Properties

Label 2277.2.a.m
Level $2277$
Weight $2$
Character orbit 2277.a
Self dual yes
Analytic conductor $18.182$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,5,-3,0,-1,-3,0,-6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.8639957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{5} - \beta_{3} + 1) q^{4} + (\beta_{5} - \beta_{4} - \beta_1) q^{5} + (\beta_{4} - \beta_{2} + \beta_1) q^{7} + ( - \beta_{5} + \beta_{4} + \beta_1 - 1) q^{8} + ( - 2 \beta_{5} + \beta_{4} + \beta_{3} + \cdots - 1) q^{10}+ \cdots + ( - 5 \beta_{5} + 5 \beta_{4} + \cdots - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 5 q^{4} - 3 q^{5} - q^{7} - 3 q^{8} - 6 q^{10} - 6 q^{11} - 3 q^{13} + 8 q^{14} - q^{16} - 5 q^{17} + q^{19} + 7 q^{20} + 3 q^{22} + 6 q^{23} + 3 q^{25} - 15 q^{26} - 6 q^{29} - 8 q^{31}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 4x^{4} + 10x^{3} + 6x^{2} - 7x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 3\nu^{3} - 2\nu^{2} + 5\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 4\nu^{4} + 9\nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 4\nu^{4} + \nu^{3} + 7\nu^{2} - 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 4\nu^{4} + 10\nu^{2} - 3\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{3} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} + \beta_{4} - 3\beta_{3} + 8\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{5} + 3\beta_{4} - 11\beta_{3} + \beta_{2} + 23\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 23\beta_{5} + 12\beta_{4} - 34\beta_{3} + 4\beta_{2} + 75\beta _1 + 21 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.34987
−1.17801
−0.255514
0.901423
1.73548
3.14649
−2.34987 0 3.52188 2.57623 0 −4.37344 −3.57623 0 −6.05380
1.2 −2.17801 0 2.74373 0.619849 0 2.65532 −1.61985 0 −1.35004
1.3 −1.25551 0 −0.423685 −4.04297 0 0.798084 3.04297 0 5.07601
1.4 −0.0985770 0 −1.99028 −1.39335 0 −2.57601 0.393350 0 0.137352
1.5 0.735479 0 −1.45907 1.54407 0 0.781955 −2.54407 0 1.13563
1.6 2.14649 0 2.60742 −2.30383 0 1.71408 1.30383 0 −4.94515
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2277.2.a.m 6
3.b odd 2 1 253.2.a.d 6
12.b even 2 1 4048.2.a.bc 6
15.d odd 2 1 6325.2.a.m 6
33.d even 2 1 2783.2.a.h 6
69.c even 2 1 5819.2.a.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
253.2.a.d 6 3.b odd 2 1
2277.2.a.m 6 1.a even 1 1 trivial
2783.2.a.h 6 33.d even 2 1
4048.2.a.bc 6 12.b even 2 1
5819.2.a.e 6 69.c even 2 1
6325.2.a.m 6 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\):

\( T_{2}^{6} + 3T_{2}^{5} - 4T_{2}^{4} - 16T_{2}^{3} - 3T_{2}^{2} + 10T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 3T_{5}^{5} - 12T_{5}^{4} - 25T_{5}^{3} + 38T_{5}^{2} + 40T_{5} - 32 \) Copy content Toggle raw display
\( T_{17}^{6} + 5T_{17}^{5} - 48T_{17}^{4} - 253T_{17}^{3} - 98T_{17}^{2} + 596T_{17} + 296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$7$ \( T^{6} + T^{5} + \cdots + 32 \) Copy content Toggle raw display
$11$ \( (T + 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 3 T^{5} + \cdots + 502 \) Copy content Toggle raw display
$17$ \( T^{6} + 5 T^{5} + \cdots + 296 \) Copy content Toggle raw display
$19$ \( T^{6} - T^{5} + \cdots - 13616 \) Copy content Toggle raw display
$23$ \( (T - 1)^{6} \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots - 6302 \) Copy content Toggle raw display
$31$ \( T^{6} + 8 T^{5} + \cdots + 9616 \) Copy content Toggle raw display
$37$ \( T^{6} - 2 T^{5} + \cdots - 248 \) Copy content Toggle raw display
$41$ \( T^{6} - 2 T^{5} + \cdots + 206 \) Copy content Toggle raw display
$43$ \( T^{6} - 10 T^{5} + \cdots - 127184 \) Copy content Toggle raw display
$47$ \( T^{6} + 14 T^{5} + \cdots - 17536 \) Copy content Toggle raw display
$53$ \( T^{6} - 4 T^{5} + \cdots + 808 \) Copy content Toggle raw display
$59$ \( T^{6} + 39 T^{5} + \cdots + 16064 \) Copy content Toggle raw display
$61$ \( T^{6} + 22 T^{5} + \cdots + 27656 \) Copy content Toggle raw display
$67$ \( T^{6} - 8 T^{5} + \cdots - 8576 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + \cdots + 192376 \) Copy content Toggle raw display
$73$ \( T^{6} + 9 T^{5} + \cdots - 2878 \) Copy content Toggle raw display
$79$ \( T^{6} + 15 T^{5} + \cdots + 321344 \) Copy content Toggle raw display
$83$ \( T^{6} + 43 T^{5} + \cdots - 59216 \) Copy content Toggle raw display
$89$ \( T^{6} + 17 T^{5} + \cdots - 115096 \) Copy content Toggle raw display
$97$ \( T^{6} - 19 T^{5} + \cdots - 33464 \) Copy content Toggle raw display
show more
show less