 5819.2.a.e.1.4
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,7,5,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.255514\) of defining polynomial
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.25551 q^{2} +0.646163 q^{3} -0.423685 q^{4} -4.04297 q^{5} +0.811267 q^{6} -0.798084 q^{7} -3.04297 q^{8} -2.58247 q^{9} -5.07601 q^{10} -1.00000 q^{11} -0.273769 q^{12} -3.19289 q^{13} -1.00201 q^{14} -2.61242 q^{15} -2.97312 q^{16} -0.503752 q^{17} -3.24233 q^{18} -3.98359 q^{19} +1.71294 q^{20} -0.515693 q^{21} -1.25551 q^{22} -1.96625 q^{24} +11.3456 q^{25} -4.00871 q^{26} -3.60719 q^{27} +0.338136 q^{28} -6.16897 q^{29} -3.27993 q^{30} -3.28168 q^{31} +2.35314 q^{32} -0.646163 q^{33} -0.632468 q^{34} +3.22663 q^{35} +1.09415 q^{36} -5.17919 q^{37} -5.00145 q^{38} -2.06312 q^{39} +12.3026 q^{40} -11.8209 q^{41} -0.647459 q^{42} +7.08974 q^{43} +0.423685 q^{44} +10.4409 q^{45} +1.22773 q^{47} -1.92112 q^{48} -6.36306 q^{49} +14.2446 q^{50} -0.325506 q^{51} +1.35278 q^{52} +3.00201 q^{53} -4.52888 q^{54} +4.04297 q^{55} +2.42855 q^{56} -2.57405 q^{57} -7.74523 q^{58} +9.03304 q^{59} +1.10684 q^{60} -2.63648 q^{61} -4.12020 q^{62} +2.06103 q^{63} +8.90065 q^{64} +12.9087 q^{65} -0.811267 q^{66} -8.99026 q^{67} +0.213432 q^{68} +4.05108 q^{70} +9.80465 q^{71} +7.85839 q^{72} +1.31433 q^{73} -6.50255 q^{74} +7.33111 q^{75} +1.68779 q^{76} +0.798084 q^{77} -2.59028 q^{78} -15.6898 q^{79} +12.0202 q^{80} +5.41659 q^{81} -14.8413 q^{82} +2.92233 q^{83} +0.218491 q^{84} +2.03665 q^{85} +8.90127 q^{86} -3.98616 q^{87} +3.04297 q^{88} -6.20642 q^{89} +13.1086 q^{90} +2.54819 q^{91} -2.12050 q^{93} +1.54144 q^{94} +16.1055 q^{95} +1.52051 q^{96} +15.3359 q^{97} -7.98891 q^{98} +2.58247 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 7 q^{3} + 5 q^{4} - 3 q^{5} + 3 q^{6} + q^{7} + 3 q^{8} + 9 q^{9} + 6 q^{10} - 6 q^{11} + 11 q^{12} - 3 q^{13} + 8 q^{14} - 10 q^{15} - q^{16} - 5 q^{17} - 11 q^{18} - q^{19} + 7 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25551 0.887782 0.443891 0.896081i \(-0.353598\pi\)
0.443891 + 0.896081i \(0.353598\pi\)
\(3\) 0.646163 0.373062 0.186531 0.982449i \(-0.440275\pi\)
0.186531 + 0.982449i \(0.440275\pi\)
\(4\) −0.423685 −0.211842
\(5\) −4.04297 −1.80807 −0.904036 0.427457i \(-0.859409\pi\)
−0.904036 + 0.427457i \(0.859409\pi\)
\(6\) 0.811267 0.331198
\(7\) −0.798084 −0.301647 −0.150824 0.988561i \(-0.548193\pi\)
−0.150824 + 0.988561i \(0.548193\pi\)
\(8\) −3.04297 −1.07585
\(9\) −2.58247 −0.860824
\(10\) −5.07601 −1.60517
\(11\) −1.00000 −0.301511
\(12\) −0.273769 −0.0790304
\(13\) −3.19289 −0.885547 −0.442774 0.896633i \(-0.646005\pi\)
−0.442774 + 0.896633i \(0.646005\pi\)
\(14\) −1.00201 −0.267797
\(15\) −2.61242 −0.674523
\(16\) −2.97312 −0.743281
\(17\) −0.503752 −0.122178 −0.0610889 0.998132i \(-0.519457\pi\)
−0.0610889 + 0.998132i \(0.519457\pi\)
\(18\) −3.24233 −0.764225
\(19\) −3.98359 −0.913898 −0.456949 0.889493i \(-0.651058\pi\)
−0.456949 + 0.889493i \(0.651058\pi\)
\(20\) 1.71294 0.383026
\(21\) −0.515693 −0.112533
\(22\) −1.25551 −0.267676
\(23\) 0 0
\(24\) −1.96625 −0.401360
\(25\) 11.3456 2.26912
\(26\) −4.00871 −0.786173
\(27\) −3.60719 −0.694204
\(28\) 0.338136 0.0639017
\(29\) −6.16897 −1.14555 −0.572774 0.819713i \(-0.694133\pi\)
−0.572774 + 0.819713i \(0.694133\pi\)
\(30\) −3.27993 −0.598830
\(31\) −3.28168 −0.589407 −0.294704 0.955589i \(-0.595221\pi\)
−0.294704 + 0.955589i \(0.595221\pi\)
\(32\) 2.35314 0.415981
\(33\) −0.646163 −0.112483
\(34\) −0.632468 −0.108467
\(35\) 3.22663 0.545400
\(36\) 1.09415 0.182359
\(37\) −5.17919 −0.851454 −0.425727 0.904852i \(-0.639982\pi\)
−0.425727 + 0.904852i \(0.639982\pi\)
\(38\) −5.00145 −0.811343
\(39\) −2.06312 −0.330364
\(40\) 12.3026 1.94522
\(41\) −11.8209 −1.84611 −0.923056 0.384666i \(-0.874317\pi\)
−0.923056 + 0.384666i \(0.874317\pi\)
\(42\) −0.647459 −0.0999051
\(43\) 7.08974 1.08118 0.540588 0.841288i \(-0.318202\pi\)
0.540588 + 0.841288i \(0.318202\pi\)
\(44\) 0.423685 0.0638728
\(45\) 10.4409 1.55643
\(46\) 0 0
\(47\) 1.22773 0.179083 0.0895416 0.995983i \(-0.471460\pi\)
0.0895416 + 0.995983i \(0.471460\pi\)
\(48\) −1.92112 −0.277290
\(49\) −6.36306 −0.909009
\(50\) 14.2446 2.01449
\(51\) −0.325506 −0.0455800
\(52\) 1.35278 0.187596
\(53\) 3.00201 0.412357 0.206179 0.978514i \(-0.433897\pi\)
0.206179 + 0.978514i \(0.433897\pi\)
\(54\) −4.52888 −0.616302
\(55\) 4.04297 0.545154
\(56\) 2.42855 0.324528
\(57\) −2.57405 −0.340941
\(58\) −7.74523 −1.01700
\(59\) 9.03304 1.17600 0.588001 0.808861i \(-0.299915\pi\)
0.588001 + 0.808861i \(0.299915\pi\)
\(60\) 1.10684 0.142893
\(61\) −2.63648 −0.337567 −0.168783 0.985653i \(-0.553984\pi\)
−0.168783 + 0.985653i \(0.553984\pi\)
\(62\) −4.12020 −0.523266
\(63\) 2.06103 0.259666
\(64\) 8.90065 1.11258
\(65\) 12.9087 1.60113
\(66\) −0.811267 −0.0998600
\(67\) −8.99026 −1.09834 −0.549168 0.835712i \(-0.685055\pi\)
−0.549168 + 0.835712i \(0.685055\pi\)
\(68\) 0.213432 0.0258824
\(69\) 0 0
\(70\) 4.05108 0.484197
\(71\) 9.80465 1.16360 0.581799 0.813333i \(-0.302349\pi\)
0.581799 + 0.813333i \(0.302349\pi\)
\(72\) 7.85839 0.926120
\(73\) 1.31433 0.153830 0.0769151 0.997038i \(-0.475493\pi\)
0.0769151 + 0.997038i \(0.475493\pi\)
\(74\) −6.50255 −0.755906
\(75\) 7.33111 0.846524
\(76\) 1.68779 0.193602
\(77\) 0.798084 0.0909501
\(78\) −2.59028 −0.293292
\(79\) −15.6898 −1.76524 −0.882618 0.470091i \(-0.844221\pi\)
−0.882618 + 0.470091i \(0.844221\pi\)
\(80\) 12.0202 1.34390
\(81\) 5.41659 0.601843
\(82\) −14.8413 −1.63895
\(83\) 2.92233 0.320767 0.160384 0.987055i \(-0.448727\pi\)
0.160384 + 0.987055i \(0.448727\pi\)
\(84\) 0.218491 0.0238393
\(85\) 2.03665 0.220906
\(86\) 8.90127 0.959849
\(87\) −3.98616 −0.427361
\(88\) 3.04297 0.324382
\(89\) −6.20642 −0.657879 −0.328940 0.944351i \(-0.606691\pi\)
−0.328940 + 0.944351i \(0.606691\pi\)
\(90\) 13.1086 1.38177
\(91\) 2.54819 0.267123
\(92\) 0 0
\(93\) −2.12050 −0.219886
\(94\) 1.54144 0.158987
\(95\) 16.1055 1.65239
\(96\) 1.52051 0.155187
\(97\) 15.3359 1.55712 0.778561 0.627569i \(-0.215950\pi\)
0.778561 + 0.627569i \(0.215950\pi\)
\(98\) −7.98891 −0.807002
\(99\) 2.58247 0.259548
\(100\) −4.80696 −0.480696
\(101\) −5.69653 −0.566826 −0.283413 0.958998i \(-0.591467\pi\)
−0.283413 + 0.958998i \(0.591467\pi\)
\(102\) −0.408677 −0.0404651
\(103\) −0.992886 −0.0978319 −0.0489160 0.998803i \(-0.515577\pi\)
−0.0489160 + 0.998803i \(0.515577\pi\)
\(104\) 9.71585 0.952718
\(105\) 2.08493 0.203468
\(106\) 3.76906 0.366084
\(107\) 5.98921 0.578999 0.289500 0.957178i \(-0.406511\pi\)
0.289500 + 0.957178i \(0.406511\pi\)
\(108\) 1.52831 0.147062
\(109\) 15.3585 1.47108 0.735541 0.677480i \(-0.236928\pi\)
0.735541 + 0.677480i \(0.236928\pi\)
\(110\) 5.07601 0.483978
\(111\) −3.34660 −0.317645
\(112\) 2.37280 0.224209
\(113\) −15.7470 −1.48135 −0.740675 0.671863i \(-0.765494\pi\)
−0.740675 + 0.671863i \(0.765494\pi\)
\(114\) −3.23175 −0.302681
\(115\) 0 0
\(116\) 2.61370 0.242676
\(117\) 8.24554 0.762301
\(118\) 11.3411 1.04403
\(119\) 0.402037 0.0368546
\(120\) 7.94951 0.725688
\(121\) 1.00000 0.0909091
\(122\) −3.31014 −0.299686
\(123\) −7.63822 −0.688715
\(124\) 1.39040 0.124861
\(125\) −25.6551 −2.29466
\(126\) 2.58765 0.230526
\(127\) 9.06863 0.804710 0.402355 0.915484i \(-0.368192\pi\)
0.402355 + 0.915484i \(0.368192\pi\)
\(128\) 6.46860 0.571749
\(129\) 4.58113 0.403346
\(130\) 16.2071 1.42146
\(131\) 10.9241 0.954442 0.477221 0.878783i \(-0.341644\pi\)
0.477221 + 0.878783i \(0.341644\pi\)
\(132\) 0.273769 0.0238286
\(133\) 3.17924 0.275675
\(134\) −11.2874 −0.975083
\(135\) 14.5838 1.25517
\(136\) 1.53290 0.131445
\(137\) −22.4269 −1.91606 −0.958029 0.286672i \(-0.907451\pi\)
−0.958029 + 0.286672i \(0.907451\pi\)
\(138\) 0 0
\(139\) −0.760327 −0.0644901 −0.0322451 0.999480i \(-0.510266\pi\)
−0.0322451 + 0.999480i \(0.510266\pi\)
\(140\) −1.36707 −0.115539
\(141\) 0.793315 0.0668092
\(142\) 12.3099 1.03302
\(143\) 3.19289 0.267002
\(144\) 7.67801 0.639834
\(145\) 24.9410 2.07123
\(146\) 1.65015 0.136568
\(147\) −4.11158 −0.339117
\(148\) 2.19434 0.180374
\(149\) −5.59496 −0.458357 −0.229179 0.973384i \(-0.573604\pi\)
−0.229179 + 0.973384i \(0.573604\pi\)
\(150\) 9.20431 0.751529
\(151\) 7.13755 0.580845 0.290423 0.956898i \(-0.406204\pi\)
0.290423 + 0.956898i \(0.406204\pi\)
\(152\) 12.1219 0.983219
\(153\) 1.30093 0.105174
\(154\) 1.00201 0.0807439
\(155\) 13.2677 1.06569
\(156\) 0.874114 0.0699851
\(157\) 18.8473 1.50418 0.752090 0.659061i \(-0.229046\pi\)
0.752090 + 0.659061i \(0.229046\pi\)
\(158\) −19.6987 −1.56715
\(159\) 1.93979 0.153835
\(160\) −9.51369 −0.752123
\(161\) 0 0
\(162\) 6.80060 0.534306
\(163\) −19.5160 −1.52861 −0.764305 0.644854i \(-0.776918\pi\)
−0.764305 + 0.644854i \(0.776918\pi\)
\(164\) 5.00833 0.391084
\(165\) 2.61242 0.203376
\(166\) 3.66903 0.284772
\(167\) 20.5303 1.58868 0.794342 0.607471i \(-0.207816\pi\)
0.794342 + 0.607471i \(0.207816\pi\)
\(168\) 1.56924 0.121069
\(169\) −2.80548 −0.215806
\(170\) 2.55705 0.196117
\(171\) 10.2875 0.786706
\(172\) −3.00381 −0.229039
\(173\) 4.67283 0.355268 0.177634 0.984097i \(-0.443156\pi\)
0.177634 + 0.984097i \(0.443156\pi\)
\(174\) −5.00468 −0.379404
\(175\) −9.05475 −0.684475
\(176\) 2.97312 0.224108
\(177\) 5.83681 0.438722
\(178\) −7.79225 −0.584054
\(179\) −4.68491 −0.350166 −0.175083 0.984554i \(-0.556019\pi\)
−0.175083 + 0.984554i \(0.556019\pi\)
\(180\) −4.42363 −0.329718
\(181\) −10.2400 −0.761133 −0.380566 0.924754i \(-0.624271\pi\)
−0.380566 + 0.924754i \(0.624271\pi\)
\(182\) 3.19929 0.237147
\(183\) −1.70360 −0.125933
\(184\) 0 0
\(185\) 20.9393 1.53949
\(186\) −2.66232 −0.195211
\(187\) 0.503752 0.0368380
\(188\) −0.520171 −0.0379374
\(189\) 2.87884 0.209405
\(190\) 20.2207 1.46697
\(191\) 6.39892 0.463009 0.231505 0.972834i \(-0.425635\pi\)
0.231505 + 0.972834i \(0.425635\pi\)
\(192\) 5.75127 0.415062
\(193\) 2.17363 0.156462 0.0782308 0.996935i \(-0.475073\pi\)
0.0782308 + 0.996935i \(0.475073\pi\)
\(194\) 19.2544 1.38238
\(195\) 8.34115 0.597322
\(196\) 2.69593 0.192566
\(197\) −9.15789 −0.652473 −0.326236 0.945288i \(-0.605781\pi\)
−0.326236 + 0.945288i \(0.605781\pi\)
\(198\) 3.24233 0.230422
\(199\) −7.01847 −0.497526 −0.248763 0.968564i \(-0.580024\pi\)
−0.248763 + 0.968564i \(0.580024\pi\)
\(200\) −34.5243 −2.44124
\(201\) −5.80917 −0.409748
\(202\) −7.15208 −0.503218
\(203\) 4.92336 0.345552
\(204\) 0.137912 0.00965576
\(205\) 47.7915 3.33790
\(206\) −1.24658 −0.0868535
\(207\) 0 0
\(208\) 9.49284 0.658210
\(209\) 3.98359 0.275551
\(210\) 2.61766 0.180636
\(211\) −14.4490 −0.994707 −0.497354 0.867548i \(-0.665695\pi\)
−0.497354 + 0.867548i \(0.665695\pi\)
\(212\) −1.27190 −0.0873547
\(213\) 6.33540 0.434095
\(214\) 7.51954 0.514025
\(215\) −28.6636 −1.95484
\(216\) 10.9766 0.746861
\(217\) 2.61906 0.177793
\(218\) 19.2829 1.30600
\(219\) 0.849268 0.0573882
\(220\) −1.71294 −0.115487
\(221\) 1.60842 0.108194
\(222\) −4.20170 −0.282000
\(223\) 24.2905 1.62661 0.813305 0.581838i \(-0.197666\pi\)
0.813305 + 0.581838i \(0.197666\pi\)
\(224\) −1.87801 −0.125480
\(225\) −29.2997 −1.95331
\(226\) −19.7705 −1.31512
\(227\) −21.5364 −1.42942 −0.714709 0.699422i \(-0.753441\pi\)
−0.714709 + 0.699422i \(0.753441\pi\)
\(228\) 1.09058 0.0722257
\(229\) −6.71062 −0.443450 −0.221725 0.975109i \(-0.571169\pi\)
−0.221725 + 0.975109i \(0.571169\pi\)
\(230\) 0 0
\(231\) 0.515693 0.0339301
\(232\) 18.7720 1.23244
\(233\) −15.0861 −0.988326 −0.494163 0.869369i \(-0.664525\pi\)
−0.494163 + 0.869369i \(0.664525\pi\)
\(234\) 10.3524 0.676757
\(235\) −4.96369 −0.323795
\(236\) −3.82716 −0.249127
\(237\) −10.1381 −0.658543
\(238\) 0.504763 0.0327189
\(239\) −30.6490 −1.98252 −0.991260 0.131919i \(-0.957886\pi\)
−0.991260 + 0.131919i \(0.957886\pi\)
\(240\) 7.76704 0.501360
\(241\) 13.3710 0.861301 0.430651 0.902519i \(-0.358284\pi\)
0.430651 + 0.902519i \(0.358284\pi\)
\(242\) 1.25551 0.0807075
\(243\) 14.3216 0.918729
\(244\) 1.11704 0.0715109
\(245\) 25.7257 1.64355
\(246\) −9.58989 −0.611429
\(247\) 12.7191 0.809300
\(248\) 9.98606 0.634115
\(249\) 1.88830 0.119666
\(250\) −32.2103 −2.03716
\(251\) −25.4838 −1.60852 −0.804262 0.594276i \(-0.797439\pi\)
−0.804262 + 0.594276i \(0.797439\pi\)
\(252\) −0.873227 −0.0550081
\(253\) 0 0
\(254\) 11.3858 0.714408
\(255\) 1.31601 0.0824118
\(256\) −9.67988 −0.604992
\(257\) −14.1016 −0.879634 −0.439817 0.898087i \(-0.644957\pi\)
−0.439817 + 0.898087i \(0.644957\pi\)
\(258\) 5.75167 0.358083
\(259\) 4.13343 0.256839
\(260\) −5.46923 −0.339187
\(261\) 15.9312 0.986117
\(262\) 13.7153 0.847337
\(263\) 10.5011 0.647527 0.323764 0.946138i \(-0.395052\pi\)
0.323764 + 0.946138i \(0.395052\pi\)
\(264\) 1.96625 0.121015
\(265\) −12.1370 −0.745571
\(266\) 3.99158 0.244739
\(267\) −4.01036 −0.245430
\(268\) 3.80903 0.232674
\(269\) 20.5718 1.25429 0.627143 0.778904i \(-0.284224\pi\)
0.627143 + 0.778904i \(0.284224\pi\)
\(270\) 18.3101 1.11432
\(271\) −28.7365 −1.74562 −0.872810 0.488060i \(-0.837705\pi\)
−0.872810 + 0.488060i \(0.837705\pi\)
\(272\) 1.49772 0.0908124
\(273\) 1.64655 0.0996536
\(274\) −28.1573 −1.70104
\(275\) −11.3456 −0.684166
\(276\) 0 0
\(277\) −13.7543 −0.826416 −0.413208 0.910637i \(-0.635592\pi\)
−0.413208 + 0.910637i \(0.635592\pi\)
\(278\) −0.954601 −0.0572532
\(279\) 8.47486 0.507376
\(280\) −9.81854 −0.586770
\(281\) −7.54904 −0.450338 −0.225169 0.974320i \(-0.572293\pi\)
−0.225169 + 0.974320i \(0.572293\pi\)
\(282\) 0.996019 0.0593120
\(283\) 27.0020 1.60510 0.802551 0.596584i \(-0.203476\pi\)
0.802551 + 0.596584i \(0.203476\pi\)
\(284\) −4.15408 −0.246499
\(285\) 10.4068 0.616446
\(286\) 4.00871 0.237040
\(287\) 9.43406 0.556875
\(288\) −6.07693 −0.358086
\(289\) −16.7462 −0.985073
\(290\) 31.3137 1.83881
\(291\) 9.90947 0.580903
\(292\) −0.556859 −0.0325877
\(293\) 10.4872 0.612666 0.306333 0.951924i \(-0.400898\pi\)
0.306333 + 0.951924i \(0.400898\pi\)
\(294\) −5.16214 −0.301062
\(295\) −36.5203 −2.12629
\(296\) 15.7601 0.916038
\(297\) 3.60719 0.209310
\(298\) −7.02455 −0.406921
\(299\) 0 0
\(300\) −3.10608 −0.179330
\(301\) −5.65821 −0.326134
\(302\) 8.96129 0.515664
\(303\) −3.68089 −0.211462
\(304\) 11.8437 0.679283
\(305\) 10.6592 0.610345
\(306\) 1.63333 0.0933714
\(307\) 19.2068 1.09619 0.548096 0.836415i \(-0.315353\pi\)
0.548096 + 0.836415i \(0.315353\pi\)
\(308\) −0.338136 −0.0192671
\(309\) −0.641566 −0.0364974
\(310\) 16.6578 0.946101
\(311\) −16.6171 −0.942270 −0.471135 0.882061i \(-0.656155\pi\)
−0.471135 + 0.882061i \(0.656155\pi\)
\(312\) 6.27803 0.355423
\(313\) −20.8071 −1.17609 −0.588044 0.808829i \(-0.700102\pi\)
−0.588044 + 0.808829i \(0.700102\pi\)
\(314\) 23.6631 1.33538
\(315\) −8.33269 −0.469494
\(316\) 6.64751 0.373952
\(317\) −0.842442 −0.0473163 −0.0236581 0.999720i \(-0.507531\pi\)
−0.0236581 + 0.999720i \(0.507531\pi\)
\(318\) 2.43543 0.136572
\(319\) 6.16897 0.345396
\(320\) −35.9851 −2.01163
\(321\) 3.87001 0.216003
\(322\) 0 0
\(323\) 2.00674 0.111658
\(324\) −2.29492 −0.127496
\(325\) −36.2252 −2.00941
\(326\) −24.5026 −1.35707
\(327\) 9.92412 0.548805
\(328\) 35.9706 1.98614
\(329\) −0.979834 −0.0540200
\(330\) 3.27993 0.180554
\(331\) −10.2249 −0.562014 −0.281007 0.959706i \(-0.590668\pi\)
−0.281007 + 0.959706i \(0.590668\pi\)
\(332\) −1.23815 −0.0679521
\(333\) 13.3751 0.732952
\(334\) 25.7761 1.41041
\(335\) 36.3473 1.98587
\(336\) 1.53322 0.0836438
\(337\) −29.3644 −1.59958 −0.799791 0.600279i \(-0.795056\pi\)
−0.799791 + 0.600279i \(0.795056\pi\)
\(338\) −3.52232 −0.191589
\(339\) −10.1751 −0.552636
\(340\) −0.862899 −0.0467973
\(341\) 3.28168 0.177713
\(342\) 12.9161 0.698424
\(343\) 10.6648 0.575848
\(344\) −21.5739 −1.16318
\(345\) 0 0
\(346\) 5.86680 0.315401
\(347\) 24.9778 1.34088 0.670438 0.741965i \(-0.266106\pi\)
0.670438 + 0.741965i \(0.266106\pi\)
\(348\) 1.68887 0.0905332
\(349\) −30.7570 −1.64638 −0.823191 0.567764i \(-0.807808\pi\)
−0.823191 + 0.567764i \(0.807808\pi\)
\(350\) −11.3684 −0.607665
\(351\) 11.5173 0.614750
\(352\) −2.35314 −0.125423
\(353\) −18.1605 −0.966588 −0.483294 0.875458i \(-0.660560\pi\)
−0.483294 + 0.875458i \(0.660560\pi\)
\(354\) 7.32820 0.389490
\(355\) −39.6399 −2.10387
\(356\) 2.62956 0.139367
\(357\) 0.259781 0.0137491
\(358\) −5.88197 −0.310872
\(359\) 0.950635 0.0501726 0.0250863 0.999685i \(-0.492014\pi\)
0.0250863 + 0.999685i \(0.492014\pi\)
\(360\) −31.7712 −1.67449
\(361\) −3.13102 −0.164790
\(362\) −12.8565 −0.675720
\(363\) 0.646163 0.0339148
\(364\) −1.07963 −0.0565879
\(365\) −5.31378 −0.278136
\(366\) −2.13889 −0.111801
\(367\) 28.6929 1.49776 0.748878 0.662708i \(-0.230593\pi\)
0.748878 + 0.662708i \(0.230593\pi\)
\(368\) 0 0
\(369\) 30.5271 1.58918
\(370\) 26.2896 1.36673
\(371\) −2.39585 −0.124387
\(372\) 0.898424 0.0465811
\(373\) −8.58485 −0.444507 −0.222253 0.974989i \(-0.571341\pi\)
−0.222253 + 0.974989i \(0.571341\pi\)
\(374\) 0.632468 0.0327041
\(375\) −16.5774 −0.856052
\(376\) −3.73595 −0.192667
\(377\) 19.6968 1.01444
\(378\) 3.61442 0.185906
\(379\) −10.0573 −0.516610 −0.258305 0.966063i \(-0.583164\pi\)
−0.258305 + 0.966063i \(0.583164\pi\)
\(380\) −6.82366 −0.350047
\(381\) 5.85981 0.300207
\(382\) 8.03393 0.411052
\(383\) 19.3152 0.986963 0.493481 0.869756i \(-0.335724\pi\)
0.493481 + 0.869756i \(0.335724\pi\)
\(384\) 4.17977 0.213298
\(385\) −3.22663 −0.164444
\(386\) 2.72903 0.138904
\(387\) −18.3091 −0.930702
\(388\) −6.49757 −0.329864
\(389\) −15.0719 −0.764178 −0.382089 0.924126i \(-0.624795\pi\)
−0.382089 + 0.924126i \(0.624795\pi\)
\(390\) 10.4724 0.530292
\(391\) 0 0
\(392\) 19.3626 0.977959
\(393\) 7.05874 0.356066
\(394\) −11.4979 −0.579254
\(395\) 63.4332 3.19167
\(396\) −1.09415 −0.0549833
\(397\) 12.9854 0.651720 0.325860 0.945418i \(-0.394346\pi\)
0.325860 + 0.945418i \(0.394346\pi\)
\(398\) −8.81179 −0.441695
\(399\) 2.05431 0.102844
\(400\) −33.7319 −1.68659
\(401\) 12.3840 0.618429 0.309214 0.950992i \(-0.399934\pi\)
0.309214 + 0.950992i \(0.399934\pi\)
\(402\) −7.29350 −0.363767
\(403\) 10.4780 0.521948
\(404\) 2.41353 0.120078
\(405\) −21.8991 −1.08818
\(406\) 6.18134 0.306775
\(407\) 5.17919 0.256723
\(408\) 0.990505 0.0490373
\(409\) −0.984934 −0.0487019 −0.0243509 0.999703i \(-0.507752\pi\)
−0.0243509 + 0.999703i \(0.507752\pi\)
\(410\) 60.0029 2.96333
\(411\) −14.4914 −0.714809
\(412\) 0.420670 0.0207249
\(413\) −7.20912 −0.354738
\(414\) 0 0
\(415\) −11.8149 −0.579970
\(416\) −7.51332 −0.368371
\(417\) −0.491295 −0.0240588
\(418\) 5.00145 0.244629
\(419\) 12.0822 0.590255 0.295127 0.955458i \(-0.404638\pi\)
0.295127 + 0.955458i \(0.404638\pi\)
\(420\) −0.883352 −0.0431032
\(421\) 37.5161 1.82842 0.914210 0.405240i \(-0.132812\pi\)
0.914210 + 0.405240i \(0.132812\pi\)
\(422\) −18.1409 −0.883083
\(423\) −3.17059 −0.154159
\(424\) −9.13501 −0.443635
\(425\) −5.71537 −0.277236
\(426\) 7.95419 0.385382
\(427\) 2.10413 0.101826
\(428\) −2.53754 −0.122657
\(429\) 2.06312 0.0996086
\(430\) −35.9876 −1.73547
\(431\) 8.43869 0.406478 0.203239 0.979129i \(-0.434853\pi\)
0.203239 + 0.979129i \(0.434853\pi\)
\(432\) 10.7246 0.515988
\(433\) −8.74254 −0.420140 −0.210070 0.977686i \(-0.567369\pi\)
−0.210070 + 0.977686i \(0.567369\pi\)
\(434\) 3.28826 0.157842
\(435\) 16.1159 0.772700
\(436\) −6.50718 −0.311637
\(437\) 0 0
\(438\) 1.06627 0.0509483
\(439\) 2.75687 0.131578 0.0657891 0.997834i \(-0.479044\pi\)
0.0657891 + 0.997834i \(0.479044\pi\)
\(440\) −12.3026 −0.586505
\(441\) 16.4324 0.782497
\(442\) 2.01940 0.0960529
\(443\) 0.793474 0.0376991 0.0188496 0.999822i \(-0.494000\pi\)
0.0188496 + 0.999822i \(0.494000\pi\)
\(444\) 1.41790 0.0672907
\(445\) 25.0924 1.18949
\(446\) 30.4970 1.44408
\(447\) −3.61526 −0.170996
\(448\) −7.10347 −0.335607
\(449\) −38.9043 −1.83601 −0.918003 0.396574i \(-0.870199\pi\)
−0.918003 + 0.396574i \(0.870199\pi\)
\(450\) −36.7862 −1.73412
\(451\) 11.8209 0.556624
\(452\) 6.67175 0.313813
\(453\) 4.61202 0.216692
\(454\) −27.0392 −1.26901
\(455\) −10.3023 −0.482977
\(456\) 7.83275 0.366802
\(457\) −4.02954 −0.188494 −0.0942470 0.995549i \(-0.530044\pi\)
−0.0942470 + 0.995549i \(0.530044\pi\)
\(458\) −8.42528 −0.393688
\(459\) 1.81713 0.0848163
\(460\) 0 0
\(461\) −8.05034 −0.374942 −0.187471 0.982270i \(-0.560029\pi\)
−0.187471 + 0.982270i \(0.560029\pi\)
\(462\) 0.647459 0.0301225
\(463\) −3.83757 −0.178347 −0.0891735 0.996016i \(-0.528423\pi\)
−0.0891735 + 0.996016i \(0.528423\pi\)
\(464\) 18.3411 0.851464
\(465\) 8.57312 0.397569
\(466\) −18.9409 −0.877418
\(467\) −32.1096 −1.48585 −0.742927 0.669372i \(-0.766563\pi\)
−0.742927 + 0.669372i \(0.766563\pi\)
\(468\) −3.49351 −0.161487
\(469\) 7.17498 0.331310
\(470\) −6.23198 −0.287460
\(471\) 12.1784 0.561153
\(472\) −27.4873 −1.26520
\(473\) −7.08974 −0.325987
\(474\) −12.7286 −0.584643
\(475\) −45.1962 −2.07375
\(476\) −0.170337 −0.00780737
\(477\) −7.75260 −0.354967
\(478\) −38.4803 −1.76005
\(479\) 41.4512 1.89395 0.946976 0.321305i \(-0.104121\pi\)
0.946976 + 0.321305i \(0.104121\pi\)
\(480\) −6.14739 −0.280589
\(481\) 16.5366 0.754002
\(482\) 16.7875 0.764648
\(483\) 0 0
\(484\) −0.423685 −0.0192584
\(485\) −62.0024 −2.81539
\(486\) 17.9809 0.815631
\(487\) 21.7836 0.987109 0.493554 0.869715i \(-0.335697\pi\)
0.493554 + 0.869715i \(0.335697\pi\)
\(488\) 8.02273 0.363172
\(489\) −12.6105 −0.570267
\(490\) 32.2989 1.45912
\(491\) 16.5105 0.745110 0.372555 0.928010i \(-0.378482\pi\)
0.372555 + 0.928010i \(0.378482\pi\)
\(492\) 3.23619 0.145899
\(493\) 3.10763 0.139961
\(494\) 15.9691 0.718482
\(495\) −10.4409 −0.469282
\(496\) 9.75684 0.438095
\(497\) −7.82494 −0.350996
\(498\) 2.37079 0.106238
\(499\) −5.88608 −0.263497 −0.131748 0.991283i \(-0.542059\pi\)
−0.131748 + 0.991283i \(0.542059\pi\)
\(500\) 10.8697 0.486106
\(501\) 13.2659 0.592678
\(502\) −31.9953 −1.42802
\(503\) −25.4624 −1.13531 −0.567656 0.823266i \(-0.692150\pi\)
−0.567656 + 0.823266i \(0.692150\pi\)
\(504\) −6.27166 −0.279362
\(505\) 23.0309 1.02486
\(506\) 0 0
\(507\) −1.81280 −0.0805093
\(508\) −3.84224 −0.170472
\(509\) −37.9786 −1.68337 −0.841687 0.539966i \(-0.818437\pi\)
−0.841687 + 0.539966i \(0.818437\pi\)
\(510\) 1.65227 0.0731638
\(511\) −1.04894 −0.0464025
\(512\) −25.0904 −1.10885
\(513\) 14.3696 0.634431
\(514\) −17.7048 −0.780924
\(515\) 4.01421 0.176887
\(516\) −1.94095 −0.0854457
\(517\) −1.22773 −0.0539956
\(518\) 5.18958 0.228017
\(519\) 3.01941 0.132537
\(520\) −39.2809 −1.72258
\(521\) −30.5870 −1.34004 −0.670020 0.742343i \(-0.733714\pi\)
−0.670020 + 0.742343i \(0.733714\pi\)
\(522\) 20.0018 0.875457
\(523\) 2.66147 0.116378 0.0581890 0.998306i \(-0.481467\pi\)
0.0581890 + 0.998306i \(0.481467\pi\)
\(524\) −4.62837 −0.202191
\(525\) −5.85084 −0.255352
\(526\) 13.1843 0.574863
\(527\) 1.65315 0.0720125
\(528\) 1.92112 0.0836061
\(529\) 0 0
\(530\) −15.2382 −0.661905
\(531\) −23.3276 −1.01233
\(532\) −1.34699 −0.0583996
\(533\) 37.7427 1.63482
\(534\) −5.03506 −0.217888
\(535\) −24.2142 −1.04687
\(536\) 27.3571 1.18165
\(537\) −3.02721 −0.130634
\(538\) 25.8282 1.11353
\(539\) 6.36306 0.274076
\(540\) −6.17891 −0.265898
\(541\) 41.1086 1.76740 0.883698 0.468058i \(-0.155046\pi\)
0.883698 + 0.468058i \(0.155046\pi\)
\(542\) −36.0791 −1.54973
\(543\) −6.61670 −0.283950
\(544\) −1.18540 −0.0508236
\(545\) −62.0941 −2.65982
\(546\) 2.06726 0.0884707
\(547\) −7.10820 −0.303925 −0.151962 0.988386i \(-0.548559\pi\)
−0.151962 + 0.988386i \(0.548559\pi\)
\(548\) 9.50192 0.405902
\(549\) 6.80864 0.290586
\(550\) −14.2446 −0.607390
\(551\) 24.5746 1.04691
\(552\) 0 0
\(553\) 12.5217 0.532479
\(554\) −17.2687 −0.733678
\(555\) 13.5302 0.574325
\(556\) 0.322139 0.0136617
\(557\) 17.5181 0.742265 0.371133 0.928580i \(-0.378970\pi\)
0.371133 + 0.928580i \(0.378970\pi\)
\(558\) 10.6403 0.450440
\(559\) −22.6367 −0.957432
\(560\) −9.59317 −0.405385
\(561\) 0.325506 0.0137429
\(562\) −9.47793 −0.399802
\(563\) −32.5836 −1.37324 −0.686618 0.727019i \(-0.740905\pi\)
−0.686618 + 0.727019i \(0.740905\pi\)
\(564\) −0.336115 −0.0141530
\(565\) 63.6645 2.67839
\(566\) 33.9014 1.42498
\(567\) −4.32289 −0.181544
\(568\) −29.8353 −1.25186
\(569\) −42.5643 −1.78439 −0.892194 0.451653i \(-0.850835\pi\)
−0.892194 + 0.451653i \(0.850835\pi\)
\(570\) 13.0659 0.547270
\(571\) 3.70786 0.155169 0.0775845 0.996986i \(-0.475279\pi\)
0.0775845 + 0.996986i \(0.475279\pi\)
\(572\) −1.35278 −0.0565624
\(573\) 4.13474 0.172731
\(574\) 11.8446 0.494384
\(575\) 0 0
\(576\) −22.9857 −0.957737
\(577\) −6.75679 −0.281289 −0.140644 0.990060i \(-0.544917\pi\)
−0.140644 + 0.990060i \(0.544917\pi\)
\(578\) −21.0251 −0.874530
\(579\) 1.40452 0.0583700
\(580\) −10.5671 −0.438775
\(581\) −2.33227 −0.0967587
\(582\) 12.4415 0.515716
\(583\) −3.00201 −0.124330
\(584\) −3.99945 −0.165498
\(585\) −33.3365 −1.37829
\(586\) 13.1668 0.543915
\(587\) 3.71910 0.153504 0.0767519 0.997050i \(-0.475545\pi\)
0.0767519 + 0.997050i \(0.475545\pi\)
\(588\) 1.74201 0.0718393
\(589\) 13.0729 0.538658
\(590\) −45.8517 −1.88769
\(591\) −5.91749 −0.243413
\(592\) 15.3984 0.632869
\(593\) 22.6333 0.929439 0.464719 0.885458i \(-0.346155\pi\)
0.464719 + 0.885458i \(0.346155\pi\)
\(594\) 4.52888 0.185822
\(595\) −1.62542 −0.0666358
\(596\) 2.37050 0.0970994
\(597\) −4.53508 −0.185608
\(598\) 0 0
\(599\) −30.4468 −1.24402 −0.622010 0.783009i \(-0.713684\pi\)
−0.622010 + 0.783009i \(0.713684\pi\)
\(600\) −22.3084 −0.910735
\(601\) 11.3551 0.463186 0.231593 0.972813i \(-0.425606\pi\)
0.231593 + 0.972813i \(0.425606\pi\)
\(602\) −7.10396 −0.289536
\(603\) 23.2171 0.945474
\(604\) −3.02407 −0.123048
\(605\) −4.04297 −0.164370
\(606\) −4.62141 −0.187732
\(607\) 9.14323 0.371112 0.185556 0.982634i \(-0.440591\pi\)
0.185556 + 0.982634i \(0.440591\pi\)
\(608\) −9.37396 −0.380164
\(609\) 3.18129 0.128912
\(610\) 13.3828 0.541853
\(611\) −3.92001 −0.158587
\(612\) −0.551182 −0.0222802
\(613\) 3.40904 0.137690 0.0688449 0.997627i \(-0.478069\pi\)
0.0688449 + 0.997627i \(0.478069\pi\)
\(614\) 24.1145 0.973180
\(615\) 30.8811 1.24525
\(616\) −2.42855 −0.0978489
\(617\) −1.68640 −0.0678919 −0.0339460 0.999424i \(-0.510807\pi\)
−0.0339460 + 0.999424i \(0.510807\pi\)
\(618\) −0.805495 −0.0324018
\(619\) 7.71276 0.310002 0.155001 0.987914i \(-0.450462\pi\)
0.155001 + 0.987914i \(0.450462\pi\)
\(620\) −5.62134 −0.225758
\(621\) 0 0
\(622\) −20.8630 −0.836530
\(623\) 4.95324 0.198448
\(624\) 6.13392 0.245553
\(625\) 46.9947 1.87979
\(626\) −26.1237 −1.04411
\(627\) 2.57405 0.102798
\(628\) −7.98532 −0.318649
\(629\) 2.60903 0.104029
\(630\) −10.4618 −0.416808
\(631\) 39.9860 1.59182 0.795908 0.605417i \(-0.206994\pi\)
0.795908 + 0.605417i \(0.206994\pi\)
\(632\) 47.7435 1.89913
\(633\) −9.33638 −0.371088
\(634\) −1.05770 −0.0420065
\(635\) −36.6642 −1.45497
\(636\) −0.821857 −0.0325888
\(637\) 20.3165 0.804970
\(638\) 7.74523 0.306637
\(639\) −25.3202 −1.00165
\(640\) −26.1524 −1.03376
\(641\) 8.13445 0.321291 0.160646 0.987012i \(-0.448642\pi\)
0.160646 + 0.987012i \(0.448642\pi\)
\(642\) 4.85885 0.191764
\(643\) 29.6220 1.16818 0.584088 0.811690i \(-0.301452\pi\)
0.584088 + 0.811690i \(0.301452\pi\)
\(644\) 0 0
\(645\) −18.5214 −0.729278
\(646\) 2.51949 0.0991281
\(647\) 18.3325 0.720727 0.360363 0.932812i \(-0.382653\pi\)
0.360363 + 0.932812i \(0.382653\pi\)
\(648\) −16.4825 −0.647494
\(649\) −9.03304 −0.354578
\(650\) −45.4813 −1.78392
\(651\) 1.69234 0.0663280
\(652\) 8.26863 0.323824
\(653\) −4.41518 −0.172779 −0.0863896 0.996261i \(-0.527533\pi\)
−0.0863896 + 0.996261i \(0.527533\pi\)
\(654\) 12.4599 0.487220
\(655\) −44.1657 −1.72570
\(656\) 35.1449 1.37218
\(657\) −3.39421 −0.132421
\(658\) −1.23020 −0.0479580
\(659\) 10.5431 0.410703 0.205351 0.978688i \(-0.434166\pi\)
0.205351 + 0.978688i \(0.434166\pi\)
\(660\) −1.10684 −0.0430837
\(661\) 10.2501 0.398681 0.199341 0.979930i \(-0.436120\pi\)
0.199341 + 0.979930i \(0.436120\pi\)
\(662\) −12.8376 −0.498946
\(663\) 1.03930 0.0403632
\(664\) −8.89256 −0.345098
\(665\) −12.8536 −0.498440
\(666\) 16.7927 0.650702
\(667\) 0 0
\(668\) −8.69838 −0.336550
\(669\) 15.6956 0.606827
\(670\) 45.6346 1.76302
\(671\) 2.63648 0.101780
\(672\) −1.21350 −0.0468117
\(673\) 29.0456 1.11962 0.559812 0.828620i \(-0.310873\pi\)
0.559812 + 0.828620i \(0.310873\pi\)
\(674\) −36.8674 −1.42008
\(675\) −40.9257 −1.57523
\(676\) 1.18864 0.0457169
\(677\) −21.8323 −0.839084 −0.419542 0.907736i \(-0.637809\pi\)
−0.419542 + 0.907736i \(0.637809\pi\)
\(678\) −12.7750 −0.490621
\(679\) −12.2393 −0.469702
\(680\) −6.19748 −0.237663
\(681\) −13.9160 −0.533262
\(682\) 4.12020 0.157771
\(683\) 48.4518 1.85396 0.926979 0.375114i \(-0.122396\pi\)
0.926979 + 0.375114i \(0.122396\pi\)
\(684\) −4.35866 −0.166658
\(685\) 90.6712 3.46437
\(686\) 13.3899 0.511227
\(687\) −4.33616 −0.165435
\(688\) −21.0787 −0.803617
\(689\) −9.58506 −0.365162
\(690\) 0 0
\(691\) 23.0694 0.877601 0.438800 0.898585i \(-0.355404\pi\)
0.438800 + 0.898585i \(0.355404\pi\)
\(692\) −1.97980 −0.0752609
\(693\) −2.06103 −0.0782921
\(694\) 31.3599 1.19041
\(695\) 3.07398 0.116603
\(696\) 12.1298 0.459778
\(697\) 5.95480 0.225554
\(698\) −38.6158 −1.46163
\(699\) −9.74811 −0.368707
\(700\) 3.83636 0.145001
\(701\) −35.6219 −1.34542 −0.672711 0.739905i \(-0.734870\pi\)
−0.672711 + 0.739905i \(0.734870\pi\)
\(702\) 14.4602 0.545764
\(703\) 20.6318 0.778142
\(704\) −8.90065 −0.335456
\(705\) −3.20735 −0.120796
\(706\) −22.8008 −0.858120
\(707\) 4.54631 0.170982
\(708\) −2.47297 −0.0929398
\(709\) −21.1768 −0.795312 −0.397656 0.917534i \(-0.630176\pi\)
−0.397656 + 0.917534i \(0.630176\pi\)
\(710\) −49.7685 −1.86778
\(711\) 40.5184 1.51956
\(712\) 18.8859 0.707781
\(713\) 0 0
\(714\) 0.326159 0.0122062
\(715\) −12.9087 −0.482759
\(716\) 1.98492 0.0741801
\(717\) −19.8043 −0.739604
\(718\) 1.19354 0.0445424
\(719\) −47.0596 −1.75503 −0.877513 0.479553i \(-0.840799\pi\)
−0.877513 + 0.479553i \(0.840799\pi\)
\(720\) −31.0420 −1.15687
\(721\) 0.792406 0.0295108
\(722\) −3.93104 −0.146298
\(723\) 8.63984 0.321319
\(724\) 4.33853 0.161240
\(725\) −69.9907 −2.59939
\(726\) 0.811267 0.0301089
\(727\) 34.5022 1.27961 0.639807 0.768535i \(-0.279014\pi\)
0.639807 + 0.768535i \(0.279014\pi\)
\(728\) −7.75407 −0.287385
\(729\) −6.99570 −0.259100
\(730\) −6.67152 −0.246924
\(731\) −3.57147 −0.132096
\(732\) 0.721787 0.0266780
\(733\) 19.9498 0.736863 0.368431 0.929655i \(-0.379895\pi\)
0.368431 + 0.929655i \(0.379895\pi\)
\(734\) 36.0243 1.32968
\(735\) 16.6230 0.613148
\(736\) 0 0
\(737\) 8.99026 0.331160
\(738\) 38.3272 1.41084
\(739\) 9.42242 0.346609 0.173305 0.984868i \(-0.444555\pi\)
0.173305 + 0.984868i \(0.444555\pi\)
\(740\) −8.87166 −0.326129
\(741\) 8.21864 0.301919
\(742\) −3.00803 −0.110428
\(743\) −7.25579 −0.266189 −0.133095 0.991103i \(-0.542491\pi\)
−0.133095 + 0.991103i \(0.542491\pi\)
\(744\) 6.45262 0.236565
\(745\) 22.6203 0.828742
\(746\) −10.7784 −0.394625
\(747\) −7.54684 −0.276124
\(748\) −0.213432 −0.00780385
\(749\) −4.77990 −0.174654
\(750\) −20.8131 −0.759988
\(751\) 18.9612 0.691904 0.345952 0.938252i \(-0.387556\pi\)
0.345952 + 0.938252i \(0.387556\pi\)
\(752\) −3.65020 −0.133109
\(753\) −16.4667 −0.600079
\(754\) 24.7296 0.900600
\(755\) −28.8569 −1.05021
\(756\) −1.21972 −0.0443608
\(757\) 8.51568 0.309508 0.154754 0.987953i \(-0.450542\pi\)
0.154754 + 0.987953i \(0.450542\pi\)
\(758\) −12.6271 −0.458637
\(759\) 0 0
\(760\) −49.0086 −1.77773
\(761\) −3.63058 −0.131609 −0.0658043 0.997833i \(-0.520961\pi\)
−0.0658043 + 0.997833i \(0.520961\pi\)
\(762\) 7.35707 0.266519
\(763\) −12.2574 −0.443748
\(764\) −2.71112 −0.0980850
\(765\) −5.25961 −0.190161
\(766\) 24.2506 0.876208
\(767\) −28.8414 −1.04140
\(768\) −6.25478 −0.225700
\(769\) 11.1413 0.401764 0.200882 0.979615i \(-0.435619\pi\)
0.200882 + 0.979615i \(0.435619\pi\)
\(770\) −4.05108 −0.145991
\(771\) −9.11194 −0.328158
\(772\) −0.920935 −0.0331452
\(773\) −40.1436 −1.44387 −0.721933 0.691963i \(-0.756746\pi\)
−0.721933 + 0.691963i \(0.756746\pi\)
\(774\) −22.9873 −0.826261
\(775\) −37.2327 −1.33744
\(776\) −46.6666 −1.67523
\(777\) 2.67087 0.0958169
\(778\) −18.9230 −0.678424
\(779\) 47.0895 1.68716
\(780\) −3.53402 −0.126538
\(781\) −9.80465 −0.350838
\(782\) 0 0
\(783\) 22.2526 0.795244
\(784\) 18.9182 0.675649
\(785\) −76.1991 −2.71966
\(786\) 8.86235 0.316109
\(787\) 32.1916 1.14751 0.573754 0.819028i \(-0.305487\pi\)
0.573754 + 0.819028i \(0.305487\pi\)
\(788\) 3.88006 0.138221
\(789\) 6.78544 0.241568
\(790\) 79.6413 2.83351
\(791\) 12.5674 0.446846
\(792\) −7.85839 −0.279236
\(793\) 8.41798 0.298931
\(794\) 16.3034 0.578585
\(795\) −7.84249 −0.278145
\(796\) 2.97362 0.105397
\(797\) 10.4731 0.370977 0.185489 0.982646i \(-0.440613\pi\)
0.185489 + 0.982646i \(0.440613\pi\)
\(798\) 2.57921 0.0913031
\(799\) −0.618473 −0.0218800
\(800\) 26.6978 0.943911
\(801\) 16.0279 0.566318
\(802\) 15.5483 0.549030
\(803\) −1.31433 −0.0463815
\(804\) 2.46126 0.0868018
\(805\) 0 0
\(806\) 13.1553 0.463376
\(807\) 13.2928 0.467927
\(808\) 17.3344 0.609821
\(809\) −2.51048 −0.0882637 −0.0441318 0.999026i \(-0.514052\pi\)
−0.0441318 + 0.999026i \(0.514052\pi\)
\(810\) −27.4946 −0.966063
\(811\) −28.1415 −0.988183 −0.494091 0.869410i \(-0.664499\pi\)
−0.494091 + 0.869410i \(0.664499\pi\)
\(812\) −2.08595 −0.0732025
\(813\) −18.5685 −0.651225
\(814\) 6.50255 0.227914
\(815\) 78.9026 2.76384
\(816\) 0.967769 0.0338787
\(817\) −28.2426 −0.988084
\(818\) −1.23660 −0.0432367
\(819\) −6.58064 −0.229946
\(820\) −20.2485 −0.707109
\(821\) 9.55356 0.333421 0.166711 0.986006i \(-0.446685\pi\)
0.166711 + 0.986006i \(0.446685\pi\)
\(822\) −18.1942 −0.634595
\(823\) −38.7711 −1.35147 −0.675737 0.737143i \(-0.736174\pi\)
−0.675737 + 0.737143i \(0.736174\pi\)
\(824\) 3.02132 0.105253
\(825\) −7.33111 −0.255237
\(826\) −9.05116 −0.314930
\(827\) −28.9099 −1.00530 −0.502648 0.864491i \(-0.667641\pi\)
−0.502648 + 0.864491i \(0.667641\pi\)
\(828\) 0 0
\(829\) −13.0709 −0.453972 −0.226986 0.973898i \(-0.572887\pi\)
−0.226986 + 0.973898i \(0.572887\pi\)
\(830\) −14.8338 −0.514887
\(831\) −8.88752 −0.308305
\(832\) −28.4187 −0.985243
\(833\) 3.20541 0.111061
\(834\) −0.616828 −0.0213590
\(835\) −83.0034 −2.87245
\(836\) −1.68779 −0.0583733
\(837\) 11.8376 0.409169
\(838\) 15.1694 0.524018
\(839\) 9.03560 0.311944 0.155972 0.987762i \(-0.450149\pi\)
0.155972 + 0.987762i \(0.450149\pi\)
\(840\) −6.34438 −0.218902
\(841\) 9.05619 0.312282
\(842\) 47.1019 1.62324
\(843\) −4.87791 −0.168004
\(844\) 6.12180 0.210721
\(845\) 11.3425 0.390193
\(846\) −3.98072 −0.136860
\(847\) −0.798084 −0.0274225
\(848\) −8.92533 −0.306497
\(849\) 17.4477 0.598803
\(850\) −7.17573 −0.246126
\(851\) 0 0
\(852\) −2.68421 −0.0919596
\(853\) −13.4429 −0.460275 −0.230137 0.973158i \(-0.573918\pi\)
−0.230137 + 0.973158i \(0.573918\pi\)
\(854\) 2.64177 0.0903995
\(855\) −41.5921 −1.42242
\(856\) −18.2250 −0.622918
\(857\) 40.8692 1.39607 0.698033 0.716065i \(-0.254059\pi\)
0.698033 + 0.716065i \(0.254059\pi\)
\(858\) 2.59028 0.0884308
\(859\) 33.6168 1.14699 0.573495 0.819209i \(-0.305587\pi\)
0.573495 + 0.819209i \(0.305587\pi\)
\(860\) 12.1443 0.414118
\(861\) 6.09594 0.207749
\(862\) 10.5949 0.360864
\(863\) 6.28825 0.214055 0.107027 0.994256i \(-0.465867\pi\)
0.107027 + 0.994256i \(0.465867\pi\)
\(864\) −8.48823 −0.288775
\(865\) −18.8921 −0.642351
\(866\) −10.9764 −0.372993
\(867\) −10.8208 −0.367494
\(868\) −1.10965 −0.0376641
\(869\) 15.6898 0.532239
\(870\) 20.2338 0.685989
\(871\) 28.7049 0.972627
\(872\) −46.7356 −1.58267
\(873\) −39.6045 −1.34041
\(874\) 0 0
\(875\) 20.4749 0.692179
\(876\) −0.359822 −0.0121573
\(877\) −46.4269 −1.56773 −0.783863 0.620934i \(-0.786754\pi\)
−0.783863 + 0.620934i \(0.786754\pi\)
\(878\) 3.46129 0.116813
\(879\) 6.77642 0.228563
\(880\) −12.0202 −0.405202
\(881\) 6.31123 0.212631 0.106315 0.994332i \(-0.466095\pi\)
0.106315 + 0.994332i \(0.466095\pi\)
\(882\) 20.6312 0.694687
\(883\) 33.7642 1.13625 0.568127 0.822941i \(-0.307668\pi\)
0.568127 + 0.822941i \(0.307668\pi\)
\(884\) −0.681464 −0.0229201
\(885\) −23.5981 −0.793240
\(886\) 0.996218 0.0334686
\(887\) 14.5976 0.490139 0.245069 0.969506i \(-0.421189\pi\)
0.245069 + 0.969506i \(0.421189\pi\)
\(888\) 10.1836 0.341739
\(889\) −7.23753 −0.242739
\(890\) 31.5038 1.05601
\(891\) −5.41659 −0.181463
\(892\) −10.2915 −0.344585
\(893\) −4.89078 −0.163664
\(894\) −4.53901 −0.151807
\(895\) 18.9409 0.633126
\(896\) −5.16249 −0.172467
\(897\) 0 0
\(898\) −48.8448 −1.62997
\(899\) 20.2446 0.675195
\(900\) 12.4138 0.413795
\(901\) −1.51227 −0.0503809
\(902\) 14.8413 0.494161
\(903\) −3.65613 −0.121668
\(904\) 47.9176 1.59371
\(905\) 41.4000 1.37618
\(906\) 5.79046 0.192375
\(907\) 48.0826 1.59656 0.798278 0.602290i \(-0.205745\pi\)
0.798278 + 0.602290i \(0.205745\pi\)
\(908\) 9.12462 0.302811
\(909\) 14.7111 0.487938
\(910\) −12.9346 −0.428779
\(911\) 28.6152 0.948065 0.474033 0.880507i \(-0.342798\pi\)
0.474033 + 0.880507i \(0.342798\pi\)
\(912\) 7.65296 0.253415
\(913\) −2.92233 −0.0967150
\(914\) −5.05915 −0.167342
\(915\) 6.88759 0.227697
\(916\) 2.84319 0.0939416
\(917\) −8.71834 −0.287905
\(918\) 2.28143 0.0752984
\(919\) −8.89355 −0.293371 −0.146686 0.989183i \(-0.546861\pi\)
−0.146686 + 0.989183i \(0.546861\pi\)
\(920\) 0 0
\(921\) 12.4108 0.408948
\(922\) −10.1073 −0.332866
\(923\) −31.3051 −1.03042
\(924\) −0.218491 −0.00718782
\(925\) −58.7610 −1.93205
\(926\) −4.81812 −0.158333
\(927\) 2.56410 0.0842161
\(928\) −14.5165 −0.476526
\(929\) −18.1893 −0.596771 −0.298385 0.954445i \(-0.596448\pi\)
−0.298385 + 0.954445i \(0.596448\pi\)
\(930\) 10.7637 0.352955
\(931\) 25.3478 0.830741
\(932\) 6.39176 0.209369
\(933\) −10.7374 −0.351525
\(934\) −40.3140 −1.31912
\(935\) −2.03665 −0.0666057
\(936\) −25.0909 −0.820123
\(937\) −33.3478 −1.08943 −0.544713 0.838623i \(-0.683361\pi\)
−0.544713 + 0.838623i \(0.683361\pi\)
\(938\) 9.00829 0.294131
\(939\) −13.4448 −0.438755
\(940\) 2.10304 0.0685935
\(941\) −29.2596 −0.953836 −0.476918 0.878948i \(-0.658246\pi\)
−0.476918 + 0.878948i \(0.658246\pi\)
\(942\) 15.2902 0.498182
\(943\) 0 0
\(944\) −26.8563 −0.874099
\(945\) −11.6391 −0.378619
\(946\) −8.90127 −0.289405
\(947\) 34.5660 1.12324 0.561621 0.827394i \(-0.310178\pi\)
0.561621 + 0.827394i \(0.310178\pi\)
\(948\) 4.29537 0.139507
\(949\) −4.19649 −0.136224
\(950\) −56.7445 −1.84103
\(951\) −0.544355 −0.0176519
\(952\) −1.22339 −0.0396502
\(953\) −28.4736 −0.922350 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(954\) −9.73350 −0.315134
\(955\) −25.8706 −0.837154
\(956\) 12.9855 0.419982
\(957\) 3.98616 0.128854
\(958\) 52.0425 1.68142
\(959\) 17.8985 0.577974
\(960\) −23.2522 −0.750462
\(961\) −20.2306 −0.652599
\(962\) 20.7619 0.669390
\(963\) −15.4670 −0.498417
\(964\) −5.66508 −0.182460
\(965\) −8.78794 −0.282894
\(966\) 0 0
\(967\) −10.9313 −0.351526 −0.175763 0.984433i \(-0.556239\pi\)
−0.175763 + 0.984433i \(0.556239\pi\)
\(968\) −3.04297 −0.0978048
\(969\) 1.29668 0.0416554
\(970\) −77.8449 −2.49945
\(971\) 7.59300 0.243671 0.121835 0.992550i \(-0.461122\pi\)
0.121835 + 0.992550i \(0.461122\pi\)
\(972\) −6.06782 −0.194626
\(973\) 0.606805 0.0194533
\(974\) 27.3496 0.876338
\(975\) −23.4074 −0.749637
\(976\) 7.83858 0.250907
\(977\) −23.0302 −0.736802 −0.368401 0.929667i \(-0.620095\pi\)
−0.368401 + 0.929667i \(0.620095\pi\)
\(978\) −15.8327 −0.506273
\(979\) 6.20642 0.198358
\(980\) −10.8996 −0.348174
\(981\) −39.6630 −1.26634
\(982\) 20.7292 0.661496
\(983\) −21.6864 −0.691688 −0.345844 0.938292i \(-0.612407\pi\)
−0.345844 + 0.938292i \(0.612407\pi\)
\(984\) 23.2429 0.740956
\(985\) 37.0251 1.17972
\(986\) 3.90168 0.124255
\(987\) −0.633133 −0.0201528
\(988\) −5.38890 −0.171444
\(989\) 0 0
\(990\) −13.1086 −0.416620
\(991\) 32.0034 1.01662 0.508310 0.861174i \(-0.330270\pi\)
0.508310 + 0.861174i \(0.330270\pi\)
\(992\) −7.72227 −0.245182
\(993\) −6.60698 −0.209666
\(994\) −9.82432 −0.311608
\(995\) 28.3755 0.899563
\(996\) −0.800044 −0.0253504
\(997\) −44.7240 −1.41642 −0.708211 0.706001i \(-0.750498\pi\)
−0.708211 + 0.706001i \(0.750498\pi\)
\(998\) −7.39005 −0.233928
\(999\) 18.6823 0.591082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.e.1.4 6
23.22 odd 2 253.2.a.d.1.4 6
69.68 even 2 2277.2.a.m.1.3 6
92.91 even 2 4048.2.a.bc.1.4 6
115.114 odd 2 6325.2.a.m.1.3 6
253.252 even 2 2783.2.a.h.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.a.d.1.4 6 23.22 odd 2
2277.2.a.m.1.3 6 69.68 even 2
2783.2.a.h.1.3 6 253.252 even 2
4048.2.a.bc.1.4 6 92.91 even 2
5819.2.a.e.1.4 6 1.1 even 1 trivial
6325.2.a.m.1.3 6 115.114 odd 2