Properties

Label 5819.2.a
Level $5819$
Weight $2$
Character orbit 5819.a
Rep. character $\chi_{5819}(1,\cdot)$
Character field $\Q$
Dimension $422$
Newform subspaces $21$
Sturm bound $1104$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(1104\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5819))\).

Total New Old
Modular forms 576 422 154
Cusp forms 529 422 107
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(132\)\(98\)\(34\)\(121\)\(98\)\(23\)\(11\)\(0\)\(11\)
\(+\)\(-\)\(-\)\(154\)\(114\)\(40\)\(142\)\(114\)\(28\)\(12\)\(0\)\(12\)
\(-\)\(+\)\(-\)\(156\)\(118\)\(38\)\(144\)\(118\)\(26\)\(12\)\(0\)\(12\)
\(-\)\(-\)\(+\)\(134\)\(92\)\(42\)\(122\)\(92\)\(30\)\(12\)\(0\)\(12\)
Plus space\(+\)\(266\)\(190\)\(76\)\(243\)\(190\)\(53\)\(23\)\(0\)\(23\)
Minus space\(-\)\(310\)\(232\)\(78\)\(286\)\(232\)\(54\)\(24\)\(0\)\(24\)

Trace form

\( 422 q + q^{2} + q^{3} + 421 q^{4} + q^{5} - 14 q^{6} + 6 q^{7} + 3 q^{8} + 421 q^{9} + 8 q^{10} - 2 q^{11} + 6 q^{12} + 18 q^{13} + 12 q^{14} - 11 q^{15} + 423 q^{16} + 12 q^{17} + 15 q^{18} + 24 q^{20}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5819))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 23
5819.2.a.a 5819.a 1.a $1$ $46.465$ \(\Q\) None 11.2.a.a \(-2\) \(-1\) \(-1\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}-q^{5}+2q^{6}+2q^{7}+\cdots\)
5819.2.a.b 5819.a 1.a $3$ $46.465$ 3.3.169.1 None 253.2.a.a \(-1\) \(-5\) \(5\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-2-\beta _{2})q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+\cdots\)
5819.2.a.c 5819.a 1.a $3$ $46.465$ \(\Q(\zeta_{18})^+\) None 253.2.a.b \(3\) \(3\) \(-3\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\)
5819.2.a.d 5819.a 1.a $5$ $46.465$ 5.5.170701.1 None 253.2.a.c \(-4\) \(-5\) \(3\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+\cdots\)
5819.2.a.e 5819.a 1.a $6$ $46.465$ 6.6.8639957.1 None 253.2.a.d \(3\) \(7\) \(-3\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1+\beta _{2})q^{3}+(1-\beta _{3}+\cdots)q^{4}+\cdots\)
5819.2.a.f 5819.a 1.a $8$ $46.465$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 5819.2.a.f \(1\) \(-2\) \(-4\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+(1+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
5819.2.a.g 5819.a 1.a $8$ $46.465$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 5819.2.a.f \(1\) \(-2\) \(4\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+(1+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
5819.2.a.h 5819.a 1.a $9$ $46.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 5819.2.a.h \(-1\) \(-1\) \(-2\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
5819.2.a.i 5819.a 1.a $9$ $46.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 5819.2.a.h \(-1\) \(-1\) \(2\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{2})q^{4}+(1+\beta _{2}+\cdots)q^{5}+\cdots\)
5819.2.a.j 5819.a 1.a $9$ $46.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 5819.2.a.j \(-1\) \(-1\) \(-6\) \(-5\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{3}+\beta _{4})q^{4}+\cdots\)
5819.2.a.k 5819.a 1.a $9$ $46.465$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 5819.2.a.j \(-1\) \(-1\) \(6\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(1+\beta _{3}+\beta _{4})q^{4}+\cdots\)
5819.2.a.l 5819.a 1.a $18$ $46.465$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 5819.2.a.l \(0\) \(4\) \(-8\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{11}q^{3}+(1+\beta _{2})q^{4}+\beta _{14}q^{5}+\cdots\)
5819.2.a.m 5819.a 1.a $18$ $46.465$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 5819.2.a.l \(0\) \(4\) \(8\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{11}q^{3}+(1+\beta _{2})q^{4}-\beta _{14}q^{5}+\cdots\)
5819.2.a.n 5819.a 1.a $18$ $46.465$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 5819.2.a.n \(2\) \(-2\) \(-8\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(1+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)
5819.2.a.o 5819.a 1.a $18$ $46.465$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 5819.2.a.n \(2\) \(-2\) \(8\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(1+\beta _{2})q^{4}-\beta _{10}q^{5}+\cdots\)
5819.2.a.p 5819.a 1.a $40$ $46.465$ None 253.2.i.a \(-5\) \(-10\) \(-11\) \(0\) $-$ $-$ $\mathrm{SU}(2)$
5819.2.a.q 5819.a 1.a $40$ $46.465$ None 253.2.i.a \(-5\) \(-10\) \(11\) \(0\) $+$ $+$ $\mathrm{SU}(2)$
5819.2.a.r 5819.a 1.a $40$ $46.465$ None 5819.2.a.r \(0\) \(4\) \(-16\) \(-16\) $+$ $+$ $\mathrm{SU}(2)$
5819.2.a.s 5819.a 1.a $40$ $46.465$ None 5819.2.a.r \(0\) \(4\) \(16\) \(16\) $-$ $+$ $\mathrm{SU}(2)$
5819.2.a.t 5819.a 1.a $60$ $46.465$ None 253.2.i.b \(5\) \(9\) \(-8\) \(0\) $+$ $-$ $\mathrm{SU}(2)$
5819.2.a.u 5819.a 1.a $60$ $46.465$ None 253.2.i.b \(5\) \(9\) \(8\) \(0\) $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5819))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(5819)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(253))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 2}\)