Defining parameters
Level: | \( N \) | \(=\) | \( 5819 = 11 \cdot 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5819.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(1104\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5819))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 576 | 422 | 154 |
Cusp forms | 529 | 422 | 107 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(132\) | \(98\) | \(34\) | \(121\) | \(98\) | \(23\) | \(11\) | \(0\) | \(11\) | |||
\(+\) | \(-\) | \(-\) | \(154\) | \(114\) | \(40\) | \(142\) | \(114\) | \(28\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(-\) | \(156\) | \(118\) | \(38\) | \(144\) | \(118\) | \(26\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(+\) | \(134\) | \(92\) | \(42\) | \(122\) | \(92\) | \(30\) | \(12\) | \(0\) | \(12\) | |||
Plus space | \(+\) | \(266\) | \(190\) | \(76\) | \(243\) | \(190\) | \(53\) | \(23\) | \(0\) | \(23\) | ||||
Minus space | \(-\) | \(310\) | \(232\) | \(78\) | \(286\) | \(232\) | \(54\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5819))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5819))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5819)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(253))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 2}\)